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ABSTRACT 

This paper discusses the formulation and numerical develop- 

ment of an algorithm for the estimation of the domain of 

attraction of a general nonlinear autonomous dynamical system. 

The method is based on stability analysis using Lyapunov's 

direct method with quadratic Lyapunov functions. It requires 

the nesting of an unconstrained and a constrained optimization 

problem--both highly nonlinear. The Powell '64 conjugate direc- 

tion algorithm and the BFGS quasi-Newton algorithm may be used 

as alternatives at the outer loop, while the recent Powell-Han 

projected Lagrangean algorithm is used for the inner loop non- 

linear programme. Difficulties intrinsic to the Powell-Han 

algorithm, in obtaining global constrained minima and in pro- 

viding sensitivity analysis of the inner loop problem in order 

to use BFGS at the outer loop are discussed in the context of 

stable control of large angle manoeuvres for astronomical 

satellites. 

Keywords: Dynamical systems, nested optimization, sensitivity 

analysis of nonlinear programming, Lyapunov's direct 

method, satellite large angle manoeuvres, stability 

analysis, unconstrained optimization. 
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1 .  INTRODUCTION 

This paper investigates the feasibility of the Lyapunov 

function approach to stability analysis of a (possibly controlled) 

dynamical system through the development of suitable software to 

estimate the domain of attraction ( D O A )  of the (target) equili- 

brium point of the system. It describes the theoretical and 

computational development of a technique for assessing the 

stability behavior of two satellite attitude control schemes, 

based on Lyapunov's second or direct method. This approach is 

a generalization of "energy" sink ideas involving "energy-like" 

functions and their time rate of change along motions of the 

system under investigation. In qualitative terms, system stability 

is assured ifthe total "energy" decreases as the system motion 

evolves in time (cf. Lasalle & Lefschetz, 1961; Rouche et aZ, 

1977). 

In order to make this paper self-contained the concepts 

necessary for an understanding of the stability analysis tech- 

nique developed are outlined briefly in the next two sections 

of the paper. 



The practical inplementation of the technique for the sta- 

bility analysis of engineering,economic and public policy control 

systems requires the solution of two sets of optimization 

problems: an inner-loop constrained problem and an outer- 

loop unconstrained problem. The complex nonlinear nature of 

the problems involved requires that the algorithms for finding 

the optima be carefully selected. The performance of the 

three methods chosen were first carefully tested on an experi- 

mental design of appropriate test problems (see Dempster e t  a z ,  

1979). A sinilar design of dynamical system test problems 

was used for preliminary evaluation of the overall Lyapunov 

stability technique developed. It will be discussed in Section 

4. 

A computer system--DOMATT--which involves the selected 

optimization procedures and implements the stability evaluation 

technique was developed and applied to the test dynamical 

systems. It will be described briefly in Section 4 along with 

the numerical experiments performed with it. Section 5 describes 

the preliminaryapplication of the stability analysis technique 

developed to two spacecraft large angle attitude control systems 

designed in the study on which this paper partially reports. 

In the study digital simulations of various large angle slew 

manoeuvres were first performed to check the spqcification and 

stability behaviour of the attitude control systems analyzed 

(cf .  Dempster e t  aZ ,  1979; Dempster, 1980). 

Utilization of the latest optimization techniques makes 

the Lyapunov function approach to stability analysis of general 

realistic models of satellite large angle manoeuvre--and other 

complex--control systems potentially feasible for the first 

tine. Sources of difficulties experienced with the Powell-Ran 

inner loop optimization technique--recently independently en- 

countered by other researchers--are precisely identified in 

Section 4 and 5. Directions to overcome these and other 

difficulties in order to establish definitely the usefulness 

of the method in applications are indicated in Section 6. 



In this regard, it should be noted that numerical DOA 

cstirmtion, as investigated in this paper, currently provides 

the only hope of prooj -  of global (asymptotic) stability of 

satellite large angle attitude control systems. Indeed, cas- 

caded nonlinearities in several dimensions--as incorporatedin 

the reaction wheel attitude control system--are currently beyond 

the reach of frequency domain stability analysis techniques. 

Moreover, simulation studies can n e v e r  establish stability 

properties beyond doubt--even at immense computational cost. 

