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PREFACE

In recent years, there has been considerable interest in
the development of models for the description of river, lake,
and reservoir water quality. Much of this interest has been
directed towards the construction of progressively larger and
more complex deterministic simulation models. Considerably
less attention has been paid to the problems of uncertainty
in field data, in model description and in parameter estimates
and their consequences when forecasting the future behaviour
of a water body. This report is the first in a series of forth-
coming publications of IIASA's Resources and Environment Area
task on Models dealing with these problems. It has been pre-
pared during a three-month summer visit of the first author
to the Institute. The discussions held during the work have
contributed considerably to the recognition of the problem
of how to cope with uncertainty in ecological modeling as an
important and challenging issue for further development of
the field. Should the reader have any remark, comment or
criticism that could help to improve the methodology provided,
or could lead to new directions, he should not hesitate in
communicating his ideas to the authors. His contribution would
be gratefully appreciated.
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ABSTRACT

A methodology is developed to evaluate in quantitative
terms the effect of uncertainty in the data and the model on
the reliability of parameter estimates in phytoplankton models,
and to assess the effect of the resulting parameter uncertainty
on model predictions. The method of maximum likelihood is
adopted as the basis of the analysis, resulting in a weighted
least squares estimation problem. The analysis provides an
estimate for both the weights and the model errors, where the
weights appear to be determined by the data errors and the
model errors simultaneously.

A preliminary application of the method is presented for
a 16 state variable, 20 parameter phytoplankton model for
Lake Ontario. Extensive data for 14 of the 16 state variables
is used to calculate the parameter uncertainty covariance
matrix and model error variances. The degree of uncertainty
of parameters and their mutual cross-correlations are assessed
in terms of the subjective options held by workers in the field.
Also a preliminary estimate of the effects of the quantity of
data available is presented. Finally, the consequences of
parameter uncertainty on the prediction error are indicated.
It follows that the presence of cross-correlation in the para-
meter set resulting from the calibration considerably mitigates
the error of prediction.

-V-



UNCERTAINTY IN THE PARAMETERS AND
PREDICTIONS OF PHYTOPLANKTON MODELS

D.M. Di Toro and G. van Straten

1. INTRODUCTION

The construction of phytoplankton models, or indeed any
model, is aimed at increasing one's understanding of the par-
ticular system being considered and helping one to make predic-
tions about the consequences of alterations to that system.
Since most models of natural phenomena have little a priori
content--hence the word "model" rather than "theory"--it is
necessary that a detailed calibration be carried out in order
to establish the degree of validity of the model computations.
In the final analysis it is the comparison of computation to
observed data that gives a model whatever credibility it has
prior to validation on different data sets. Since the objec-
tives of a modelling study, to increase understanding and allow
predictions, both depend on the calibration (the former since
the quantitative values of the parameters are an important part
of the understanding and insight gained, and these are a direct
result of the adjustments to fit data, and the latter since the
credibility of the predictions is at least partly judged by
the adequacy of the fit), it is clear that the quality of the
calibration is an important issue.

The quantitative methods that are available for judging

the quality of a model's fit to data tend to concentrate on
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the statistical character of the residual sequences which are
analyzed for randomness, constant variance, etc., in order to
highlight any persistent model weakness. These types of inves-
tigations should be made in modelling studies for which the
data is extensive enough to permit analysis. Such procedures
have recently been applied to a number of different phytoplank-
ton models of Lake Ontario [Thomann et al, 1979]. Less formal
comparisons, e.g. a judgement of the adequacy of the fit, are
always made, but their basis is uncertain.

It is common [e.g. Draper & Smith, 1966], in the case of
linear regression models, to calculate the errors in the regres-
sion coefficients and the error of predictions for the regres-
sion in addition to the residuals' analysis. The purpose of
this investigation is to adapt these methods, where possible,
in order to make quantitative statements about the reliability
of the model parameters and model errors in phytoplankton models.

The estimate of model error variance and parameter covariance
matrix follows from an application of the method of maximum
likelihood to an hypothesized error structure. The results are
valid to the extent that the assumed error structure (Gaussian,
independent, etc.) is correct and that the asymptotic properties
of maximum likelihood estimators and their covariances apply
for the number of observations available. For the application
presented below, the quantity of available data is quite large
and it is expected that the large sample results apply.

The estimation of model prediction error relies on a linear-
ization of the model equations in order to calculate the model
uncertainty due to parameter uncertainty. If the model response
to parameter variation is reasonably linear, then the computa-
tion is reasonable. If jump discontinuities in model state
variables are suspected, then these linearized methods are of
little value. There is really no substitute for an intuitive
understandihg of the situation and the model in order to decide
whether any set of methods is applicable. For phytoplankton
models of the type considered in this investigation the states
are certainly smooth functions of the parameters. Hence the
methods to be discussed are believed to be applicable to the

quantification of the parameter and prediction uncertainty.



