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ABSTRACT 

This  paper d i s c u s s e s  t h e  problem of  planning water  r e source  
systems t o  be robus t  w i th  r e s p e c t  t o  m c e r t a i n t i e s .  The main goa l  
is t o  submit  s e v e r a l  reasonable  s t a t emen t s  about op t imiza t ion  
problems i n  t h i s  f i e l d .  Some p r o p e r t i e s  of  water  r e source  systems 
under u n c e r t a i n t y  a r e  d i scussed  b r i e f l y .  The paper by no means 
pre tends  t o  encompass t h e  complete scope of  t h e  problem. A t  
b e s t  it prov ides  an i n t r o d u c t i o n  t o  t h e  problem encountered by 
t h e  s t a t i c  models i n  t h e  planning o f  water  r e source  systems w i t h  
unknown d e t e r m i n i s t i c  parameters .  
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SENSITIVITY OF WATER RESOURCE SYSTEMS 
UNDER UNCERTAINTY: ANALYSIS AND SYNTHESIS 

V. Chernyatin 

INTRODUCTION 

Because uncertainty is such a broad concept it is necessary 
tc say a few words about the kind of uncertainty we are dealing 
with here. As an abstraction of unknown reality, uncertainty can 
be caused by two factcrs [I] : 

1. Deliberate decisions made by forces with wholly 
or partially opposite interests (strategic games). 

2. Unknown states of nature treated both in the direct 
and figurative meaning (games against nature). 

The latter under consideration here covers many practical 
situations and with respect to water resource systems can imply 
uncertainty in data on water requirements, hydrology, precipita- 
ti.on, capital and operating costs etc. With some accuracy we can 
describe the variations of these data in terms of uncert-ain para- 
meters of a system. Following [2,31 we can distinguish two such 
kinds of uncertainty: 

1 The parameters of the system are stochastic. Though 
their true values are unknown, the decision maker has, 
however, some knowledge of these parameters in terms 
of probability (type of distribution, mean, variance etc). 

2. The system's parameters are deterministic, but unknown. 
In this case t.he decision maker is aware only of the 
d-omain of allowable parameters. 

Only the second case, referred to as complete uncertainty in 
parameters, is discussed below for two reasons. Sometimes it is 
impossible tc determine the probability distributions for some 
parameters for lack of either the requisite information or the 
time to analyze it all. On the other hand, decision making in 



planning. often implies the use of guaranteed strategies (minimax 
or maximin) which are determined only by the '*worst" values of 
parameters and do not depend on their probability distributions. 

To a great extent the topic of this paper is closely connected 
with such notions as stability, sensitivity, robustness, resilience 
and adaptivity; all of them characterize the properties of the 
systems under uncertainty. In essence, triplet stability, sensi- 
tivity and robustness are interchangeab1.e notions [2,4,51. The 
difference between them, if any, is in the type of systems or 
problems for which one or another notion is used. 

Historically, the concept of stability is chiefly applied to 
the study of dynamic systems [6] or to analysis of the computa- 
tional and analytic algorithms [ 7 ] .  Anyhow, the stability is 
identified with the continuity of some system criterion with 
respect to variations in data. The concept of sensitivity is 
used mostly for automatic control systems [8] and the static or 
dynamic economic models, in particular for the planning models 
of water resource systems [9], when quantitatively analyzins the 
system response to the variations in some parameters. 

As fol.lows from [ 4,10 ] the concept of robustness originated 
in mathematical statistics is identical with insensitivity. 
Perhaps the term "robustness" is more convenient when dealing 
with uncertainty in the broad sense, for example, in the case 
of unknown s,tructural properties of a system. None of the three 
notions above is quantitative and, therefore, each of them should 
be associated. with a respective index or measure. 

In a certain sense both resilience and adaptivity characterize 
the same property of a system under uncertainty--the ability of 
a system to adapt itse1.f to some changes in data or structure and 
in doing so maintain the desirable characteristics [2,11,121. 
The concept of resilience relates chiefly to ecological systems 
[13] whereas adaptivity relates chiefly to automatic control 
systems [14] . 

For the present, the discussion is confined to a study of 
questions related to sensitivity using this term when analyzing 
a system under uncertainty, and to robustness preferring this 
term when synthesizing a system with the desirable characteristics. 
Sometimes for explanatory purposes, we will refer to the Silistra 
Case Study [15]. 

SENSITIVITY ANALYSIS 

Up-to-date simulation or optimization techniques for planning 
complex water resource systems [9,16] are unthinkable without more- 
or-less detailed sensitivity analysis under uncertainty. As 
stated above, we are dealing with static, deterministic models for 
planning water resource system having unknown parameters. By 
sensitivity of a system we mean the response of a system criterion 
to the variations in some parameters. 



