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PREFACE

The ever increasing complexity of the systems to be modeled
and analyzed, taxes the existing mathematical and numerical tech-
niques far beyond our present day capabilities. By their intrin-
sic nature, some problems are so difficult to solve that at best
we may hope to find a solution to an approximation of the original
problem. Stochastic optimization problems, except in a few special
cases, are typical examples of this class.

This however raises the question of what is a valid "approx-
imate" to the original problem. The design of the approximation
must be such that (i) the solution to the approximate provides
approximate‘solutions to the original problem and (ii) a refine-
ment of the approximation yields a better approximate solution.
The classical techniques for approximating functions are of little

use in this setting. In fact very simple examples show that
classical approximation techniques dramatically fail in meeting

the objectives laid out above.

What is needed, at least at a theoretical level, is to de-
" sign the approximates to the original problem in such a way that
they satisfy an epi-convergence criterion. The convergence of the
functions defining the problem is to be replaced by the convergence
of the sets defined by these functions. Thét type of convergence
has many properties but for our purpose the main one is that it

implies the convergence of the (optimal) solutions.

-iij-



This article is devoted to the relationship between the epi-
convergence and the qlassical notion of pointwise-convergence.
A strong semicontinuity condition is introduced and it is shown
to be the link between these two types of convergences. It pro-

vides a number of useful criteria which can be used in the design

of approximates to difficult problems.
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CONVERGENCE OF FUNCTIONS: EQUI-SEMICONTINUITY

Given a space X, by ﬁx we denote the space of all functions
defined on X and with values in R, the extended reals. We are
interested in the relationship between various notions of conver-
gence in R”, in particular between pointwise convergence and that
induced by the convergence of the epigraphs. We extend and refine
the results of De Giorgi and Franzoni (1975) (collection of "equi-
Lipschitzian" functions with respect to pseudonorms) and of
Salinetti and Wets (1977) (sequences of convex functions on a re-
flexive Banach space). The range of applicability of the results
is substantially enlarged, in particular the removal of the con-
vexity, reflexivity (Salinetti and Wets 1977) and norm dependence
(De Giorgi and Franzoni 1975) assumptions is significant in many
applications. The work in this area was motivated by: the search
for "valid" approximations to extremal statistical problems, var-
iational inequalities and difficult optimization problems, cf.,

the above mentioned articles. Also by relying only on minimal

properties for the topology of the domain space and for the class
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of functions involved, the derivation itself takes on an elemen-
tary and insightful character.
By their nature the results are asymmetric; semicontinuity

is a one-sided concept. We have chosen to deal with lower semi-
continuity and epigraphs rather than upper semicontinuity and hy-
pographs. Every assertion in one setting has its obvious counter-
part in the other. This choice however, does condition the addi-
tion rule for the extended reals, viz. (+®) +a = 4+ for all a €R
and (-«w) +a = ~o for all a€ [~~+«[, Also, note that we are work-
ing with the extended reals, thus every collection of elements of
R has lower and upper bounds in R; all limits involving extended-

real numbers must be interpreted in that sense.

I LIMIT FUNCTIONS

Let (X,T) be a topological space and f a dgeneric element of

RX. The effective domain of f is

dom f = {x€X|f(x) <+x}
and its epigraph is
epi £ = {(x,n) € X xR|f(x) <n} .
The function f is T1-lower semicontinuous (1-l.se.) if epi f is a

closed subset of X xR, or equivalently if

(do) to each x €dom f and to each e >0, there

corresponds a t-neighborhood V of x such that

‘inf

yev f(y) > £(x) ~e



(~d0) to each x4¢dom f and to each a €R, there

corresponds a t-neighborhood V of x such that

lanEV f£(y) > a .

Note that if ¢D>t, i.e., 0.1is finer than t, then f t-l.sc. implies

f O—l.SC- .

To define limits of collection of functions, i.e., elements
of ﬁx, we adopt the following framework: N is an index space and
H is a filter on N, (If 1 has a local countable base at each point,
it would be sufficient to consider limits in terms of sequences,
unfortunately many interesting functional spaces do not have this

property.) The eT—Zimit inferior of a filtered collection of func-

tions {fv,veEN} is denoted by lirfv’ and is defined by

(1.1) (Li £) (x) inf inf £,(y)

= supGEGT(X) SUPhey VEH vEG

where GT(x) is the family of (open) 1-neighborhoods of x. The

eT-Zimit superior is denoted by lsva, and is defined similarly,

(1.2) (léva)(x) = suPGGGT(x) lanEH e lnnyG fv(y).

In the literature‘on I'-convergence, these two functions are known
respectively as the I' (1)-limit inferior and the T (1)-limit
superior, cf. De Giorgi and Franzoni (1975)1. By H we denote the
grill associated with the filter H, i.e. the family of subsets of
N that meet every set H in H. Given any collection {aveﬁ,vEN},

it is easy to verify the identity

(1.3) supp. o inf oy @, = infpoy sup oy A,

if we observe that #H is the "grill" of ﬁ, i.e. the collection of
all subsets of N that meet every set in H. From this it follows
that



(1.4) (lsva)(x) = SquEGT(x) supHeH lnfveH J.nfyeG fv(y)

Since HcCH it follows directly that

(1.5) 1i £ < 1s £ .

The collection {fv,veN} admits an eT—limit, denoted by 1m_f , if

in which case the fv are said to epi-converge to lmva. This
terminology is justified by the fact that epi lmva is the limit
of the epigraphs of the fv; this is made explicit here below.