2. TFRAMEWORK

The phytoplankton model considered in this investigation is
constructed from the basic mass balance equations for a natural
water system. These have the form of classical continuity equa-
tions with source and sink terms that represent the physical-
chemical-biological reactions that transform the materials of
concern. If the water body is divided into volume elements,

V!, then for each concentration c!, of material 1, 1 = 1,2,...,Ng

Vg k1l
within that volume a mass balance equation of the form:

dc
kl Z E cl, - c

1
Vkat €j1 Z Qjkci1

+ S (c g) + wW/! (1)

k1/Ckor=-idpi k1l

applies. The hydrodynamic transport is specified by the disper-
sion coefficients Ejk’ and the advective flows, Q'k, between ad-
jacent volume segments. The kinetic sources and sinks,
Sl(ci1,ci2,...;¢i;6), are a function of the concentrations
within the volume elements, the exogenous variables ¢£ that ad-
ditionally characterize the elements, and the parameters of the

kinetics, 6. The mass inputs, to that volume element com-

Wg1
plete the specification of the mass balance requirements. The
transport coefficients are obtained either by hydrodynamic cal-
culation or from the analysis of suitable tracer behaviour.

The mass inputs and exogenous variables are measured. The values
of the parameters, 6, are the object of the calibration analysis.

The solution of these equations, ¢!, (t), is obtained by

kl
numerical integration so that the concentrations at any time tj

are available. Let:
. = ! '
flp (£578) = cfy (k) (2)

denote a solution for any particular set of parameters, 6. The
observations of variable % are denoted by ckl(tj,ri) for time
tj at location r; which is assumed to be within volume segment
k. A formal statement of the calibration objective is the
minimization of some measure of data and computed values' devi-

ation by choosing parameter values, 6, within a set of accept-



.

able values. For example, a simple least squares criterion:

N N N.
min 0 3% 1V 1% 1Me ter) - g (es0)17 L (3)
1 k=1 j=1 i=1 ] ]

acceptable 1

e~

where Nc is the number of variables, NV is the number of volume

elements, Nt is the number of times at which data are available,
and Njkl is the number of observations within volume k at time

j for concentration 1. An immediate difficulty is apparent with
this criterion: the results are influenced by the units chosen

for the variables, since the sum is over all concentration vari-
ables as well. It is clear, therefore, that a weighting proce-

dure is required. The method employed below supplies these

weights.

3. METHODOLOGY

Since the observation c¢ ,ri) is subject to errors, it

k1 (&5
is necessary to take these into account explicitly. That is,

a statistical model of the errors is required in order to pro-
ceed with an analysis. Assume that the observed concentrations

have the form:

ckl(tj,ri) = fkl(tj;e) + njkl + Eijkl ’ (4)

where fkl(tj;e) is the computed model mean of the lth variable
in segment k at time tj; N5k1 is the random model error which
accounts for the deviations between the computed and the true
mean; eijkl is the random measurement error and spatial devia-
tions within the volume element k of the repeated measurements
made within that volume element at tj’ which accounts for the
difference between the observations and the true mean. The
measurement error and the spatial'heterogeneity within the
volume segments are associated with this variable.

To simplify the notation, let k represent a variable 1 within
a volume segment k', ordered in any convenient way so that k
denotes a compartment, i.e., a concentration for a volume seg-

ment, and k = ],...,NCNV. Thus the concentration at position i,
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at time j} for compartment k, is assumed to have the form:

cijk = fk(tj;e) + njk + eijk (5)
The random variables, njk and eijk are assumed to be inde-
pendent random variables with zero means and variances 02 ’
. 2 . nk
respectively Oejk‘ That is:
= N(0,02,) (6)
ﬂjk - ’ ﬂk ’
e... = N(0,0°%..) (7)
ijk "“ejk :

The purpose of the estimation procedure is to make the "best"

2 2

nk’%e9k"

The assumption of Gaussian, independent random variables is

estimate of the unknowns: 6,0

the simplest and leads to familiar formulas. However, it is
not necessary. The structure of the spatial variations, eijk’
can be analyzed directly. In particular, the covariance matrix,
which is quite large, can have significant off-diagonal elements.
The assumption that spatial heterogeneity has no structure

across compartments assumes that:

_ 2
cov (€ijkl€ivjlkl) = dii'éjj'dkk'oi-:jk ’ (8)

where §.., = 0 for i # i' and §.. = 1 for i = 1i', etc; 6..,

ii ii ii
implies no structure within segments; djj' implies no time cor-
relations, and dkk' implies no compartment interaction, that is,
no cross variable or cross segment interaction for the spatial
heterogeneity.

Similarly, the model errors are assumed to be uncorrelated

in time and across compartments, that is:

_ 2

and, in addition, they are assumed to be stationary:

2 2

Onjk = Onk ’ (10)




and thereby independent of time, tj. It should be pointed out
that these assumptions can be checked either before the estima-
tion is made, for the spatial heterogeneity variation, or after
the estimation, by examining the residuals.

The estimation problem is nonlinear in the parameters and
therefore quite difficult. It takes the form of a nonlinear
analysis of variance of a mixed model (that is, both fixed and
random effects) [Searle, 1971], which appears to be rather
complex in general terms. However, in this application there
is a reasonable approximation available. The number of obser-
vations, Njk’ for each variable, within each volume at time t.
is large relative to the number of times (ship cruises), Nt’
and the number of compartments NNy, - Therefore, fixing j and
k and analyzing cijk for the spatial variability independently
of the model variability seems a reasonable approach.

