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PREFACE

This paper deals with the convergence of stable and consis-
tent one-step approximations for linear parabolic initial-
boundary-value problems with non-smooth solutions. The proofs
given may be extended to semilinear parabolic problems using
H.B. Keller's stability concept. Finally an extension to Lax's
convergence theorem is given.
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NUMERICAL SOLUTION OF PARABOLIC
PROBLEMS WITH NON-SMOOTH SOLUTIONS

P. Markowich

In this paper we consider the problem:

I) U, = alx,t)U  + b(x,£)U, + c(x,t)U + £(x,t),

(x,t) € (0,1) x (0,T)

, X e[O,i] , T >0

II) U(x,0) = UO(X)

III) U(0,t) = Yo(t), Uu(l,t) = Y1(t), t e (0,T]

(I) is called a linear inhomogenous parabolic differential equa-
tion in one space variable x, (II) the initial condition and

(III) the boundary conditions.

For the following we make the assumptions:

(a) a, b, ¢, £ € ¢ ([0,1] x [0,T]), r sufficiently large
stability condition

(B) a(x,t) =k > 0, (x,t)  [0,1] x [0,T]
= Y1(0) continuity of initial and

(C) U_(0) = v (0), U_ (1)
boundary functions.
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We know that the initial and boundary functions determine the
differentiability (smoothness) of the solution U in the points
(0,0) and (1,0), which is important for the smallness of the local

error of a consistent numerical procedure.

If Uo’ Yo and Y, are continuous functions then a unique solu-
tion U exists, which is continuous on [0,1] x [0,T] and therefore
bounded in the closed set [0,1] x [0,T], and if Uo € C3([0,1]);
Yor ¥; € €7 (10,T1) and vj(0) (v (0)), UZ(0), UZ(0), U (0)

(Ug(1), Ué(1), UO(1)), set for Ut, Uxx’ Ux’ U into the differen-
tial equation I), fulfill I), then U, Ut’ Ux' Uxx are continuous
and bounded on [0,1] x [0,T]. See [1] and [2].

We gain a numerical procedure by choosing numbers N and M,
and by forming the step sizes n = 1./N in x- direction and

k = 1./M in t- direction, and by substituting appropriate differ-

ence approximations for Uy Ux’ UXX in the net-points (xi, tn)
with X, = ih and tn = nk. So we can write our procedure in the
following form assuming that h = h(k) with lim h(k) = 0
k-0
1 n n-1 2 -
E[Bo(k’tn)u - B1(k,tn_1)U - R(k,tn)] - f(tn) =0
(*) n = 1(1)M with
o _ - T
U- = Uo = (UO(X1L cee 4 UO(XN-1))
If Bo(k,tn) = I, we call the scheme explicit, otherwise implicit.

The U™'s are (N-1)- vectors with the approximate solutions on the
n-th time level, R(k,tn) is the (N-1)- vector with worked-in
boundary-conditions on the n-th time level, f(tn) is the vector
with the approximations for f(xi’tn)’ i=1(1)N-1, i.e.,

”f(tn) - (f(x1,tn), ce e f(xN_1

priate norm, and Bo(k,tn), B1(k,tn_1) are (N-1)- square matrices

,tn)TH+0 for k+0 with some appro-

derived from the difference apvroximations for the derivatives.

We define the local error of the procedure (*) for the para-
bolic problem I), II), III) in the solution U as the sequence of

vectors.
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L™ (U,k) = 0By (k,t )U(E) = By(k,t 1)Uk, 1) = Rik,t )]

~|

- %<tn), n=1(1)M

where U(ti) are the vectors containing the solution U evaluated
in the net-points of the i-th-time-level. Further we say that
(*) is consistent with I), II), III) in U of order 1 if
HLn(u,k)H < C(U)kl, where C(U) is bounded and independent of n.
We can show by Taylor's expansion that C(U) is a finitelinear com-
bination of bounds of partial derivatives of U on the rectangle
[0,11 x [0,T], if I+l is the maximum norm. The second important
concept concerned with difference approximations is stability.
We call the difference scheme (¥) stable, if Bo(k,tn) is invert-
ible for k < k, and for all n < N and if HB0_1(k,tn)H < P for
k < k0 and n < N where P is independent of k and n and if

m

in B _1(k,ti)B1(k,ti_1)H S L for k <k

0 , £ =nk e (0,T]
i=n

o] n

with 1 S m < n, where L is independent of n, m and k. Further

we say that (*) is convergent to U, if for t = tn = nk fixed,
1imlU” (k) - Ut )l = 0 uniformly in £(u"(k) = U").

k-0

n-—+>o

The sequence of vectors R (k) = u"(x) - U(tn) is called global

error. We easily conclude convergence from stability and consis-
tency. By solving the recursive relation (*) for u? = u™ (k) we

find: U™ (x)I < LIU®l + P(TL+1) max Hf(ti)H presuming
1<i<n

Yo = Yq = 0. That means that Un(k) depends Eontinuously on the

initial condition U° and on the disturbance f (in the norm |l ).

