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FOREWORD 

The principal aim of health care research at IIASA has been to develop a family 
of submodels of national health care systems for use by health service planners. 
The modeling work is proceeding along the lines proposed in the Institute's 
current Research Plan. It involves the construction of linked submodels dealing 
with population, disease prevalence, resource need, resource allocation, and 
resource supply. 

This is the second research report on the disaggregated resource allocation 
sub-model called DRAM. It describes the extension of the Mark 1 version 
(RR-78-8) to  include the distribution of many resources across different modes 
of care. The earlier assumption that all available resources must be used has 
been relaxed, and an extensive analytic treatment suggests various methods for 
estimating the submodel's parameters. Several case studies that use the model 
are in progress and reports on these applications will be forthcoming. 

This paper is an output of a collaboration between two Areas at IIASA. It 
describes how a health resource allocation model, developed in the Health Care 
Systems Task of the Human Settlements and Services Area, may be solved by 
using optimization techniques studied in the Optimization Task of the System 
and Decision Sciences Area. 

Related publications in Health Care Systems and in Optimization are 
listed at the end of this report. 
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1 INTRODUCTION 

It has been widely observed (Feldstein 1967, Van der Gaag et al. 1975, 
Rousseau 1977) that the demand for health care seems to  be insatiable. When 
more hospitals are opened, more patients are treated, and the hope expressed 
at the inception of the U.K. National Health Service that increasing supplies 
of health care would reduce subsequent demands has not been realized there or 
anywhere. The causes of this phenomenon are various, but it gives rise to  the 
same question in all countries: What health care resources should be made avail- 
able? 

Unfortunately, the principal output of health care systems - health - is 
almost impossible to  define or measure (Cardus and Thrall 1977). Much as 
we would like to design a health care system that would maximize health, we 
do not even know how to begin. Instead, we seek to predict how those hos- 
pitals and other resources available in the health care system (HCS) will be used. 
Who gets what? 

DRAM (a disaggregated resource allocation model) is designed to help 
answer such questions. It is one of the submodels of the HCS model conceived 
by Venedictov et  al. (1977), and being developed by a group of scientists from 
different countries working at the International Institute for Applied Systems 
Analysis (IIASA). Figure 1 shows the five groups of submodels of the HCS devel- 
oped so far at IIASA; they are explained in more detail in a recent status report 
(Shigan et  al. 1979). This figure represents one part of the complete HCS: the 
processes by which people fall ill and by which resources are provided and used 
for their care. DRAM (in the group of resource allocation submodels) represents 
how the HCS allocates limited supplies of resources among competing demands 
of morbidity. Specifically, it asks If a certain mix of health care resources (e.g., 
hospital beds, nursing care) is available, how will the HCS distribute them 
among patients? DRAM does not prescribe an optimal allocation of resources. 



Resource 

FIGURE 1 The family of HCS submodels constructed at IIASA. 

Instead, it simulates how the HCS responds when resource availability changes. 
Even in countries with market economies, there are invariably some planning 
instruments for controlling the supply of public goods. But even in countries 
with planned economies, resources cannot be allocated in a rigid, centralized 
manner. In every country, doctors have clinical responsibility for their patients, 
and the pattern of care is determined by many local decisions. McDonald et al. 
(1974), Rousseau (1977), and Burton et al. (1978) are among those who have 
modeled this behavior, and DRAM has close links with the first of these models. 
Other models for health care resource allocation were reviewed by Gibbs (1 977) 
and Nackel et al. (1 978). 

Like many models, DRAM has accounting and behavioral components. In 
the accounting in DRAM, different types of resources are distributed among 
patients 

In different categories (e.g., age, diagnosis) 
In different modes of care (e.g., inpatient, outpatient) 

a With different levels of resources per patient (e.g., length of stay in 
hospital) 

and no more resources are allocated than are available. The resources can be 
determined by a resource supply/production submodel such as the IIASA sub- 
model described in Shigan et al. (1 979), or they can be set by the user as a trial 
policy option. 

The behavioral assumption in DRAM is that the HCS behaves as if it were 
maximizing a preference function that increases with the number of patients 
treated and the resources received by each. Some of the parameters in this 
function represent demand inputs, like the ideal levels at which patients would 
be treated and would receive resources if no constraints on resource availability 
existed. These parameters indicate the true "needs" for health care. Other 
parameters represent the elasticities of the actual levels to changes in resource 



supply, and the balance between need and supply. The relative costs of differ- 
ent resources are other parameters used by DRAM to choose between alternative 
resource mixes. DRAM does not try to include explicitly every behavioral influ- 
ence that could be active, but to use parameters that can represent the results 
of all these influences. Because the parameters have meanings outside the 
model, they can be estimated by methods that do  not involve the assumptions 
underlying DRAM. 

Gibbs (1978b) formulated a pilot Mark 1 version of DRAM. This report is 
the successor, and summarizes progress up to April 1979. Some but not all of 
the results have appeared in interim IIASA papers, a list of which appears at the 
end of this report. Much of this report is about the mathematics of the model, 
and the examples are concerned with hospital services. Our interests, however, 
are not so restricted. DRAM is designed to model the concept that the HCS 
balances the desirabilities of more individuals receiving care against higher aver- 
age levels of care. Such a model should be applicable in many sectors of health 
care, and perhaps also in other public sectors. 

Readers who are uninterested in mathematical details can skip to Section 
5 to read about the use of mathematical models in general and to see examples 
of DRAM. Two examples are presented: one investigates how hospital beds 
might be used by the HCS, and the other how the balance between inpatient 
and outpatient care might change. The other parts of the report develop mathe- 
matical results that are needed to support such applications. Section 2 solves 
the simple DRAM and gives three extensions in which certain restrictions applied 
to the simple model are removed. Not every resource allocation pattern can be 
simulated by DRAM, so Section 3 investigates its admissible solutions. This is a 
way of explaining the implications of DRAM'S underlying hypothesis. Section 4 
presents methods for calibrating DRAM so that it is appropriate for different 
questions of policy in different regions. The associated computer programs are 
not described in this report, but Appendix B provides brief details. Section 6 
gives a concise summary of the whole report. 

2 MODEL FORMULATION AND SOLUTION 

The first step in formulating DRAM is to  define variables and to  make the key 
assumptions in the model precise. This is done in Section 2.1, and Section 2.2 
analyzes a simple version of DRAM in which all the available resources must be 
used. Three extensions of the model are analyzed in Section 2.3, and Section 
2.4 describes a computational method that can be used to solve all four versions 
of DRAM. 

2.1 Notation and Assumptions 

We use the indices j = patient category ( j  = 1, 2, . . . , J), k = mode of care 
(k = 1, 2, . . . , K), and 1 = resource type (1 = 1, 2, . . . , L)  in defining the 
model variables 



xjk = numbers of individuals in patient category j who receive resources 
in mode of care k (per head of population per year) 

yjkl = supply of resource type 1 received by each individual in patient 
category j in mode of care k 

and in writing Cj Ck xjkyjkl as the total resources of type I that are allocated (per 
head of population per year). DRAM seeks to determine xjk, yjkl V j ,  k, I ,  within 
constraints on total resources, so as to  maximize a function 

C, X,  Y, a ,  /3 are model parameters (C denotes {C,, I = 1, 2, . . . , L) and so on). 
The monotonically increasing, concave power functions (2) and (3) follow 

from general assumptions about aggregate behavior in the HCS. They depict the 
many agents who control the allocation of health care resources as seeking to  
attain ideal levels of service (X) and supply (Y), but where the urge to  increase 
the actual levels of service (x) and supply (y )  decreases with increasing values 
of x and y ,  according to  the parameters a and 0. The costs of different resources 
(C) are introduced so that marginal increases in U when ideal levels are achieved 
( X  = X, y = Y )  equal the marginal resource costs. This interpretation is a useful 
way of introducing meaningful parameters into the model, and Section 4 sug- 
gests various ways of estimating X, Y, a ,  0, C in different applications. For the 
moment, however, we assume these parameters to  be known. 

Alternative forms for U(x, y )  can be suggested, and some were analyzed 
by Hughes (1978b). Appendix A presents one of these and shows that minor 
changes can greatly change both the characteristics of model predictions and 
the ease of solution. Equations (1 k ( 3 )  have convenient analytic properties that 
make it easy to solve this formulation of the model. 

2.2 The Simple Model 

We seek a solution for x ,  y that maximizes Eq. (1) subject to  the constraints 

0 < xjk < Xjk 0 < yjkl < YjkI (4) 

In this section, we assume that all available resources of type I ,  R,, must be used. 



With Lagrange multipliers A,, VI, we adjoin the equality constraint, Eq. (5), to  
the function that is to  be maximized, Eq. ( I ) ,  t o  give 

When certain convexity and concavity assumptions are satisfied (proved below), 
the values of x ,  y ,  h that solve the primal problem of rnax,,, mink H(x,  y,  A) 
also solve the dual problem of mink rnax,,, H(x, y,  A). The optimal values i ,  j 
are readily found to  be 

where pjk is a weighted sum 7 ~1 yjklvjkl 

pjk = 7 ~1 yjkl 
(9) 

of the  terms 
Vjkl [(Pjkl + l ) (~ l /~ l )P i k l / ( p~k l+  I )  - 1 1 /Pjkl (10) 

and substituting these values into Eq. (6) yields 

However, these solutions for x ,  y are not determined until we find a value X 
that minimizes ~ ( h ) .  

In order t o  see whether this is possible, we inspect the gradient vector of 
first derivatives evaluated at x = i(X), y = j (h) .  After much simplification, 
this is simply the vector with elements 

~ H ( A )  - -  

ax, - Fl[i(X), 

The corresponding Hessian matrix of second derivatives Hkk can be written as 
the  sum of two matrices 



Xik Yikl l / ( f l J% l+ l )  a ~ j k ( h )  
[ P .  (h)]-(aj+2)/(" j+l)  - 

1k 
axrn 

where 
a ~ j k ( h )  - - y r n  (h)- l i (&krn + I )  

axrn C c r n y j k r n  rn ern 
and where the Kronecker delta a,, is 1 when 1 equals m, and 0 otherwise. A is 
a diagonal matrix with all elements positive. Therefore, any quadratic form 
z f A z  is always positive, as are all the eigenvalues of  A.  Equivalently,A is positive 
definite. The matrix B is symmetric, with typical quadratic forms 

zfBz = C b lmz1zm 
lrn 

which are non-negative. Therefore, B is positive semidefinite. It follows that 
&, is symmetric and positive definite, and this guarantees that H ( X )  is strongly 
convex. Finally, it can be shown that H ( X )  therefore has a unique minimum for 
some h = X .  

In order t o  prove that this solution to  the dual problem also solves the 
primal problem, we consider the matrix of second derivatives of H(x ,  y ,  A )  with 
respect t o  the primal variables z  = ( x ,  y ) ,  evaluated a t  x  = i ( X ) ,  y  = ? ( A ) .  In 

not only the off-diagonal submatrices, but  all the off-diagonal terms are zero. 
The remaining diagonal elements 

are negative, so that H, , [ i (X ) ,  ?(A) ,  A] is negative definite. This is sufficient to  
ensure that the solution [x(X), j (X)]  is the saddle point t o  H(x ,  y ,  A), and thus 
solves both dual and primal problems. 



It remains to consider the range of possible solutions for A. As any XI tends 
to  zero, all the elements of & tend to minus infmity. We deduce therefore 
that XI > 0 for all 1. In order for the solutions (7) and (8) to satisfy the con- 
straints (4), we should have XI > C, for all I. Unfortunately, this cannot be 
guaranteed, and examples can be found that use all the resources but exceed 
the ideal standards X, Y. These unrealistic solutions are a deficiency of this 
simple formulation of DRAM which can be overcome by extending the model. 

