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SUMMARY 

The typical formulation of an optimal control or dynamic 

optimization problem is to optimize a scalar performance func- 

tional; less frequently, also vectors of performance functionals 

are considered in multiobjective optimization. However, there 

are practical problems --mostly related to the use of dynamic 

control models in economic planning --where the objectives are 

stated in terms of desirable trajectories. If the goal would 

be to approximate the desired trajectory from both sides, then 

the problem could be equivalently stated as a typical approxi- 

mation problem. However, in many cases the desired trajectories 

have the meaning of aspiration levels: if possible, they should 

be exceeded. 

The paper presents a mathematical formulation of a multi- 

objective trajectory optimization problem, various theoretical 

approaches to this problem--including interpretations as a 

generalized Lagrangian functional approach and as a semi-regular- 

ization procedure for ill-posed problems, a review of possible 

computational approaches and examples of actual computations. 



MULTIOBJECTIVE TRAJECTORY OPTIMIZATION 
AND MODEL SEMIREGULARIZATION 

Andrzej P. Wierzbicki 

1. MOTIVATION 

Dynamic optimization problems are usually formulated in 

terms of minimization (or maximization) of a given objective 

functional, also called performance functional. Even if the 

performance of a dynamic system is specified in terms of close- 

ness to a given trajectory, a performance functional correspond- 

ing to a distance from this trajectory is still being used. 

However, not all practical problems can be usefully formulated 

as optimization problems with given performance functionals. 

Very often, particularly in economic applications, the pur- 

pose of optimization is not to propose 'the optimal solution', 

but rather to generate reasonable alternatives in response to 

users' requirements while eliminating clearly inferior alter- 

natives. It is not likely that a user would specify his require- 

ments in form of a performance functional. More likely, he would 

specify his aspirations in form of a reasonable or desirable 

trajectory of the dynamic system being investigated. Since the 

desirable trajectory reflects his judgment and experience, it 

might not be attainable for a particular model of the dynamic 

system being studied. However, if the desirable trajectory happens 

to be attainable, the user can often specify also what trajectories 

should be considered as naturally better than the desirable ones. 



As an example, consider a dynamic economic model that speci- 

fies, for various monetary and fiscal policies, the resulting 

economic growth and inflation rates. An economist, while working 

with this model, is perfectly able to specify reasonable growth 

and inflation rates trajectories although these trajectories may 

not be attainable for the model. If they are attainable however, 

he would not be satisfied by them, particularly if he knew that 

he could obtain either higher growth rate or lower inflation rate 

or both. Thus, we cannot use the classical device of minimiza- 

tion of a performance functional corresponding to the distance 

from the desired trajectory; this device works well only when 

the desired trajectory is naturally better than the attainable 

ones. Another classical device is the formulation of a social 

welfare functional and its maximization; but the information 

needed for formulating the social welfare functional is much 

larger than the information contained in a desirable trajectory. 

Moreover, a social welfare functional implies 'the optimal solu- 

tion' without allowing for the possibility of checking various 

alternatives by changing the desired trajectory. 

Therefore, a concept of multiobjective trajectory optimiza- 

tion based on reference trajectories has been recently introduced 

(Wierzbicki 1979) and practically applied to some issues in eco- 

nomic modeling (Kallio et al. 1980). This concept, while being 

strongly related to some basic concepts in satisficing decision 

making (Wierzbicki 1980), deserves a separate study. The purpose 

of this paper is to present, in more detail, the theory, some 

computational approaches and applicational aspects of multiobjec- 

tive trajectory optimization. 

2. BASIC THEORY IN A NORMED SPACE 

All the theory in this section could be introduced in re- 

ferring to a more detailed dynamic model, for example, the clas- 

sical control model described by an ordinary differential state 

equation and an output equation. However, the precise form of 

a dynamic model does not matter, and the theory is also applic- 

able for models described by difference-differential equations 

(with delays), by partial differential equations, integral equa- 

tions, etc. 



To o b t a i n  a  p o s s i b l e  compact p resen ta t i on  of  b a s i c  i deas ,  

l e t  u s  s t a r t  w i th  an a b s t r a c t  formulat ion i n  normed spaces.  Let 

u € E U  be a  c o n t r o l  t r a j e c t o r y ,  s h o r t l y  c a l l e d  c o n t r o l ;  EU i s  a  

Banach space,  say ,  t h e  space of e s s e n t i a l l y  bounded func t i ons  

L m  ( [to: t l  1 , Rm) , o r  t h e  space of square i n t e g r a b l e  func t i ons  
2 

L ( [to , tl 1 , Rm) , e t c .  Add i t iona l l y ,  c o n t r o l  c o n s t r a i n t s  u  E  V C E U  

might be g iven.  Let  x E E x  be a  s t a t e  t r a j e c t o r y ,  s h o r t l y  s t a t e ,  

de f ined  by a  mapping X:EU + E x ,  x = X ( u ) .  Condi t ions,  under which 

t h e  mapping X corresponds t o  a  model of a  dynamic system and can 

be expressed a s  a  reso l v ing  ope ra t i on  f o r  a  s t a t e  equat ion a r e  

g iven,  f o r  example, i n  Kalman e t  a l .  1969, and w i l l  n o t  be d i s -  

cussed here.  A proper  cho ice of  a  Banach space Ex might be t h e  

Sobolev space of a b s o l u t e l y  cont inuous func t i ons  wi th  e s s e n t i a l l y  

bounded d e r i v a t i v e s  W" ( [to; tl ] , Rn) o r  wi th square i n t e g r a b l e  
2 d e r i v a t i v e s  W ( [to; t l  ] , Rn) -- see,  e .g . ,  Wierzbicki ,  l977b. However, 

t hese  p r o p e r t i e s  a r e  needed on ly  f o r  a  more d e t a i l e d  development 

of t h e  form of t h e  dynamic model, and, a t  t h i s  s t a g e  of a b s t r a c t i o n ,  

E and Ex could be j u s t  any l i n e a r  t opo log i ca l  spaces.  u  

More impor tant  a r e  t h e  assumptions concerning output  t r a -  

j e c t o r y ,  s h o r t l y  output  y E E  de f ined  a s  a  r e s u l t  of a  mapping 
Y '  

Y :Ex x EU +E y  = Y (x ,  u) . A proper1 y  chosen Banach space E 
Y'  Y 

should have t h e  same c h a r a c t e r  as t h e  space E t hus ,  E = 
2 u' Y 

L m ( [ t O ; t l ]  ,RP)  o r  E = L ( [ tO;t l ]  ,RP) . Since t h e  no t ion  of  an 
Y 

ou tpu t  i s  r e l a t i v e  t o  t h e  purpose of t h e  model, we might cons ider  

on ly  those  ou tpu t  v a r i a b l e s  t h a t  a r e  r e l e v a n t  f o r  t h e  purpose of  

mu l t i ob jec t i ve  t r a j e c t o r y  op t im iza t ion ,  t h e  number of those  var-  

i a b l e s  being p. Thus, a  no t ion  of a p a r t i a l  p reorder ing  ( p a r t i a l  

o rder ing  of equiva lence c l a s s e s )  i s  assumed t o  be g iven i n  t h e  

ou tpu t  space E 
Y'  