2. STABILITY OF DYNAMICAL SYSTEMS 

Consider the autonomous nonlinear dynamica l  s y s t e m  given 

by the vector differential equation 

(1 1 ;;( = f (x) 

where x is an n-vector in the (Euclidean) s t a t e  space  IR" of the 

system, f isacontinuously d.ifferentiable n-vector valued func- 
1 tion of an n-vector argument (f:nn+JRn, f E C ) and dot denotes 

time derivative. 

A state vector xe is an e q u i l i b r i u m  p ~ i n t  of the systen 

(1) if, and only if, 

Without loss of generality, we may translate the origin of the 

state space to xe and take xe:= 0. (In large angle attitude 

control system analysis the equilibrium point of interest will 

be a point of zero body rates and zero attitude errors relative 

to a prescribed inertial target attitude for the spacecraft.) 

The origin 0 of state space is an a s y m p t o t i c a l l y  s t a b l e  

equilibrium point of the system (1) with respect to a domain n 
in state space if, and only if, for all intitial points x(O):= xo 

in R the corresponding solution trajectories of (1) tend to 0 as 

t tends to infinity. That is, the systerc eventually returns to 

equilibrium from any initital point in the d-omain R , which is 

termed a r e g i o n  o f  a s y m p t o t i c  s t a b i l i t y  (PAS) of 0 for the systen. 



The maximal PAS of 0 is called the domain o f  a t t r a c t i o n  

(DOA) of 0 for the system. 

In order to apply Lyapunov 's  second or d i r e c t  method to the 

identification of an M S  for the system (I) an appropriate 

definition of an "energy-like" function is needed. A real 

valued function V defined on a domain R of state space (V: R-+IR) 

is p o s i t i v e  d e f i n i t e  on fl if, and only if, V(x) > 0 for all non- 

zero state vectors x in R . Such a function V is n e g a t i v e  

d e f i n i t e  if, and only if, -V is positive definite. 

The following theorem, due to Lasalle, gives a method for 

using more closely specified "energy-like" functions to identify 

regions of asymptotic stability, see Lasalle E Lefschetz (1961), 

Chapter 2, 59. 

THEOREM: (Lasalle). L e t  R be a  domain i n  lRn and l e t  

V be  a  r e a l  v a l u e d  f u n c t i o n  o f  an n - v e c t o r  argument  wh i ch  

i s  c o n t i n u o u s l ?  d i f f e r e n t i a b l e  and p o s i t i v e  d e f i n i t e .  Con- 

s i d e r  t h e  open  r e g i o n  

4 i n s i d s  t h e  c o n t o u r  o f  V a t  l e v e l  v  > 0. i ' f  R i s  bounded -- 
i. e .  V has c l o s e d  con tou rs - -and  t h e  t i m e  d e r i v a t i v e  i, 
g i v e n  by 

o f  V i s  n e g a t i v e  d c f i n i t e  on R *  e x c e p t  a t  t h e  o r i g i n  0, 

t h e n  0 i s  an a s y m p t o t i c a l l y  s t a b l e  e q u i l i b r i u m  p o i n t  o f  

t h e  dynamica l  s y s t e m  ( 2 )  and R* i s  an RAS o f  0 .  

In expression ( 4 )  VV(x) denotes the g r a d i e n t  of the function 

V, i.e., the n-row vector of partial derivatives of V given by 



F igu re  1 : 

I l l us t ra t i on  o f  the Use: c.f n?z "E~zcrgp-  1,iX'c '' 
Lyapunov Fwtction t c  Determine an RAS 

of a Dynamical System Udng LasaZle ' s  Theorem 

System Trajectories 

The function V of Lasalle's theorem is the required "energy- 

like" function; it is called a Lyapunov f u n c t i o n  for the system 

(1) in honour of its creator. The situation is illustrated in 

Figure 1. Xote that a trajectory which begins at a point x 
0 

i n s i d e  the RAS decreases the value of V--"energyn--as it converges 

to the origin, while a trajectory beginning at a point x o u t s i d e  1 
the RAS need not converge. 

3 .  DOMAIN OF ATTRACTION ESTIMATION 

If the dynamical syster;, (1) is not g l o b a l l y  f a s ! g m p t o t i c a l l y )  

s t a b l e ,  i.e. stable from an initital position anywhere in the 

state space, orWstable-in-the-large", Lasalle's theorem implies 

that there exists a state vector x at which c(x) = VV (x) f (x) > 0 -- 
that is, the time rat.e of change of "energy" is i n c r e a s i n g .  Since 



the Lyapur~ov function V is assumed continu~usl\~ differentiable, 

it follows tha'i there must exist a nonlinear r:lan?:foZd 

on which vanishes. This manifold is in general m u l t i b r a n c h e d  

(see Figure 1 )  and it is a practically important open mathe- 

matical problem to completely characterize the manifold M. for 

suitable classes of Lyapunov functions and dynamical systems 

relevant to aerospace and other applications, c f .  Shields (1973). 

