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ABSTRACT

This paper discusses the problem of planning water resource
systems to be robust with respect to uncertainties. The main goal
is to submit several reasonable statements about optimization
problems in this field. Some properties of water resource systems
under uncerteinty are discussed briefly. The paper by no means
pretends to encompass the complete scope of the problem. At
best it provides an introduction to the problem encountered by
the static models in the planning of water resource systems with
unknown deterministic parameters.
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SENSITIVITY OF WATER RESOURCE SYSTEMS
UNDER UNCERTAINTY: ANALYSIS AND SYNTHESIS

V. Chernyatin

INTRODUCTION

Because uncertainty is such a broad concept it is necessary
tc say a few words about the kind of uncertainty we are dealing
with here. As an abstraction of unknown reality, uncertainty can
be caused by two facters [1]:

1. Deliberate decisions made by forces with wholly
or partially opposite interests (strategic games).
2. Unknown states of nature treated both in the direct
and figurative meaning (games against nature).

The latter under consideration here covers many practical
situations and with respect to water resource systems can imply
uncertainty in data on water requirements, hydrology, precipita-
tion, capital and operating costs etc. With some accuracy we can
describe the variations of these data in terms of uncertain para-
meters of a system. Following [2,3] we can distinguish two such
kinds of uncertainty:

1. The parameters of the system are stochastic. Though
their true values are unknown, the decision maker has,
however, some knowledge of these parameters in terms
of probability (type of distribution, mean, variance etc).

2. The system's parameters are deterministic, but unknown.

In this case the decision maker is aware only of the
domain of allowable parameters.

Only the second case, referred to as complete uncertainty in
parameters, is discussed below for two reasons. Sometimes it is
impossible tc determine the probability distributions for some
parameters for lack of either the requisite information or the
time to analyze it all. On the other hand, decision making in
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planning often implies the use of guaranteed strategies (minimax
or maximin) which are determined only by the "worst" values of
parameters and do not depend on their probability distributions.

To a great extent the topic of this paper is closely connected
with such notions as stability, sensitivity, robustness, resilience
and adaptivity; all of them characterize the properties of the
systems under uncertainty. In essence, triplet stability, sensi-
tivity and robustness are interchangeable notions [2,4,5]. The
difference between them, if any, is in the type of systems or
problems for which one or another notion is used.

Historically, the concept of stability is chiefly applied to
the study of dynamic systems [6] or to analysis of the computa-
tional and analytic algorithms [7]. Anyhow, the stability is
identified with the continuity of some system criterion with
respect to variations in data. The concept of sensitivity is
used mostly for automatic control systems [8] and the static or
dynamic economic models, in particular for the planning models
of water resource systems [9], when quantitatively analyzing the
system response to the variations in some parameters.

As follows from [ 4,10 ] the concept of robustness originated
in mathematical statistics is identical with insensitivity.
Perhaps the term "robustness" is more convenient when dealing
with uncertainty in the broad sense, for example, in the case
of unknown structural properties of a system. None of the three
notions above is quantitative and, therefore, each of them should
be associated with a respective index or measure.

In a certain sense both resilience and adaptivity characterize
the same property of a system under uncertainty--the ability of
a system to adapt itself to some changes in data or structure and
in doing so maintain the desirable characteristics [2,11,12].
The concept of resilience relates chiefly to ecological systems
[13] whereas adaptivity relates chiefly to automatic control
systems [14]. '

For the present, the discussion is confined to a study of
questions related to sensitivity using this term when analyzing
a system under uncertainty, and to robustness preferring this
term when synthesizing a system with the desirable characteristics.
Sometimes for explanatory purposes, we will refer to the Silistra
Case Study [15].

SENSITIVITY ANALYSIS

Up-to-date simulation or optimization techniques for planning
complex water resource systems [9,16] are unthinkable without more-
or-less detailed sensitivity analysis under uncertainty. As
stated above, we are dealing with static, deterministic models for
planning water resource systems having unknown parameters. By
sensitivity of a system we mean the response of a system criterion
to the variations in some parameters.
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To be more specific, a rather general optimization model for
planning a water resource system (see for example [9]1) will be

considered. In a very aggregated form it can be presented as
follows:

min I (x,a) (1)
X

x € G(a) (2)
a A (3)

Fk = fk(x,a) , k=1,...,% (4)

where x is the n-dimensional vector of decisions; a is the
m-dimensional vector of unknown parameters; I(x,a) is the given
objective function, continuous and differentiable in x and a;

A and G(a) are the given sets in m- and n-dimensional spaces
respectively. Moreover, the latter set depends continuously on
the vector parameter o. Finally, Fx is the sensitivity criterion
given by the function fk(x,0), continuous and differentiable in

x and a. As a rule, the objective function (x,0) - -is one of the
sensitivity criteria. The relation (2) includes physical, bud-
getary, institutional, water demands'' constraints,. eétc.