Although more genera l  assumptions a r e  p o s s i b l e ,  

it i s  convenient  t o  suppose t h a t  t h i s  p a r t i a l  p reorder ing  i s  

t r a n s i t i v e  and, t h e r e f o r e ,  can be de f ined  by spec i fy ing  a  p o s i t i v e  

cone D C E  t h e  cone D i s  assumed t o  be c losed,  convex and proper ,  i . e .  
Y '  

D # Ey. The p a r t i a l  p reorder ing  r e l a t i o n  t a k e s  then  t h e  form 

w i th  t h e  corresponding equiva lence r e l a t i o n  



and the strong partial preordering relation 

as well as the strict partial preordering relation 

where b is the interior of the cone D. In some spaces, naturally 

defined positive cones might have empty interiors; however, we 

can define then the quasi-strict partial preordering through re- 

placing b in (4) by bq, the quasi-interior of D 

where 

* 
is the dual cone to D, E being the dual space to E and 

Y * Y 
denoting the duality relation between E and E (the general form 

y* Y 
of a linear continuous functional from E over E ) .  

Y Y - 
2 

For example, if E = L ( [to; tl ] ,R') , then a positive cone 
Y 

can be naturally defined by 

2   EL ( [tO;tl] , R ~ )  :yi(t) 2 0 ,  a.e. for t ~ [ t ~ ; t ~ ]  ,Vi=l.. . . .pl . 

The equivalence classes (2) are then composed of functions that 

are equal to each other almost everywhere on [tO;tl], which coin- 
2 cides with classical definitions of equivalence classes in L . 

The strong partial preordering (3) relates functions which have 
i components y: (t) 5 y2 (t) a. e. on [to; tl I , Vi = 1,. . . ,p, such that 

the inequality y:(t) < Yf (t) holds for at least one i and at least 

on a subset of [tO;tll of nonzero measure. Since the cone (7) has 



empty interior, there are no y ,y2 E E  that are strictly related. * Y 
However, D = D in this case (L is a Hilbert space and its'dual 

can be made identical with it). Moreover, D has a nonempty 

quasi-interior: 

(8) fjq = { y ~ ~ 2  ( [t ;t 1 ,RP) :yi(t) > 0 a.e. for tE[tO:tl I ,Vi = l  
0 1 

and the quasi-strict partial preordering relates functions with 
i i 

components yl (t) < y2 (t) a. e. on [to: tl 1 , Vi = 1 , . . . ,p. For other 

examples of positive cones see Wierzbicki and Kurcyusz, 1977. 

The set of admissible controls V and the mappings X,Y define 

together the s e t  o f  a t t a i n a b l e  o u t p u t s  

Usually, we cannot describe the full set YV analytically 

because the mappings X,Y are too complicated; however, it is 

assumed that we can generate elements of this set, at least num- 

erically, by solving the dynamic model for a given u EV. On the 

other hand, suppose we are interested only in D-maximal e l e m e n t s  

9 Eq, 

which are natural generalizations of Pareto-maximal outputs for 

the case of trajectory optimization. If the cone b is nonempty, 

it is sometimes convenient to consider also weak D-maximal 

e l e m e n t s  $ €9; 

or quasi-weak D-maximal e l e m e n t s  $ E pWq obtained as in (1 1 ) while 
vAw replacing 5 by bq. Clearly, 9 ~ 9 7  CyV CyV. Sometimes it is v 

also convenient to consider a smaller set !?;cqv of DE-marimat 

elements of YV: 



where D, is defined as a conical €-neighborhood of D: 

Since dist(y,D) is a continuous functional of y, the cone DE 

is an open cone, that is, an open set augmented with the point 0 

or the set DEn-DE. Thus, BE is an open set, and DE-maximality 

is equivalent to weak DE-maximality. 

2 For example, if D = L+([t ;t ],RP) as in (7), then, using 0 1 
an argument via projections on cones in Hilbert spaces as in 

Wierzbicki and Kurcyusz (1977) it can be shown that: 

and DE has an interior: at any point y E D  we can center a ball 

with radius 6 < E, contained in DE. 

A classical method of generating D-maximal elements of YV 

is that of maximizing a (quasi-) strictly positive linear func- 

tional y * ~ b * ~  over ~ E Y ~ :  

However, it is very difficult to express the experience and 

judgment of a user of the model in terms of a linear functional * 
(called also weighting functional) y E O D * ~ ;  in the case of dyn- 

amic trajectory optimization, it often becomes practically im- 

possible. On the other hand, it is quite practical to express 

the experience and judgment in terms of a desirable output tra- 

jectory TEE which should not be constrained to YV nor other- 
Y, 

wise, called r e f e r e n c e  t r a j e c t o r y  (also aspiration level trajectory, 

reference point) . 
Many authors -- see Wierzbicki (1 979) for a review -- have 

considered the use of the norm lly-yll for generating D-maximal 

elements of YV. The most general results were obtained by 

Rolewicz ( 1 975) for any Banach space E 
Y' 



- 
(17) Y =  FEE^ :y -yEDfor all yEyV} = {*E :Y Cy-D} 

VD Y V 

and if the following condition is satisfied: 

where B(O,p) denotes the open ball in the space Ev with radius p 
A 

and center at 0. If E is Hilbert, then the condition (18) is 
Y 

satisfied iff 

However, the conditions (18) or (19), limiting the choice of the 

norm and the positive cone, are not very restrictive for appli- 

cations; really restrictive is the requirement that y should be 

D-dominating all attainable outputs. To overcome this limitation, 

the notion of an achievement scalarizing functional has been in- 

troduced --see, e.g., Wierzbicki (1980). An achievement scalar- 
1 izing functional is a nonlinear continuous functional s: E + R  , 

Y 
with argument y -y,  where y E Y V  is an attainable output trajectory 

and y EE is an arbitrary (not constrained to YV nor to YVD) 
Y 

desirable reference trajectory. An achievement scalarizing func- 

tional should, moreover, satisfy two axiomatic requirements: 

(i) it should be (quasi-) strictly order preserving 

- - 
(2 0 Y2 -y l  EB (or y2 - y l  €84) - s(yl -Y) < S ( Y ~ - Y )  

or, if possible, strongly order preserving 



(ii) it should be order representing 

- 
s(y -y) = 0 for all y - y ~ ~ \ b ( ~ r  y -y€D\bq)  

or, at least, order approximating for some small E > O  ; 

where the cone D is not necessarily of the form (13) and is a 
EO 

closed cone. However, in order to preserve similarity with , 
- IY EE~:S(Y 

- E 
aEO is defined by SO - y) > 0} = q + aEO. Therefore, 

is an open set, and D -maximality is equivalent to weak EO 
h 

DEO-maximality. The set 6;' = {y syV:yVn($ +aEO) = I$} is under- 

stood in the above sense. 