2.3 Three Extensions 

In the first extension of the simple model, we remove the constraint on indi- 
vidual resource types (5) and add a constraint on total finance. We seek a 
solution for x, y that maximizes Eq. (1) subject to constraints (4) and 

This solution is the optimal allocation under the assumption that finance M 
should be used to purchase resources that will maximize the returns of Eq. (1). 
This assumption is not so realistic for our applications, but it gives a model that 
is easy to solve. 

We find that the optimal values i ,  p are the same as solutions (7) and (8), 
but that the Lagrange multiplier X is now constant across all resource types, 
A,  = A, = . . . = A,. The dual function H(X) is a function of a single Lagrange 
multiplier, X1 say, and using the earlier results, we can show that i t  is the sum 
of a set of strongly convex functions. It is therefore also strongly convex with 
a unique minimum for some value X1 > 0. 

In fact, we can demonstrate a stronger result for this version of the model. 
Because 

aH(x) 
A, = 1 - = M - C C C C ~ X ~ ~ Y , ~ ~  < o 

axl i k l  

and 

> 0 1 < A l  < w ax: 
we deduce that there is a unique optimal value h1 > 1 that minimizes H(x), 
provided only that the finance available is less than that required to satisfy all 
demands M < Zj Zk Cl CIXjkYjkl. In other words, there is always a unique 
resource mix that will maximize perceived preferences. 

In the second extension of the simple model, we replace the equality 
resource constraint (5) by an inequality constraint 

F , ( x , y ) - r l = O ;  r , > O  b'l (15) 



where rl represents the unused resources of type I, which must always be non- 
negative. It is easy to  show that there always exists a point ( x ,  y ,  r )  that satis- 
fies constraints (4) and (1 5 )  provided that the inequality 

is satisfied. When sufficient resources of some type are available to  violate 
Eq. (1 6 ) ,  it means that there are more than enough of these resources, and that 
there is no allocation problem! The resource type in excess can be removed 
from the model. 

It is also possible to  show that the model can have no solutions with 
ijk = 0, j jk l  = 0 ,  or  ijk = X j k .  In other words, these constraints are never 
active. This is because the first two conditions imply that U(x, y) = - OO, 

and because the last condition requires A, = 1, VI, which causes constraint (1 5 )  
to  contradict (16) .  We conclude then that the only constraints that can be 
active are the upper constraint on y and the lower constraint on r .  

There are now just two possibilities. The first possibility is that Yjkl  < Yjkr 
for all 1. Inspection of the function 

shows that it is maximized when r,  is zero for all I. The problem is then identi- 
cal to that analyzed above, and all the previous results hold true. The second 
possibility is that ,Gjkl = Yjk, for one or more (but not L )  resource types I. From 
Eq. ( 8 ) ,  the associated values of (h l /C, )  are unity, and the rest of the problem is 
equivalent to  the dual problem specified in Section 2.2, but with the extra con- 
straint 

The third extension of the simple model subtracts the costs of the used 
resources from the preference function 

~ ( x ,  Y )  = 1 Cgjk(xjk) + CC C X . ~ ~ ~ ~ ~ ~ ( Y ~ ~ ~ )  
i k j k l  

- 1 ~ I ~ j k ~ i k l  
i k l  

Other things being equal, the model now tries additionally to  maximize the 
value of unused resources. The optimal values of x,  y are similar t o  solutions ( 7 )  
and ( 8 )  

and we may show that ~ ( h )  is strictly convex as before, with a unique minimum 



that now lies in the range X, > - C, for all 1. Should we also wish to  replace the 
equality resource constraint by the inequality constraint (IS), the appropriate 
version of the dual constraint (1 7)  becomes 

Note that all three extensions of the simplest model have solutions that are 
transformations of the simplest solution. 

2.4 Solution Procedure 

So far we have demonstrated only that all the versions of the model discussed 
above can be solved by solving equivalent dual problems. In each case we have 
to  find X so as to minimize H(x), sometimes subject to  constraints like (21), 
but with a unique solution always guaranteed. Because we know the gradient 
vector and the Hessian matrix EjhA,  we can begin to search for ̂X by an 
iterative technique Xi+ '  = X i  + td i  (the upper index i denotes the iteration 
number) which finds better approximations Xi, i = 1, 2, . . . , N, t o  the solution 
X, by taking steps with step-size coefficient t ,  in the Newton direction 

Just two refinements are necessary: first, t o  control the step size,and second, t o  
modify the direction when a constraint like ( 1  7) or (21) is appIied and 
encountered. 

In order t o  control the step-size coefficient, we need only reduce it if a 
step seems likely t o  overshoot either the solution or a constraint. Figure 2 
depicts an appropriate method that tests for this. To  proceed when a constraint 
like (21) is encountered, we determine the set of resource type indices 

where the constraint is active, and where H(X) can decrease only with negative 
A,. The gradient vector & and the Hessian matrix HAA are then projected onto 
the space of active constraints by replacing all the elements corresponding t o  
active constraints by zeros. They become the reduced gradient vector and 
Hessian matrix and they determine the Newton direction (22) in the space of 
inactive constraints 14 i, which is complemented by zeros for 1 E L.  

Figure 3 shows the complete procedure for determining the optimal X, 
and hence the solutions i (X),  $(XI. A matrix inversion is the only potentially 
difficult computation. Generally, however, the number of different resource 
types will be sufficiently small (less than five, say) to  prevent problems. 
(Occasionally in the solution of a badly conditioned problem, a step in the 
Newton direction will not reduce the function H because of numerical errors, 
and steepest descent d = -HA may be necessary.) Note that there is not too 
much extra computation introduced by an inequality resource constraint. Most 



Set t = 1 

Test for constraint 
overshoot by checking 

+td_ > 0 V I  

Test that step not  too large by checking 

slim 
H ( h  + t d _ ) < H ( h ) + t s Z l - . d ,  Divide 

where s is a convergence coefficient (0.3 say) 

FIGURE 2 Procedure for determining step-size coefficient t .  

of the additional refinements are logical rather than computational. All our 
applications have been solved by a fairly compact computer program, using no 
special software; Appendix B gives more details about program size and com- 
puting efficiency. This program can handle the simple model and all three 
extensions. In our examples, however, and in most of this report, we refer to 
the simple model. 

3 SOLUTION CHARACTERISTICS 

DRAM cannot simulate all patterns of resource allocation that might be observed, 
and the possibilities for use depend upon the variety of patterns that can be 
simulated. The analysis given here of admissible solutions to  DRAM is restricted 
to  the simplest possible DRAM with one patient category, one treatment mode, 
and one type of resource, for which all the variants described in Section 2 are 
identical. Section 3.1 shows how the simplest model can be represented graphi- 
cally, and gives a fundamental condition on admissible solutions. The results 
indicate the characteristics of solutions for more complex DRAMS, and suggest 
ways to fit the model to small numbers of data points. Sections 3.2 and 3.3 
derive conditions for fitting two parameters to  two data points (Appendix C 
derives conditions for fitting four parameters to four data points), Section 3.4 
derives conditions for fitting two parameters to one data point, and Section 3.5 
derives conditions for fitting four parameters to two data points. These results 
introduce the next section on parameter estimation from many data points. 

3.1 The Simplest DRAM 

For the simplest possible DRAM with J = K = L = 1, many elements of the 
problem can be depicted graphically. First, we can eliminate the Lagrange 



I Choose arbitrary A I 

FIGURE 3 Iterative procedure for solving DRAM. 

I 1  
Calculate H ( A ) ,  
gradient vector. & 
Hessian matrix 

1 
Determine the set 1 of active 
resource constraint indices. 
Calculate the reduced gradient 

vector and Hessian matrix 

I 
Determine the search 

direction d 

1 
Determine the step-size 
coefficient t 

No Take 

multiplier between Eqs. (19) and (20), to show how the resource level R 
(which is input to the model) determines the number of individuals treated x,  
and the supply level y (which are outputs) 

step and 

It is easy to  show that these equations have the shapes shown in Figures 4 and 
5. Both curves are concave and monotonically increasing. 

STOP calculate new A 



FIGURE 4 ( x l X )  as a function of (R IXY) .  

FIGURE 5 ( y l Y )  as  a function of (R IXY) .  

Alternatively, we can find an equation that relates x  and y  directly. The 
result 

where p = ( x / X )  and q = ( y / Y )  is plotted for various ranges of a, in Figure 6. 
For a > - 1, the curve always has just one point of inflection, and when 



FIGURE 6 Loci of possible solutions on the x-y plane. 

0 - 1 < a  < P ,  there is just one intersection with the diagonal. From Eq. (25) 

whence we deduce that two data points (p , ,  q , ) ,  (p,, q,) can be solutions of  
DRAM only if 

P z > ~ r - q z > q i  (26) 

This is a fundamental condition on admissible solutions, which we assume for 
the rest of this section. It means, for example, that the model cannot repro- 
duce increasing available hospital beds and decreasing lengths of stay, simul- 
taneously. (How this condition should be modified when there are two or more 
resources, perhaps some increasing and others decreasing, is not clear.) 

Equation (25) is the locus of solutions of DRAM on the x-y plane. The 
particular solution for a given resource level is found at the intersection of the 
locus and the resource hyperbola F(x, y )  = R - xy = 0, and it is the point on 
the hyperbola that maximizes the function of Eq. (18). Figure 7 depicts the 
shape of this function above the x-y plane. We see that 

1. U(X, Y) = 0, and x -t 0 or y -+ 0 implies U(x, y )  -t - m. Within the 
constraints 0 < x < X, 0 < y < Y, U(x, y )  is always negative and con- 
cave. 

2. U(x, Y) = g(x) and U(X, y )  = h(y). Above the point (X, Y )  the sur- 
face has gradients 



FIGURE 7 

0 7 x  X 

The surface U(x, y )  above the x-y plane. 

3 .  There is always a unique solution (f, 9 )  because constant-U contours 
are always more concave than constant-F curves. 

4. Equation ( 2 5 )  is represented by the line OVW. 

Evidently, it is not always possible t o  choose parameters X, Y, a, 0 that will 
cause the solution locus OVW to  pass through an arbitrary set of data points ( x i ,  
y i ) ,  i = 1, 2 ,  . . . , N. In the rest of this section we investigate the conditions 
that allow this. 

3.2 Conditions for Fitting X, Y to Two Data Points 

It seems reasonable that at least two points on Figure 6 are needed to  specify a 
solution locus defined by two parameters, although not all such data will be 
sufficient or consistent. In this section, we assume that a, 0 are given, together 
with two data points ( x , ,  y , ) ,  ( x , ,  y , )  such that x ,  > x , ,  y ,  > y , .  Can we 
choose X, Y such that DRAM can reproduce these points? By substituting the two 
points into Eq. (25 ) ,  we easily obtain 



The two numerator terms are always positive, and the denominator term is 
positive if 

B< l n x ,  - l n x 2  

a +  1 In y ,  -1ny2 

This is, therefore, a necessary and sufficient condition for being able to  choose 
X,  Y to  fit two data points. 