Now it follows from the above that a maximal RAS R* corres- 

ponding to a s p e c i f i c  Lyapunov function V may be generated by 

isolating the appropriate Zocal s o l u t i o n f s )  x* of the nonlinear 

programming problem 

(7 minxv(x) subject to ;(x) = 0 . 

Note that since V and vanish at 0, an equilibrium point of the 

system, it follows that 0 is a t r i v i a l  s o l u t i o n  of (7). Thus we 

actually seek a solution x* of the nonlinear programming problem 

(8) minV(x) subjectto $(x) = O ,  x # O  X 

or, using (6), 

min V(x) 
XE M 

Figure 2 depicts the state space projection of an a c t u a l  situa- 

tion similar to that shown in Figure 1.  The system is the second 
2 order van der Pol equation (represented in canonical form in IF! ) 

and a specific quadratic Lyapunov function is used, c f .  Davison 

& Kurak (1971). The actual DOA is bounded by the dotted 

"prismoidal" curve and the maximal ellipsoidal RAS is shown 

shaded. Note that the maximal RAS is determined by the oscu- 

lation of two radially symmetric branches of the = 0 manifold 

M at x* and -x*. In general the discrete solution set of the 

programme (8): contains one or more radially symmetric pairs, 



S h i e l d s  & Sto rey  ( 1 9 7 5 ) .  The o t h e r  p a i r  of  r a d i a l l y  symmetric 

branches o s c u l a t e s  ano the r  e l l i p t i c a l  l e v e l  s e t  of t h e  g iven 

Lyapunov f u n c t i o n  a t  xo and -xO,  b u t  t h i s  l i es  i n  p a r t  o u t s i d e  

t h e  DOA and hence is n o t  a  v a l i d  RAS. Th is  i l l u s t r a t e s  t h e  

g e n e r a l  f a c t  t h a t  t h e  op t im i za t i on  problem ( 8 )  has  l o c a l  (up t o  

f i r s t  o r d e r )  s o l u t i o n s  which a r e  n o t  g l o b a l .  I n  t h i s  paper ,  

methods a r e  dev ised  both f o r  e l i m i n a t i n g  t h e  t r i v i a l  s o l u t i o n  

of  problem ( 7 )  a t  t h e  o r i g i n  and f o r  l o c a t i n g  a g l o b a l ,  r a t h e r  

than  a  l o c a l ,  s o l u t i o n  o f  t h e  programme ( 8 ) .  

I n  o r d e r  t o  o b t a i n  a  maxima2 e s t i m a t e  o f  t h e  DOA of  t h e  

dynamical system ( I ) ,  we may cons ide r  a  pa rame t r i c  c l a s s  of  

Lyapunov f u n c t i o n s ,  s o l v e  t h e  problem ( 8 )  f o r  each o f  them, and 

choose t h e  " l a r g e s t "  w i th  r e s p e c t  t o  a  s u i t a b l e  measure o f  t h e  

s i z e  of  t h e  cand ida te  r e g i o n s  o f  asympto t i c  s t a b i l i t y  c o r r e s -  

ponding t o  t h e  Lyapunov f u n c t i o n s  chosen a t  each  s t e p .  More 

f o rma l l y ,  cons ide r  a  pa rame t r i c  c l a s s  a f  Lyapunov f u n c t i o n s  

Figure 2: 

Ceometraic I i l us t ra t i on  of  the ~Vatkerzctical Ptlogrm:ng 

Pz.obZein Datermining a Maxima2 RA.5 fcr the van der Poi 

Equation Using a Speci f ic  Quadratic L3apurzov Funct<on 



involving a parameter vector z in a set Z. Let the optimal ~ ~ a l u e  

of the programme (8) for the Lyapunov function parametrized bv z 

be denoted by 

Thus to obtain the kest estimate of the DOA using Lyapunoxr 

functions from the class Ye we must solve the nonlinear 

(unconstrained) programming problem 

(11) max Z E Z  F(V;,~) , 

where F is a suitable measure of the size of the maximal KAS 

corresponding to a specific Lyapunov function given by the solu- 

tion to (8) . 
Thus, combining the problems (8) and (11), we see that in 

order to obtain a maximal estimate for the DOA of the dynamical 

system (1) using a given class of Lyapunov functions, we must 

solve the difficult n e s t e d  nonlinear optimization problem 

(12) max F(maxxEM ZEZ v ( X I  1 2 )  1 

being careful to isolate the g l o b a l  solution of the i n n e r  l oop  

(RAS) optimization problem (8) . 
The major difficulty in applying Lyapunov's direct method 