Let %jk be the estimate of the true spatially averaged con-
centrition, cjk’ at time j for the compartment k and assume
that cjk can be computed as the sample mean of the within seg-
ment observations:

N.
s 1 jk
Cip = 35— )7 C.s . (11)
jk Njk = ijk

The true spatially averaged concentration is expressed by

C., = fk(tj;O) + n

ik + U,

ik ik (12)

where ik denotes the deviation from the true spatial average
due to the finite number of within volume samples, and njk is

the model error. The variance of ujk can be estimated from the

sample variance of the individual c,.,:
ijk

N.
2 _ 1 jk _ % 0,2
Oeig = Noo =T 121 (ci4x 7 Sjx) (13)

so that the variance of the spatial average is:

2

(o) = 2
ujk

1
= — 0., (14)
Njk ejk
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from the properties of the sample mean. Consequently, the
observed segment mean concentrations Ejk have mean fk(tj;e) and

variance:

b= oo, +

nk N- 14 (15)

V{cjk} = V{fk(tjie) + njk + Ujk

and, being the sum of independent Gaussian random variables,

Ejk is also Gaussian:

2
.7 ’ +
(t.;9) cn

c., = N(fk 3

ik /N.k) . (16)

O2
kK ejk’ ]
The method of maximum likelihood provides the estimation

equations for O and 02 The log likelihood function is:

nk”’
B 1 1 2 2
log L = }?{ > log (2m) - 5 log (Gnk + cejk/Njk)
;g = £ (e5:0)1°

2
Ik T %esk/Nixk

To estimate Oa, set 38 log L/Bea = 0, i.e.:

[c., - f, (t.;0 9f, (t.:0
8log b X 2( RALEIS S LA P
BOa jk Onk + cejk/Njk BOQ

which is equivalent to a weighted nonlinear least squares prob-
lem [Draper & Smith, 1966] with weights:

W., = . (19)

ik 2 2
/gnk * 0ok Nyk

Note that the weights are functions of the unknown model error

variances, G%k’ If there is no model error the weight is the

reciprocal of the standard error of Ejk' The model error vari-
ances are estimated by maximizing log L with respect to cik,

i.e.



— 2
302 2 52 4 6%, N 2 6% 4 % /N..1° '
9k ] nk ejk’ ik nk ejk/ ik
(20)
or
2 Y _—_— a2 2 4
Oy = % Wiy {[cjk fk(tj,e)] cejk/Njk}/ % LAV (21)

Since wjk is a function of 02 the equation is nonlinear.

nk’
The above form is useful for a numerical solution as shown sub-

sequently. Note, however, that if Njk is large it is likely

2 2 , Cos .
that Onk >> Oejk/Njk so that wjk is independent of j and eq (21)
becomes:
R B S TS I 7562, /N (22)
- . s 7 - = . . 7 \
nk Nt 521 jk k'] Nt §=1 ejk’ " jk

so that the model error variance is the residual variance less
the average of the spatial heterogeneity and measurement error

contributions. Also from eq (22) it is clear that if o‘zjk/Njk
is large then the equation for Oik gives negative results.

This is due to the assumption that 0.4k €an be computed inde-

Jjk

pendently of Oik' The role of large Njk is clear in this con-
text. Egs. (18) and (21) form a set of nonlinear simultaneous
2

equations for the estimation of © and Onk'

The asymptotic covariance matrix of the maximum likelihood
estimates is [Kendall & Stuart, 1963]:

n Cov (6a'68) = E%E ' (23)
where:
b= e 239t 2209 5y (24)
a B
and AaB is the oBf minor determinant of the Fisher matrix. That

is:



BOa 3@8

' (25)

where f is the probability density function of the observations
and n

the number of observations. For linear regression, the

problem is cast as one observation of the vector (511,512,...)

in which case the probability density function of the observa-

tions is equivalent to the likelihood function for Ejk; that is
f =L and:
] o - o -~ [ ] — [] ' ~
E {(Cjk fk(tj'e )) (Cj K fk (tj O . (26)

- L 2 2 .
But cjk - fk(tj,O) = N(O,onk + oejk/Njk) and independent for
all jk so that the expectation is just:

e N =~ v 1 _ ' ' A — ' ' 2 2

(27)

so that:

> log £ 3 log £} _ 7,2 9y (£5,0) 3£y (£4,0)
30, 30, ARSI 36, 30,

E {

(28)

which is the conventional nonlinear least squares expression for
the variance-covariance matrix elements with the weights given

by eq. (19) evaluated at the maximum likelihood estimates of ©

2
and Onk'
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3.1. Comparison to Nonlinear Least Squares

The formulas which result from the maximum likelihood method

for the estimation of 0 and its covariance matrix V{0} are:

_ Bfk(t.;e)
Twi € = £ (t5:0)] —5g— =10 (29)
% 3k°73 3 o
9f, (t.;0) 3f, (t,;0)
2 k'3’ k'3’ -1
v{ie} = [ ] ws ] , (30)
4k 30, 30,

where the equation within the square bracket is for the o,B ele-
ment of matrix. These are equivalent to equations obtained from
conventional nonlinear least squares [Draper & Smith, 1966] with
weighting coefficients:

1
w

ik (31)

3 3
/gnk * oo/ N5k

Of interest is the fact that the maximum likelihood equa-
tions prescribe the proper weighting for the aggregations of dif-
fering concentration variables. The result of the proper rela-
tive weight for the N, different concentrations is a direct con-
sequence of the method of maximum likelihood. The weight is
the reciprocal of a standard error, which includes both model
error and spatial heterogeneity and measurement error variance.
The result is quite appealing since large variances for a par-
ticular Ejk’ whether it is due to a large spatial heterogeneity
measurement error or a large model error, causes that observa-
tion to be less heavily weighted in the computation.