For the following we set IIXll = max [X,| for
i=1(T)_3
X = (X )T e R¥ 1. Now we can prove:
1’ LEE I Y XN_1 . M

Theorem 1: consider the parabolic problem I), II) and III) with
the assumptions (A), (B) and (C). Let (*) be a finit difference
approximation to I), II) and III), which is stable and consistent
of the order 1 with problems of the form I*, II*, III with



-

solutions in C€™([0,1] x [0,T]) (problem-I), II), III) with inhomo-
genity in Cm—2([0’1] x [0,T]) and changed initial function) and

let Ugr Yor Yq of the given problem fulfill:

a) v, (0) a(0,0)U;(O) + b(0,0)U;(O) + c(0,0)U_(0) + £(0,0)

" ]
b) y1(0) a(1,0)Uo(1) + b(1,O)UO(1) + c(1,0)UO(1) + £(1,0)
with Yogr Yq € Cm([O,T]), Uo € C3([0,1)], then the numerical pro-
cedure (*) is convergent for the given problem I), II) and III)

in the maximum norm.

Proof: as mentioned before there exists a unique solution U of
the given problem, so that U, Ut' Ux’ UXX are continuous and
bounded in [0,1] x [O0,T]. (Proof in [1]).

Now let e>0 be fixed. We construct the sequence 0f Bernstein

polynomials to U on [0,1] x [O,T]

n n . . < . .
_ n, ,n 1 T) 311 ., t\n-j t.j
Bn(U,X,t) = E 'E (i) (j) U(Hr"‘n—) (1-x) x™ (1 T) (T)

i=1 9=1
and know that: Bn(U,.,.) > U
0 B (U ) - U
3t “n'orcrc t
9 B_ (U ) - U
3x niorcre X
32
_2Bn(U’o,-) +UXX
oxX

uniformly on [0,1] x [0,T] for n » =,

As Butzer has shown in [3] for functions U in C1([0,1]2), we

can prove it for our case.

Now we set U. = Bn(U,.,.) with n > N(e) fixed so that

- - - - <
Hu-u o, +Hlo -0_, +HU -0 N H1U, U Moo < €

t X EXX

and define: v, = Ue-[(1—x)(U€O,t)-Yo(t)) + % (U€(1,t)—Y1(t))]-
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We have Ve(o’t) Yo(t) and v is a function

I

v€(1,t) Y1(t)

in Cm([0,1] x [0,T]), because-yo, Y, are in Cm([O,T])
B (U,..) = U_ is in c”(10,1] x [0,T]) and moreover:

€

U-v Il +iu -v Il +lu_-
10-v Il +I T -V Il HUx Vel

- < =
£ Verloo +||UX v_ Il < 2e+2e42e+e = Te .

o X EXX ©°

That means, that we have constructed a function v€ in Cm([0,1] X
x [0,T]) which has the boundary values as U and which approximates

u, Ut’ UX and UXx uniformly on the closed rectangle [0,1] x [O0,T].

We consider the neighboring problem:

I*) Ve = a(x,t)vxx + b(x,t)vX + c(x,t)v + £(x,t) +

+ (v -a(x,t)vE x-b(x,t)vsx—c(x,t)ve-f(x,t))

et X

(x,t) ¢ (0,11 x (0,T]

II*) V(XIO) VE(XIO)I X 8[0,1]

III) wv{0o,t) = Yo(t), v(l,t) = Y1(t), t e [0,T] [III* = TIII]

which has the unique solution v = Ve

We set: Z€ = vEt-a(x,t)vexx—b(x,t)vex-c(x,t)vs-f(x,t),

z_ e <™ 2(0,11 x [0,11),

and conclude

1z I SIu ~a(x,£)U0, -b(x,t)U -c(x,t)U-£(x,t)l+

+||Ut-v€t-a(x,t)(UXx

—vEXX)-b(x,t)(Ux-vex)—C(x,t)(U-ve)H<

< 0+ (1+llall, +libll, +licli e = Cie, CieR



The numerical procedure for I*), II¥), III) has the form

1 n n-1 _ >
E[Bo(k'tn)ve B1(k,tn_1)V€ - R(k,tn)] = f(tn) + Ze(tn)’
(v) , no= 1(1)M
o _ _ T
VE = (VE(X—]lO)r ’ VE(XN_‘IIO))
and converges to v€ of order 1, that means:
Hvz(k) - Ve(tn)” < C(e)kl, because the order of convergence is

the same as the order of consistency in the case of smooth solu-
tions.