3.3 Conditions for Fitting a, P to Two Data Points 

Alternatively, we can assume that X, Y are given, together with two data points 
(x,, y , ) ,  (x,, y,) such that x ,  > x,, y ,  > y,, and ask whether we can choose a, 

such that DRAM can reproduce these points. A necessary and sufficient con- 
dition for the existence of 0 > 0 is easy to  find. Writing Eq. (25) as 

where {(P, q)  = In [ ( l  + (l/P))q-0 - ( l /P)] we can use the two given data points 
to eliminate a, giving 

{(P,q2)-o{(P,41) = O (30) 

where o = (In p,)/(ln p ,  ) > 1. The solution of Eq. (30) is depicted in Figure 8 
as the intersection of two curves with known intercepts and asymptotes. There 
is an intersection for some 0 > 0, if o In (1 - In q,)  > In (1 - In q,) and 
- o In q ,  < - In q,, and these conditions can be combined as 

where T = (1 - a )  lnq, .  
A necessary and sufficient condition for the existence of a > 0 also comes 

from Eq. (29). We require that {(P, qi)/(- In pi )  > 1, i = 1, 2. Unfortunately, it 
is not easy t o  remove the dependence on in this condition. But the two 
inequalities {(P, q )  > In (1 - In q )  and {(P, q)  > - In q lead to two alternative 
sufficient (but not necessary) conditions 

where we have used the fact that the second condition is stronger for i = 2. We 
can find a lower bound on by inspecting the intercepts and asymptotes in 
Figure 8 

In (1 - In q,) + omin(- In 9,) = o In (1 - In q , )  



0 - 
FIGURE 8 Solution of Eq. (30). 

When this is used in Eq. ( 3  l ) ,  the two sufficient conditions become 

Empirical evidence suggests that the first condition ( 3 2 )  is less restrictive, 
at least for small values of ( x ,  l x , ) ,  and hence closer to  being necessary. 

These results suggest the following question. Given four points on Figure 
6 ,  can we align the solution locus through them all? In other words, given four 
data points ( x i ,  y , ) ,  i = 1, 2 ,  3 ,  4 ,  with x, > x 2  > x3  > x4  and y ,  > y 2  > y 3  > 
y 4 ,  can we choose the four parameters X, Y ,  a, p such that DRAM can repro- 
duce these points? Sufficient conditions for this, together with an iterative 
procedure for finding the best fit, are developed in Appendix C .  The important 
conclusion is that even when we have the same number of data points as 
unknown parameters, and even if the data points satisfy the fundamental con- 
dition ( 2 6 ) ,  a perfect fit of the model to the data is not always possible. 

3.4 Conditions for Fitting X,  Y  or a, P to One Data Point 

In Section 4 ,  we use many data points to estimate pairs of parameters (e.g., X, 
Y )  by combining the estimates suggested by individual data points. We would 
expect the conditions for fitting two parameters to one data point to be weaker 
than the conditions derived in Section 3.2  for fitting two parameters to two 
data points. But is one data point more or less than sufficient to determine two 
parameters? 



In fact, when a, 0 are given, it is possible to  choose an infinite number of 
pairs X, Y t o  fit a single data point. Equation (25) shows that for any choice of 
X > x ,  there exists some consistent value of Y > y.  Similarly, when X, Y are 
given, it is possible to  choose an infinite number of pairs a, that satisfy Eq. 
(25) and that therefore fit a single data point. There is, however, a restriction 
on the minimum possible values of a, 0: 

which can both be zero, only if p ( l  - In q )  = 1. 

3.5 Conditions for Fitting X ,  Y ,  q 0 to Two Data Points 

Although we do not need the result later, it is interesting t o  extend and con- 
clude thls analysis by asking whether all four parameters can be chosen to fit 
just two data points (xi, y,), i = 1, 2;  x ,  > x,; y 1  > y,. We analyze this prob- 
lem in two stages. First, can we choose X, Y so as t o  satisfy Eq. (3 l ) ,  the neces- 
sary condition for the existence of 0 > O? Second, can we also satisfy Eq. (32) 
or  Eq. (34), the sufficient conditions for the existence of a > O? 

In order to  show that we can always choose X, Y consistent with a 0 > 0,  
we let w + = in Eq. (3  1) giving 

which can always be satisfied by some T > 0. In practice, w can be made suf- 
ficiently large by setting X close to  x, ,  and the choice of T then determines Y .  

In order t o  apply a similar procedure t o  the sufficient conditions (32) and 
(34), we write them in the forms 

where we have set i = 2 in Eq. (32). Arguing as earlier that we can choose X to 
make o arbitrarily large, we let w + = in these equations 

l n y ,  - - l n y , < ( ~ ) e x p ( r ) - I  (37) 

Combining Eqs. (35), (36), and (37), we have the sufficient condition 
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FIGURE 9 Sufficient condition for finding X, Y, a, 0 consistent with two data points 
(logarithmic scales). 

Figure 9 shows the region of (x,/x,, y,/y,) in which a consistent choice of the 
four parameters X, Y, a ,  0 is always possible. 

This analysis shows that two arbitrary data points, even when they satisfy 
condition (26), may not be consistent with any choice of DRAM parameters X, 
Y, a ,  0. It suggests, therefore, that simple procedures that estimate parameters 
from just two data points (Hughes 1978a) may be unsuccessful. For this reason, 
we turn to more general methods for parameter estimation. 

4 ESTIMATION OF PARAMETERS 

We turn to  the problem of calibrating the model, that is, of estimating parame- 
ters for DRAM appropriate for a given region and policy question. Section 4.1 
reviews sources of data. Sections 4.2 and 4.3 then describe separate procedures 
for estimating the two pairs of parameters X, Y and a ,  0, which are drawn 
together in Section 4.4. These procedures are quite suitable for small examples 
and they are illustrated in Section 5. Section 4.5 outlines an alternative approach 
to parameter estimation that incorporates specific assumptions about the 
uncertainty of model predictions. It shows that, with certain approximations, 
the approach is feasible and worth testing. Section 4.6 concludes by briefly 
mentioning the problems of estimating resource costs. 

4.1 Parameters and Data 

The parameters of the model fall into three groups: 



a The ideal levels X, Y at which patients would be admitted and receive 
resources, if there were no constraints on resource availability. Abso- 
lute values of these parameters have little meaning, but relative values 
can be chosen to indicate the relative "needs" for health care. 
The power parameters a, which reflect the elasticities of the actual 
levels to changes in resource supply. For example, we expect the elas- 
ticity of admission rate to  bed availability to be less for appendicitis 
patients than for bronchitis patients, because appendicitis usually 
requires faster attention. 
The relative costs C of different resources. DRAM uses the marginal 
unit cost of a bed-day, a doctor-hour, and so on, or equivalent parame- 
ters, in order to choose between alternative mixes of these resources. 
We defer discussion of resource cost estimation until Section 4.6. 

The level of available resources is not regarded as a model parameter but as an 
experimental variable. DRAM shows how the levels of satisfied demand vary 
with changes in resource supply. 

There are more data available t o  estimate X, Y, cu, P than there are for 
many other problems in HCS modeling. The sources include: 

Other models 
a Special surveys 

Professional opinions 
a Routine statistics 

At IIASA, other models have been developed for other components of the HCS, 
and particularly for the estimation of true morbidity from degenerative diseases 
(Kaihara et al. 1977) and infectious diseases (Fujimasa et al. 1978). Later at 
IIASA, these outputs may be useful for setting the ideal rates at which patients 
in different categories need care. Initially, however, we wish to test and use 
DRAM independently of other models. Many researchers have performed 
important and useful special surveys. Among others, Newhouse and Phelps 
(1974) and Feldstein (1967) have estimated both elasticities in hospital care 
and the costs of acute services, and some of these results were used to  calibrate 
a Mark 1 version of DRAM (Gibbs 1978b). Unfortunately, these results may not 
be relevant in other regions or countries, or at other times. In an international 
setting it is necessary to avoid relying on results related to  a specific health 
system. 

The professional opinions of doctors and health planners can be useful for 
setting ideal levels of care. Countries where there is a high degree of central 
planning often set normative figures for ideal hospitalization rates and neces- 
sary standards of care, and these can be used in DRAM. However, these are not 
available in all countries, and probably no professional should be asked to  esti- 
mate elasticities, in case he supplies his own rather than those of the HCS. This 



leaves routine statistics. Most systems keep regular records on the use and costs 
o f  their services, and on how they have allocated resources in the past. If DRAM 
is a valid model of the HCS, then these figures are typical outputs of the model, 
which we should be able to  use for model calibration. 

The aim of DRAM is t o  model how the HCS reacts to  change. Generally, 
therefore, DRAM'S model parameters must be estimated from data that show 
how an unchanging HCS reacts to  external changes, either in space or time. 
Cross-sectional data from subregions of the region of interest may show the 
HCS operating at different resource levels. So also may longitudinal data col- 
lected at different times. In both cases, however, the underlying system may be 
different for the different data. Subregions are often deliberately defined so as 
t o  be predominately urban or predominately rural, and we must consider ways 
of averaging the results across the region. Data collected at different times are 
highly likely t o  be affected by historic trends in medicine or  management. 
Ideally, we should model these trends and incorporate the time-varying parame- 
ters in a time-dependent model. More probably, we shall use data from a period 
during which we can assume time variations t o  be small. The resulting model 
will still be good for representing those aspects of resource allocation behavior 
that are independent of time trends. A final and obvious problem is that the 
available data may be incomplete, either because of recording failures or  
because the data is insufficiently disaggregated. 

Not all of these problems can be overcome simultaneously. But in the 
next three sections we concentrate on estimation methods that are based on 
routine statistics about current o r  past allocation behavior, and that take into 
account that cross-sectional and longitudinal data may reflect inherent param- 
eter variations. In addition, one of the procedures can be used with incomplete 
data. 

4.2 Estimation of X,  Y 

We consider first the estimation of the ideal service levels X and the ideal supply 
levels Y, assuming for the moment that the power parameters a, /3 are known. 

Sufficient information t o  estimate X ,  Y is given by the current allocation 
of resources in the region under study. If the current allocation pattern is 
described by x and y, Eqs. (7) and (8) may be rearranged as 

which are expressions for X and Y. We have a single equation for each unknown 
parameter, but as Section 3.4 predicted, we still need some external criterion t o  
determine h. If we assume that we can define the resources needed t o  satisfy 
the ideal levels Xjk, Yjkl as some multiple 8 ,  of the resources used currently 



then (39) and (40) can be substituted into (41) t o  give 

where 
fl(h) = 0 V l  

and where Eq. (42) must be solved for A. The equatioils in f are very similar t o  
the equation H, = 0 that arises during model solution, and, provided that 
8, > 1, V I ,  and that all the terms except h are known, they may be solved in 
the same way to give h.  Unfortunately, not all the terms are known. In partic- 
ular, pjk is a weighted average iilvolving the terms Yjkl, which are as yet unknown. 
It is therefore necessary to  iterate between solving Eq. (42) for A, and Eqs. (39) 
and (40) for X ,  Y. 

This approach suffers from the disadvantage that it only finds values of X ,  
Y that are consistent with the current allocation pattern and the assumed 
values for a, 0. A model with parameters estimated on so little data may have 
little predictive power. More useful is t o  estimate X ,  Y from other  data and 
then to  use the current allocation as a test of the model's validity. Other suit- 
able data include cross-sectional and longitudinal data, and given N data points 
from such sources, we can use Eqs. (39) and (40) t o  find N estimates of X, Y. 
The problem remains of how t o  combine these estimates. 

Estimates Xjk(i), Yjkl(i) derived for subregions i = 1, . . . ,A', may be 
combined rather easily. If the population of subregion i is P(i), then Xjk(i)P(i) is 
the  number of individuals in category j in mode of care k who need treat- 
ment in subregion i (per year), and Xjk(i)Yjkl(i)P(i) is the number of resources I 
needed t o  treat these individuals (per year). These quantities may be summed 
across the region, and the corresponding regional estimates of X ,  Y are 

This approach (also depicted in Figure 10) is interesting because we d o  
not need to  assume that X ,  Y are constant across the region. The subregional 
variations are averaged by summing the ideal demands across the region. 