To be more specific, a rather general optimization model for 
planning a water resource system (see for example [ 9 1 )  will be 
considered. In a very aggregated form it can be presented as 
follcws: 

min I (x,a) 
X 

where x is the n-dimensional vector of decisions; a is the 
n-dimensional vector of unknown parameters; I(x,a) is the given 
objective function, continuous and differentiable in x and a; 
A and G(a) are the given sets in m- and n-dimensional spaces 
respectively. Moreover, the latter set depends contjnuously on 
the vector parameter a. Finally, Fk is the sensitivity criterion 
given by the function fk(x,a), continuous and differentiable in 
x and a. As a rule, the objective function (x,a).is one of the 
sei~sitivity criteria. The relation (2) includes physical, bud- 
getary, institutional, water demands' constraints, etc-. 

Keeping in mind the relations (4) we can now quantify the 
sensitivity of criterion Fk with respect to the variations in 
parameter a. Usually, the measure for sensitivity is defined in 
the vicinity of the nominal or design value a* of parameter a 
with respect to each its component ai as follows: 

where aFk/aat is a partial derivative of Fk with respect to ai. 
Conventionally called a sensitivity coefficient, S' presents 
the fractional change in criterion Fk divided by tke fractional 
change in ai. However, for evaluation of sensitivity coefficients 
by the relations (5) we should specify the form of optimal deci- 
sions. 

The point is that the relations (1)-(3), as they are, do 
not yet define an optimization problem, unless we choose one of 
the following alternatives for decision making. 



I. The optimal decision x O  (a) is permitted to be a functjon 
of parameter a. Actually, we are dealing with the problem of 
parametric nonlinear programming [17]. Until now this branch of 
mathematical programming has been relatively weakly developed. 
The computational algorithms here are available only for the 
specific problems of parametric linear programming. Using the 
relation (5) the sensitivity coefficient sk can be evaluated in 
the following way: 

where the symbol (a* means that the right hand side of (6) is 
evaluated under a=a*. By saying optimal sensitivity we mean 
the case described here. 

11. The optimal decision x* does not depend on the para- 
meter a and is determined by solving the usual optimization 
problem (1)- (3) where I (x,a) = I (x,a*) by definition. Here 
many well-elaborated methods of constrained optimization can be 
used [ 181 . The relation (5) gives the sensitivity coefficient. 

In this case we are talking about nominal sensitivity. 

To illustrate these two types of sensitivity the Silistra 
water supply model set out in [I51 has been considered. One of the 
most important unknown parameters in this least-cost model is the 
price of lands which have been submerged by reservoirs. Figure 1 
shows the variation in total cost per year associated with the 
establishment of a water supply system. This results from the 
change in price of submerged lands. It turns out that the optimal- 
and nominal-sensitivity coefficients are identical and eq~<?.l 0.206. 

SYNTHESIS OF ROBUST SYSTEMS 

We will try here to formulate a few meaningful problems of 
synthesizing a water resource system to be robust with respect to 
the uncertainty in parameters. In doing so, the objective is to 
reduce the uncertainty. 



total cost = 21.6 . lo6 lv/year 

price of lqnds = 0.4 lo6 lv/ha 

optiqal sensitivity 

-0.5 0 0.5 

,fractional change in land price 

Figure 1 

Sensitivity of Total Cost of Silistra's 

Water Supply System 



In the previous section we briefly discussed the two possible 
alternatives for optimal decisions. Alternative I (i. e. , x0 (:a) ) 
is hardly of interest from the point of view of reducing the 
uncertainty. Indeed, knowing the optimal decision xO(a) and, 
therefore, the objective function I (a) = I (xO (a) ,a) and the 
sensitivity-analyzed criteria Fk (a) = fk (xO (a) ,a) (k=l , .. - , R) 
is of importance only for justification of the decisions made or, 
in the case of high system sensitivity with respect to the varia- 
tions in parameters for determining the requirements of accuracy 
of informati.on about these parameters. 

On the other hand, the alternative I1 (i.e., x*) covers many 
practical cases of decision-making under uncertainty. Indeed, 
the plznning decisions are made, as a rule, proceeding from the 
expected values of parameters before they are realized. Under 
these conditions the optimal decision X* must be either made 
in such a way that the water resource system be of low sensitivity 
with respect to variations in unknown parameters ordetermined by 
the "worst" combination of parameters in the domain (3). The 
problems of synthesis -of robust systems-stated below relate just 
to alternative 11. In doing so, we have tried not only to state 
a problem, but to formulate it in a form allowing the use of 
well-known optimization techniques. 