The procedure for I), II), III) is:

1 n n-1 _ &

LBy (k, £ U™ = By (k,t U™ - R(k,t )] = E(t)
(vv)

o _ _ T

UC = Uy = (U (%), -eur U (xg_1))7 .
We subtract (v) from (vv) and get:

1 n .n n-1 _.n-1 _ -

£B (ke ) (0P-vD) - By, ) @Y = 2 (e

o .0 _ T
U _VE = (UO(X1) - v€(x1,0), ce ey UO(XN_1) - VE(XN_»]:O))

We use that the solution of a difference equation of this form
depends continuously on the initial condition and on the disturb-

ance, if the boundary conditions are homogenous:

||Un—VI;||<LII u°-v‘€’n +P (LT+N)maxllZ_(t ) I S(TL+P (LT+1)C ) e = C

€ .
1<i<h © 2

We get for t = nk fixed in (0,T]:

lu(t) - (x)i<[u (£)=v_()I+IV_(t) -v’E‘(k) ||+nv§<k> g (k) I

<7e + C(e)kl + C2€ = (7+c2)e + C(e)kl .



1
For k<(E%%T)I we get HU(t)-Un(k)H<(8+C2)e, where C, is independent

of n, € and k. If we start the proof with convergence follows.

&
8+C,
Our second step is to neglect the conditions a) and b) in

Theorem 1. So we prove:

Theorem 2: consider the numerical procedure (*) for I), II) and
III) under the same assumptions as in Theorem 1. Let (A), (B)
and (C) be valid. If U_eC([0,1]) and v,,Y,eC"([0,T]1), then the
numerical procedure (*) is convergent to the unique solution of
I), II) and III).

Proof: Let >0 be fixed. Then we choose a function ﬁg in Cw[(0,1]),

so that HUO-ﬁgH“fe. The existence of ﬁz is a consequence of the

approximation theorem of Weierstrass. We define:

€ _ =€ =€ =€
Uo = UO-[X(Y1(0)-UO(1))+ (1-X)(Y0(0)-UO(0))]

- € = € -
We get: UO(O) YO(O) and UO(1) Y1(0) and
€ —c
HUO-UOHSmUO—UOH+|x|€+|1-x|€<2€ .

Now we choose a function ye(x) > C3([0,1]) fulfilling yE(O) =
= y€(1) = 0 and Hyeﬂufk and form Vé = UZ + ye. The function Vé
shall satisfy:

1) ¥4(0) a(0,0)v§"(0) + b(o,0)v§'(0) + ¢(0,0)vE(0) + £(0,0)

2) ¥,(0) = a(1,00vs (1) + b(1,0vE (1) + c(1,0vE(1) + £(1,0)

That means:

12) ¥4 (0) - [£(0,0) + a(0,0)US (0) + b(0,0)uE (0) +
+ c(0,0)Ug(O)] = a(0,0)y8"(0) + b(0.0)y€'(0)

1b) Y1 (0)

[£(1,0) + a(1,0)U§"(1) + b(1,0)U§'(1) +

<+

c(1,0005 (M1 = a(1,00y%" (1) + b(1,00y (1) .
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We choose y€ (0) = yE {1) = 0 and compute yE (0) = Y, and

yeu (1)

i

Yy from the equations 1a) and 2a) and construct:

Y‘I 2 (1]
x“ (x-t,) o<t
2 1 1
2t
1
€ 3
yo(x) = 0 t1<x<t2 eC”([0,1])
Y
2 _(x-1)2(x-t. )" £, <x<1
2 2 2
2t
2
with 0 < t, < min (+/729¢ ) for y, % 0 and
8 Y1|
. 1 Yoo
0 < t, <min (3n/729¢ ) for y, £ 0 .
8|y2
Otherwise there is no restriction on t, resp t, (only

1 2

0<t1<t2<1).

Now we consider:

Vt = a(x,t)Vxx+b(x,t)Vx+c(x,t)V+f(x,t) , (x,t)e(0,11x(0,T]

V(ix,0) = VZ(X) xe[0,1]
()
v(o,t) = Yo(t) te (0,T]

We have: VSeC (10,11), Yo, Yoe€™([0,T1), VE(0) = v,(0), vE(1) =
= Y1(O) and Vz, Yor Yq fulfill the condition a) and b) in theorem
1. So we can conclude, that this problem has a unique solution

Ve’ so that V€, v v are continuous in [0,11x[0,T].

et’ Vex' Vexx
Also we can conclude that Z = U—V€ is the unique solution of

Zt = a(x,t)Zxx + b(x,t)Zx + c(x,t)2

(AD) 7 (x,0) U, (x) - vg(x)

Z(0,t)

Z(1,t) = 0
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(U is the unique solution of the given problem).
We know that the solution Z depends continuously on the initial

data Z(x,0), so we have:
=1l 17— < _yft
2l =llU-v_II<C.lu_-Vv_lI<Ce

The numerical procedure to the given problem has the form:

A

n n-1

1 -
g[Bo (Krtp)U gy = Byt Uy - REIT = F(ey)
and to (A)
1 n n-1 _
E[Bo(k'tn)ve(k) - B1(k,tn_1)VE (k) = R(k,t )] = £(t )
o _ €
Ve = V%

We conclude by subtracting:

1 n n n-1 n-1 _
glBo (k) (UT(K) -V (K)) = Bk, tp ) (U (K)=V™ (k)] = 0

o o _ _u€
U Ve = U,V

We get by stability: | u“(k)—vre‘(k)||<LIIUo—v§||<3Le .