Thus, we can distinguish strict achievement scalarizing 

functionals, which satisfy the requirements (20) and (22), and 

strong achievement scalarizing functionals, which satisfy the 
requirements (21 ) and (23) ; the requirements (2 1 ) and (22) cannot 

be satisfied together. It is known that, if s is strongly order 

preserving, then, for any TEE : 
Y 

(24) 9 E ~ r g  max s(y-y) * $E$ 
YEY v 

and if s is only (quasi4 strictly order preserving, then: 

(2 5 $ E A ~ ~  max s(y-Y) - 9 ~ 2 ;  (or GE?;~) . 
yEYV 

On the other hand, as shown in Wierzbicki (1980), if s is a strict 

achievement scalarizing functional, then 

(2 6 9 E 9; (or 9 E QWq! J* 9 E Arg max s (y-9) , max s (y-9) = o 
yEYv YEY v 

and, if s is a strong achievment scalarizing functional, then 

(27) 9 E 9:' - p E Arg max s (y-9) , max s (y-9) = 0 . 
YEYV yEYV 



The conditions (26), (27) constitute not only necessary 

conditions for D-maximality even for nonconvex sets YV (corre- 

sponding to the separation of the sets .Y and $ + bq or $ + 6, v 
by the nonlinear functional s), but are also rather practical 

means for checking whether a given desirable y is attainable 

with surplus, attainable without surplus and D-maximal, or not 

attainable. In fact, for a strong achievement scalarizing func- 

tional s 

- - 
E ?iO C y~ - D , ~  =+ max s (y - y) = o 

yEYv 

- - 
Y 9 YV - DEO* max s(y -y) < 0 

yEYv 

where (YV-DEO)\?:O is the set of all output trajectories DEO- 

dominated by an attainable trajectory, YV-DEO = {TEE :T=y-dl 
Y 

y EYVtd EDEO}. The proof of relations (28) follows directly from 
- 

the definition of BEO by go = {y EE :S (Y-y) > 01 = q + BEO. Sim- 
Y 

ilar conclusions hold for strict achievement scalarizing func- 

tional~. 

Another important conclusion (see Wierzbicki 1980) from the 

conditions (26), (27) is the controllability of modeling results 

by the user: if, say, a strong achievement scalarizing functional 

is applied, then the user can obtain anyDd-maximal output tra- 

jectory 9 as a result of maximization of s(y -y) by suitably 

changing the reference trajectory y ,  no matter what are other 

detailed properties of the functionals. Therefore, detailed 

properties of the functional s can be chosen in order to facili- 

tate either computational optimization procedures, or the inter- 

action between the user and the optimization model, or as a 

compromise between these two goals. 

Various forms of achievement scalarizing functionals have 

been discussed in Wierzbicki (1980) in the case when E = R', to- 
Y 

gether with some special forms when E is a Hilbert space. Here 
Y 

we consider in some more detail "he construction of achievement 

scalarizing functionals in normed spaces. 



A general construction of a strict achievement scalarizing 

functional in the case of b # 4 can be obtained as follows. 
1 

Suppose a value functional v:D R is given (that is, any strictly 

order preserving, nonnegative functional v defined for y E D  -- 
similarly as in Debreu (1959)) and is equal zero for all y E D \ ~ .  

Then : 

is a strict achievement scalarizing functional. It is clearly 

order representing. If y-TED, it is strictly order preserving. 
- - - - 

I£ y2 -y l  ~ b ,  y2 - y  E D  and y1 - y  9 D, then s(yZ -y) - s(yl -Y) > O  
- 

by the definition (29) . If y2 ;yl0Eb, y2 - y F D  and, thus, 
- 

y1 - y  gD,  then denote y2 -y l  = y ED and observe that 

rV - - 
dist (y2-y,~) = min II Y ~ + Y - Y - ~ ~ I  = min IIyl-~-~ll = dist(yl-y,~-~)- 

dED &D-F 
On the other hand, since E b and D is a convex cone, hence 

rV 

D cb -F. Any interior point of D - y  has a larger distance from 
- - 

the exterior point yl - y  than dist(yl -y,~-y): hence dist(y2-Y,D) < 
- - 

dist(yl - y,D) and s (y2 - Y) - s (yl - Y) > 0  in all cases of y2 -y l  Eb, 

the functional (29) is strictly order preserving. 

However, the functional (29) has several drawbacks. First, 

even if it would be possible to extend it for cases when b = 4 
and bq # 4, such an extension is not essential: in applications, 

weak or quasi-weak D-maximal elements of YV are not interesting, 

and much more important are DE-maximal elements. Moreover, the 

choice of a value functional with desired properties might be 

difficult in infinite-dimensional spaces, since the simplest value 

functional --a positive linear functional--cannot be continuously 
- 

modified to zero for y - y   ED\^. Therefore, we shall relax the 

requirement of order representation to that of order approximation, 

while trying to obtain in return strong order preservation. 
* 

Choose any strongly positive linear functional y ~ b * ~ ,  of * 
unit norm, Ily II = 1. Then: 



1 is a strong achievement scalarizing functional, with E > - .  In * P 
fact, <y ,y-y> is strongly order preserving, due to the definition * * btq = {y EE*: <y ,y> > 0 VY €5). The functional -d is t (~-y ,~)  

Y 
is order preserving (neither strongly nor strictly), by an argu- 

ment similar to the analysis of the functional (29). However, 

the sum of a strongly order preserving and an order preserving 

functional is, clearly, strongly order preserving. Moreover, * 
by the definition of the norm in the dual space, <y ,y-y> 5 Ily-yll * 
if lly 1 1  = 1. If, additionally, y €SO = {y E E  :s (Y-7) 20). then * Y 1 
pdist(~-y,D) - < y - I -  hence So c y + ~ ~  for E > - . 

P 
Clearly, y + D C S O  and s(0) = 0; thus the functional (30) is 

order approximating. 

The functional (30) has also some drawbacks in applications. * 
First, the choice of y is arbitrary; however, it does not much 

influence the applicability of the functional (30), particularly 

if p > >  1, since y is very often chosen as not attainable. Thus, * 
any reasonable y --for example, corresponding to equal weights 

for all components of output trajectories and all instants of 

time --might be chosen; according to the controllability conclu- 

sion, this does not restrict the possibility of influencing the 

resulting D -maximal output trajectories by changing the ref- 
E 

erence trajectories y. Second, the functional (30) is nondiffer- 

entiable. Although recent development of nondifferentiable 

optimization algorithms is remarkable, not all of these algorithms 

are directly applicable for dynamic optimization. Therefore, it 

might be useful to consider also achievement scalarizing func- 

t ional~ that are differentiable. 