for stability analysis of dynamical systems to practical problems 

is that in general there is no systematic method for finding 

appropriate Lyapunov functions and solving related problems for 

various classes of differential equations andsystems. A general 

review of the properties of dynamical systems relevant to aero- 

space applications and of computable Lyapunov function classes 

for them was made ir~ Dempster e t  a2 (1979). Suffice it to say 

here that of the three types treated in the literature:- 



1 .  Q u a d r a t i c  (Rodden, 1965; We issenberge r ,  1969; 

G e i s s  nt n % ,  1971; Davison & Kurak, 1971; 

S h i e l d s  & S t o r e y ,  1975) 

2. Polynomia l  (Zubov, 1955) 

3 .  P i e c e w i s e  L i n e a r  ( R ~ s e n b r o c k ,  1962) 

q u a d r a t i c  Lyapunov  f u n c t i o n s  have proved t h e  m o s t  r e l i a b l ~  t o  

d a t e .  

The u s e  o f  q u a d r a t i c  Lyapunov f u n c t i o n s  i n  t u r n  r e q u i r e s  

t h e  g e n e r a t i o n  o f  a r b i t r a r y  s i g n  d e f i n i t e  m a t r i c e s  and t h e  

s c l u t i o n  o f  a  m a t r i x  e q u a t i o n  (Lyapunov 's  e q u a t i o n ) .  Computa- 

t i o n a l l y  e f f i c i e n t  p r o c e d u r e s  (and c o d e s )  f o r  p e r f o r m i n g  t h e s e  

o p e r a t i o n s  were c a r e f u l l y  s e l e c t e d  (and  o b t a i n e d )  f o r  t h e  p r e s e n t  

work (see Appendix I o f  Dempster e t  a l ,  1 9 7 9 ) .  

The p r a c t i c a l  a d v a n t a g e s  o f  employ ing q u a d r a t i c  Lyapunov 

f u n c t i o n s  i n  s t a b i l i t y  s t u d i e s  a r e  t w o f o l d .  F i r s t - - a n d  o f  

g r e a t e s t  impor tance - - i s  t h a t  a t  c o n s t a n t  v a l u e  t h e  Lyapunov f u c -  

t i o n  Vp(x )  g i v e n  by t h e  q u a d r a t i c  fo rm x ' P x  r e p r e s e n t s  a  hyper -  

e l l i p s e  i n  s t a t e  s p a c e  (see F i g u r e  2 ) .  Hence i t  i s  e a s y  t o  

v i s u a l i z e  and i t s  " s i z e " ,  i . e .  a  monotone f u n c t i o n  o f  i t s  h y p e r -  

z ~ o l u m e  g i v e n  a t  a  ( g l o b a l )  optimum o f  t h e  i n n e r  l o o p  program ( 8 )  

by 

( 1 3 )  h ( P )  : =  n  l o q  V* - l o g  d e t P  P  

where V* d e n o t e s  t h e  c o r r e s p o n d i n g  o p t i m a l  v a l u e ,  i s  e a s y  t o  
P 

compute.  

Second ly ,  q u a d r a t i c  forms a r e  e a s i l y  g e n e r a t e d .  Th? method 

employed i n  t h i s  p a p e r  i s  t o  se lec t  a n  a r b i t r a r y  n e g a t i v e  d e f i n i t e  

m a t r i x  -Q and t h e n  s o l v e  t h e  Lyapunov m a t r i x  e q u a t i o n  

( 1 4 )  A'P +PA = -Q 

f o r  t h e  k e r n e l  P  o f  t h e  q u a d r a t i c  form. To see how t h i s  e q u a t i o n  

a r i s e s ,  c o n s i d e r  t h e  dynamic21 sys tem ( 1 )  w r i t c e n  i n  f i r s t  o r d e r  

T a y l o r  s e r i e s  expans ion  a s  



where t.hc nxn matrix A : =  Of(0) and g contains second and higher 

order terms. Neglecting g in ( 1  5 )  and computing c directly 

yields 

Hence it follows from Lasalle's theorem (52) that the 

linearization about the origin of the nonlinear system (1) is 

globally asymptotically stable if, and only if, Q in (16) is 

positive definite. To generate by solving (14) a positive defi- 
3 nite matrix P ( Q ) ,  given a positive definite matrix Q, an O ( P  ) 

iterative algorithm due to Smith (1971) is available. 