Keeping in mind the relations (4) we can now gquantify the
sensitivity of criterion Fy with respect to the variations in
parameter o. Usually, the measure for sensitivity is defined in
the vicinity of the nominal or design value o* of parameter a
with respect to each its component oj as follows:

: Q. BFk
k= ’ i=1,---,m (5)

Fk Bai

where J3F /aai is a partial derivative of F, with respect to a..
Conventidnally called a sensitivity coefficient, S} presents
the fragtional change in criterion F, divided by the fractional
change in aj. However, for evaluatidn of sensitivity coefficients
by the relations (5) we should specify the form of optimal deci-
sions.

The point is that the relations (1)-(3), as they are, do

not yet de?ine an optimization problem, unless we choose one of
the following alternatives for decision making.



I. The optimal decision x°(a) is permitted to be a: function
of parameter a. Actually, we are dealing with the problem o
parametric nonlinear programming [17]. Until now this branch of
mathematical programming has been relatively weakly developed.
The computational algorithms here are available only for the
specific problems of parametric linear programming. Using the
relation (5) the sensitivity coefficient Si can be evaluated in
the following way:

(] n [+ é
Si - oj ofx (x°,a) N Z afk (x°,a) dx‘_'I (6)
. 1 j=l o

where the symbol la* means that the right hand side of (6) is
evaluated under a=a*. By saying optimal sensitivity we mean
the case described here. ‘

II. The optimal decision x* does not depend on the para-
meter o and is determined by solving the usual optimization
problem (1)-(3) where I(x,0) = I(x,a*) by definition. Here
many well-elaborated methods of constrained optimization can be
used [18]. The relation (5) gives the sensitivity coefficient.

*
a4 0fx (x*,a%*)

S, = (7)
fx (x*, o¥) 0a{

A -

In this case we are talking about nominal sensitivity.

To illustrate these two types of sensitivity the Silistra
water supply model set out in ([15] has been considered. One of the
most important unknown parameters in this least-cost model is the
price of lands which have been submerged by reservoirs. Figure 1
shows the variation in total cost per year associated with the
establishment of a water supply system., This results from the
change in price of submerged lands. It turns out that the optimal-

and nominal-sensitivity coefficients are identical and equal 0.206.

SYNTHESIS OF ROBUST SYSTEMS

We will try here to formulate a few meaningful problems of
synthesizing a water resource system to be robust with respect to
the uncertainty in parameters. In doing so, the objective is to
reduce the uncertainty.
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Figure 1

Sensitivity of Total Cost of Silistra's
Water Supply System
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In the previous section we briefly discussed the two possible
alternatives for optimal decisions. Alternative I (i.e., x°(a))
is hardly of interest from the point of view of reducing the
uncertainty. Indeed, knowing the optimal decision x° (o) and,
therefore, the objective function I(a) = I(x°(a),a) and the
sensitivity-analyzed criteria Fg(a) = fi(x°(a),a) (k=t1,...,2)
is of importance only for justification of the decisions made or,
in the case of high system sensitivity with respect to the varia-
tions in parameters for determining the requirements of accuracy
of information about these parameters.

On the other hand, the alternative II (i.e., x*) covers many
practical cases of decision-making under uncertainty. Indeed,
the planning decisions are made, as a rule, proceeding from the
expected values of parameters before they are realized. Under
these conditions the optimal decision xX* must be either made
in such a way that the water resource system be of low sensitivity
with respect to variations in unknown parameters or determined by
the "worst" combination of parameters in the domain (3). The
problems of synthesis of robust systems stated below relate just
to alternative II. In doing so, we have tried not only to state
a problem, but to formulate it in a form allowing the use of
well-known optimization techniqgues.

Admissible Properties of Robustness

Let us assume that we make decisions being based only on the
nominal value o* of parameter o. Of course we would like
simultaneously both to minimize the objective function and to
provide the least system sensitivity. In actual fact this is
nothing more than a multicriterion optimization problem. To state
it correctly we should suggest some compromise settlement. In
particular, one of the possible ways to reduce the parametric
uncertainty is to require that the criteria (4) be of guaranteed
sensitivity with respect to the variations in parameters. Following
[7)] we can express these requirements mathematically as follows:

afk (x,a*) (8)
of —— = b f (x,0%) ,
004

k=1,...,2

i=1,...,m

where by is the prespecified upper limit for the sensitivity
coefficient St.

The relations (8) can be treated as a set of additional
constraints on the decision vector x. In such a way we can
formulate the following problem of synthesis of the robust systems.

Problem 1. Find the optimal decision x¥ minimizing the
objective function I (x,a*) subject to the conditions (2), (3)
and (8).
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Formally, this problem has been formulated in the terms of
a problem of mathematical programming, because the relations (8)
are ordinary constraints on the decision variables X7 --+s X
Therefore, for its solving we can use methods of constrained
optimization [18]. It should be stressed that the sought-for
decision x¥ guarantees the admissible properties of robustness
(in the sense of (8)) onl¥ locally, i.e., in the vicinity of the
nominal parameter value a¥.