Estimates Xjk(i), Yjkl(i) derived at different times i = 1, . . . , N are more 
difficult t o  combine. Ideal supply levels Yjkl are probably decreasing with time, 
and an exponential curve could be fitted to  a long sequence of points. The ideal 
numbers of patients needing care per head of population, Z, = Zk Xjk, V j ,  will 
change because of changes in the age structure and in the morbidity rates. We 
call correct for the former, but the latter are affected by changes in doctors' 
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FIGURE 10 Estimation of ideal levels. 

preferences between modes of health care. These are reflected in the values of 
Xjk, which could, if necessary, be regarded as experimental variables. 

4.3 Estimation of a, 0 
We now consider how to estimate the power parameters a,  0, assuming for the 
moment that the ideal levels X, Y are known. Sufficient information to  estimate 
a, /3 is given by the current allocation of resources in the region under study. If 
the current allocation pattern is described by x and y, Eqs. (7) and (8) may be 

which are expressions for a and 0. As in Section 4.2, A must be determined 
externally. We know, however, that a and p are always positive. This implies 

and we can conveniently define A, as some (small) multiple 4,  > 1 of the mini- 
mum value X I  

A, = $,jll Vl  (46) 

A second problem is that Eq. (44) gives K values for each aj. Generally, these 
will be different values, but we can overcome t h s  by aggregating the data 
across modes, and by using Eqs. (44) and (45) for one super mode. 

By these means, we may estimate values for the parameters a, 0. The 



model so calibrated will not exactly reproduce the current allocation of 
resources unless the latter is one of the admissible solutions of DRAM defined in 
Section 3.  However, it will reproduce the actual supply levels y jk l ,  and the actual 
numbers of patients in each category (xi,  + xj2 + . . . + xi,). Whether the esti- 
mated elasticities are useful for forward prediction will depend upon whether 
the current allocation pattern is representative of the HCS's usual behavior. The 
procedure described above only finds values for a, 0 that are consistent with 
this assumption and with the values assumed for X, Y. 

A more sophisticated approach is to use more data by estimating empirical 
elasticities. These can then be used to derive the power parameters a, 0. Appro- 
priate empirical elasticities for DRAM are yjkl,  the elasticity of the service level 
xjk to  changes in the resource level R , ,  and qjkml,  the elasticity of the supply 
level y jk ,  to  changes in the resource level R , .  They can be predicted for given 
resource levels by DRAM. For example, yjk, is defined as 

We use Eq. (7) to  get an expression for a In xjk/apjk.  Thus, 

Similarly, 

where 

- R ,  a x ,  
qjkrnl = 

(Pjkl  + aR 1 

and the derivatives aR,/aX, = a2H/aXlaX, are given by Eq. (13). Equations 
(47) and (48) can be written as 

Ajkl a. = - - - - I  (49) 
yjkl 

where 

and where I,, is element ml of the inverted Hessian matrix. However, solution 
for a, 0 is still hard. First, this is because A and B are functions of a and 0 ,  and 
iterative solution is necessary. Second, X must still be chosen externally, and 
the empirical elasticities must be consistent with the choice of A,  otherwise the 
procedure may not converge (Gibbs 1978b). Third, there are more empirical 



elasticities y, q than there are power parameters a ,  0. Therefore, unless some of 
the empirical elasticities are ignored, the parameters will be overspecified. 
Fourth, the empirical elasticities y, q, are not directly measurable and are 
usually the result of some prior data analysis. 

Some of these difficulties can be avoided by incorporating the prior data 
analysis within the solution of Eqs. (49)-(52). For example, estimates y, q are 
found by assuming that some N known data points xjk(i), yjkl(i), RIG), i = 1, 
. . . , N, satisfy the linear models 

in which a x ,  aY are unknown constants, and e x ,  eY are random, uncorrelated 
error terms with zero means. If we eliminate y, q by combining Eqs. (49), (50), 
(53), and (54) to give 

we can use the following iterative scheme in order to estimate a and 0. 

1. Fix h arbitrarily for some resource level R ,  perhaps by using Eq. (46) 
on one of the data points. 

2. Assume some initial estimates of a ,  0 (e.g., unity). 
3. Derive p from Eqs. (9) and (1 O), Axx from Eq. (1 3), and A ,  B from 

Eqs. (5 1) and (52). 
4.  Find the best least-squares estimators of (aj + 1)-', (Pjkm + I)-' in 

Eqs. (55) and (56). 
5. Hence, estimate a ,  0 and repeat from step 3. 

This procedure (also depicted in Figure 11) is likely to be lengthy because 
it incorporates regression estimation at each iteration. Nor can we ensure the 
positive estimates of a ,  0 that are necessary for convergence. On the other hand, 
it has the advantage that more of the original data can be used directly. If a full 
data set 

{xjk(i),yjkl(i)R1(i); i = I, . . . ,  N,j = 1 , , . . ,  J 

is available, KN equations are available to estimate each a,, and perhaps not all 
of the xjk(i) need be known. Fewer equations oust N) are available to estimate 
each Pjkl, and it may be necessary to introduce some further simplifying 
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FIGURE 11 Estimation of power parameters. 

assumptions such as = f l j X k l ,  V j l ,  j l  E (1, . . . , J), in order to  obtain reliable 
estimates. A second advantage of this procedure is that it is not necessary to  
modify any of the input data to  make them consistent with the model. A third 
advantage is that the parameter estimated in each regression has an estimated 
standard error associated with it. These errors provide a measure of the reliabil- 
ity of a, 0. 

Perhaps the main assumption in the above analysis is that the underlying 
elasticities are constant across the set of data points. Because there is little 
information about how elasticities are likely to  vary in time or space, we have 
not attempted to  model this variation here. But Appendix D shows that in a 
certain sense, the procedure described above gives unbiased estimates. This is a 
reassuring result, and the estimates can be further tested t o  see if the model so 
calibrated can reproduce the current allocation of resources. 

4.4 Estimation o f  a, 0 and X,  Y 

In the most general case, neither of the parameter pairs X, Y or a, 0 is known, 
and we require estimates of both. In this circumstance, the two procedures 
described above may be used together in the following scheme. 



1. With some arbitrary initial estimates of a, 0, use the methods of 
Section 4.2 to  estimate X, Y. 

2. With these estimates of X, Y, use the methods of Section 4.3 to esti- 
mate a, p. 

3. Repeat from step 1. 

The analysis in Section 3 showed that not even all small data sets can be con- 
sistent with DRAM, so that convergence of this scheme cannot be guaranteed. 
For this reason, although we have implemented on the computer the procedures 
for estimating both X, Y and a, 0, we prefer not to  link these programs together, 
but rather to  use them alternately to  obtain consistent pairs of estimates. (Note 
however that when neither parameter pair is given exogenously, the same data 
cannot be used to  estimate both pairs of parameters.) 

The parameter estimation procedures described above involve the choice 
of additional constraint variables such as 4 and 19. Fortunately, however, this is 
not a problem. Although different values of 4, I9 lead to  different values for a, 
p, X, Y, each set of parameter values will reproduce with similar accuracy the 
data points used for estimation. Provided that predictive runs of the model do 
not involve resource levels very different from those used in estimation, the 
results will be relatively insensitive to  4, 8. Section 5 illustrates how these pro- 
cedures were used to  estimate model parameters in two examples. 

4.5 An Alternative Approach 

We now describe an alternative approach t o  parameter estimation that takes into 
account that DRAM'S predictions are subject to uncertainty, and that incorpor- 
ates this uncertainty mathematically. It is not fully implemented or tested, but 
the preliminary analysis given below is encouraging. 

We consider how to  use historical resource allocations x( i ) ,  y ( i ) ,  i = 1, 
. . . , N in order to  estimate the model parameter set P = {X, Y, a, p } .  As 
mentioned in Section 4.1, these are not the only data available. Nor does P 
include all the parameters: we have omitted the resource costs C because they 
seem to be more naturally estimated from external studies of financial or 
related statistics. Nevertheless, procedures to  estimate these parameters from 
these data would be useful. 

If reality conformed exactly to DRAM, we would expect the historical 
allocations x(i), y(i) t o  be exactly those i ( i ) ,  $(i) prescribed by DRAM for the 
historical resource levels. These solutions are the result of (constrained) maxi- 
mization over x and y of a function U(x, y ,  P, C, R )  that depends also upon the 
parameters P, the costs C, and the resource levels R .  This function is known, 
and is presumably also maximized by choosing the correct parameters 

max , U ( x , y , P , R , C )  
pgiven past { ~ . ~ ' , R , C J  

because with wrong parameters, it would be maximized by different values of 
X,Y. 



However, DRAM is only a model of reality. The historical allocations are 
related to  the model predictions by equations like x( i )  = f ( i )  + t , ( i )  and 
y ( i )  = y ( i )  + t 2 ( i )  where t l ( i ) ,  t 2 ( i )  are stochastic processes with statistics S 
that need to  be specified. Such a specification would be quite complicated. The 
probability distributions involved in S depend upon the reasons why the 
assumptions in DRAM are not perfect, the reasons that influence actual decisions, 
and the reasons that give rise to inaccurate data. But if such a specification were 
possible, the parameter set P  could be estimated through 

max conditional U ( f ,  j j ,  P, R ,  C )  
P expectation 

( 5 7 )  

with respect to 
i. y given x, Y ,  S 

where 
U ( f , p , P , R , C )  = max U ( x , y , P , R , C )  ( 5 8 )  

x , y  iven 
past f ~ ,  CI 

Such a calculation would also be quite complicated, however, because the 
integral involved in the conditional expectation is unlikely to be analytic. In 
short, the ideal estimation procedure is extremely difficult both to formulate 
and solve. It does, however, suggest a more practical approach. 

If the function U ( f ,  j j ,  P, R ,  C )  in Eq. ( 5 8 )  were twice differentiable in f ,  
j j ,  it could be expanded as a Taylor series about the point x ,  y ,  with terms 
in the prediction errors (i - x ) ,  - y ) .  If, in addition, S were such that 
EXPECTATION t l ( i )  = EXPECTATION t 2 ( i )  = 0 ,  term-by-term expansion of 
this series would eliminate all first-order terms, causing the dominant terms of the 
series to be the squares and cross-products of the prediction errors. Whereas 
this is hardly a feasible way to solve (57 ) ,  it suggests the idea of formulating the 
parameter estimation problem as the minimization of a function of the squared 
prediction errors 

m in J(P) 
P 

( 5 9 )  

where 
1 1 

J(P) = - C p$k[fjk(i) - xjk(i)12 + - 2 ~ $ k j  [ j jk j ( i )  -yjkl(i)12 ( 6 0 )  
2 i jk 2 i jkl 

in which 

f ( i ) ,  j ( i )  are the optimal model allocations for assumed P  and known past 
R ( i ) ,  C ( i ) ,  i  = 1, . . . , N 

x ( i ) ,  y ( i )  are the observed historical resource allocations for known past 
R ( i ) , i =  1 ,  . . .  , N  

p$,, p h ,  are weighting coefficients to  be specified later. 

DRAMS most useful feature is that the solutions f ,  j j  are analytic functions 
of the parameters P. This means that we can calculate the gradient vector and 
Hessian matrix of J(P),  opening the way for powerful techniques for solving 
(59 ) .  The gradient vector is 



and the Hessian matrix is 

a2Pjkl(i) a j j k l ( i )  aPjkl(i) 
j j + ) ( 6 2 )  

ijkl apt a p  

if the prediction errors are small. Expressions for the elements in the sensitivity 
derivative vectors ai ik( i) /aP and aj jk l ( i ) /aP are evaluated and listed in Appendix 
E. 