The limit inferior LZ C, and limit superior Ls C, of a fil-

tered collection {Cv,vGEN} of subsets of a topological space are

defined by
(1.6 L1 = N_ U
) bt Cv HEHCl( veHCv)
and
Ls C =N
a7 v nen®t (Y eCy)

Since H(:H and thus we always have that
. c .
Lz Cv Ls Cv'

The filtered collection {Cv,vGEN} is said to have a lZmzt,Im Cv’

if the limits inferior and superior coincide, i.e.,

(1.8) Ls C, =1ImC, = Li C

All these limit sets are closed as follows directly from their

definitions.



Proposition 1.9. (Mosco 1969) Suppose that {fv,VEEN} C ﬁx 8

a filtered collection of functions Then

(1.10) epil lle\) = Ls epil f\)
and
(1.11) epi lsva = L7 epil f\)

Proof. We first derive (1.10). From the definition (1.7) of

Ls epi f\)' it follows that (x,a) €Ls epi f\) if and only if

(x,a) € cl(u epi f\)) for all HeH,

veH
or equivalently--because the sets involved are epigraphs--if and

only if for all € >0 and GEGT (x) such that

GxJoa-g, 4o [ N (U epi f\)) il for all He#

veEH

or still, if and only if for to every HEH, €>0 and GEG_(x)

there correspond vEH and y €G such that

fv(y)z_a—e .

This holds, if and only if

o2 SquEGT(x) SUPyey lnfvEH lnfyeG f\)(y) ’

and, as follows from (1.1), if and only if o > (lin\)) (x) or equi-

valently, if and only if (x,a) € epi lirf\)'
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In view of (1.4), the proof of (1.11) follows from exactly
the same argument with the grill H replacing H. 0O

Corollary 1.12 Given any filtered collection of functions

X

{fv,vEN} C R®, the functions linv’ lsva, and lmva 1f 1t exists,

are T-lower semicontinuous.

Proof. The lower semicontinuity follows directly from (1.10) and

(1.11) since they imply that the epigraphs are closed. [

We shall be interested in the implications of a change in

topology for X. In particular, we have the following:

Proposition 1.12 Suppose that o and T are two topologies defined

on X such that o >1. Then

(1.14) 1i £ < 1i £,
TV — o7V
and
5 -
(1.15) lsva < Lsdfv .

Proof. This follows from the definitions (1.1) and (1.2) and the

fact that o> 1 implies that GO(X):DGT(X). ]

In some applications, in particular those involving varia-
tional inequalities, it is useful to use a stronger notion of limit
function. Again, let ¢ and 1 be two topologies defined on X, the

eT'O—Zimit of a collection of functions {fv,vGEN}(:ﬁx, denoted by

1m £

T . otv’ exists if
r



(1.16) 1i_ £ = 1m f. = 1s £ .

The case of interest is 0 D71, this models the situation when X is

a normed linear (functional) space, and ¢ and T are respectively

the strong and weak topologies; in this setting this limit function
is called the Mosco limit, cf. Mosco (1969) and Attouch (1979),

for example.

Proposition 1.17. Suppose that o and 1 are two topologies defined

on X sueh that 0 DT1. Moreover suppose that lmT ofv extts. Then
14

lmofv = lmT’ofv = lmva

Proof. This follows directly from Proposition (1.13), inequality

(1.5) and the definition (1.16) of lmT ofv' O
. ,

IT 1/0-EQUI-SEMICONTINUITY

As already indicated in Section I, we are interested in ex-
ploring the relationship between the limit functions of a collec-
tion of functions {fv,vesN} C ﬁ% when X is equipped with different
topologies, say ¢ and 1. The question of the equality between lmT
and ln%jwasalready raised in connection with the existence of the
Mosco limit 1mT 5 Recall also that for variational problems epi-

’

convergence essentially implies the convergence of the solutions,

it is thus useful to have conditions that allow us to pass from
epi-convergence in a given topology to epi-convergence in a finer

topology because stronger continuity properties of

of the
the solution of the limit problemj consult Attouch (1979), Theorem

2.1, for example. Finally, a special and extreme case is when
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0 =1, the discrete topology. The study of the connections between
lmT and lm1 becomes that of the relationship between epi-convergence
and pointwise-convergence. This is particularly useful in the de-
sign of approximation schemes for optimization problems. We deal
with this special case of pointwise-convergence at the end of this
section.

The inequalities (1.14) and (1.15), relating the eT—limits
inferior and superior, become equalities if the family of func
tions {fv,v<EN} is 1/0-equi-lower semicontinuous. This property,
defined below, is not only sufficient (Theorem 2.3) but is also
necessary (Theorem 2.10). It constitutes in fact a sort of com-

pactness condition, this is clarified in Section IV.

Definition 2.1, A filtered collection of functions {fv,v<5N}<:§X

is 1/0~equi~lower semicontinuous (1/0-equi-l.sc.) if there exists

a set D CX such that

(d) given any x €D, to every € >0 and every W(EGG(X)
there correspond HeEH and VGEGT(X) such that for
all vEH

1nfyev fv(y) > 1nfyew fv(y)-e .

and

(~d) given any x¢D, to every a&R there correspond
HE€H and VGEGT(X) such that for all veEH

1nfyev f\)(y) > a .