The estimation formula [eq. (21)] for the model variances,
cik, is not classical in the sense of least squares since it
balances the residual variance with the weights and the spatial
heterogeneity and measurement error variance to make an estimate

of the total variance due to the model error.

3.2. Numerical Solution Techniaues

The simultaneous solution of egs. (18) for 06 and eqg. (21)

for cik is a rather formidable numerical task. The approach
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adopted is to make an initial estimate of the system variances
at the starting values of the parameters, OO’ and then solve the
nonlinear least squares problems with fixed weights using avail-
able numerical routines [Reid, 1972]. This procedure is iterated
until convergence is achieved.

The model error variance eqg. (21) is solved by successive

substitution:

2 _ 4 = _ 12 2 4

T (® F D= T (0 (- gy (5500 osjk/Njk}/gwjk(l) :
(32)

with an initial value oik(O) = 0. This procedure has been found

to converge rapidly.

The solution of the nonlinear least squares problem requires
both fk(tj;e) ahd Bfk(tj;O)/BOa at the observation times tj'
Numerical integration of the differential egs. (1) yields the
values of all concentrations in all volume elements. The
Jacobians are calculated initially using a numerical approxima-

tion to the derivative:

Bfk(tj;O) _ fk(tj;O + 60a) - fk(tj;O)
30 Y] :
o a

(33)

This requires NO additional integrations, one with each param-
eter perturbed. Subsequent Jacobians are estimated using a
rank one updating formula at each new set of parameter values
during the search. Occasionally the routine will reevaluate
the entire Jacobian using a central difference approximation if
inaccuracies are suspected [Reid, 1972].

This method of using differences to evaluate the Jacobian,
instead of an integration of the sensitivity equations, is
essentially a trade-off between computer time and convenience
associated with the numerical method using differences, and
accuracy associated with the method of direct integration. The
convenience of the numerical difference approximations was
judged to be the overriding factor for these preliminary calcu-

lations.
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Scaling for the problem is accomplished by defining a
unitless parameter vector, ¢, where the actual parameter value

is a multiple of the nominal parameter values 0 That is

0"
0 =0 c ¢ ’ (34)

and ¢ is the vector of parameters that is adjusted. This keeps
the metric of the search space roughly the same in each param-

eter axis.
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4., PRELIMINARY APPLICATION--LAKE ONTARIO

The seasonal phytoplankton model developed for Lake Ontario
[Thomann et al, 1974] is one of a series of essentially similar
models that have been applied to the three lower Great Lakes
[Di Toro et al, 1977], estuaries, and streams [Di Toro et al,
1971]. These model characteristics are well understood and a
large amount of experience has been accumulated during these
applications. The availability of a compactly coded version
[Simons, 1976] and a data set with computed spatial heterogeneity
variances as well as the concentration means made Lake Ontario
the ideal test case for the methodology.

The seasonal phytoplankton model state variables are: chloro-
phyll-a; herbivorous and carnivorous zooplankton; non-living
organic nitrogen, ammonia, and nitrate; unavailable and soluble
reactive phosphorus. These are computed for two layers, the
epilimnion and hypolimnion, for a span of one year. The verti-
cal transport has been calibrated using a temperature balance.
The inputs of all variables have been estimated. The exogenous
variables: temperature, solar radiation, photoperiod, and non-
algae extinction coefficient have been specified. A complete
and detailed description of the model is available [Thomann et
al, 1975].

The data set used for the calculations described below are
the 1972 International Field Year observations. They comprise
eight survey cruises during which chlorophyll-a, herbivorous
and carnivorous zooplankton biomass, total Kjeldahl nitrogen,
ammonia, nitrate, total and soluble reactive phosphorus were
measured in both layers. The eight variables in the two layers
comprise the sixteen compartments considered. Suitable linear
combinations of the computed model variables are compared to
these observations.

A calibration based on an aggregate of data from previous
surveys (1967-1970) has been made [Thomann et al, 1978] and
this is used as the starting-point for the parameter estimate
calculation. These calculations are in progress. The initial
experience with the numerical solution method shows that it is

not straightforward, even for small dimensional parameter
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searches. However, since the principle interest is in the
parameter uncertainty and prediction error evaluation, it is
possible to proceed with these computations using the nominal
parameter values rather than the maximum likelihood estimates.

An effect of this approximation is investigated subsequently.

4.1 Estimation of Parameter Variance

The calculations of parameter covariances presented below
are based on the nominal parameter values of the original cali-
bration which are listed in Table 1. The exogenous variables
are also representative of 1967-1970, rather than the 1972 data
set being used. As a result, the model errors, as shown in
Table 2, are larger than would be expected from a direct cali-
bration to the data. This will inflate the parameter covariances
somewhat but should not affect the general conclusions.

There are 20 parameters in the model that specify the kinet-
ics of the phytoplankton, zooplankton, and nutrient cycles.

Their nominal values and descriptions are listed in Table 1.
Originally, because of computer storage restrictions, it was

not possible to compute the full 20-by-20 dimensional covariance
matrix at one time. Therefore, a series of ten or less param-
eter covariance estimates were computed and later completed with
the full twenty parameter case. This can easily be done with
the method empléyed in this investigation since the parameters
which are fixed are simply left at their nominal wvalues and
treated as known constants rather than as estimated parameters
which have an uncertainty.