AdmissibZe Properties of Robustness 

Let us assume that we make decisions being based only on the 
nominal value a* of parameter a. Of course we would like 
simultaneously both to minimize the objective function and to 
provide the least system sensitivity. In actual fact this is 
nothing more than a multicriterion optimization problem. To state 
it correctly we should suggest some compromise settlement. In 
particular, one of the possible ways to reduce the parametric 
uncertainty is to reqckre that the criteria (4) be of guaranteed 
sensitivity with respect to the variations in parameters. Following 
[71 we can express these requirements mathematically as follows: 

where bk is the prespecified upper limit for the sensitivity 
coefficient S k .  

The relations ( 8 )  can be t-reated as a set of additional 
constraints on the decision vector x. In such a way we can 
formulate the following problem of synthesis of the robust systems. 

Problem 1. Find the optimal decision xr minimizing the 
ob jecti.ve function I (x, a* 1 subject to the conditi.ons (2) , (3) 
and (8) . 



Formally, this problem has been formulated in the terms of 
a problem of mathematical programming, because the relations ( 8 )  
are ordinary constraints on the decision variables x,, ..., 
Therefore, for its solving we can use methods of constrained xn ' 

optimization [18]. It should be stressed that the sought-for 
decision xr guarantees the admissible properties of robustness 
(in the sense of (8)) onlg locally, i.e., in the vicinity of the 
nominal parameter value a . 

Minimax Decisions 

The principally different approach to optimization of the 
water resource systems with unknown parameters is based on the 
use of the concept of guaranteed/minimax (or maximin) strategies-- 
the decisions determined by the "worst" combination of the para- 
meters a l ,  ..., am in domain (3). In other words, we highlight the 
global variations in unknown parameters. To simplify matters, we 
will here consider the single sensitivity criterion--the objective 
function ~(x,a).  As shown in [3,19], a distinction is made between 
the following two principles in minimax-decision making under 
uncertainty. 

1. Pessimistic minimax decisions. Under parametric 
uncertainty this principle can be expressed in the following way. 
Now the objective function E (x) is determined by the "worst" 
value of parameter a and therefore does not depend on a, i.e. 

E(x) = max I(x,a) 
a.01 

If I(x,a) is the total cost associated with the creation of 
a water resource system under the decision x, then E ( x )  
is the highest cost of this project. If the water resource planner 
proceeds from the above criterion of decision making, his strategy 
is said to be very cautious. Scmetimes this kind of decision is 
necessary in planning water resource systems. 

2. Minimax regret decisions. The main idea of this principle 
formulated by Savage, consists in the following. If the true 
value of parameter a had been known a priori, we would have chosen 
the best decision xO(a) and attained the least value I(a) = 
I (xo (a) ,a) for objective function. In realitr we would like to 
be as near as possible to the best decision x (a) in the sense 
of optimization criterion. The measure for our regret the best 
decision xO(a), if we fix some allowable decision x, is the 
difference I (x,a) - I (a) . According to Savage's principle the 
criterion for decision making is the maximum regret, i.e. 

This principle in planning-decision making iS very frequently 
nsed in practice. 



In both relations (9) and (10) the maximized functions depend 
on x and a and below will be denoted by one symbol H(x,a). 
Therefore, we can formally join both minimax principles. The 
minimax decision Z is determined by minimization of E(x) over 
all the allowable decisions. Thus, we can rigorously formulate 
the following problem of synthesis of the systems being robust 
with respect to unknown parameters. 

Problem 2. Find the minimax decision x such that 

max ~ ( x , a )  = min max H(x,a) 
a X a 

subject to (2) and ( 3 ) .  

Distinct from xr, the minimax decision 2 provides the water 
resource system with the best global properties of robustness. 
A few words should be said about the possible approaches to 
solving this problem which is unconventional at first sight. 
First of all we could use some results of the theory of minimax 
problems [20] . 

Another way is to reduce problem 2 to a problem of mathematical 
programming. To simplify matters the set A is assumed to consist 
of a finite number of points a', ..., ap. Introduce the auxiliary 
variable y. Then it is easy to see that in case of the finite set 
A the initial problem 2 is identical with the following problem 
of mathematical programming: 

minimize y 

subject to x€~(a') 

For its solution, we can use the methods of constrained optimization 
[ I S - ] .  . . 



Two-Stage Process i n  ~ e c i s i o n  Making 

In the concluding part of the paper we will study a 
problem of synthesis of the robust systems under uncertainty when 
making two-stage decisions. Being the simplest case of sequential 
planning, this problem is of great importance for the Silistra 
water supply system [IS]. 

The Silistra irrigation system will be put into operation at 
least by the two stages, I and I1 (see Figure 2). Keeping in mind 
the ten year duration of the planning period, the expedience of 
the project's staging is almost evident. For the Silistra Case 
Study, the decision vector x includes such basic variables of a 
water supply system as capacities of reservoirs and pumping sta- 
tions, and discharge capacities of canals. 