We call D the reference set. If oCt, then (d) holds with V=W
and H arbitrary, and hence any collection is 1/0-equi-l.sc. with
D = X. In applications, as far as we can tell, the only case of
genuine interest is when o is finer than T1; however, the results

are derived for arbitrary-topologies 2

Proposition 2.2. Suppose that 6,20, and T, C1q. Then for any
collection of functions, Tz/oz—equi—lower semi—-continuity implies

1,/0,-equi-lover semicontinuity.
Proof. Follows simply from the definition (2.1) and the inclusions

G (x)>O6G_. (x) and G_ (x) CcG_ (x). O
o, a4 L T

Theorem 2.3. Suppose that the filtered collection of functions

{fv,vGEN}<:§X 18 1/0-equi-l.sc. . Then
(2.4) 1i £, < linv

and

(2.5) lsofv < lsva .

Proof. We start with the proof of (2.4). Given x€D and ¢ >0, it
follows from the definition of liofv that there exists GEGEGO(X)

and HEGH such that for all \)EHE

(1i £ ) (x) < [inf £yl +e .

yee,
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In turn, (d) guarantees the existence of V(EGT(x) and H' € such

all veny'

lanEGE fv(y) < infer fV(Y)'FE,

and hence for all v €H! ﬂHE(GEH) we have that
(llOfV)(X) < lanEH'ﬁf%: infyev fv(y)-+2€ .

This yields

. x 1 +
(llofv)(x) < SupVEGT(x) SUPp -y lanEH 1nfyEV fv(y) 2¢e

(llev)(x)-+28
Since this holds for every € >0, we have that liofv < linv on D.

If x§¢D, condition (~d) implies that for every a€R, there
exists VaezGT(x) and HaszH such that
(1lofv)(x) > 1nfv i

nt
EHa yEVa

fv(y) > a

Hence (linv)(x) = 4o for every x in X\ D and the inequality

llofv < 11va is trivially satisfied.

In view of (1.4), the same argument can be used to derive

(2.5) replacing simply 1li by 1ls and H by H. O
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corollary 2.6. Suppose that the filtered collection of functions

{fv,vGEN}<Z§X is 1/0-equi-l.sec. . Then

(2.7) liofv = llev~
and
(2.8) lsofv = lsofv .

Moreover dom liofv = dom linv 18 the smallest of all subsets D
of X with respect to which both (d) and (~d) hold for the collec-
tion {fv,vGEN}, .., dom licfv 18 the smallest possible refer-

ence set,

Proof. The equalities follow directly from Theorem 2.5 and
the Proposition (1.13). To obtain the last assertion, we note
that if C CD, liofv = 4o on D\C and the collection {fv,vGEN} is
T/0-equi-1l,.sc. with respect to D, it is also 1/0-equi-l.sc. with
respect to C. Clearly dom liofv is the smallest such set C since
for any strictly smaller set C'C dom liofv' (~d) will fail on

. 1
(dom llofv)\C . O
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Corollary 2.9. (Convergence Theorem). JSuppose that o0 DT and that

the filtered collection of functions {fv,vGEN} is t1/0-equi-l.sec.

then

©f and only 1f

Proof. From f = lmvaiand Proposition 1.13 it follows that

On the other hand from the Theorem, more precisely (2.5), the

1/0-equi~1l.sc. yields

and hence f = lmcf = ligf = lsgfv as follows from (1. 5)

If £ = lmdfv, then Proposition 1.13 implies that

To complete the proof we again appeal to (1. 5). O

The next Theorem shows that T/0-equi-semicontinuity is a
minimal condition that allows to pass from the epi-convergence in

one topology to the epi-convergence in another topology.
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Theorem 2.10. Suppose that {f\),\) €N} CR® is a filtered collection
of functions such that -m<lsof\)—<-lirf\)' Then the collection

{f\),\) EN} <s t/0-equi-l.se. . Moreover if ¢ DT, then also

[ JERV) T V

Proof. The equality (2.10) follows from the assumptions via (1. 5)
and Proposition 1.13. For brevity, let f = lin\). To prove equi-
l.sc. we argue by contradiction. First suppose that x édom f and

(~@) fails, i.e., there exists a €R such that for every VE’GT (x)

and HeH there exists vEH and y €V with

fv(y) <a .

Then f(x) = (linv) (x) <a, contradicting the hypothesis that

x&dom £ .

If £(x) = (lin\))(x) > (lsof\))(x) is finite and (d) fails,
it means that there exists € >0 and WEGO(X) such that for every

HeH and VEGT

€ + inf fv(y) < inf

yEV yEW fv(y)

for some vEH. In particular, this must hold for some v'€H' with
the pair (H"Gs) constructed as follows., From the definitions of

liT and lso, it follows that

(i) there exist GEEGT(x) and HEEH such that

(11 £) (x) - e/y < lnf\)EHE lanEGE £¥)

and
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(1i) to W(EGO(X), there corresponds H_€H such that

W

(lsva)(x)-fe/q > suvaHW :l.nfyEW fv(y) .

Now simply define HerﬁHW = H'(eH) and because (d) fails, for some

vie '
€+ ianEGE £,ely) < infyew £, (Y)
and thus
e-finfveH, infyeGE fv(y) < SqueH' infyew fv(y)
Hence
f(x) +3¢/y = e-&(linv)(x)-e/u < e-l—infveHE infyEGE fV(Y)
< e+ ianEH' infyeGE fv(y) <supVEH, infyew fv(y)

. € €
< SqueHW infoy 0¥ Qs £)(x) +7 < £(x) +7

a clear contradiction. 0O

The pointwise-limit funetions of a filtered collection of

functions {fv,vGEN} are denoted by 1i fv and 1s fv and are defined

by

(2.11) 1i fv(x) = suPHEH ianEH fv(x)

and
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(2.12) 1s fv(x) = lanEH SqueH fv(x)

= SUPpci :Lnf\)GH fv(X) .