Observe that achievement scalarizinq functionals are con- 

structed by using a strictly or strongly order preserving func- 

tional of value functional type and supplementing it by a term 

expressing a distance from y-y to the cone D. While the first 

part can be chosen to be differentiable, it is the second part 

that introduces nondifferentiability. To facilitate computation 

and differentiation of functionals related to the distance, 

suppose E is a Hilbert space. Then, due to the Moreau theorem 
Y 

(1962; see Wierzbicki and Kurcyusz, 1977), the following holds: 



dist (y-y,~) = 1 1  (y-y) - D * ~ ~  = 1 1  (y-ylD*ll 

when ( *  ) -D* or (-ID* denotes the operation of projection on the 

cone -D* or D*. Moreover, 1 1  (T-~) D*l l  is differentiable in y and 

its derivative is precisely - (T-~) D*. Thus, if E is Hilbert, 
Y 

a differentiable modification of (30) is as follows: 

This functional is strongly order preserving, by the same argu- 

ment as in the analysis of (30), and its maximal points are D- 

maximal for any p > O. However, the functional (32) is not order 

approximating and, if y = G is D,-maximal, then the maximal points 

of (32) will generally not coincide with G for any P > 0. On 

the other hand, if p is sufficiently large, the maximal points 

of (32) usually approximate quite closely the maximal points of 

(301, and the requirement of order approximation does not play 

a decisive role. Thus, the functional (32) for sufficiently 

large p might have useful applications. 

If E is Hilbert, then there is also a technically differ- 
Y 

entiable form of a strong achievement scalarizing functional, 

satisfying both (21 ) and (23) : 

with E > p-', see Wierzbicki (1977a). In (33), the role of a 

value functional for ~ - 7  E D plays the (square) norm; hence the 

condition D GD*, equivalent to the Rolewicz condition (18), is 

necessary for the strong order preservation property. If y - ~ g D ,  

the (square) norm is modified by the (square) distance term; if 

p > 1, this modification is sufficiently strong to imply strong 

order preservation. The property of order approximation results 

immediately from the form of (33). 

Consider, however, a functional similar to (33) : 



It is also a strong achievement scalarizing functional. It is 

clearly order approximating with E > p-l . Moreover, due to the 
2 2 

Moreau theorem, s (y-y) = (a (y) + b (y) ) - pb (y) , where a (y) = 
- D 1 1  (Y-Y) 1 1  , b(y) = 1 1  (Y -~ ) -~ * I I .  The operation of projection on 

cones, ( * )  or , has the property (see Wierzbicki and 

Kurcyusz, 1977) that I l  (y-y+F) - D * l ~  5 I 1  (Y -~ ) -~ * I I  for all i; E D  and 
- - - D  - D 1 1  (y-y+y) 1 1  2 1 1  (y-y) 1) for all ED*, hence also for E D  if D CD*. 

Thus, if y2 -y l  ED I  then a (y2) 2 a(yl) and b(y2) 5 b(yl ) . Since 

a(y2) = a(yl) and b(y2) = b(yl) imply together y2 = yl , hence, 

if y -y l  €5, 2 we can have either a (y2) > a(yl) and b(y2) 5 b(yl) 

or a (y2) 2 a (yl ) and b (y2) < b (yl ) . Now, consider the function 
2 2 %  $(a,b) = (a + b  ) - pb. This function is clearly strictly in- 

a $  2 2 - % - p < 0  creasing in respect to a. Since (a,b) = b(a + b ) 

for p > 1, the function $ is strictly decreasing in respect to b. 
- - 

Therefore, if y2 -y l  €6, then s(y2 -y l )  - s(yl -Y) > 0 1  and the 

functional (34) is strongly order preserving. 

On the other hand, after a suitable choice of (different) 

values of p in (33) and (34), the level set So = {y E E  : s (y-yl 0; 
Y 

can be made identical for these two functionals, and this level 

set has necessarily a corner point at y = 7. Thus, the differ- 

entiability of (33) has only technical character, and an essential 

nondifferentiability in terms of corner points of level sets is 

necessarily related to strong and strict achievement scalarizing 

functionals. Therefore, for computational purposes, it is useful 

to introduce another class of approximate scalarizing functionals. 

The approximate scalarizing functionals are supposed to have strong 

order preservation property (21), which implies that their max- 

imal points are D-maximal. However, the requirement of order 

approximation (23) is further related by substituting DE I  the 

conical &-neighborhood of D, by another form of an &-neighborhood: 

where y(*) is any given strictly increasing function. For example, 

it is easy to check that (32) is an approximate scalarizing func- 

tional, with y (llyll) = 1 1 ~ 1 1 ~ .  Approximate scalarizing functionals 

are not strictly applicable for checking D-maximality of a given 



? via condition (27), nor attainability of a given y via condi- 

tions (28), since a maximum point of an approximate scalarizing 

functional might be different from a given D-maximal $ = y. 
However, the set D approximates the cone D sufficiently closely 

EY 
for small E, and the difference between its maximal point and a 

given D-maximal = y can be made very small. Thus, for practical 

purposes, approximate scalarizing functionals have all the ad- 

vantages of strong scalarizing functionals. 

To illustrate further the distinction between strong and 

approximate scalarizing functionals, consider still another 

variant of such functionals. Suppose we have, originally, a 

single-objective optimization problem with a performance func- 

tional: 

Suppose that, after maximizing this functional and observing, 

for example, that there are many controls u and states x that 

result in nearly the same value of yo (a frequent case of prac- 

tical nonuniqueness of solutions), we decided to supplement this 

performance functional with other objectives, stated in terms of 

a desirable shape of output trajectories: 

where Er is a normed space, with a positive cone Dr. After de- 
Y 0 r 1 1 fining y = (y ,y ) r  E = R x Er and D = R+ x Dr we bring the prob- 

Y Y 
lem back to the previous formulation, and any of the scalarizing 

functionals defined above can be used. However, this specific 

case suggests also a specific form of a strong scalarizing func- 

tional : 

(38) s ( y -y )  = yo -yo - dist (yr - y.Dr) ; P > 0 

It is easy to check that this functional is order approximating 

with E > 1/p .  Moreover, it is strongly order preserving in a 
1 modified sense, with a = (R+ x Dr)\ ( {  0) * (Drn-Dr) ) replaced by 



% 1 
x sr. This modified sense of D = (R+\ { 01 x ( D ~ \  (D~~-D') = R+ 

strong partial preordering results in modified D-maximal points 

that might be weakly Dr-maximal, in the second component yr, but 
n 

are always strongly maximal in the first component yu. In fact, 
% r r -r 

if y - y l  ED, 2 then y; > y: and y2 - yl E D  . Since the functional 

-dist (yr - yr ,Dr) is (neither strictly nor strongly) order pre- 
- - 

serving, the first term in (38) guarantees that s(y2 -y) >s(yl -y) 
% 

for y2 - yl ED. 

Suppose EI is Hilbert and consider the following approximate 
Y 

scalarizing functional 

By a similar argument, this functional is strongly order pre- 

serving with replacing a. It is not order approximating, only 

y-order approximating with D defined as in (35) and y ( 1 1  yll ) = 
EY 

I l  yll4 . 
Observe that the functionals (38) , (39) correspond to one 

of the classical, widely used approaches to multiobjective opti- 

mization. In this approach, we choose one of the objectives -- 
say, yo -- to be maximized and represent other objectives -- say, yr -- 
by parametrically changing constraints, yr - yr E Dr. The func- 

t ional~ (38), (39) represent, respectively, an exact and an ex- 

terior quadratic penalty functional for such a formulation. 

However, it is not widely known that, when using such penalty 

functionals, one does not have to increase p to infinity or 

otherwise iterate (e.g., introduce shifts) on penalty functionals. 