Table 3 presents the diagonal elements of the parameter co-
variance matrix as coefficients of variation in percent, i.e.
100/676;77@a. The absent values in each column are held constant
for that calculation and assumed to be exactly known as discussed
above. As expected, comparison of the twenty parameter case
with the various ten parameter cases shows that the percent of
uncertainty is highest when all parameters are assumed to be
estimated from the calibration, rather than known a priori.

Certain general conclusions can be drawn immediately: with

the exception of the Michaelis constants, the phytoplankton
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parameters are known within coefficient of variation ~ 50%.

The large errors in Michaelis' constants are not unexpected in
Lake Ontario since these coefficients only influence behaviour
during a short period of time, and the precision with which they
can be estimated from the calibration data is limited. Settling
velocities for phytoplankton and the particulate fraction of
nitrogen have uncertainties of ~ 80%, whereas phosphorus settling
is uncertain to ~ 200%. The causes of this difference are un-
known at present.

Perhaps the most striking result is the large uncertainty
associated with the zooplankton kinetic coefficients. Zooplank-
ton grazing rates are uncertain by approximately a factor of two,
whereas herbivorous assimilation efficiency and respiration
approach or exceed tenfold uncertainty. Although the magnitude
of the uncertainty is somewhat misleading, the fact that zoo-
plankton kinetics are the least certain, in terms of the cer-
tainty with which their kinetic parameters are known, is expected.
The absolute magnitude of this zooplankton uncertainty should
not be taken as having quantitative significance because of the
large model error associated with the miscalibration and the
substantially fewer zooplankton measurements that are available
in the 1972 data set.

b,2, Parameter Covariance

The offdiagonal elements of the parameter uncertainty co-
variance matrix specify the degree to which uncertainty is cor-
related. Table 4 presents the results for the phytoplankton
kinetics. Uncertainty in growth rate and respiration rate is
strongly positively correlated. To understand these and other
results, consider the simplified equation for phytoplankton
chlorophyll, P, total inorganic nitrogen, N, and available phos-

phorus, p, in kinetic form:

p = N P - - v
P = (K,r 5 - Ky)P P + , (35)

)P, (36)

e
1l
|
o
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P = -a__(K,r N P__yp , (37)

where Ky is the growth rate, r is a light reduction factor
(assumed to be known), K2 is the respiration rate, w is the

settling velocity and H is the layer depth. K and Kmp are

the Michaelis constants for inorganic nitrogeanN) and soluble
reactive phsophorus (p). The nitrogen and phosphorus to chloro-
phyll ratios are ayp and apP' Since the calculated quantity of
chlorophyll depends on the difference between K, and K2, if the
actual K1 is larger than estimated, it follows that the actual
K, is also larger than estimated. The quantity within the
parentheses can be estimated with a precision that exceeds the
precision of estimation for each parameter within the expres-
sion. Therefore uncertainties are correlated in such a way as
to keep the net growth rate within the range implied by the
calibration data. A similar reasoning explains the positive
correlation between growth rate and phosphorus Michaelis constant.
The strong negative correlations between growth rate and the

nutrient stoichiometric coefficients aND and a follow from

’
the nutrient equations (36) and (37). If growii rate is in-
creased, then in order to keep nutrient uptake rate within
observed bounds, the stoichiometric coefficient must decrease.
The strong respiration rate-stoichiometric coefficients correla-
tion follows from their correlations to growth rate. The strong
inverse correlation between the inorganic nitrogen and phosphate
Michaelis constants is a consequence of the dependence of growth
and uptake on the product of Michaelis Menten expressions. In
order for that term to remain constant the uncertainty must be
negatively correlated.

‘The strong positive correlation between the nitrogen/chloro-
phyll and phosphorus/chlorophyll stoichiometric ratios suggests
that their quotient is the quantity that is actually being esti-
mated. That is, the nitrogen to phosphorus ratio of the popu-
lation is more accurately estimated and the tendency to keep
this quantity between narrow bounds explains the strong positive
correlation in the uncertainties of both other ratios.

The importance of these cross correlations also becomes

evident when the prediction error is considered, as shown sub-
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sequently. Consider the phytoplankton growth equation. For
any set of exogenous variables the population net growth rate

is determined by the difference between the growth and respira-
tion rate. The difference between two almost equal uncertain
expressions is more uncertain than either expression considered
individually. This observation appears to imply that the error
in net growth rate will be so large that prediction becomes
impossible. However, the strong correlation of uncertainties
modifies this result since the presence of a positive covariance
between the two terms lessens thé uncertainty of the difference.
That is, for only K1 and K2 uncertain and Oqray constants, the

variance of the difference is:
V{ia,K, - a,K,} = aZV{K } o+ a2V{K } - 20,0, cov (K.,K,).(38)
11 272 1 1 2 2 172 17727 "

The first two terms on the right-hand side of this equation
represent the amplification of error since although the mean

value of the difference is computed by a difference:
E{a Ky - o,K,} = o E{K;} - o B{K,} , (39)

the first two terms of the variance are a sum of the variances.
It is the third term in eq. (38) that mitigates this effect. A
strong positive correlation implies that the uncertainty of the
difference is not as large as it would be if the uncertainty of
both terms were independent.