The last equality folliows from (1.3).

Let 1 denote the discrete topology on X, then Gl(x) consists of

all subsets of X that contain x. From this it follows that

1i fv = lllfv and 1s fv = ls1fv

and thus the preceding results also yield the relationship be-.
tween epi-convergence and pointwise-convergence, for example,

(1.14) and (1.15) become

(2.13) llrfv < 1i fv
and
(2.148) lsva < 1s fv .

When o=1 it is possible to replace (d) by

(d_) given any x €D, to every e >0 there corresponds
HEH and VeGT (x) such that for all v €E€H

1nfyev fv(y) > fv(x)-e

This condition is easier to verify and is in fact equivalent to
(d) as we show next. Clearly (d) implies (dp) since {x}EEGl(x).
On the other hand

given x €D, and any € >0 and WEEGI(x) (any set containing x ),

we always have that
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lanEW fv(y)-e < fv(x) -€

If (dp) is satisfied, there then exists HeH and VEEGT(x) such

that

fv(x)-e < 1nfyev fv(y)

for all v H. Combining the two preceding inequalities we get

(d). In this setting, Theorem 2.3 and its corollaries, and

Theorem 2.10 become:

Theorem 2.15. Suppose that {fv,VGEN}Ciﬁx is a filtered collection

of functions:
(i) If the collection is 1-equi-l.sc., then

linv =13 fv and lsva = 1ls fv .

Im_f .

Also, £ = 1m fv if and only if f £y

(ii) If -=<£f =1m £ = 1m £ , then the collection

of functions {fv,vGEN} is T-equi-l.se. .

By means of Proposition 2.2, we obtain as corollaries to the

above, a whole slough of convergence results. For example:

Corollary 2.16. Suppose that odD1. If £ = 1lm fv and the

filtered collection'{fv,vGEN} is T-equi-l.se., then f=1lm_ £ .
[

Also, 2f £ = lmo'tfv and the collection is T1-equi-l.se. then
, _

f=1Im £ .
Vv
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The assert‘ions of Theorem 2.15 remain valid with a weakened
version of T-equi-l.sc., when X is a subset of a linear topological
space and the {fv,v €N} are convexz functions. For (~d) we substi-
tute the following condition:

(~dc) given any x€cl D, to every a €ER there corresponds
" HEH and VEGT(X) such that for all ve€H

Obviously (~d) implies (~dc), the converse also holds in the
"convex" case, but that needs to be argued. To start with, we
need the convexity of some limit functions which we obtain as a

corollary to the next proposition.

Proposition 2.17. Suppose that {Cv,v €N} 28 a filtered collection
of convex subsets of a linear topological space. Then Li C, 8

convecx.

Proof., From the definition (1.6) of Lz C\)’ it follows that
X €ELT C\) if and only if to every neighborhood V of x, there cor-

responds HE€H such that for all vE€H

(2.18) cvnv;«!ﬂ.

Now take xo,x1 € L7 C, and for x€[0,1] define

x>‘= (1—>\)'x0+>\x1 .
. N . A .
We need to show that if V° is a neighborhood of x", there exists

A .
HXEH such that C,NV## for all vEH . Define

V0 _ V)‘—xx+x0
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and

<
I

These are neighborhoods of x0 and x1 and thus there exist H0 and
H1 such that (2.18) is satisfied. Let HA = HOIWH1. Since H is

a filter, HAEEH and clearly for all vEEHA we have that

Voﬂc\);ﬁﬂ and V| nc, # g

’

from which it follows that for all veEHA

A
\Y/ nc\)#ﬁ

because all the Cv are convex. O

Corollary 2.19. Suppose that {fv,vEEN} 18 a filtered collection
of convex functions defined on the linear topological space (X,T).

Then lsva 18 a convex function, and i1f they exist so are lmva

and 1lm fv'

Proof. Recall that a function is convex if and only if its epi;
graph is convex. Thus the convexity of lsva follows from (1.11)
and Proposition 2.17 since by assumption all the {epi fv,vGEN}
are convex. The.rest follows from the facts that if they exist

Im = 1ls_ and 1lm = 1m_. O
T T 1
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Note however that in general linv is not convex, although
the fv are convex. Consider, for example X =R, T the natural
(or the discrete) topology and for k=1,2,... the functions

£ (X) = |x -1] ,
and
f2k_1(x) = |x +1| .

Then clearly linv is not convex, since

i £ = |x + 1] if x<0

-

|x-1] if x>0
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Proposition 2.20. Suppose that {fv,vEEN} is a filtered collection
of convex functions defined on the linear topological space X.
Moreover suppose that etither —w~<lmva exists or that -« <lm f
exists and is T1-l.se. . Then the collection {fv,vEEN} is T-equi-
l.sc. 2f and only if it satisfies (dp) and (~dc),with the same

reference set D.

Proof. Since (~d) implies (~dc), the only thing to prove is the
converse in the presence of (dp), convexity and the existence of
a limit function. From the proof of Theorem 2,3, with o=1, we

. , , . <
see that (dp) implies that 1i fv < llrfv and that 1ls fv < lsrfv

on D, Similarly that (~dc) yields the same relations on X\cl D.