The dimension of these vectors, and also of the Hessian matrix, is the same 
as the number of parameters (2JKL + JK + J )  in the parameter set P. Each 
element in the Hessian matrix is the sum of the N(JK + JKL)  terms enumerated 
in Eq. (63 ) .  Renumbering these terms as m = 1 ,  2 ,  . . . , N(JK + JKL) ,  we 
obtain the simpler form 

a J(P) - -  
- C prnvrnvk aPtaP 

where p are scalars 
P I  = p;11, P 2  = p;12, . . . 

By arguments similar t o  those in Section 2.2,  a matrix such as Eq. ( 6 4 )  is 
always positive semidefinite, which is useful for search procedures to solve (59). 

However, the Hessian matrix will not be positive definite, and such searches 
will fail, unless the vectors urn are linearly independent and span the parameter 
space. Just 2 JKL + JK + J  parameters Xjk ,  Y jk l ,  ctj, Ojk l ,  V j ,  k, I, have t o  be esti- 
mated, and each data point x j k ,  y j k l ,  v j ,  k. I. provides JK + JKL degrees of free- 
dom that are subject to  L resource constraints. Therefore, the number of data 
points N needed t o  identify Pmust satisfy N(JK + JKL - L )  2 2JKL + JK + J .  
When J = K =  L  = 1, N must be fourormore,  but w h e n J =  K =  3  a n d L  = 2 ,  
N can be as small as 2 ,  although more data than this would be needed t o  achieve 
reasonable confidence in the estimated parameters. 

An attempt to  choose parameters P that will minimize J(P) may also fail if 
the problem is badly conditioned, and specifically if the eigenvalues of 
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FIGURE 12 Proposed alternative parameter estimation procedure. 

aZJ(P)/aP'aP are very dissimilar. We can control this by appropriate choice of 
the weights p in the definition of J(P) in Eq. (62). Setting p, = Ilv, 11-' isequiv- 
alent to normalizing all the vectors in Eq. (64) to unit length. If the vectors are 
additionally orthogonal, all the eigenvalues would be equal. When they are not 
orthogonal, the eigenvalues are approximately equal. 

Figure 12 shows a way of using these results to estimate the parameter set 
P by solving (59) according to an iterative procedure. It uses initially some 
guesses about P to derive the function J(P) in Eq. (60), and then the gradient 
vector (61) and perhaps the Hessian matrix (62) to find a new parameter set 
that is closer to  the solution of (59). 

What computation is involved in this procedure? At each step in the itera- 
tion, DRAM must be solved N times to give the model predictions x(i), y(i) 
corresponding to each of the observed data points x(i), y(i). Probably this 
procedure is most useful when large amounts of data are available (N at least 



greater than 20).  This means more than 20 DRAM solutions per step, and prob- 
ably at least 200 DRAM solutions for convergence. But with the typical model 
solution times reported in Appendix B, this is not too many, especially when 
each solution also gives the gradient vector and Hessian matrix of J(P). 

Potentially, the storage requirements could be excessive. Fortunately, 
however, all three terms J(P),  aJ(P)/aP, a2J(P)/aP'aP are formed by summation, 
and the individual terms can be calculated and added sequentially. Appendix E 
shows that many of the sensitivity derivatives are identically zero, and the 
remaining derivatives can be computed in logical and space-saving order. The 
Hessian is symmetrical, permitting further saving. For Example 2 in Section 5, 
where J = 7, K = 2 ,  and L = 2 ,  the number of locations needed to  store these 
three functions is 1 + (2JKL + JK + J) + i ( 2 J K L  + J K  + J ) (2JKL  + J K  + 
J + 1) = 1 + 77 + 3003 = 308 1, which is quite reasonable. It remains only to 
specify how a new parameter set is determined. This problem is similar to that 
of finding improved estimates of X in Section 2.4, and similar or more sophisti- 
cated gradient methods can easily be devised. 

4.6 Estimation of  C 

We now discuss how to  estimate the unit resource costs C needed in the model. 
These parameters are defined rather carefully. Specifically, C, is the marginal 
cost of using one more resource of type I, when all needs for health care are 
met. Strictly speaking, these costs are not money costs but opportunity costs. 
They reflect the benefit in some alternative that is foregone through buying the 
extra resource. How then can they be estimated? Often, we have financial data 
that we can use directly, but when these are unavailable or inappropriate, how 
can equivalent model parameters be inferred? 

Two assumptions will enable us to  estimate the costs C from financial data, 
when these are available. The first assumption is that in long-term planning, 
opportunity costs are approximately measured by money costs. Given suf- 
ficient time, every option is an alternative, and all resources are substitutable. 
The second assumption is that marginal costs are approximately measured by 
average costs. The cost function of an individual hospital or medical school is 
certainly nonlinear, with marginal costs being generally less than average costs. 
But when many such hospitals or medical schools are operating in a single 
region, the aggregate cost function may be approximately linear, as shown in 
Figure 13. In these circumstances, the average costs recorded in historical 
accounts approximate the marginal costs at some hypothetical resource level. 

However, not all countries compare alternative plans in terms of financial 
feasibility. In the Soviet Union, for example, planning seeks mainly to reconcile 
the real outputs between producers while satisfying aims such as full employ- 
ment and constant growth. For application of the model in these countries, it 
is not necessary t o  estimate resource costs, but only some parameters that have 
an equivalent function in the model. The purpose of the C parameters is to 
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FIGURE 13 A linear regional cost function. 

reflect the relative value of different resources; or, conversely, their relative 
scarcity or the relative difficulty of providing different resources. In a society 
with uniform and constant growth, resources increase in proportion to their 
current levels, and these ratios may be adequate first estimates of the C param- 
eters. When different growths are expected in different parts of the HCS, the 
ratios may be adjusted accordingly, or more detailed analysis may reveal the 
shadow prices of each constrained resource. 

The principal unsolved problem is that of resource definition. The costs 
of a hospital bed could be the capital cost of creating it, or the cost of main- 
taining the patient in it with food, heat, and laundry. The cost of a doctor 
could include his training, his accommodation, or just his salary. The choices 
made at this stage actually define the resources for the purposes of the model, 
and they depend mainly upon which alternatives are interesting to the users of 
the model. Finally, of course, we desire to estimate C at some future time 
instead of at the present. A full treatment of this issue would need and could 
use more sophisticated predictive models. 

5 EXAMPLES 

This section contains no mathematics; instead, it illustrates how DRAM can be 
used. Section 5.1 has some general comments about the use of mathematical 
models, and Sections 5.2 and 5.3 contain two examples. The first is used 
mainly to compare different methods of parameter estimation. The second uses 
the full structure available in DRAM (categories, modes, and resources) in order 
to investigate questions of resource balance. 

5.1 Application o f  DRAM 

A mathematical model represents some common mechanism or process. The 
process that DRAM represents is the distribution of scarce resources within a 



large and complex system. The value of having such a model is that changes pro- 
posed for the system can be tried out first on the model t o  see what effects 
they are likely t o  have. This helps in debates about which changes are best. 

Three points need t o  be noted. First, DRAM is not a model of a complete 
HCS. Rather, it is a model of resource allocation in such systems. Second, 
DRAM is not a model of health resource allocation in, for example, Austria. 
Rather, it is a model for all regions (nations or districts) where its hypotheses 
are justified. Third, DRAM is not a model with certain specific data needs. 
Rather, it is a tool that can be calibrated for different problems, large and small. 

A large problem might concern the use of all health resources throughout 
a country. To  apply DRAM here (we have not attempted it), we would need a 
detailed study of the appropriate patient categories and resource groupings. 
Because DRAM uses generalized variables (e.g., resources) which are not 
restricted in number or  type, as many categories as desired, of whichever type, 
could be used. A lot of data about past allocation patterns would need t o  be 
collected and related t o  other sources in order to estimate parameters, and 
methods such as those proposed in Section 4.5 would be useful. Such a model, 
linked with other models for population, morbidity, and education, would be 
a tool similar in scope t o  a large-scale economic model. 

A small problem might concern the age distribution of hospital patients. 
In such an exploratory application, not all the dimensions available in DRAM 
would be needed. Just three patient categories (young, middle-aged, and old), 
one resource (beds) and one mode (hospital) might be enough. But if subse- 
quent work suggests that lack of  convalescent care is affecting discharges from 
hospital, then no new structure would be needed to  extend the analysis t o  
include this extra mode of care. It might be interesting to  use the model with 
alternative age groupings t o  see if the results are sensitive to  this. Because 
DRAM is easy to  solve, many runs are possible at small expense. 

What sort of problems are amenable to  investigation with DRAM? The 
most obvious ones are questions about the consequences of changing levels of 
resources. When all resources are increasing, DRAM probably has little to  say 
about who gets what, beyond what could be deduced directly from the empiri- 
cal elasticities of demand to  supply. But when some resources are increasing 
(e.g., numbers of doctors), and others are decreasing (e.g., hospital beds), either 
by design o r  through natural trends, such simple deductions become difficult. 
DRAM recognizes that there will be substitution between resources, and can 
show where the balance will lie. 

Slightly different questions arise when resource levels are constant but the 
behavior of the HCS is changing. Morbidity levels (the X parameters in DRAM) 
change with population age structure. Ideal standards of care (the Y parameters 
in DRAM) change as alternative forms of care become popular. These sorts of 
assumptions lead t o  model runs that predict what will happen in the future to  
a single sector (e.g., care of children), if no change is made in the present HCS. 



More unorthodox applications are possible. DRAM is deliberately designed 
with parameters that can be interpreted outside the model. When ideal standards 
of care (Y)  have been proposed by professional consensus, DRAM is useful for 
seeing how nearly they can be achieved when resources are scarce. But this 
approach can also be reversed. The parameter estimation procedures reveal 
what ideal standards are implied by current behavior, and how these compare 
with professionally set standards. Such procedures can also be used to  estimate 
the levels of potential demands for care, and thereby make a comparison of 
underlying morbidity. Effectively, the model is inverted in order to predict 
inputs from outputs. The examples that follow, however, are rather more 
straightforward. 

5.2 Example I : Hospital Beds 

If more hospital beds are provided t o  increase the numbers of short-stay 
patients, might the result just be the same number of long-stay patients staying 
still longer? Because hospital beds are an expensive form of care, this is an 
important question. To  illustrate how DRAM can be used to study it, consider 
the distribution of acute hospital beddays between patients suffering from six 
diseases: varicose veins, hemorrhoids, ischemic heart disease (excluding acute 
myocardial infarction), pneumonia, bronchitis, and appendicitis. Table 1 gives 
the numbers of patients admitted to hospitals in England in 1968 and 1973 
with these diseases, and their average lengths of stay (Department of Health 
and Social Security 1972, 1977a). Together, these patients use only about 8 
percent of all hospital beds (excluding maternity beds), but an extension o f  
this example to  include the remainder, either as a group or individually, would 
not be difficult. We notice that during these 5 years, the number of bed-days 
used for these diseases has fallen by about 28 percent. Furthermore, admissions 
and lengths of stay in each disease category have nearly all fallen. Is it possible 
to calibrate a model of these changes? 

Gibbs (1977, 1978a, b)  did this using the empirical elasticities estimated 
by Feldstein (1967) from 1960 data, and exogenous 1968 estimates of the 
ideal levels X,  Y. The corresponding model parameters, summarized in Table 2, 
were used to reproduce the 1968 allocations in one region of England (the 
South Western Regional Health Authority - SWRHA), and t o  investigate the 
effects of changing the number of beds available there by 20 percent. The 
analysis was repeated with X, Y chosen t o  reproduce regional admission and 
supply levels. 

We have repeated this exercise, applying the parameter estimation methods 
described in Section 4 to the actual admissions and lengths of stay in the 14 
health regions of England in 1968 and 1973 (Department of Health and Social 
Security 1972, 1977a). Table 3 gives the parameters estimated by using the 
1968 figures t o  estimate a, and the 1973 figures to estimate X ,  Y recursively 



TABLE 1 Allocation of hospital beddays in England. 