This tends to suggest that large parameter uncertainties
per se are not a sufficient condition for the conclusion that
prediction errors will be large, since the cancellation due to
cross-correlated uncertainties may be quite important. However,
although the prediction error for situations near that used for
the calibration might not be excessive in the presence of large
parameter uncertainty, as the predicted state moves into new
regions of state space the fortunate cancellations may decrease

with the consequent increase in prediction error.
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4.3. Effect of Unobserved State Variables

The relationship between the quantity of data available
and parameter uncertainty is illustrated in Table 5. Uncer-
tainty estimates for the case of only epilimnion data available
as well as both epilimnion and hypolimnion data are compared.
These results are computed by withholding the hypolimnion
compartments from the sums in the elements of the covariance
matrix, eq. (30). The index k ranges only over the epilimnion
concentrations. Parameters that affect phytoplankton growth
are not greatly influenced by the lack of hypolimnion data.
However, respiration uncertainty increases (62 to 110%) since
it has a greater role in the hypolimnion which is below the
euphotic zone. It might also be expected that phytoplankton
settling velocity uncertainty would be greatly increased with-
out hypolimnion observations whereas the results in Table 5
indicate that only a modest change, 66 to 7u4%, takes place.

The probable reason is that at 0.1 m/day settling velocity and
a 73 m depth of the hypolimnion, the effect of the settling
velocity on hypolimnetic chlorophyll concentration is small
during the period of stratification and, therefore, the obser-
vations do not contain much information about this parameter.

As a general rule, the magnitude of the cross-correlation
coefficients decreases somewhat for only epilimnion data available.
This might indicate that the prediction error will increase due
to lack of cross-correlation as well as due to increased param¥
eter uncertainty.

The effect of unobserved state variables is further illus-
trated in Table 6. The epilimnion observations only are used
and uncertainties for phytoplankton, zooplankton and phosphorus
parameters are calculated. The effect of withholding the chloro-
phyll and zooplankton data is shown in the second column. It
appears that phytoplankton parameter uncertainties are not unduly
affected. This result is rather surprising at first glance,
since it suggests that it is possible to estimate phytoplankton
kinetic coefficients without any direct observations of phyto-
plankton concentration. However, the result is due to an

assumption implicit in this particular calculation. For this
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example the nitrogen kinetic parameters are assumed to be known
exactly; they were not included in the uncertain parameter set.
Therefore using the certain nitrogen parameters and observations
it appears that is is possible to deduce the phytoplankton param-
eters without a large increase in estimated uncertainty. It is,
therefore, an artefact of this particular calculation. It is
included in Table 6 as an illustration of the effect of assuming
that some parameters are known exactly.

The effect of withholding phytoplankton and zooplankton
observations on the zooplankton kinetics is striking. The uncer-
tainties, which are large to begin with, increase almost tenfold
without zooplankton observations.

Removing the nitrogen observation, as well as phytoplank-
ton and zooplankton, increases the phytoplankton uncertainty by
tenfold as well. Therefore it is reasonably clear that obser-
vations of these primary state variables are critical in order
to reduce parameter uncertainty. It is likely that similar
results would be obtained for other unobserved state variables.
This suggests that model frameworks which include unobserved
state variables are likely to have very large parameter uncer-
tainties associated with these state variable kinetic coeffi-

cients.

4.4. Estimation of Model Prediction Uncertainty

The model prediction uncertainty due to parameter uncertainty
is obtained from:
N NO of

O
V{f, (t.;0)} = (
k73 a£1 821

k3 Sk
350 50
o R

) cov (ea’OB) , (40)

by making the assumption that the second and higher order terms
in a Taylor series expansion for fk(tj;e + 80) around the nominal
point can be neglected. Therefore, the result obtained with

Eg. (40) is only meaningful if the model responds linearly to
changes in parameters. If this is not the case a Monte Carlo
simulation, perturbing the parameters in accordance with the

estimated variance-covariance structure, would be required.
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Consider the results to be expected if the "prediction error”
is calculated for the nominal parameter estimates and the exog-
enous variable values which characterize the calibration data
set. Since, in this case, an estimate of the model error (which
would be the prediction error if the calibration data were not
available) is in fact available, a comparison of the "predic-
tion error" for this case and the estimated model errors provides
a check on both the validity of the covariance estimate and the
prediction error equation. The results are shown in Table 7,

The range in prediction error computed over the year (actually
at the times for which there are data available) is compared

to the estimated model error. 1In all cases the prediction error
is less than the model error. For most of the variables, the
maximum computed prediction error approaches the estimated model
error. Since the exogenous variables and the time periods of
calculation are the same for both the model error estimate and
the prediction error estimate it is expected that these errors
should be nearly equivalent. The lower prediction error esti-
mates are probably due to either the fact that the nominal param-
eters are not the maximum likelihood estimates, or that the
prediction error equation neglects higher order terms, or both.
It is uncertain at present which of these two sources of errors
is the most serious.

It is worthwhile noting that (40) can also be written as:

2 N

N, of, . of .