Combining these inequalities with (2.13) and (2.14), we have that
(dp) and (~dc) imply that
(2.21) llrfv = 1i fv and lsva = 1s fv

on X\Q, where Q = ¢l D\D. Moreover, in view of Corollary 2.19,

lsva is always convex and so are lm fv and lmva if they exist.

If ~o<f = 1m fv exists and is 1-l.sc., it follows from the
above that £ = 1s f = 1i f on X\Q. Convexity also yields the
equality on Q. We argue this by contradiction. Suppose to the

contrary that for some x1<$Q

a = (11 £ ) x') < £(x"y .

Take xoezdom f ¢ D, and without loss of generality, assume that
0 . e e
f(x”) = 0. Given any € >0, GEEGT(x1), Het, the definition of

liT yields VEEEH and yEEEG such that
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a > f (y)-¢e .
€

For A€ [0,1], define

x} = (1—A)x°+xy€ .
The convexity of the f\)’ implies that

A 0 0
fve(xH,G) < (1—>\)fvE(x )+>\fv€(y€) < (1—>\)f\)€(x ) +x(a+e) .

Now note that for any fixed X € [0,1], x>‘ = (1 - A)xO +>\x1 is a limit

(H,G) GHXGT(X1)} . Hence,

point of the filtered collection {x;\{ ar
Fat)

we have that for every A &€ [0,1]

£ < (11 £) N < =-0EED) e = e,

Let A 4+1. From the lower semicontinuity of f we get that
f(x‘) <a, contradicting our working hypothesis. And thus we have
shown that lmTf\) = 1m f\) = on X, and hence the collection is 1-

equi-l.sc. as follows from Theorem 2.10, with o=1 .,

On the other hand, if f = lmTf\) exists and the collection of
convex functions {fv,\)eN} satisfies (dp) and (~dc) with respect
to D (necessarily containing dom f), it follows from (2.21) that

on X\Q,
Im, f = 1i £ = 1s f .
TV

Corollary 2.6 implies that D Ddom lmva and thus lmva = +© on

Q. By (2.13),on all of X we have that

f=1Im f < 1i £ < 1s f ’
TV — v — Y
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from which it follows that on Q, £ = 1i £ = 1s £ = 4« , Thus
we have shown that on all of X, lmva = f = Im fv . Again with

0 = 1 Theorem (2.10) then yields the t-equi-l.sc. of the fv . o

When X is a reflexive Banach space and the {fv,vGEN} are con-
vex, the original definition of t-equi-l.sc., as given in Salinetti
and Wets (1977), coincides with this weakened version involving
(dp) and (~dc). Condition (o) of Salinetti and Wets (1977) is
precisely (dp). In general (~dc) implies (y) of Salinetti and
Wets (1977) and because the closed balls of a reflexive space are
weakly compact (y) implies (~dc). Condition (RB) of Salinetti and
Wets (1977) is automatically satisfied if the functions fv converge
pointwise (Salinetti and Wets, 1977, Lemma 2.ii) and it is implied
by (dp) and (~dc) if the fv epi-converge. Thus, Theorem 1., 2.
and 3, of Salinetti and Wets (1977) are special cases of Theorem

2.15 and Corollary 2.16.

III THE HYPERSPACE OF CLOSED SETS

Let (Y,n) be a topological space. 1In this section we have
collected some facts about the (hyper)space of closed subsets of
Y equipped with the topology of set-convergence, as defined by
(1.8). This turns out to be a variant of the Vietoris finite top-
ology, at least when (Y,n) is separated (Hausdorff) and locally
compact. The results found in this section can be extracted from
articles by Choguet (1947-48), and by Michael (1951) and from the

book by Kuratowski (1958).

By Fy, or simply F if no confusion is possible, we denote

the hyperspace of closed subsets of Y. The topology T on F is

generated by the subbase of open sets:
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{(F& kek} and {F.,GeG}

G'
where K and G are the hyperspaces of compact and open subsets of

Y respectively, and for any QCY.

£Q

{FeEF|IFNnQ=g} ,
and

Fa

{FeF|FnQ # g1 .

Proposition 3.1. Suppose that Y is separated and locally compact,
{Cv,\) EN} Zs a filtered collection of subsets of Y, and CCY is

closed., Then

(i) Ccciz C if and only <if to every GE€G such that
CNG#P, there corresponds HGEH such that for
every \)EHG, CVOG#IJ .

(ii) CDLs C, 1f and only if to every K€K such
that CNK = @ ., there corresponds HKEH such
k* CLEK =0 .

Moreover C = Lm Cv'if‘ and only 1f C = T=1lim Cv .

that for every v eEH

Proof, It will be sufficient to prove (i) and (ii) since the
last assertidn follows immediately from (i) and (ii) and the con-

struction of T.

Suppose first that x&€C, then CNG#@ for all GEGn(x).
The "if" part of (i), implies that CVDG#IZI for all VEHG with

HGE_HX. Every H' in H meets every HEH and hence
(U\)EHC\)) ne#4

for every HEH and GEGn(x). Thus for every HEQ, XEC]'(U\FHC\))

and conseguently by (1.5) x€L1 C\)’ i.e., CCLZ C\) .



-2

If CCrLz C\), then CNG#J implies that G N (ﬁHe“{‘cl(UveHCv))%Q’ ’

i.e., for every HEH

(U,uC,) NG # 0

or equivalently there exists HGEHsuch that for all \)EHG,

again because H consists of all the subsets of N that meet every

CvﬁG?‘ﬂr

set in H This completes the proof of (i).