1968 1973 

Admissions Average Admissions Average 
per 10,000 stay per 10,000 stay 
people (days) people (days) 

Varicose veins 9.8 12.0 7.6 10.1 
Hemorrhoids 5.6 10.1 4.7 7.8 
Ischemic heart 6.5 39.8 8.5 24.9 
Pneumonia 14.2 25.4 14.0 18.0 
Bronchitis 14.1 25.6 10.8 23.1 
Appendicitis 20.4 9.1 17.5 7.9 

Total beddays 
per 10,000 people 1,340.1 

-- 

SOURCE Department of Health and Social Security (1972, 1977a). 

TABLE 2 First set of model parameters for Example 1. 

Empirical 
elasticitiesa Model parameters 

Y 77 ab P xb Y 

Varicose veins 0.78 0.62 1.64 3.03 12.8 15.4 
Hemorrhoids 0.70 0.44 2.1 1 4.68 7.7 13.1 
Ischemic heart 1.14 1.08 0.54 1.31 10.4 52.1 
Pneumonia 0.71 0.23 2.28 9.87 21 .O 19.7 
Bronchitis 1.13 - 0.23 1.14 49.00 21.3 34.2 
Appendicitis -0.16 0.3 1 44.40 7.06 24.8 10.1 

cr was estimated from 7 ,  q with arbitrary constant c = 25, andX was chosen exogenously (Gibbs 1978b). 

as described in Section 4.4. For this example, we have assumed that the param- 
eters are constant over time, but we could have incorporated exogenous infor- 
mation to  correct for this. We could also have corrected for the effects of 
changing age structure, but they were small. At some points in the iteration 
towards the results of Table 3, negative elasticities were estimated, but their 
associated standard errors were so large that they could reasonably be changed 
to small positive numbers. If professional opinions about ideal admission rates 
or lengths of stay had been available to us, we could have incorporated them 
also within this scheme. 

Gibbs (1978b) used data from the SWRHA for model testing, and we have 
done the same. In 1973, only 633 beddays per 10,000 people were used for 
the six diseases and Table 4 shows how they were distributed. Making the 



TABLE 3 Second set of model parameters for Example 1. 

Empirical 
elasticitiesa Model parametersb 

7 17 aC P X Y 

Varicose veins 0.54 0.43 1.68 

(0.7) 
Hemorrhoids 0.34 0.31 3.63 

(0.5) 
Ischemic heart 0.66 0.93 0.50 

(0.7) 
Pneumonia 0.66 0.18 1.57 

(0.8) 
Bronchitis 0.90 0.04 1.04 

(0.8) 
Appendicitis 0.04 0.14 40 .OO 

(0.3) 

Qerived from a, P, X, Y and R = 1340.1 beddays per 10,000 people. 
b~stimated from 1968 and 1973 allocations across 14 English regions (Department of Health and Social 
Security 1972,1977a) with arbitrary constants 0 = 5 , B  = 20. 
CConfidence coefficients (in parentheses) are defmed as 1 - (estimated standard error + estimated value). 

TABLE 4 Allocation of hospital bed-daysa in 1973 in the South Western 
Region of England (Example 1 ). 

Predicted by model Predicted by model 
using Table 2 using Table 3 

~ c t u a l ~  parameters parameters 

Admissions Average Admissions 
per 10,000 stay per 10,000 
people (days) people 

Varicose veins 6.1 14.4 5.5 
Hemorrhoids 4.2 7.7 3.7 
Ischemic heart 5.3 17.4 3 .O 
Pneumonia 1 1.4 14.4 9.9 
Bronchitis 9.9 16.8 6.5 
Appendicitis 1 5.4 7.8 23.5 

a 663 bed-days available per 10,000 people in 1973. 
From Department of Health and Social Security (1977a). 

Average 
stay 
(days) 

Admissions 
per 10,000 
people 

6.1 
4.1 
6.5 

10.7 
7.5 

17.2 

Average 
stay 
(days) 

8.7 
6.9 

16.5 
16.7 
22.4 
7.5 

assumption that the model parameters that we have estimated from English 
data are appropriate to  SWRHA, we can use the model to make predictions of 
this distribution, also shown on Table 4. The parameters from Table 3 give 
slightly better predictions than those from Table 2; the average error is about 



14 percent. Note also that predictions from two sets of model parameters indi- 
cate the sensitivities of the model outputs to changes in model parameters. 
(Appendix E shows that expressions for these sensitivities can also be derived 
explicitly.) If these parameters are judged acceptable, the model can be used 
with different bed supply levels to  predict the effects of an increase or a 
decrease in the number of beds. It is important t o  note that such predictions 
have little value unless the model is adequately calibrated. It is for this reason 
that parameter sets estimated from different sources are valuable. 

The two sets of model parameters in Tables 2 and 3 vary because of differ- 
ent data and because of different values used for the arbitrary constants. (It is 
not easy to  choose equivalent values when both procedures are solved itera- 
tively.) Nevertheless, they show very similar variations across diseases. Appen- 
dicitis is clearly represented as a disease where most patients go to the hospital 
(high a), and bronchitis appears as a disease afflicting many patients (high X )  
for whom hospital care is not essential (low a). The empirical elasticities in 
Table 3 are values derived via the model, Eqs. (47) and (48), using the 1968 
English resource level. This calculation incorporates DRAM's behavioral assump- 
tion (see Section 1). Because Feldstein's estimates given in Table 2 do not 
incorporate this assumption, the reasonable agreement between them suggests 
that DRAM's assumptions are valid, and supports the previous results. 

5.3 Example 2: The Balance of Inpatient and Outpatient Care 

If hospital beds are decreased and medical staff are increased, will more or 
fewer patients receive treatment and how will the balance of inpatient and out- 
patient care be affected? This is a question facing health managers in England 
and elsewhere, and DRAM can be used to help answer it. 

Table 5 shows how beds and doctors were used in the SWRHA in England 
for 1977 in the seven largest acute hospital specialties: general surgery, general 
medicine, obstetrics and gynecology, trauma and orthopedic (T & 0) surgery, 
ear, nose, and throat (ENT), pediatrics, and ophthalmology (Department of 
Health and Social Security 1977b). In this example, the patient categories 
are the seven specialties, the two modes of care are inpatient and outpatient, 
and the two resources are beds and doctors. Therefore, this example uses all the 
structure available in DRAM, although it has the simplifying feature that one of 
the resources (beds) is used in only one mode of care (inpatient). 

Because the problem is more complicated than the previous one, formulat- 
ing a suitable DRAM model is more difficult. For example, hospital specialties 
are not as precisely defined as disease categories, and the division of doctor's 
time between inpatients and outpatients is not directly measurable. The first is 
not so important if the definitions are reasonably consistent across the region. 
If the definitions are consistent but not universal, comparisons beyond SWRHA 
may be suspect. The second difficulty can be overcome by subtracting from 
each consultant's working year (measured in half days), the number of 



TABLE 5 Beds and doctors in the South Western Regional Health Authority in 1977 (Example 2). 

Relevant Average Half-day consultant sessions 
catchment hospital 

Admissions per 1,000 people per admissionb 
population stay 
(thousands) Inpatient Outpatient (days)' inpatientC Outpatient 

General surgeryd 3,035.4 20.9 19.0 7.87 0.170 0.1 53 
General medicinee 3,035.4 14.8 10.5 10.18 0.183 0.345 
Obstetrics and gynecology 1,563 .8f 39.5 37.1 5.78 0.072 0.139 
T & 0 surgery 3,035.4 9.1 22.4 13.60 0.252 0.121 
ENT 3,035.4 4.4 11.1 4.39 0.346 0.128 
Pediatrics 641 .8g 29.7 17.7 6.28 0.266 0.362 
Ophthalmology 3,035.4 2.8 10.3 6.59 0.427 0.214 

SOURCE Department of Health and Social Security (1977b). 
892 beddays available per 1,000 people in 1977. 
Assuming each full-time consultant works the equivalent of 450 half-day sessions per year; 46 halfday consultant sessions available per 1,000 people in 1977. 
Derived by subtracting actual outpatient sessions from total number of sessions. 
Includes urology. 
Includes cardiology. 

f Excludes males. 
* Excludes people more than 15 years old. 



TABLE 6 Estimated model parameters for Example 2. 

xj I xj 2 Pi11 Pj 12 Pj22 Yj11 y j ~ ~  yj22 

'3 (Inpatient) (Outpatient) (IP, beds) (IP, doctors) (OP, doctors) (IP, beds) (IP, doctors) (OP, doctors) 

General surgerf 10.0 26.3 22.2 10.8 6.1 1 .O 10.5 0.34 0.46 
(- 0.4) (0.7) (0.7) (- 3.9) 

General medicineb 0.01 21 7.7 83.3 10.7 2.7 11.2 13.3 0.42 0.41 
(0.5) (0.3) (0.7) (0.8) 

Obstetrics and 
gynecology 16.5 44.8 38.7 10.3 I .5 0.001 7.7 0.22 1.32 

(0.2) (0.6) (0.8) (0.6) 
T & 0 surgery 10.0 10.8 26.5 1.0 12.7 10.0 58.5 0.37 0.15 

(- 1.4) (- 1.4) (0.2) (- 10.7) 
ENT 10.0 5 .0 12.9 0.001 14.3 20.0 79.1 0.43 0.1 5 

(- 0.7) (0.2) (0.0) (0.7) 
Pediatrics 5.6 43.7 19.4 8.9 5.8 1 .O 9.1 0.4 1 1.28 

(0.7) (0.4) (0.7) (- 4.8) 
Ophthalmology 20 .O 3.1 1 1.9 10.0 8.3 10.0 9.4 0.60 0.24 

(0.0) (-2.8) (0.3) (- 2.3) 

NOTE: Confidence coefficients as defined in Table 3 appear in parentheses. 

a Includes urology. 

blncludes cardiology. 



TABLE 7 Validation results for Example 2. 

Relevant Average Half-day consultant sessions 
catchment Admissions per 1,000 people hospital per admissionb 
population stay 
(thousands) Inpatient Outpatient (daysy InpatientC Outpatient 

Actual resource allocation in SWRHA in 1 9 7 5 ~  
General surgery 3,003.7 19.6 16.7 8.54 0.253 0.166 
General medicinee 3,003.7 14.3 8.5 10.91 0.252 0.372 
Obstetrics and 

gynecology 1 , 5 5 ~ . 8 ~  35.8 , 31.1 6.08 0.115 0.147 
T & 0 surgery 3,003.7 8.3 18.9 14.25 0.246 0.139 
ENT 3,003.7 4.2 9.3 4.46 0.405 0.152 
Pediatrics 654.7g 31.0 14.2 7.20 0.279 0.398 
Ophthalmology 3,003.7 2.7 10.3 7.44 0.533 0.194 

Predicted resource allocation in SWRHA in 1975 
General surgery 20.6 18.9 8.22 0.244 0.138 
General medicinee 15.1 8.4 10.41 0.220 0.335 
Obstetrics and 

gynecology 38.5 36.1 5.96 0.082 0.118 
T & 0 surgery 9 .O 21.5 14.05 0.314 0.120 
ENT 4.5 10.4 4.58 0.365 0.136 
Pediatrics 29.4 14.9 6.83 0.285 0.381 
Ophthalmology 2.7 10.7 7.24 0.463 0.194 

a 922 beddays available per 1,000 people in 1975. 
Assuming each full-time consultant works the equivalent of 450 half-day sessions per year; 48 half-day consultant sessions available per 1,000 people in 1975 
Derived by subtracting actual outpatient sessions from total number of sessions. 
Includes urology. 
Includes cardiology. 
Excludes males. 

g Excludes people more than 15 years old. 
From Department of Health and Social Security (1977b). 



outpatient sessions worked during that year in that specialty. The ratio of 
the cost of a doctor to  the cost of a bed is assumed to  he 1.57: 1 (Hughes 
1978a). In deriving this figure, the cost of each bed includes all associated 
costs except the cost of the doctor. 