0 0 kJj kj

) V{Oa} + ) 21( aea) (808
8 .

i

afkj
90
a

N
1%

V{fk(tj;e)} = 1

) cov (@a,OB)

a a=1 B

Thus, the model prediction variability can be attributed to the
parameter variance per se, and a contribution due to the param-
eter cross correlations. The latter term is negative, due to
the sign relation between gradients and parameter covariances.
Therefore, the total variance is lower than would be obtained
if only the parameter variance were taken into account. It is
of interest to investigate the extent to which the cross-cor-
relation of the uncertainties reduces the predicted error for
this case. The results are shown in Table &, which nresents

the prediction errors at the times at which data are available

(41)
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so that the seasonal variation can also be observed. These
results clearly highlight the importance of the cross-correla-
tions. If these are neglected and only the parameter variances
are considered, the error of prediction is enormously inflated.
This would lead to erroneously little confidence in the model
predictions.

The seasonal variation of the prediction error is of interest.
In general the relative uncertainties are highest during the
growing season. This is particularly apparent for chlorophyll-a,
which has the highest uncertainty in the period of zooplankton
growth. Since the zooplankton growth is highly uncertain, the
accuracy of the chlorophyll-a predictions drops accordingly.
Also the ortho-phosphorus and ammonia uncertainties are highest
in the growing season, as a result of the coupling to phyto-
plankton-zooplankton dynamics. For total kjeldahl-N, nitrate-
nitrite and total phosphorus a relatively high accuracy is

achieved for the entire year.
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5. CONCLUSIONS

The method proposed in this investigation for the analysis
of parameter uncertainty and prediction error appears to be
guite useful and relatively straightforward to implement. The
estimation of the parameter covariance matrix for a twenty param-
eter-sixteen state variable seasonal phytoplankton model is
direct, although it does require multiple integrations of the
differential equations (three or four per parameter depending
on the accuracy required for the Jacobian elements). Pre-
liminary experience with the parameter estimation algorithm, on
the other hand, has not been favorable. Therefore,‘the parameter
covariance matrix computed using the asymptotic maximum likeli-
hood estimate is, strictly speaking, not directly applicable.

If it is assumed that the nominal parameter values are reason-
ably close to the maximum likelihood estimate, then it is prob-
able that the covariance matrix is reasonably close also. 1In
any case its utility can be seen in terms of the insights
regarding the estimable parameter groups and the probable error
of the individual parameters.

The prediction error equation is a linearization about the
nominal parameter values. As a consequence it is also an approx-
imation. For the case of the nominal parameters and the 1972
data set, the prediction error is calculated to be somewhat
lower than the actual model error. Whether this is due to the
linearization or the lack of maximum likelihood estimates is
uncertain at present. Roughly speaking, and based only on
limited computational experience, the method appears to produce
parameter covariances and prediction errors that are somewhat
lower than the actual values, but they appear to be reasonable
and, therefore, in spite of the inaccuracy, useful for inter-
pretations and, with qualifications, quantifications of param-

eter and prediction uncertainty.

With regard to the actual numerical values for the parameter
and prediction uncertainties computed for the Lake Ontario model,
it should be pointed out that both the parameter covariances and

prediction errors are larger than would be the case if the
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nominal parameters and exogenous variables for the original
calibration (1967-1970) had been modified to more closely

match the 1972 data set and exogenous variables which were

used to estimate model error variances. As a consequence these
larger than normal model errors tend to inflate the parameter
covariances and prediction errors. Thus the actual values
listed in the tables should be considered only as indicative of
the behaviour to be expected from parameter uncertainty covar-
iances and prediction errors and not of their absolute numerical
values. A more complete study using a carefully calibrated
model would be required to establish the probable range of

parameter uncertainties and prediction errors.
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Table I.A The biological system, sources (+) and sinks (-)

P Z Z
. . 2
(phytoplankton) (herblvorous;zocplankton) (carnivorous zooplankton)
Prccess
C C
Growth K. (T)r . N P P
1 K + C, K + C
mN N mp P
Respiration - KZ(T)P
Herbivorous - C (T)Z,P a.a Kmol
' : g 1 12p —=— C (T)2Z,P
grazing P+ K 1
mpl
Herbivorous - K3(T)Zl
respiration
Carnlv?rous ~ ng(r)zzzl + aZZCgZ([‘)ZZZl
grazing
Carnivorous : - K4(T)Z2
respiration
Parameter Nominal value (at 15 C where applicable)
Phytoplankton
Growth rate Kl(T) 1.51 day~1
Respiration rate KZ(T) 0.07 day_1
N-Michaelis constant KmN 0.025 mg N/1
PO ,-Michaelis constant K 0.002 mg P/1
4 mp
Settling velocity - 0.1 m/day
Zooplankton A
Carbon/Chlorophyll ratio ay 0.05 mg C/ug
Herbivorous grazing Cg(T)<' 0.9 1/mg C day
Herb. assimilation eff. aZp N 0.6
Herb. respiration K3(T) 0.015 day-l
Herb. grazing saturation Kmpl 10.0 ug/1
Carnivorous grazing ng(T) 0.9 1/mg C day
Carn. assimilation eff. a ' 0.6

22 -1
Carn. respiration K4(T) 0.015 day
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Table I.B The nitrogen system, sources (+) and sinks (-)
. C3 C4 C5 .
rocess (Organic N) (NH ;-N) (NO,-N)
Organic nitrogen-* - .
- T + K
ammonia transformation K34( )c3 34(T)c3
Nitrification - K45(T)c4 + K45(T)c4
Phytoplankton uptake - aaNPGpP - (1 - a)aNPGpP
Phytoplankton
+ K
endogenous respiration %yp Z(T)P
Zooplankton
endogenous respiration + aNzK3(T)Z
. + -
Zooplankton excretion (aNPCg(T)ZP aNZGzZ)