Since these functionals are (modified) strongly order preserving, 

each maximal point of them is (modified) D-maximal, no matter 

what P >rt has been chosen and what are the actual violations 
r D  

(Y - Y ) of the constraints Yr - yr E Dr, treated here as a type 

of soft constraints. This feature of the scalarizing functionals 

(38), (39) is particularly useful for dynamic optimization with 

trajectory constraints (taking a form, for example, of state 

constraints), since the iterations on penalty functions might 

be particularly cumbersome in such a case. While using functions 

(38), (39) for multiobjective trajectory optimization, it is 



sufficient to choose a reasonable value of p > 0 and to maximize 

(38) or (39) once in order to obtain a (modified) D-maximal al- 

ternative solution corresponding to a desirable shape yr of 
r output trajectory y . 

Via penalty functions, functionals (38) , (39) -- and, in fact, 

all other achievement scalarizing functionals --are related to 

two other basic notions in mathematical optimization and modelling: 

those of generalized Lagrangian functionals and of regularization 

of solutions of ill-posed problems. 

3. RELATIONS TO GENERALIZED LAGRANGIAN FUNCTIONALS 

Consider the classical form of a mathematical programming 

problem with generalized inequalities: 

(40) 0 minimize f (u) ; Uo = {u EEU : g (u) E -D CEg} 
uEUo 

where £O:E~  + R 1 ,  g:Eu + E  D is a positive cone in E 
g g ' 

Suppose 

Ex is a Banach space and E is a Hilbert space. Under various 
g 

forms of regularity conditions --see, e.g., Kurcyusz (1974) -- 
the necessary conditions for 6 being an optimal solution to this 

problem can be expressed via the well-known normal Lagrangian 

functional 

and take the known form 

* 
where gU (6) is the ad joint operator to gu (6) , and 

(43) g(6)E-D <fi,g(G)>=O ; fi ED* 

* 
where 6 E E  is a normal Lagrange multiplier related to the solu- 

g 
tion G. The triple condition (43) might be referred to as Kuhn- 

Tucher complementarity triple, widely known. However, it is not 

widely known that complementarity triple (43) is, in fact, 



equivalent to a single nonlinear equation for 6 (although this 

result has been, in fact, used in Rn by Rockafellar (1 974) , in 

a Hilbert space by Wierzbicki and Kurcyusz (1977) and independ- 

ently proven in Rn by Mangasarian (1 97 G)  ) . 
To show this in the case when E is a Hilbert space, we use 

g 
the Moreau (1962)theorem: for any closed convex cone D C E  and any 

-D 
g 

p EEgI  p1 = (p) and p2 = (p)D* are the projections of p on the 

cones -D, D*, respectively, if and only if 

Thus, denote g(6) + = p; it is easy to check then that (43) 

holds if and only if 

or, equivalently, iff g ( 6  + ) - = (6) (one of these equations 

suffices and the other is redundant because of the definition 

g(6) + ? I  = p.) 

This basic fact has various consequences. For example, the 

sensitivity analysis of solutions of (40) might be based on ap- 

propriate implicit function theorems instead of analyzing the 

sensitivity of a system of inequalities, which is now the typical 

approach to this question --see, e.g., Robinson (1976). Another 

important conclusion from equation (45) is that there are modi- 

fied Lagrangian functionals that should possess an unconstrained 
A A 

saddle point in q,u at q,u. In fact, these are augmented 

Lagrangian functionals as introduced by Hesteness (1969) for 

problems with equality constraints in R ~ ,  by Rockafellar (1974) 

for problems with inequality constraints in R ~ ,  by Wierzbicki 

and Kurcyusz (1977) for problems with inequality constraints in 

a Hilbert space, and studied by many other authors. For problem 

(40), the augmented Lagrangian functional takes the form 

and the f irst-order necessary conditions (42) , (43) - (45) take 

the form 



Other necessary and sufficient conditions for optimality of 

in terms of saddle-points of (46) are given in Wierzbicki and 

Kurcyusz ( 1  977) . 
Consider now the following specification of problem (40), 

taking into account (36), (37) 

where u might be additionally constrained explicitly by u E V .  

Consider the augmented Lagrangian functional (46) with n = 0: 

with s(y-7) defined as in (39). The order-preservation proper- 

ties of the approximate scalarizing functional (39) can be now 

interpreted as follows. Even if we fix n = 0 and admit viola- 

tions of the constraint yr - yr(X(u) ,u) E-D', and even under 

additional constraints u EV, any minimal point of the augmented 

Lagrangian functional (50) is a D-maximal point of the set YV = 
0 Y (X (V) ,V) = Y (X (V) ,V) x Y' (X (v) ,V) in the sense of the strong 

partial preordering induced by the cone = ?i: xEr. Moreover, 

since : 

and the above conclusion holds independently of y, hence it also 

holds for any fixed n .  Thus, the conclusion can be considered 

as another generalization of Everett's theorem (196 ) and the 

reference trajectory y is, in a sense, related to the generalized 

Lagrange multiplier n .  



However, the last analogy should not be taken too mechanis- 

tically. For example, the properties (28) of a strong scalar- 

izing functional can be rewritten as 

(52) min max s (Y (X (u) ,u) - 7)  = 0 
YEY u€v v 

A - A 

and the min-max points (y,u) correspond to D-maximal points of 

the set Y, = Y(X(V) ,V). On the other hand, (52) is not a saddle- 

point property, since s(~-7) is not convex in 7, and it is easy 

to show examples such that max min s (Y (X (u) , u) -y) < 0. In order 
uEV YEYV 

to obtain saddle-point properties, convexifying terms in TI would 

have to be added to s(Y(X(u) ,u) -y), as it was done in (51). 

4. MULTIOBJECTIVE TRAJECTORY OPTIMIZATION AS SEMIREGULARIZATION 

OF MODEL SOLUTIONS 

The monography of Tikkonov and Arsenin (1977) summarizes an 

extensive research on one of the basic problems of mathematical 

modeling --that of regularization of solutions of ill-posed 

problems. )?any results of this research relate to the useful- 

ness of using distance functionals when solving problems with 

non-unique solutions or quasi-solutions (generalized solutions). 

The nonuniqueness of solutions of a mathematical model implies 

usually that the solutions would change discontinuously with 

small changes of parameters of the model. For example, if a 

dynamic linear programming model has practically nonunique solu- 

tions, that is, if there is one optimal basic solution but many 

other basic solutions result in almost the same value of the 

objective function, then a small change of parameters of the 

model results in large changes of the solution --see Avenhaus 

(1980). The regularization of solutions of such a type of models 

consists then in choosing from experience a r e f e r e n c e  solution 

and considering the solution of the model that is closest to the 

reference solution in a chosen sense of distance; as proven by 

Tikkanov and Arsenin, this results not only in the selection of 

a solution, but also in continuous dependence of the selected 

solution on parameters of the model. 



The regularization method can be illustrated as follows. 