Table 6 shows the model parameters that were estimated by the methods 
of Section 4 from historical allocation data from 1976 and 1977, and disaggre- 
gated for the five hospital areas of the SWRHA. With only ten data points we 
would not expect to  estimate a complete parameter set with great confidence, 
and some of the figures in Table 6 are very uncertain. Nevertheless, the vari- 
ations between parameters are as expected. In obstetrics and gynecology most 
o f  the demand is met (high cq) but the need for outpatient treatment is very 
elastic (low Pi,,). In general medicine, the reverse is true. Many patients do not 
receive hospital care, but the supply of resources to  those who d o  is rather 
inelastic. 

Table 7 compares the predictions made by the model using these param- 
eters with the actual allocations in 1975. The agreement between model and 
reality is better than that found in Example 1, but t h s  is partly because of 
relatively small changes in the SWRHA during the 3 years. Further calibration 
tests would be desirable. 

Meanwhile, however, we consider how to  use this model t o  answer the 
question at the beginning of this section. We want to  increase the numbers of 
doctors, but this can be afforded only by decreasing the number of beds. We 
imagine that, from the 1975 resource levels, doctors are increased by 10 per- 
cent and beds decreased by 10 percent. (With only tentative parameter esti- 
mates, predictions for larger changes may be suspect.) What will happen? The 
response of the HCS could be t o  

Treat different numbers of patients 
Use more or fewer resources per patient 
Change the specialty mix of patients treated 
Change the mix of resources used to treat different patients 
Change the mode of treatment between inpatient and outpatient care 
for different patients 

The simple proportional changes do not indicate which effect will dominate: 
the model can. 

Table 8 shows the predicted results of decreasing beds and increasing 
doctors, each by 10 percent. As might be expected, these changes result in 
fewer inpatients and more outpatients. Because of the several population 
divisors, the total percentage shifts are difficult to  quantify, but inpatients 
decline by about 8 percent, and outpatients increase by about 6 percent. The 
remaining changes take place in the average lengths of stay and in the distribu- 
tion of doctor's time among patients. 

It is interesting to examine whether, when inpatients and outpatients are 



TABLE 8 Predicted results for a decrease in beds and an increase in doctors 
(Example 2). 

Admissions per Average Half-day consultant 
1,000 people sessions per admissionb 

stay 
Inpatient Outpatient (days)' InpatientC Outpatient 

General surgeryd 20.1 19.2 8.02 0.255 0.161 
General medicinee 11.7 1 1.2 10.15 0.240 0.344 
Obstetrics and 

gynecologyf 38.0 36.3 5.81 0.093 0.161 
T & 0 surgery 8.8 22.1 12.15 0.321 0.123 
ENT 4.4 10.7 3.43 0.373 0.138 
Pediatricsg 28.3 15.4 6.63 0.29 8 0.44 5 
Ophthalmology 2.7 10.9 7.05 0.479 0.200 

" 830 bed-days available per 1,000 people (10 percent less than in 1975). 
* Assuming each full-time consultant works the equivalent of 450 half-day sessions per year; 52  half-day 
consultant sessions available per 1,000 people (10 percent more than in 1975). 

Derived by subtracting actual outpatient sessions from total number of sessions. 
* Includes urology. 

Includes cardiology. 
Excludes males. 
Excludes people more than 15 years old. 

added together, more or fewer patients are treated in each specialty. The model 
suggests increases in T & 0 surgery, ENT, and pediatrics, and decreases in the 
other specialties. The specialty with the largest change from inpatient to  out- 
patient care is general medicine. Naturally, all the lengths of stay decrease, 
most notably in .T  & 0 surgery (by 2 days) and ENT (by 1 day). Naturally, all 
the levels of doctor care rise, but some of them hardly at all (e.g., T & 0 surgery 
and ENT). The largest increases occur in obstetrics and gynecology, with the 
implication that doctors are under most pressure in these specialties. 

Of course, a decision about changing resource levels may be more compli- 
cated than represented above. In England, for example, approval for new con- 
sultant posts is granted in specific specialties. But a model run in which total 
consultant posts are increased is still useful in suggesting the specialties for 
which approval should be sought. The response of the system is also likely to  
be more complicated than represented above. For example, utilization measures 
such as bed occupancy may change, thereby upsetting DRAM's predictions. If 
this happens, a model of the more critical resources may be more appropriate, 
and DRAM is sufficiently flexible to  allow this. Whenever data from past years 
are available which show how resources were distributed between categories 
and modes, such data can be used to  test DRAM's hypothesis and, if possible, to  
calibrate a relevant model. 



6 SUMMARY 

Health care systems are unlike the more common engineering systems that are 
investigated by mathematical modelers. They are social systems, inaccessible 
for experiment, where many different agents act according to  personal prefer- 
ences, and without any operational definition of the principal output - health. 
The chances of using mathematical analysis t o  study resource allocation would 
seem to  be slight. How then have we done so much algebra? 

In fact, nearly all the algebra derives from just two equations - Eq. (5), 
which says that all resources are used, and Eq. ( l ) ,  which says that the system 
tries to give the most care to  the most people. Section 2 showed how these two 
equations are sufficient to  derive Eqs. (7) and (8), which say which individuals 
get what sort of care. These equations constitute DRAM, and the rest of the 
report looks at the results that they predict. 

The predictions will be good ones only if the two underlying equations are 
realistic. Because justification by common sense can be wrong, we have investi- 
gated in Section 3 the sorts of resource allocation patterns that DRAM can 
imply. This analysis found that the model cannot reproduce increasing levels of 
service and decreasing levels of supply simultaneously, but that it will always 
make use of all the available modes of care. Such results make DRAM applicable 
in many different sectors of health care, and perhaps elsewhere. 

For DRAM to be useful, it must be possible to put numbers into the 
equations on the basis of observed data. Section 4 presented methods that use 
routine statistics, but that take into account that all sources of data may reflect 
inherent parameter variations. It is also possible to  put numbers into the model 
on intuitive or  professional advice, and some of our procedures indicate which 
of the parameters might be improved by intelligent guesswork. 

Practical application of the model requires cheap and speedy solutions. 
The computing times reported in Appendix B indicate a very efficient solution 
algorithm. Even a program with full error handling and diagnostics is still quite 
small and easy to install. 

For what purposes can we use DRAM? Section 5 discussed large and small 
applications, and two problems amenable to DRAM were investigated in two 
examples. The first was concerned with allocation of beds among patients with 
different diseases. The second dealt with the question: Will more or  fewer 
individuals be treated in South Western England if hospital beds are decreased 
by 10 percent and hospital consultants are increased by 10 percent? The 
answer (more in some specialties, fewer in others) could be the beginning of a 
more detailed analysis. 

Questions like these are not easy to  answer from tables of statistics alone, 
and DRAM can be seen as a way of organizing information t o  help in problems 
of resource allocation. Section 4 therefore examined ways t o  make DRAM 
easier to  set up when a lot of data are available. These methods are 
attractive because they derive from an ideal approach to  estimating parameters, 



yet seem feasible and even efficient. Testing them within case study applications 
is a task for the future. 
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A AN ALTERNATIVE FORMULATION OF DRAM 

The formulation of the DRAM model depends upon the definition in Eq. (1) of 
the function U ( x ,  y). An alternative definition 

was investigated by Hughes (1978b), in which 

and where the HCS is assumed t o  want to  increase the total number of individ- 
uals in category j who receive care (per head of population per year) 

irrespective of the numbers xjk in each mode of care. The parameters Z j  repre- 
sent the total number of individuals in category j who need care. The param- 
eters c j  are the marginal costs of treating one individual in category j ,  when all 
demands are met 

The other parameters are as defined for the original DRAM. 
An important property of U ( x ,  y )  in the original DRAM is that xjk + 0 for 

any j, k ,  causes U +  - m. Because the solution to DRAM maximizes U ,  this con- 
dition automatically excludes solutions in which any ijk is zero. However, this 



condition is not true of U(x,  y ,  z )  in Eq. ( A l ) ,  which can be maximized when 
some xjk are zero. For this reason, the constraint xl, Z 0 ,  V j ,  k ,  must be 
explicitly applied when solving this alternative formulation, and this leads to 
expressions in the solution that have "corners" or which are "nondifferen- 
tiable". 

We do not wish here to  solve this alternative formulation of DRAM, but 
only to investigate the number m of category-mode pairs ( j ,  k) E (1, 2, . . . , 
J;  1 , 2 ,  . . . , K)  such that ijk > 0.  From Eq. ( A 4 ) ,  this number satisfies 

but stronger conditions on m can be found. 
Using Lagrange multipliers A,, 1 = 1 ,  2, . . . , L, to  adjoin an equality 

resource constraint 

to  function ( A l ) ,  which is to be maximized, gives 

Solutions for j (A)  satisfy 

a H 
~ ~ ~ h j ! ~ ~ ( ~ ~ ~ ~ )  - hlxjk = 0 a~ jkl 

which gives 
Yjk l  = h,!&l(hl) V  j ,  k such that xjk > 0 

Solutions for .?(A) are zero or satisfy 

aH 
= gi ( z j )  + C hjkl(Yjkl) -C hd'jkl = 0 

ax, 1 1 
which gives 

-hjkl(Yjkl)] 

Using Eqs. (A2 ) ,  (A3) ,  and (A7 ) ,  this becomes 

2, = Z j ( p j k ) +  v j, k such that xjk > 0 (A81 

where pjk is a function of h similar to  that defined by Eqs. (9) and (10).  
Because the left-hand side of Eq. (A8 )  is independent of k ,  it implies (m - J )  
identities of the form pjk, = kk,, in which there are only L unknowns A,,  1 = 1 ,  
2, . . . , L .  In general therefore, solutions exist only if ( m  - J )  < L. Combining 
this result with Eq. (A5)  gives the following condition on the number of 
category-mode pairs that can be active: 

For the data in Example 2 in Section 5 ,  J  = 7 ,  K = L = 2, and inequality 



(A9) is 7 < m < 9. This implies that of the seven patient categories, not more 
than two can use more than one mode of care. For some definitions of cate- 
gories and modes this result may be realistic, and we have made progress in 
solving models like this using nonsmooth optimization methods (Lemarechal 
and Mifflin 1978, Hughes et al. 1979). For Example 2, however, this result is 
unrealistic, because all categories of patients use both modes 01 care. Therefore, 
we have not pursued this formulation here. 

B COMPUTER PROGRAMS AND SOLUTION EFFICIENCY 

The procedures for model solution and parameter estimation described in 
Sections 3 and 4 have been implemented as computer programs. They are 
written in simple FORTRAN with many in-line comments, error handling, and 
full but suppressible diagnostic printout. They use no special software beyond 
simple matrix manipulation routines. Input and output files are read and 
written sequentially, and all files are formatted for easily understandable dis- 
play. The programs are best used interactively, and a small utility program can 
quickly modify the input file when many model runs with different resource 
levels are required. Batch operation is equally possible. 

Table B1 gives some statistics for the three principal programs, which 
solve the model with given parameters, estimate the level parameters X, Y, and 
estimate the power parameters a, 0. They show that the average length of each 
routine is low (less than 60 statements) and that the fraction of comment code 
is high (more than 0.5). The total core load of each program is reasonable (less 
than 5 5K decimal bytes). 