Suppose that x €7Ls C\)’ then for every HEH, xE€cl (U\)EHC\))» p

cf. (1.6). 1If x¢C, by local compactness of Y, there is a compact

neighborhood K of x such that KNC = g. The "if" part of (ii)

then implies that KN (UveHKCv) = g for some HKEH, i,e.,
x &cl(u C..) contradicting the assumption that xe& LsC_.
VEH, "V v

Now suppose that CD Ls Cv' CNK = g, but for every He H we
can find v such that Cvr\K # @, i.e., there exists H'€ H isuch that
Cv NK # ¥ for every veH'. Since K is compact, it follows that
the {Cv NK,vEH'} admit at least one cluster point x €K. Then for

every HeH

xEcl(u\)E CV)OK ’

H

and consequently x & Ls C\) NK. But this contradicts the assumption

that C D Is c\). O

Thus T is indeed the topology of set-convergence as defined
in Section I. The next Proposition yields the properties of

(F,T) that are needed in the sequel.

Proposition 3.2. Suppose that Y is separated (Hausdorff) and lo-

cally compaect. Then (F,T) <s regular and compact.
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Proof. By construction the sets {FK;KEEK} and {FG;GEEG} are the
complements of open (base) sets, and thus are closed. In partic-

ular, this implies that singletons are closed, since

_ G
F = (nyep Fryy)) OF

G = Y\F is open.

To see that (F,T) is separated, let F1 and F, be two subsets
of F such that F1 # F2 . Then there is some y that belongs to F1

but not to F., (or vice-versa). Since Y is locally compact by as-

2

sumption and F, is closed, there exists K°, an open precompact

2
neighborhood of.y, such that K = cl K° is disjoint of F2. Hence

The compactness of (F,T) follows from Alexander's character-
ization of compactness in terms of the finite intersection prop-

erty of a subbase of closed (hyper)sets. Suppose that

(3.3) (N FCiy = g

F )rj(njEJ

iel’ 'K,

i
where KiezK, GjezG and, I and J are arbitrary index sets. We
must show that the family of sets {Ki, i€er; Gj,jEEJ} contains
a finite subfamily that has an empty intersection. Let G =

,UjEJ(%j and note that GEG. Now observe that (3.3) holds if and

only if

G
nieI(FKinF )y = @

or still, if and only if for some i, €1, FK NnNF =g , or
1o
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equivalently, if and only if there exists i, €I such that
ig

But Kio is compact and thus the open cover {Gj,jéEJ} contains a

finite subcover {Gjl""’Gj }. Hence (3.3) holds if and only if
q

G -
Fr, N(NjFI4) =g
1o

Since (F,T) is compact and separated, it is also regular. [J

IV COMPACTNESS CRITERIA FOR SPACES OF SEMICONTINUOUS FUNCTIONS

The relationship between pointwise- and eT-limits through
equi-semicontinuity suggests a number of compactness criteria for
spaces of semicontinuous and continuous functions, the celebrated
Arzeld-Ascoli Theorem being a special case of these. Our approach

in fact provides an unconventional proof of this classical result.

Although a few of the (weaker) subsequent statements remain
valid in a more general setting, we shall assume henceforth that
the domain-space (X,T) is separated and locally compact. Let SC(X)
be the space of t1-l.se. functions with range ﬁ and domain X. The
elements of SC(X) are in one-to-one correspondence with the ele-
ments of E, the hyperspace of epigraphs, i.e. the closed subsets
E of Y=X xR such that (x,a) €E implies that (x,b) €E for all b >a.
Note that {g} et and éorreSponds to the (continuous) function
f=+o, [E is a subset of Fy, the hyperspace of closed subsets of

Y = XXR .,
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Proposition 4.1, Suppose that (X,T) is separated and locally com-
pact. Then E(:FY is compact with respect to the T topology. More-
over the T-relative topology on E can be generated by the subbase

of open sets:
{£°% ; K eKy,a€R)
and

{E o;Ger,aei} ,

G,a

where for any Q CX and a€eRr

£ = (E€E|EN(Qx ] ==, al) = B}
and

E o={EEE‘Eﬁ(QX]-°°,a[)7£ﬂ}

Q,a
Proof. Suppose FeEFY\E, then there exists x€X and a <b such
that (x,a) €F but (x,b) £F. The local compactness of X yields

an open precompact set K° such that

Kx{b}
F nFK°><]a—s,a+€[ !

with K=cl K®* and 0 <e <b-a, is an open neiéhbourhpod of F that
does not contain any epigraphs. Thus F\E is open or equivalently

E is closed. Since F is compact, so is E,

To see that the T-relative topology on E can be generated
the subbase described above, note that the topological properties

of Yy = X xR imply that the sets of the type
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Kx[a,Db]

{F ;KEKX,a,bER}

and

{FGX]a,b[ ;GEGX,a,beR}

also are a subbase for T on FY' The restriction of this subbase

to E, yields

Kx[a,Dbl] K,a

E
and

EG la,bl ~ EG,a° - O

Combining Propositions 3.2 and 4.1 we get:
Corollary 4.2. The topological space (E,T) ©s regular and compact.

From Propositions 1.9, 3.1 and 4.1, with e, the topology of

epi-convergence in SC(X), we also get:

Corollary 4.3. The topologtical space (SC(X), eT) 18 regular

and compact.

The above implies that any closed subset of SC is compact.