Let x' and x2 be the n, - and ns- dimensional subvectors of 
decisions made at the stages I and I1 respectively, so that the 
union of them is the aggregate vector of decisions x, i.e. 

. . -. -. - - -- . - 

An essenti.al assumption is that once decisions xl and x2 are 
made, they can not be changed during the planning period. We 
should now specify the very concept of uncertainty in systems' 
parameters for a two-stage process of decision making. Let a be 
some typical parameter of a water resource system which takes on 
values in domain (3). The two following points completely 
characterize the kind of parametric uncertainty with which we are 
dealing here : 

1 
a) at stage I of decision making x , the true value of 

parameter a=, is unknown; 2 

b) at stage I1 of decision making x , the true value of 
parameter a is known. 

Let us interpret these points in reference to the example of 
the Silistra water supply model. The price of lands submerged 
by reservoirs is a rather subjective value which can be 
unexpectedly changed in time very much. At the same time the 
costs associated with losses of submerged lands constitute 60%, 
45% and 30% of the total costs of reservoirs 1,2, and 3. 
Therefore, the total cost of the Silistra water supply system is 
very sensitive with respect t.o the price of submerged lands. 
When making the first-stage decision x l ,  the price of lands sub- 
merged by reservoirs 1 and 2 is known, but unknown for reservoir 3. 
The second-stage of decision making x2 is ordinary because we 
deal with the complete certainty--the price of lands submerged by 
reservoir 3 is known. 

The crucial point in this problem is stage I. We have here 
the only unknown parameter, which becomes known at stage 11. 
In other words, two types of information about unknown parameter 
a are available at the first stage: 



Staging Sil istra's Irr igation System 
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A)  a€A,  and 
B) that at stage I1 parameter a wili be known. 

In comparison with the above mentioned problems 1 and 2 
we now have some additional information B which is rather scant 
at first sight. The question is whether it is helpful in reducing 
the uncertainty and, if so, how to use it. If only the information 
A) about parameter a had been available, the decision x1 would be 
obtained from the appropriate analogies of problem 1 or 2. In 
this case the two-stage process in decision making would have 
divided into two unconnected problems. It turns out that 
the availability of information B influences the decision x1 
because we now have at oux disposal the broader choice of the 
decisions x2 which can be adapted to the paranetzr a becominq 
known at the stage 11. Mathematically, this means the decision 
x2 is a function of a. 

Holding to one of the minimax principles above we can 
rigorously formulate the following problem for the two-stage 
process in decision making. 

Problem 3. Find the minimax decisj o m ,  5t1and 2' (a) such that 

max H(P', ji2, a) = min 2 max ~ (x ' ,  x , a) 

a x1,x2 (a) a 
(12) 

subject to (2) and (3). 

This form of the problem is rather inconvenient for numerical 
or analytic solution. In comparison with ( 1.1 ) , the sought-for 
decision g2(a) is a vector function of a rather than a finite 
vector. Formally, thzt means we deal here with a problem of cal- 
culus of variations. Therefore, we will try to reformulate problem 
3 by reducing (12) to am optimality condition such as (IT). 

For this purpose some allowable decision x1  will be ffxed. 
It then follows from (12) that the second-stage decision x must 
be determined by conventional problem 

1 2  min H(x,x ,a)  
2 

X 

subject to (21 for all a€A. Thus, the optimal strategy at the 
stage I1 is a function of x 1  and a, i.e. x2  = f (xl,a). Then the 
condition (12) can be rewritten as follows: 

max ~(%',f(~',a) ,a) = min max ~(x',f(x',a) ,a) , 
a x1 a 

where f(xl,a) is the known function. In principle, the relations 
(11) and (14) are identical. It follows that the problem 3 can be 



solved by the same methods as problem 2. Finally, it should 
be stressed that such a reduction of problem 3 is attained at 
high cost, i.e. by the solution of the oytimi7atic\t> ~ - ~ - c l : - l ~ r n  ( 1  q \  

w i t h  the two  vector parermateus x' and u. 

CONCLUSION 

Thus, the problems 1,2 and 3 discussed above introduce us 
to the problem of the synthesis of water resource systems to be 
robust with respect to the deterministic, unknown parameters. 
Each of these problems is characterized by its own approach to 
reducing the uncertainty in a system's parameters. 

1. Problem 1 is mainly concerned with guaranteeing 
the admissible, local properties of robustness 
of systems in the vicinity of the nominal values 
of unknown parameters. 

2. The solution of problem 2-provides a water 
resource system with the Gxtreme, global properties 
of robustness with respect t.o variations in systems' 
parameters. - 

3. Problem 3 introduces us to the synthesis of robust 
systems under the multistaue Drocess of decision - & 

making. 

Ezch of these problems, especially 2 and 3, needs the 
development of rigorous computational or analytic alqorithms 
for its solution. 
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