All three principal programs use an iterative solution and the running 
times therefore depend upon the starting values, the accuracy required of the 
solution, and the conditioning of the problem. For the model solution program, 
the running time additionally depends upon whether the dual constraint, Eq. 
(1 7) or (21), is applied and binding. Section 2.4 described how this constraint 
is handled computationally. 

Table B2 gives typical running times for the three principal programs, used 
on problems of different sizes, when no diagnostic printout was requested and 
with arbitrary starting values (typically a first guess of A = 5). Convergence is 
measured by the fractional change of 

The dual function ~ ( h ) ,  in the model solution program 
a~(A) laA,  in the X, Y estimation program 
A, in the a, 0 estimation program 

and is usually fast. It is especially so for the model solution program (less than 
15 CPU for a medium-sized problem), even when the solution lies on a dual con- 
straint. No attempt has been made to  speed up the parameter estimation pro- 
grams, the second of which may converge slowly or not at all. But the fast 





TABLE B2 Typical running times of computer programs. 

Dimensions o f  
showing problem 
run 

CPU 
Number o f  time to 

Precision iterations solution 
results J K L N of  solution to solution (sec)' 

Model 
solution 

3 
4 
4 
7 
8 

Estimating 3 
x, y 6 

Estimating 3 
0, P 6 

With  no diagnostic printout. 
b ~ n  these runs the dual constraint was binding. In others it was not. 
CAverage number o f  iterations per data point. 
d ~ e r y  badly conditioned problem. Convergence is usually faster. 

model solution program means that improved parameter estimation methods 
such as the one described in Section 4 . 5  are highly practical. 

C FITTING FOUR PARAMETERS TO FOUR DATA POINTS 

In this appendix we consider how to estimate the four model parameters X, Y, 
a, 0 from four data points ( x i ,  y , ) ,  i = 1, 2 ,  3 ,  4 ,  for the simplest possible 
DRAM when J = K = L = 1. This analysis extends and completes the dis- 
cussion of Sections 3.2 and 3.3.  We assume without loss of generality that 
x ,  > x 2  > x 3  > x 4  and y ,  > y 2  > y 3  > y, .  (If such an ordering of the data is not 
possible, it means that they d o  not satisfy the fundamental condition ( 2 6 )  on 
admissible solutions of DRAM.) 

Equations ( 2 7 )  and (28 )  in Section 3.2 determine X, Y from x , ,  x , ,  y , ,  y ,  
when a, /3 are known. Substituting these results and the other two data points 
into Eq. (25 ) ,  we get two nonlinear equations 

which determine a, implicitly, where 



Equations (C l )  also define implicit functions P3(a), P4(a) which in turn define 
solutions 6 , 6  for a ,  p 

P = P3(W = P 4 ( 3  (C4) 

For successful solution of Eq. (C4), two sets of existence conditions need 
to  be established. First, we must find conditions for Eqs. (C l )  t o  haveasolution 
0 > 0, assuming the existence of a solution a > 0. Second, we must find con- 
ditions for Eq. (C4) to have a solution a > 0. When the second condition is 
satisfied, the first condition will ensure P > 0. 

The first conditions follow from inspecting the derivatives ay3/aa,  etc. We 
find that sufficient (but more than necessary) conditions for P > 0 given a > 0 
are 

The second conditions follow from lower, upper, and asymptotic estimates 
of the functions P3(a), P4(a). 

If p;(a) > py(a), then P4(0) > P3(0) will guarantee a solution 6 > 0 to  Eq. (C4). 
This condition is depicted in Figure C1. Conversely, if Py(a) >P;(a), then 
P3(0) > P4(0) will guarantee a solution. Both of these sufficient and necessary 
conditions (which must be computed numerically) can be approximated by 
sufficient but more restrictive conditions (which need not be computed numer- 
ically) 

PTh(O> > PYX (0) o r  PFh(0) > PYX (0) 

In order t o  illustrate the approach, we consider the data shown in Table 
C1 which satisfy conditions (26), (C5), and (C6). In addition, P;(a) > Py(a) and 
P4(0) > P3(0), thereby guaranteeing solutions 6 ,  p> 0. On Figure C1 are plotted 
values of P3(a), P4(a) obtained by solving Eqs. (C l )  by the following iteration 



FIGURE C1 Solution of Eq. (C4) for data from Table C1. 

where 

ln [ 1 +  
( X ~ / X ~ ) ~ + ~  - (x1/xj) - ( x I / x ~ ) ~ + ~  - ( ~ 1 / ~ 2 ) ~ + l  

(xI/xZ)~+' - 1 ( ~ l / x Z ) ~ + l  - 1 p; L 1 1  - 

The solution t o  Eq. (C4) is found at 6 = 1.60, p =  0.83, X = 1.05, and 
Y = 1.08, although it is not very accurately determined because the problem is 
rather ill-conditioned. This is seen in the approximate equality of fly(&) = 
0.386(a + 1) and P;(a) = 0.355(a + l ) ,  and in the very flat intersection in 
Figure C1. Nevertheless, the estimated values are close t o  the true parameter 
values (shown in Table C l )  used to derive the four data points. 

TABLE C1 Data for test of parameter fitting. Solutions of the simplest 
possibleDRAM w i t h x =  1 , y  = l , a = 2 , / 3 =  1. 

i =  1 i = 2 i = 3 i = 4 

D UNBIASED REGRESSION ESTIMATORS 

In the estimation of power parameters a ,  P in Section 4.3, we assumed that a ,  P 
are constant across the areas of a region, and then we performed regression 
analysis on the cross-sectional data. However, even if this assumption is 
incorrect and a ,  are different in different areas, we can show that this proce- 
dure still yields useful regional estimates. 



We define the indices j = 1 ,2 ,  . . . , J areas or subregions, and i = 1, 2, . . . , 
N observations in each area, and suppose that data xj(i), yj(i) satisfy the linear 
model 

in which ej(i) are uncorrelated random disturbances with zero mean and vari- 
ance a 2 .  The unknown parameter bj is different for different areas. Nevertheless, 
we assume that it is constant and we form the usual least-squares estimate 

in which Xi = {xj( l) ,  . . . , xj(N)}' and Yj = {yj( l) ,  . . . , yj(N))'. We now 
investigate the properties of b when the unknown parameters bj are actually 
random samples from a normal or Gaussian probability density function with 
mean m and variance v2 : 

bj - N(m, v2) 

Combining Eqs. (Dl )  and (D2) gives 

whence the result: EXPECTATION (b - m) = 0; the estimator b is an unbiased 
estimator of the mean regional parameter m. 

Equations (55) and (56) in Section 4.3 are like Eq. (Dl). The functions 
corresponding to bj are (q + I)-' and (Pjkm + 1)-I which are estimated without 
bias, subject to the above assumptions. Additionally, we may show that 

a 2  v2 
EXPECTATION (b - m)2 - - + - 

J N  J 

The first term on the right-hand side is the usual residual variance term, and the 
second arises from the uncertainty about bj. 

E SENSITIVITY OF THE SOLUTION TO PARAMETER CHANGES 

The parameter estimation procedure described in Section 4.5 needs expressions 
for the sensitivities of the solutions xi., to a change in a parameter p E P = {X, 
Y, a, 0). These expressions are derived below. 

The total sensitivity derivatives can be written as the sum of two sets of 
partial derivatives x - -  axjk ax, aX, 

- -+T-- 

The first term in each equation is the partial derivative when the Lagrange 



3!Jl k 
-= CI(vIk, -!Jjk)/sjk where Sjk  =$  C , Y , ~ ~  
ay,k l  

v +  

axjr ,  - x j k  auIk a x j k  xlk 
-=- - _ = -  
ax, ~ , , ( a ,  + 1 )  ax, ' axjk x,, 

avik l  r j k l  a v j k l  vlkl 
- =  -=- 
ax, P I  + I )  ' aylk1 Y,,I 

-- 

FIGURE El Calculation of sensitivity derivatives (superscript carets (^)  are omitted for 
clarity). 

multipliers A are held constant. The second term in each equation reflects the 
sensitivity of the solution to changes in the Lagrange multipliers. 

In order to  obtain the terms aX/ap we note that, at the solution point 

Differentiating this result with respect to  p E P gives 



whence (aX/ap) = - ( ~ , , ) - ~ ( a ~ , / a ~ )  or 

( ~ ~ ~ 1 - 1  is the inverse Hessian matrix which is calculated during the solving of 
the model. The other terms are simply the other group of partial derivatives 
that follow straightforwardly from Eqs. (7)-(10). The only difficulty is in 
organizing the computation in the most convenient way. Figure E l  depicts a 
possible scheme. 

The calculations are considerably simplified by the presence of many zero 
terms. Most obviously, 

Less obviously 

- -  - 

for (j, k, I )  # (j, k, I). Unfortunately, the matrices of total derivatives 

have in general no zero terms because of the dependence of each Lagrange 
multiplier upon every parameter. Together, they have (JK + JKL)(2JKL + 
JK + J) terms, but Section 4.5 shows that not all these elements need to be 
stored. 



F LIST OF PRINCIPAL SYMBOLS 

Symbols used only in the appendixes are not included here. 

Symbol Definition Page of 
first appearance 

i = 1, 2, . . . , N, iterations, times, regions, 9, 21, 21,24 
data points 

j = 1, 2, . . . , J, patient categories 3 
k = 1,2, . . . , K, modes of care 3 
1 = 1, 2, . . . , L, resour~e types 3 

A, B decomposition of HM 6 
a,, , b,, elements of A, B 6 
Ajkl, Bmr expressions relating a to y and fl to q 24 
a ,  a constant terms in regression estimation of y, q 24 

C, marginal unit cost of type 1 resource, when all 4 
needs are met 

di Newton direction at iteration i 9 
Fl(x, Y) function in constraint equation 4 

f,(A) function specifying 8 ,  2 1 
gjk(x) functions measuring the benefits of increasing service levels 4 
hjk,b) functions measuring the benefits of increasing supply levels 4 

H(x, y , -A) Lagrangian function 5 
H(A) Lagrangian when x = f (A), y = j(A) 5 

H ,  gradient and Hessian of H(A) when x = ?(A), y = ?(A) 5 
Hml ml-th element of inverted Hessian matrix 23 
H, matrix of second derivatives of Lagrangian with 6 

respect to primal variables 
J(P) function of squared prediction errors 27 

set of active resource constraints 9 
M finance for purchasing resources 7 

P(i) population in region i 2 1 
P parameter set {X, Y, a, fl) 26 

P, 4 = (xlX), (YlY) 12 
R I available resource of type 1 4 
r, excess resource of type 1 7 
S statistics of E l ,  i, processes 27 
s convergence coefficient 10 
t step-size coefficient 9 

u(x, Y 1, function which is maximized by DRAM 4, 26 
U(x, Y, P, R, O 

vm sensitivity derivative vectors 28 
X ,  x ,  2 ideal, actual, optimal service levels 4, 5 
Y ,  Y ideal, actual, optimal supply levels 4 , 5  

X, Y regional ideal levels 2 1 



Zj  ideal service levels summed across modes 
z arbitrary positive vectors 

aj, Pjk1 model power parameters 
Tjklr r)jkml empirical elasticities 

61, Kronecker delta function 
es,  e$m error terms in regression estimation of y, r) 

8,,  @, additional information for estimating X, Y 
tan O = (P + ] ) / (a+  p +  2) 
tan = (a  + l ) /(a + 0 + 2) 
tan \k = (a+ l)/(P + 1) 

w = Inp2/ lnp,  
T = (1 - w ) l n q l  

r ~ i , ,  vjkr functions in expression for jt 
hl, actual and optimal Lagrange multipliers 

Al minimum Lagrange multipliers 

T ( P , ~ )  = ln [(I + ;)q+-$] 

, t2 random processes perturbing x, y 
p:%, pZkl weighting terms in J(P) 
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