Table I.C The phosphorus system, sources

(+) and sinks(-)

(o]

o}

Process 6 7
(Organic P) (PO4-P)
Organic phrosphorus—
orthophosphorus transformation - K67(T)c6 + K67(T)cl
Phytoplankton uptake -a G P
ytop P P p

Phytoplankton endogencus respiration

Zooplankton endogenous respiration

Zooplankton excretion

+ appKz(T)p

+
apPK3(T)Z

+ (a,,C (2P - a G, Z)

P

Parameter

Nominal valua (at 15 C whcre applicable)

Nitrogen
Nitrogen/chlorophyll ratio avp
o} ic N > NH
rganic N13 | K34
>
NH3 NO3 K4 5
N settling -
Fhosphorus
Phosphorus/chlorophyll ratio apP
13} ilable P > PO
navalilable 4 K67
P settling -
Note: a =

NZ aNP/al

a4 = c
4/(c4+c5)

(T

0.01 mgN/ug
-1
0.026 day
-1
0.03 day
0.001 day

0.001 mg P/uUg
0.105 day -
0.001 day™!




Variable

EPILIMNION

Chl a
TKN
NH3—N
NO3—N
T-P

PO4—P

HYPOLIMNION

Chl a

Table II.

Data Model
Average Std. Dev.
(1972)

Ck On
(1g/1) (ug/1)
4.2 3.7
180 93

10 26
170 75

20 2.0
6.7 5.8
2.3 1.6
150 26
9.8 38
240 18

21 3.4

11 10

Model error variance at nominal parameters.

Coef. of
Variation
o /E
N k
(%) (%)
89 6.7
52 3.8
260 5.9
44 2.1
10 1.1
87 3.0
70 18.0
17 3.5
390 5.7
8 1.1
16 1.3
91 2.5

Data Average Spatial

Std. Dev.

2
Y oo /N,
. £, k
] jk J

(vg/1)

0.28
6.9
0.59
3.5
0.23
0.20

0.41
5.2
0.56
2.6
0.28
0.27



Phytoplankton

Growth rate
Resp. rate
N. Michaelis
PO4 Michaelis
N/Chla
PO, /Chl

4 a

Settling vel.
Nitrogen

ORG.N - NH3
-

NH3 NO3

N Settling

Phosphorus

UnavailP-»-Po4

P Settling

Zooplankton

C/Chla

H. grazing

H. assim. eff.
H. resp.

H. graz. sat.
C. grazing

C. assim. eff.

C. resp.

Table III.

39
69

41
43
68

29
24
72

88
173
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Parameter uncertainty.

Coefficients of Vvariation (%)

49
63
240
306
34
40
66

88
le4

(all

16
44

134
118
770
1600
1500
77
65
130

data)

33
49
380
330

115
250
1100

62
43
140

63
81
479
411
53
63
76

31
25
85

113
237

235
170
800
1650
1560
95
116
160
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Table VI. Effect of missing state variable observations
on parameter uncertainty

coefficients of variation (%)
(surface layer data only)

only nitrogen only
all variables and phosphorus phosphorus

Phytoplankton

Growth rate 48 97 260

Resp. rate 61 280 730

N. Michaelis - - -

PO4 Michaelis 250 360 2070

N/Chla - - -

P04/Ch1 40 60 700

a

Settling vel. - - -
Nitrogen

Org. N ~» NH3 - - -

NH, > NO, - - -

N setting - - -
Phospherus

Unavail P » PO4 110 140 260

P setting 150 300 1060
Zooplankton

C/Chla 220 1200 7500

H, grazing 130 1310 4300

H. assim. eff. 880 3670 6500

H. resp. 1900 6600 11300

H. graz. sat,. 1660 7680 15400

C. grazing 97 960 3500

C. assim. eff, 110 190 1800

C.

resp 157 980 3800
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Table VII.

Comparison of Prediction Error and Model Error

Variable Prediction Error Model Error
k Range in /V{fk(t.,e)} o)
J Ny
(ug/%) (ug/L)
Epilimnion
1 Chl a 1.8 - 3.0 3.7
2 H. Zoop 35 - 109 112
3 C. Zoop 3 - 48 53
4 NH3-N 5 - 21 26
5 NO3-N 10 - 32 75
6 TKN 16 - 46 93
7 Total P 0.66 - 1.76 2.0
8 Pou-P 1.7 - 4.7 5.8
Hypolimnion
9 Chl a 0.2 - 0.88 1.6
12 NH3-N 5.9 - 12.0 38
13 NO3—N 6 - 10 18
14 TKN 10 - 13 26
15 Total P 0.67 - 1.0 3.4
16 PO, -P 1.5 - 3.0 10
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Table VIIZT.

Coefficients of variation (%) for model predictions due to parameter uncertainty.

g = variance
Op = variance neglecting parameter covariance structure
Cruise Chlorophyll-a N Zooplankton Ortho - P " Total P
a g g g o g g (o)
P : p p p
1 42 228 18 122 3 8
2 28 126 134 807 4 15
3 32 466 172 2607 176 498 6 23
4 155 3481 50 1628 73 945 8 35
5 51 162 789 2478 140 770 12 121
6 28 175 398 1473 31 190 4 47
7 55 301 10 78 3 22
8 9 53 4 20
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