The best technique for generating positive definite matrices 

Q was utilized in an ~ar l ie r  (small angle attitudecontrol) study 

by Geiss c : -  a? (1971). It is well known that all real symmetric 

matrices are orthogonally similar to a diagonal matrix, whose 

entries are its eigenvaZuea, and thus that all positive definite 

matrices are orthogonally similar to a diagonal matrix with 

positive diagonal elements. Ilence the parametrization of all 

nxn positive definite matrices may be effected in the required 

n(n+1)/2 parameters by combining a parametrization of the groupof 

orthogonal matrices with the n diagonal elements of a diagonal 

matrix in the form 

where the row vector z' : =  A )  A := diag(A1, ..., An) and G 

is an orthogonal matrix defined by an (n-1) (n-2)/2 - vector 

and an (n-1)- vector fl (see Dempster et aZ ,  1979, for details). 

The advantage of this parametrization over other possible, but 

badly behaved, parametrizations in the same number of parameters 

is that with it separate adjustment of the lengths and orienta- 

tions of the principal axes of the hyperellipsoidal Lyanpunov 

function contours is possible. 



We are now in a position to define precisely the objective 

function F: nm+R, z + + F  (z) of the unconstrained problem ( 1 1 ) as 

4. THE DOMATT SYSTEM AND NUMERICAL EXPERIMENTS 

This section discusses the implementation of the technique 

for assessing the stability behavior of a (controlled) dynamical 

system based on Lyapunov's direct method discussed in the pre- 

vious two sections. 

Having presented the necessary background material in 

Section 3, Figure 3 outlines the structure of an algorithm to 

estimate the domain of attraction of an equilibrium point of a 

dynamical system. There are two parts to this algorithm. For 

any given (quadratic) Lyapunov function we wish to find the maxi- 

mum r e g i o n  o f  a s y m p t o t i c  s t a b i l i t y  ( R A S ) .  Measures of the size 

of this region estimate the size of the domain o f  a t t r a c t i o n  of 

the equilibrium point relative to the given Lyapunov function. 

By interpreting the relevant theorem (Lasalle ' s theorem) geo- 

metrically the RAS problem can be formulated as a nonlinear 

programming problem. This forms the i n n e r  l o o p  of the algorithm. 

The second part, or o u t e r  l o o p ,  of the algorithm seeks the 

quadratic Lyapunov function which yields the largest RAS, and 

hence the optimal estimate of the domain of attraction. Again 

this is formulated as a nonlinear programming problem. 

The key to a successful procedure for estimating the domain 

of attraction lies in the choice of algorithms for performing 

the two nonlinear optimizations described above. The selection, 

specification, implementation and testing of the optimization 

routines used in the method was carefully addressed. After an 

extensive general review of current optimization techniques rele- 

vant to DOA estimation for the controlled dynamics of satellite 

large angle manoeuvres (conducted early in the study), it was 

decided that the latest proven constrained and unconstrained 

techniques of classical type afforded the best change of efficient 

optimization calculations. In particular, for the relatively few 



Flgure  3 
Plowhnrt of the Bcsic DOA ,Fsthat.ion .4Zgoritln 

I 

Set  k := 0; z k ,  := zo 

I 
I , 
1 
I , I r - - -  - - - - - -  -- 
1 I I NNE R LOOP OPTIEIIZATIO:~ 

1 
I 
I 
I 
I 
I 

I I A'P, + P,A = -0, I 
I .  
I 
I 'I with i n i t i a l  values ro E xL-, I I ' Set Xt := argmfn v*(P1) 

I I (Powel 1 -Ha" '77)  
I 

1 1  xE := u{Xil)\iX,i-l 1 I 
1 ;  I 
I f  

- 1 1  
I 

1'- Calculate F(z,) := I 
Zkrl := Zk t Azk; k := k+l I n log v * ( P ~ )  - log dat Pi 

' L - - - - - - - - - - -  
I 

I Calculate 
L L ,,,------- -I e~genvectori  ni.. . . ,sk o f  pk n 

END 




















