In particular, note that for any a€R and D CX, the set

sc®(p) = {£esc|f<a on D} = O {fesc|f(x) <a)

is compact. To see this simply observe that {f esc|f(x) <a}

is closed since it corresponds in E to the T-closed set

{E€ElENn ({x}x]-=,a]) # @}
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Also, for any a €R and any open QGEX, the set
sc_(G) = {fesc|f>a on G}

is closed since it corresponds in E to the T-closed set
{E€cE|ENn (Gx]-»,al) = g} .

We have just shown that:

Corollary 4.4. Any bounded collection of 1-l.sc. functions is

a compact subset of (SC(X),eT).

The topological space (SC,p) is the space of 1-l.sc. functions
equipped with the topology of pointwise convergence. We already
know that neither pointwise nor epigraph-convergence implies the
other. However, in view of Theorem 2.15, these topologies coincide

on T-equi-1l.sc., subsets of SC:

Definition 4.5. A set ACSC(X) is equi-l.sc. if there exists a

set D CX such that

(dSC) given any x €D, to every € >0, there corresponds
VeG_(x) such that for every f in A
innyV f(y) >£f(x) -e ,
and
(“dsc) given any x D, to every a &R there corresponds

V(EGT(x) such that for all £ in A,

1nfyev f(y) >a .
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Theorem 4.6, Suppose that (X,t1) 1s separated and locally compact.
Then any t1-equi-l.sc. family of t1-l.se. functions contains a (fil-
tered) subfamily converging pointwise to a 1—-l.sc. function.
Moreover, if the family of functions is bounded, it contains a

subfamily converging pointwise to a bounded 1-7.sc. funection.

Proof., As follows from Theorem (2.15), for t-equi-l.sc. subsets
of SC(X), the p-closure or eT—closure coincide., The first state-
ment then follows from Corollary 4.3 and the second from Corollary

Ll'tl‘la D

Every property derived'for (SC(X),eT) has its counterpart
in (—SC(X),—eT), the space of T-upper semicontinuous functions
(t-u.sc.) with the topology —e. of hypo(graph)-convergence. 1In
particular, (-SC(X),-eT) is compact and any bounded subfamily is
precompact. And thus, any t-equi-u.sc. family of (bounded) u.sc.
functions contains a subfamily converging pointwise to a (bounded)
T-u.sc. function.

Given {fv,vEEN} a filtered collection of functions, the
—eT—Zimit infertor is -(lsr-fv) and the —eT—Zimit superior is

-(liT_fv)‘ The hypographs of these functions being precisely
L7 hypo fv and Ls hypo fv' We always have that

11 £ <1i £
TV v

- (ls-£ ) <-(1s_-£ )

and

ls £ <1s £

Ly 2 v —(ll—fv)_i—(llT—fv) .

T

~.

In each one of the preceding expressions, the first (secona resp.)

inequality becomes an equality if the collection is. t-~equi-l.sc.

(T-~equi-u.sc. resp.).
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Let C(X) = SC(X) N-SC(X) be the space of continuous extended-
real valued functions, ieT the join of the two topologies e, and
—e. and again p the topology of pointwise convergence. In general
(E(X),ieT) is not compact but as we shall see, its equi—contingous
subsets are precompact. A subset A CC(X) is equi-continuous if it
is both T-equi-l.sc. and T-equi-u.sc. with the same reference set
D being used in the verification of the equi-sc. conditions. (Note

that necessarily D must be open.)

Proposition U4.7. Suppose that X is separated and locally
compact. Then ACC(X) is precompact (with respect tois%) 1f and

only i1f it 18 equi-continuous.

Proof. If A is equi-continuous, it is equi-l.sc. and hence every
subset of A contains a filtered family {fv,vGEN} such that Im £
= Im fv’ but by assumption the {fv,vGEN} are also equi-u.sc. and

thus contain a subfamily (a finer filter on N) such that

lmrfv = Im fv = -(lmr—fv)

from it follows that A is precompact.

On the other hand, if A is not equi-continuous, then assume
for example, that t-equi-lower semicontinuity fails. This means
that for some collection of functions {fv,vezN} and some x, we

have that

(lmva)(x) < (1li fv)(x) = —(ls-fv)(x)_E—(lsT-fv)(x) .

Hence there is obviously no subcollection of the {fv} whose hypo-
graphs converge to lmva, since at x the —eT—limit inferior of
the {fv} is strictly larger than (lmva)(x). Thus A cannot be

precompact. O
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Finally, we consider the space C(X) of continuous real-valued
functions with the topologies ieT, p and ll'll, the last one being

the sup-norm topology induced by the pseudo-norm defined by

IEl = sup, o |£(a) | .

This pseudo-norm induces a topology on C, The fundamental system
of neighborhoods of an element f is defined by the sets

{gec| I f-gll <a} with a>0. Noﬁe that if X is compact, then
l«l is a norm on C(X) and the topology II-HCieT as can easily be
verified. 1In general however these two topologies are not com-

parable.

Theorem 4.8. Suppose that X <s separated and loeally compact and

ACC(X) s equi-continuous and bounded. Then A is te_-precompact.

Proof. This follows from the fact that bounded subsets of SC(X)

and -SC(X) are e_ and —eT—compact respectively, cf. Corollary 4.4.

T
As in Proposition 4.7 equi-continuity providing the link between

the limit functions. 0O

Corollary 4.9, (Arzeld-Ascoli) Suppose that X is separated and
compact, Then A 7s precompact, with respect to the ieT—topology,
and consequently with respect to the |-l topology, <Zf and only <if

A Zs equi-continuous and bounded.