Suppose a mathematical programming problem consists in minimizing 

the functional 

for uEV.  Suppose the solutions of this problem are (possibly 

only practically) nonunique. Let a reference trajectory 7 be 
r given in a normed space E of the outputs of the model, yr = 
Y 

yr(x(u) ,u). By a normal solution of the problem of minimizing 
0 f (u) for u E V  we define such a solution of this problem that 

minimizes, additionally, llTr - yr (X (u) ,u) 11 . This normalization 
r is, clearly, relative to the output space E . However, it is 

0 Y 
easy to see that if, say, f (u) and V are convex, Y and X are 

linear, and the unit ball in EI is strongly convex, then the 
Y 

normal solution is unique relative to the output space --that is, 

it determines uniquely the output trajectory yr. Moreover, this 

output trajectory depends continuously on the reference trajec- 

tory fr. A stable computational method of determining the normal 

solution approximately consists in minimizing the functional: 

0 2 
@ (yr,u, = -Y (X (u) ,u) + +pll yr - yr (X (u) ,u) I I  

for p +O. Again, under appropriate assumptions, it can be shown 

that output trajectories corresponding to minimal points of (54) 

converge to the output trajectory corresponding to the normal 

solution as p + 0. 

However, observe that (54) can be obtained from (50) if E~ 
r Y 

is Hilbert and Dr = (01, or* = Ev. Thus, the multiobjective 
A 

trajectory optimization is strongly related to model regulariza- 

tion. Actually, the former can be considered as a generalization 

of the latter. In fact, define semi-normal solutions of the 
0 problem of minimizing f (u) for u E V  as such that minimize, ad- 

ditionally, dist (Y' (X (u) ,u) ,yr + Dr) , where Dr is a positive cone 

in the space of output trajectories E'. Now, even if f(u) and V 
Y 

were convex and Y and X linear, the output trajectory yr corre- 

sponding to a semi-normal solution need not be unique --since 

there might be many points in a convex set that are equidistant 



to a convex cone. However, the semi-normal solutions have good 

practical interpretation; the corresponding output trajectories 

are either close to or better than the desired reference tra- 

jectory yr, depending on its attainability. Moreover, when 

minimizing the functional (50), instead of (54), we obtain D- 
o maximal points of the set YV = Y (X (V) ,V) = Y (X (V) ,V) x yr (X (V) ,V) 

for each p > 0. The same applies, clearly, to the functional (541, 

if we assume D~ = {O), which gives another interpretation of 

regularization techniques. Thus, multiobjective trajectory 

optimization is a type of model semiregularization technique: 

for the selection of a solution of the model, a reference output 

trajectory is used together with a notion of a partial preordering 

of the output space. 

5. COMPUTATIONAL ISSUES AND APPLICATIONS: A DIFFERENTIABLE 

TIFIE-CONTINUOUS CASE 

If an achievement scalarizing functional is differentiable, 

then any method of dynamic optimization can be applied as a tool 
I 

for obtaining an attainable, D-maximal trajectory $ in response 

to a desirable trajectory y. An efficient class of dynamic 

optimization techniques applicable in this case are gradient 

trajectory techniques, or control space gradient techniques, 

based on a reduction of the gradient of the minimized functional 

to control space. A general method for such a gradient reduction, 

independent on the particular type of the state equation, is de- 

scribed, for example, in Wierzbicki (1977b). Here we present 

only the simplest and well-known case of gradient reduction for 

problems with ordinary differential state equations. 

As an example, consider the approximate scalarizing func- 

tional (39) and suppose yo is described by 

Moreover, assume the mapping X be given by solutions of the state 

equation 



and the mapping yr --by the output equation 

2 Take E~ = L2([t ;t ],RP) and Dr = L+([t it 1tRP); then 
Y 0 1 0 1 

where 

2 
and (F~)+ = max(O,yi) for T~ER'.  By choosing Dr = L+([tO;tl],RP) 

we assumed that all outputs improve as the corresponding values 

yri (t) increase for (almost) all t E [to; tl ] . NOW, a reference 
-r 1 -r 1 output trajectory yr (t) = (y (t) , ... ,y ( t ) l - ~ ~ t Y  -rp(t)) for 

tE[tO;tl] is assumed to be given by the model user. In fact, 

if p is not too large --say, 3 or 4 --the user can easily draw 

the number p of curves representing output trajectories desired 

by him. Moreover, experiments show that he is also able to 

evaluate easily the corresponding responses of the optimization 
~ r l  t . . . , r t  for t E [tO;tl] model, $O and pr(t) = (y (t),...,y 

and, if he does not like them, to change the reference trajectory 

in order to obtain new responses. Observe that the reference 

value yo plays, in this case, a technical role and can be omitted. 

Thus, an interactive multiobjective dynamic optimization proce- 

dure can be organized, provided we could supply an efficient 

technique of maximizing the functional (57) subject to the state 

equation (56) and, possibly, other constraints. To simplify the 

presentation, suppose other constraints are already expressed as 
1 penalty terms in the functions FO or F . 

Denote S (u) = s (Y (X (u) ,u) - y )  . Then Su (u) , the gradient 

of the functional (58) reduced to the control space, can be 

computed in the following way. The Hamiltonian function for the 

problem of maximizing (58) subject to (56) has the form 



(60) 
-r 0  -r 

H ( Y  (t)  , x ( t )  t u ( t )  I Y  (t)  , t) = G ( x ( t )  , u ( t )  I Y  ( t )  r t )  

+ Y ( t )  F  ( x ( t )  r u ( t )  t t )  

where Y (t) F  (x  (t)  , u  (t)  , t) i s  a  s h o r t  denota t ion  f o r  s c a l a r  product  

i n  R~ and Y (t) i s  t h e  c o s t a t e  ( t h e  a d j o i n t  v a r i a b l e  f o r  t h e  s t a t e ) .  

TO compute SU(u )  (t) f o r  t E l t o ; t l l .  given u ( t )  f o r  t E [ t O ; t l l  

we f i r s t  determine x  (t)  = X (u )  (t) by so l v ing  (56) I w r i t t e n  equi-  

v a l e n t l y  a s  

Then t h e  c o s t a t e  Y ( t )  i s  determined f o r  t E  [ t O ; t l ]  by so l v ing ,  

i n  t h e  r e v e r s e  d i r e c t i o n  of t ime,  t h e  a d j o i n t  equat ion  

and t h e  reduced g r a d i e n t  i n  t h e  c o n t r o l  space i s  determined by 

Typica l  con jugate  d i r e c t i o n s  a lgor i thms of non l inear  pro- 

gramming can be adapted f o r  making use of t h i s  reduced g r a d i e n t .  

However, Fortuna (1974) has shown t h a t ,  f o r  dynamic op t im iza t ion ,  

con jugate d i r e c t i o n s  perform much b e t t e r  i f  a  modif ied reduced 

g r a d i e n t  i s  being used: 

-r -r -H-I ( Y  (t) , x ( t )  , u ( t )  , y  (t) , t ) H U ( y  (t) t x ( t )  t u ( t )  I Y  (t)  r t )  - 
uu 

This  mod i f i ca t ion  removes p o s s i b l e  i l l - c o n d i t i o n i n g  of t h e  a l -  

geb ra i c  p a r t  of t h e  Hessian ope ra to r  S  ( u ) ,  leav ing  on ly  p o s s i b l e  uu 
i l l - c o n d i t i o n i n g  of  t h e  compact p a r t  of t h i s  ope ra to r  --and t h e  

compact p a r t  has ,  i n  t h e  l i m i t ,  n e g l i g i b l e  i n f l uence  on t h e  con- 

vergence of con jugate  d i r e c t i o n  a lgor i thms i n  a  H i l b e r t  space.  