Applying theorem 1 we conclude, that there is a ko(e)>0 so that
for all k<ko(€), ﬂVE(t) - Vz(k)ﬂ<t for t = nk fixed in [O,T].
So, .

1o (£) =0 G IS u(£)=v_ () I +IV_ (£) =V (£) I +IVE (£) -0 (K) 1<

<Ce + € +3Le = (C+1+3L)e .

And that means convergence.

Putting the used proof-methods on a more formal level we can
derive an extension to Lax's convergence theorem for stable ap-
proximations to linear operator equations which are consistent
for data in a dense set. Consider the linear and invertible

operator F : (A,H>HA)+(B,H | where A, B are appropriate linear

B



1" be bounded by k That means that the

B 1°
solution U of the equation FU = g depends continuously on the

spaces and let IIF

data g. For the numerical computation of U we use approximations

F U= 9y with the following properties:
1) Fp: (Ah,H “Ah) > (Bh,H HBh) for O<h<hO (step-size, grid
parameter), where Ah, Bh are appropriate linear spaces.
2) F, is linear and invertible and IIF -1H <k, for all
h h By 2
h<h .
o
The last property of Fh is called stability:
3) There exist linear and uniformly bounded operators,

A
B Gl ) > Byl )

B
Ah;(B,II lIB) > (Bh,ll IlBh)

B -
4) HAh(g) - thBh = 0(1) for h-o.

5) The scheme F U = 9y is consistent with FU = g for all

geXCB, where X is dense in B, i.e.,

HFh(AﬁU) = o(1) for h-0

h

where U is the solution of FU = g.

- gyl

We can conclude:

Theorem 3: under the given assumptions on F and F, the procedure

h
FhUh = 9y is convergent to the solution U of the equation FU = g,

for all geB, i.e.,

llAﬁ(U) - U ll, = o(1) for h-0.
h

Proof: We have the following situation:
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A —a B

A B

Ay By
| Fy

Ay = By

Let € fixed be greater O.

For solving FU = g we consider the scheme F Because X

n’nh = In-
is dense in B we can choose g €X so that Hg—gEHB<£. Instead of

_ -1
FU = g we now solve FU_ = g_. We conclude lu-u HA<HF I g g llg

€
that means:

A) ”U—UEHA<R1€ .

Now we consider FhUeh = geh

gence of U€h to U€ for h»o and fixed e€>o0 by the usual consistency -
stability method:

and we easily prove the conver-

Fpleh = en
FhAﬁUE =g, + C_(h) HCe(h)HBh = 0(1) for h+o and fixed
€>0 because geex.
F_ (U, -02U ) = -c_(h)=
h'"eh "h'e £
B) lu_  -2Bu i, <r. " le ()il <k.c_ (h)
eh "h e Ah h € Bh 2 ¢
ce(h)+0 for h-o
€ fixed greater than o.
Now we want to find a bound for U€h - Uh:

- - B B _.B_ B _
Ush = Unh = Frn (Fen™9n) = By (Gepn=839. 0,9, "B 9+, 9-9,)
B B B B
©) 10Oy ay S, (o058 ~07gl =gy )
= k,d_(h) » 0 for h»0 and €>0 fixed

because of the assumptions 2), 3) and 4). So we can conclude
from (A), (B) and (C):
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A A A A e Ay
Il AhU—UhIIAhQIAhU AhUEHAhH\AhUE UehHAh+“ Uy, UhhAth Ahll

k1e+k2c€(h)+k2d€(h) .
We can find for every e€>0 a h<h(e) -so that HAﬁU—UhHA.<Ce where C

is independent of €, h and that means convergence.

It is easy to extend Theorem 3 to cases where the difference
scheme Fh is uniformly continuous in h (stable) in some components
of the data-vector g, but not in all. The methods for doing this
are the same as used in Theorem 2, because stability of one step
difference - approximation means that the solutions U™ (k) depend
uniformly continuous (in the grid-parameter k) on the initial

data and on the disturbance but not on the boundary values.

Remark

I am very grateful to Professor R. Weiss from the Institute
for Numerical Mathematics at the Technical University of Vienna

for his aid during the work.
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