Sufficiency follows from Theorem 4.8. The necessity of equi-
continuity is argued as in Proposition 4.7. Finally, if A is un-
bounded, there exist {fv,v(;N} and {xb,vEEN} such that f\)(xv)+-oo
(or 4+4w). The compactness of X implies that the family {xv,vEEN}
admits an accumulation point, say x. Then (linv)(x) = —~oo (Or
-(li -f )(x) = +*) and hence the ieT—closure of A can not be in

C(X) if A is unbounded. 0O



APPENDIX

There is an intimate connection between the semicontinuity
properties of multifunctions and the convergence of (filtered)
families of sets. The appendix is devoted to clarifying these
relations; most of this can be found in one form or another in

Choquet (1947-1948) or Kuratowski (1958).

A map T with domain Y and whose values are subsets of X (pos-

sibly the empty set) is called a multifunction. The graph of T is
grph T' = {(v,x) EY xX|x€ET(y)}

We recall that the Zmage of ACY is TA = UYEA?(y) and the pre-

image of BCX is I“_1B = {er|T(Y) NB=g@g} .
A neighborhood base B(yo) of Yo €Y is a filter base on Y.
A multifunction I' is said to be upper semicontinuous (u.sc.) at

Yo whenever

(Ls T) (yo) = cl FWCI‘(yO)

N
WeB (yo)

~33-



or equivalently if to each xoeéF(yo) we can associate neighborhoods
Q of xo and W of yo such that TWNQ = g . Note that T is u.sc.

(at every y) if and only if grph I' is closed.

In the literature one can find a couple of closely connected
defintions of upper semicontinuity. A multifunction T is said to
be K-u.se. at yo, if to each closed set F disjoint of F(yo) there
corresponds a neighborhood W of Yy such that TWNF =g, or equi-
valently if to each open set G that includes F(yo) there corres-
ponds a neighborhood W of Yq such thaf TWcG. If X is regular,
then I' closed-valued and K-u.sc. at Yo implies T u.sc. at Yo-

If X is compact and T is closed-valued at Yo then both notions

coincide.

A multifunction is said to be C-u.sc. at Yor if to each com-
pact set K disjoint of F(yo) there corresponds V a neichborhood
of y, such that I[VAK=g . Obviously u.sc. implies C-u.sc. .

The converse can be obtained with anyone of the following assump-

tions
(i) X is locally compact,

(for example, if £f=Y X

1, then I | is

0

is a continuous function and T'=f

(ii) Ff1 is K-u.sc. at every x

K-u.sc.),
(iii) X is metizable, Y, has a countable neighborhood base
and Fyo is closed, cf. Dolecki (1980).

The proof of the last assertion proceeds as follows:
Suppose that T is not u.sc. at Yo- Then there exists xogéryo and

neighgorhood bases {Q ,v=1,2,...} of x, and {Wv,v==1,2,...} of

0
Yo such that for all v ,

-3



ry,NQ, # #
because Fyo is closed, and for all v
rw,nNQ # ¢
because T is not u.sc. at Yoo For every v, pick vaEFvaWQV.

The set K = {x1,x2,...,x0}<:X is compact (every subsequence con-
verges to xo) and disjoint of Fyo but meets every W . This con-

tradicts the C~-u.sc. of T at yo.

A multifunction is lower semicontinuous (l.sc.) at Yo if

I'(y,) C(Li 1) (v, = nvefs'(yo) cl TV

where ﬁ(yo) is the grill associated to the filter base B(yo), or
equivalently if F—1G is a neighborhood of Yo whenever G is an open

set that meets F(yo).

For a given set X, we denote by P(X) the power set of X,
i.e., the hyperspace containing all subsets of X, by F(X) = F
the hyperspace of closed subsets of X, and oF==F'\ {g}. We now
consider thé multifunction A from P(X) into X defined by AQ =Q.

We have that A_1A ={Q|oNa#P} and (1\'-1A)C = {F|F ca®y .

We restrict A to F. The sets {A_1G,G open} form a subbase
for a topology on oF(but not for F). Similarly, the collection

1K)C,K compact} constitutes a subbase for another topology

{(n
on F, The supremum of these two topologies yields a topology T
on F. It is the coarsest topology for which A is both l.sc. and
C-u.sc. The topology V, the Vietoris topology, on F has a subbase
consisting of the collections {A_1G,G open} and {(A—1F)C,F closed}l.

It is the coarsest topology for which the multifunction A : F3 X

is 1l.sc., and K-u.sc. .
..35_..



NOTES

1. When convergence in the 1 topology can be defined in terms
of sequential convergence, the limit functions can also be
obtained as follows: let N = {1,2,...}, then

(linv)(x) = inf{v } CN lim inf fv (x.,)

u
HEN u

u

(;sva)(x)'= infr .y lim sup £ (x),

A% Y

where in the first expression the infinum is over all sub-

sequences of functions {fv ,ueN} and all sequences {xu,uGEN}
converging to x. H

2. A function f from X to R is 1/0-1.se. if (d) and (~d) hold
with D=dom f and fv:=f for all veN, If 120 the concept is
is essentially meaningless since then any function feEﬁX is
then 1/0-1.sc. . If o0D>71, then f is t/a-l.se. if and only if
T-cl (o-cl epi f) = o-cl epi £ . In particular if ¢ =1 then

t/1-1l.sc. corresponds to the usual notion of 1~1l.sc.

-36-
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