Th is  a b s t r a c t  reasoning has been a l s o  confirmed by ex tens i ve  

computat ional  t e s t s .  



Now, each continuous-time dynamic optimization problem, 

when solved on a digital computer, is ultimately discretized 

over time. While a discussion of results of recent world-wide 

extensive research on approximations of time-continuous optimi- 

zation problems is beyond the scope of the paper, it is worth- 

while to note some comments on this issue. 

A conscientious approach to discretization of a time-con- 

tinuous problem should start with the question whether time- 

continuity is really an essential aspect of the analyzed model. 

In many cases, time-continuity is assumed only for analytical 

convenience, and the actual model can be better built, parameter- 

fitted and validated in its time-discrete version. In such cases 

of a priori discretization, it is certainly better to abandon 

time-continuity at the very beginning and to develop the time- 

discrete versions, say, of the equations (55) ... (64). Some 

qualitative properties and conclusions from the time-continuous 

analysis might be still applied to time-discrete models; for 

example, the Fortuna modification of the reduced gradient, al- 

though motivated strictly for the time-continuous case only, 

gives good results also in the time-discrete case. 

In rather special cases, time-continuity is essential. 

These cases are really hard, and great care should be devoted 

to the analysis of those qualitative properties of the optimiza- 

tion problem that make time-continuity essential (such as boundary- 

layer effects, appearance of relaxed controls, etc.). These 

qualitative properties should be taken into account when looking 

for alternative formulations of the problem, for an appropriate 

space of control functions, when choosing finite-dimensional bases 

for a sequence of subspaces approximating the control space, when 

determining what is the reduced gradient expressed in terms of 

a finite-dimensional basis. A naive discretization of equations 

(61) ... (64) can lead to serious errors, when, say, a naively 

discretized gradient equation (63) produces numbers that are in 

no correspondence to the gradient that would be consistent with 

a chosen discretization of the control space. 



We close this section with a simple example, when the con- 

tinuity of time is important only because it facilitates almost 

fully the analytical solution. Although it does not illustrate 

computational issues, the example illuminates some other important 

aspects of applications of multiobjective trajectory optimization. 

Consider a simple model of relations between inflation and 

unemployment, as analyzed by Snower and Wierzbicki (1980) when 

comparing various economic policies. The inflation rate, x(t), 

is influenced by monetary policies, that influence also the un- 

employment, u(t) . An adaptive price expectation mechanism and 

a linearized Phillips curve result in the following equation: 

where unemployment u(t) is taken as a dummy control variable, 

b is a parameter of the linearized Phillips curve, rd is a 

composite coefficient. The social welfare function related to 

inflation and unemployment is assumed in the form: 

where q is the weight attached to unemployment as compared to 

inflation. The intertemporal social welfare functional is as- 

sumed in the form 

The problem of maximizing (67) subject to (65) can be easily 

solved analytically to obtain: 

where 

( 7  0 d2 a0 = + (  (1 + 4 -1% - 1 )  . d 



However, if the initial inflation rate xo is high, the 

*optimal unemployment (t) that results f m  this &el for small t might 

be considered socially undesirable, too high. We could change 

the model by adding simply a constraint u(t) - < u. In this simple 

case, the constraining value u must be greater than b; otherwise, 

equation (65) would result in uncontrolled, increasing inflation. - 
However, in more complicated models, it might be difficult to 

judge whether a control constraint is not too stringent. There- 

fore, it is reasonable to treat u as a desirable bound for tra- 

jectory rather than as a fixed constraint, and to formulate a 

multiobjective trajectory optimization problem: maximize the 

social welfare functional while, at the same time, trying to keep 

the unemployment smaller than u. 
Observe that, in this formulation, one of the outputs yr of 

the model is just the input control u. However, such situations 

are quite frequent, when some important control variables appear 

directly as output variables in multiobjective trajectory opti- 

mization. Moreover, the unemployment u(t) is here only a dummy 

control variable; actually, the model should be controlled by a 

monetary policy that, after a transformation that was not included 

is the model for simplicity results in the unemployment u(t). 

Suppose we apply the approximate achievement scalarizing 

functional (39) for this multiobjective trajectory optimization 
2 00 problem and choose the norm ilull = J0 e -rt u2 (t)dt for the control 

space. Then: 

Suppose u(t) > ; for t€[O;tl), u(t,) = ;, u(t) < ; for 

t € (ti; + 00) . Then (71 ) transforms to 



where 

i s  t h e  minimal v a l u e  o f  (67)  depending on t h e  i n i t i a l  sta te .  

The problem of  min imiz ing  (72)  s u b j e c t  t o  (65)  can  be s o l v e d  

a lmos t  f u l l y  a n a l y t i c a l l y  t o  o b t a i n :  

where 

w h i l e  t h e  c o n s t a n t s  A I B  and t h e  t i m e  i n s t a n t  t ,  r e s u l t  f rom t h r e e  

c o n d i t i o n s :  t h e  c o n t i n u i t y  o f  G ( t )  ( imp l i ed  by c o n t i n u i t y  o f  

a d j o i n t  v a r i a b l e )  and o f  2 (t) a t  tl and t h e  i n i t i a l  s ta te  x0=G(0) . 



For example, the former two conditions determine A,B as functions 

while the latter condition results in the following equation for 

tl that does not admit analytical solutions (must be solved 

numerically) 

Nevertheless, 7 , . . . (78) admit on easy interpretation of the 

influence of p and u on G(t) and G(t). The single-criterium 

solutions (68) , (69) are compared with an example of solutions 

(74) , (75) in Fig.1. 

Figure 1. Examples of single-criterium 'optimal' solutions for 
unemployment G (t) and inflation 2 (t) --case (a)-- com- 
pared with multicriteria D-maximal trajectories of 
these variables responding to a judgementably set 
reasonable level u of unemployment--case (b). 



Observe that, if p is sufficiently large, the multicriteria 

D-maximal trajectory 6 has values 6(t) only slightly greater 

than 6, and that the time tl,at which G(tl)=; is also only 

slightly greater than the corresponding time t for single- 0 
criterium case (the last observation follows from the fact that 

1 - a) for both cases) . Thus, when applying I ,  (G (t) -b) dt =a (x0 

multicriteria optimization, we can significantly reduce maximal 

unemployment while spreading the effects of this reduction over 

time. Clearly, in this simple example we could obtain similar 

results just by using an explicit constraint u(t)< - u . However, 

when using hard constraints, we must be careful not to specify - 
u < b;otherwise we would obtain x(t)+m as t+m. When maxi- 

mizing (71)--which is equivalent to a soft constraint on u(t)-- 

we can assume u < b and still obtain well-defined results. 

Observe also that one could interpret the achievement 

scalarizing functional (71) as just another form of welfare 

functional. This interpretation is correct; however, the 

modified welfare functional depends explicitly on judgementally 

set desirable bound u for unemployment, and in this aspect it 

differs basically from traditional welfare functionals. More- 

over, it possesses the strong order preservation property. Thus, 

if G and 2 correspond to the maximum of this functional, then 

we cannot decrease the inflation G(t) at some t without increasing 

it at some other t or without decreasing the welfare functional 

W(G,G). 

6. COMPUTATIONAL ISSUES AND APPLICATIONS: 
A TIME-DISCRETE DYNAMIC LINEAR PROGRAMMING CASE 

Many problems-- especially in economics (see, e.g. Kallio, 

Propoi, Seppala 1980)--are formulated in terms of time-discrete 

dynamic programming models of the general form: maximize 

subject to state equation constraints: 



(80 x = A x + Bkuk k+ 1 k k  I x - given 0 

and to additional constraints 

where Vk is a convex polyhedral set (described by linear in- 
n equalities) , uk E R ~ ,  c; E R ~ * ,  xk E R , d; E R"*, E R"XR", 

B,- €RnxRm. The trajectories x and u are, in this case, finite- 
n - 

dimensional, u = {u Ot. . .~kt . . .~  1 ERrnKt X={X ot...~kt...~K} K-1 
E R ~ ( ~ + ~ )  , but can choose various norms in these trajectory 

spaces. 

Various approaches have been devised to numerically solve 

this problem while taking advantage of its special structure 

(see, e.g. Kallio and Orchard-Hays 1980). For example, one of 

the efficient approaches is to solve this problem as a large 

scale static linear programming problem with the number of 

variables (m+n)K (excluding xo, which is a given parameter) and 

generating an initial feasible basic solution by choosing ad- 

missible u and solving state equation (80) for x. 

It often happens that the solutions of this problem are 

practically non-unique (many admissible solutions correspond to 
0 almost maximal values of y ) and that we are interested, in fact, - 

not only in yo but also in some output trajectories 
r r r 

y r=  {yo,.. .yk,.. ''~-l 1 ERPK of the model (80) 

where C; E RP x Rm, D; E RP x Rn. Suppose all output trajectories 
1 PK have to be maximized, thus the positive cone Dr = RP: , D = R+ x R + . 

A particularly convenient form of achievement scalarizing 

function for this class of problems has been developed by 

Wierzbicki (1978) and practically applied and further modified 

by Kallio, Lewandowski and Orchard-Hays (1980). The function 

corresponds to the choice of a maximum norm in the space 



Ev = RI x E: and has the form 

0 -0 
(83) s (y-y) = p min (y -y , min (y 

ri -ri 0* 0 -0 
k -Yk 1 )  + Y (Y -Y + 

k,i 

- pK+1 or, if we introduce the surplus variable w = y-yER I 

. j =pR 

* 
(84) s (w) = pmin wj + y w 

j 

where p > 0 and y* is a strictly positive linear function of 
* 

unit norm in E:. Because we have chosen maximum norm in Ev, Ey 

has the sum ofLabsolute values norm, and y* is simply a vector' 

of positive weighting coefficients summing up to one, y * ~ ~  (pK+1) * 
I - - . * j = p ~  p~ . * - 

Y* = {yJ I j=O I L y7 = 1, yj* > 0. NOW, min wj is strictly order 
i = n  i 
J - 

preserving while y*w is strongly order p;eserving, thus s(w) is 

pK+l , then strongly order preserving. Moreover, if D =R+ 

D c S o  = IWER pK+l : s (w) - > 01 = DEO C D ~ ,  where D has the form (13) 
1 E 

with E since s(w) - > 0 and IIy* 1 1  = 1 imply together 
tJ * 

pdist (w.D) = -pmin wj < y w ~ l ( w / l  . Thus, s (w) is order-approximating 

;I 
- 

and a strong ac ievement scalarizing function. 

The problem of maximizing s(w) , however, can be written 

equivalently as another large scale linear programming problem, 

by introducing 2 (pK+l) or even only (pK+l) additional linear 

constraints and pK+1 or even only 1 additional variables to the 

original problem. The modified problem is: maximize 

1 with v E R  , subject to: 



and subject to (80),(81). Clearly we can set (87),(88) into (86), 

(85), thereby diminishing the number of additional constraints 

to (pK+l) and the number of additional variables to 1 (the 

variable v). An efficient algorithm for solving such problems 

has been developed by Orchard-Hays (see Kallio, Lewandowski, 

Orchard-Hays 19 80) . 
According to the general theory from section 2, the choice 

of y* and p does not affect principally the user of the model, 

who can obtain any desired D-maximal outputs of the model by 

changing the reference trajectory output y .  However, it might 

affect the easiness of interaction between the user and the 

model. This issue has been investigated in Kallio, Lewandowski 

and Orchard-Hays (1980) where yj* = and p - > 20 resulted in 

good responses of the model. The particular model investigated 

was a Finnish forestry and forest industrial sector development 

model with maximizedoutputs representing the trajectory of the 

profit of the wood processing industries over time and the 

trajectory of income of the forestry from selling the wood to 

the industry over time (10 periods have been considered for each 

trajectory, hence the total number of objectives was 20; no 

intertemporal objective was included). Further improvements of 

the procedure have been also investigated, related to accumu- 

lating information about user's preferences revealed by the 

consecutive choice of reference trajectories y after a D-maximal 

trajectory ? has been already proposed by the model. However, 

the main conclusions were the pragmatical and operational use- 

fullness of the procedure; an example of trajectories ? and ? 
obtained in this model is shown in Fig.2. 

It should be noted, finally, that achievement scalarizing 

function (83) is quite similar to functions used in goal program- 

ming techniques--see Charnes and Cooper (1961), Dyer (1972), 

Igmizio (1978), Kornbluth (1973). However, the use of function 



Figure 2. Forestry income trajectory (F) and forest industry 
profit trajectory (I) obtained in a multiobjective 
dynamic linear programming model: y -desired refer- 
ence trajectories, 9 -corresponding D-maximal model 
outputs. 

(83) is not related to some of the deficiencies known in appli- 

cations of goal programming. 

7. CONCLUSIONS 

In many cases it is desirable and, as shown in this paper, 

both theoretically and practically possible to use multi-criteria 

trajectory optimization approaches to various dynamic system 

models. The approach is based on reference trajectories, when 

the user of the model specifies what are desirable output 

reference trajectories of a model and indicates what outputs 

would be even better than desirable ones, while the model res- 

ponds with output trajectories that are not only attainable and 

nondominated in the sense of partial ordering in the output 

space as indicated by the user, but also correspond to the 

specified reference trajectories. On one hand, this approach 

is related to many interesting theoretical questions about the 

properties of achievement scalarizing functionals in normal 

spaces, their relations to augmented Lagrangian functionals, to 

regularization of solutions of ill-posed models; these questions 

have been investigated, to some extent, in the paper. On the 



other hand, this approach is also eminently pragmatical; the 

author hopes that the examples presented show the reasonability 

and pragmatical values of using the seemingly abstract and 

untractable notions of infinite-dimensional or high-dimensional 

multicriteria trajectory optimization. 
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