Minimax Decisions

The principally different approach to optimization of the
water resource systems with unknown parameters is based on the
use of the concept of guaranteed/minimax (or maximin) strategies--
the decisions determined by the "worst" combination of the para-
meters o,,...,am in domain (3). In other words, we highlight the
global variations in unknown parameters. To simplify matters, we
will here consider the single sensitivity criterion--the objective
function I(x,a). As shown in [3,19], a distinction is made between
the following two principles in minimax-decision making under
uncertainty.

1. Pessimistic minimax decisions. Under parametric
uncertainty this principle can be expressed in the following way.
Now the objective function E(x) is determined by the "worst"
value of parameter o and therefore does not depend on o, i.e.

E(x) =max I(x,a) (9)
aEA -

If I(x,a) 1s the total cost associated with the creation of

a water resource system under the decision x, then E(x)

is the highest cost of this project. If the water resource planner
proceeds from the above criterion of decision making, his strategy
is said to be very cautious. Scmetimes this kind of decision is
necessary in planning water resource systems.

2. Minimax regret decisions. The main idea of this principle
formuleted by Savage, consists in the following. If the true
value of parameter o had been known a priori, we would have chosen
the best decision x°(a) and attained the least value I(a) =
I(x°(a),a) for objective function. 1In realitg we would like to
be as near as possible to the best decision x° (o) in the sense
of optimization criterion. The measure for our regret the best
decision x°(a), if we fix some allowable decision x, is the
difference I(x,a) - I{(a). According to Savage's principle the
criterion for decision making is the maximum regret, i.e.

E(x) =max [I(x,a) - I(a)]

oA (10)
This principle in planning-decision making is very frequently
used in practice.



In both relations (9) and (10) the maximized functions depend
on x and o and below will be denoted by one symbol H(x,a).
Therefore, we can formally join both minimax principles. The
minimax decision X is determined by minimization of E(x) over
all the allowable decisions. Thus, we can rigorously formulate
the following problem of synthesis of the systems being robust
with respect to unknown parameters.

Problem 2. Find the minimax decision X such that

max H(x,o) = min max H(x,a)

a X a (11)

subject to (2) and (3).

Distinct from x%, the minimax decision x provides the water

resource system with the best global properties of robustness.
A few words should be said about the possible approaches to
solving this problem which is unconventional at first sight.
First of all we could use some results of the theory of minimax
problems [20].

Another way is to reduce problem 2 to a problem of mathematical
programming. To simplify matters the set A is assumed to consist
of a finite number of points a!,...,oP. Introduce the auxiliary
variable y. Then it is easy to see that in case of the finite set
A the initial problem 2 is identical with the following problem
of mathematical programming:

minimize y

subject to x€G ()

H(x,as) <y , s=1,...,p

For its solution, we can use the methods of constrained optimization

[18].
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Two-Stage Process in Decision Making

In the concluding part of the paper we will study a
problem of synthesis of the robust systems under uncertainty when
making two-stage decisions. Being the simplest case of sequential
planning, this problem is of great importance for the Silistra
water supply system [15].

The Silistra irrigation system will be put into operation at
least by the two stages, I and II (see Figure 2). Keeping in mind
the ten year duration of the planning period, the expedience of
the project's staging is almost evident. For the Silistra Case
- Study, the decision vector x includes such basic variables of a
water supply system as capacities of reservoirs and pumping sta-
tions, and discharge capacities of canals.

Let x! and x* be the n; - and n»- dimensional subvectors of
decisions made at the stages I and II respectively, so that the
union of them is the aggregate vector of decisions x, i.e.

1 2
(x ,x ) =x ' n

1 2

An essential assumption is that once decisions x* and x° are
made, they can not be changed during the planning period. We
should now specify the very concept of uncertainty in systems'
parameters for a two-stage process of decision making. Let a be
some typical parameter of a water resource system which takes on
values in domain (3). The two following points completely
characterize the kind of parametric uncertainty with which we are
dealing here:

a) at stage I of decision making xl, the true value of
parameter ofA, is unknown;

b) at stage II of decision making x , the true value of
parameter o is known. "

Let us interpret these points in reference to the example of
the Silistra water supply model. The price of lands submerged
by reservoirs is a rather subjective value which can be
unexpectedly changed in time very much. At the same time the
costs associated with losses of submerged lands constitute 60%,
45% and 30% of the total costs of reservoirs 1,2, and 3.
Therefore, the total cost of the Silistra water supply system is
very sensitive with respect to the prlce of submerged lands.

When making the first-stage decision x', the price of lands sub-
merged by reservoirs 1 and 2 is known, but unknown for reservoir 3.
The second-stage of decision making x? is ordinary because we

deal with the complete certainty--the price of lands submerged by
reservoir 3 is known.

The crucial point in this problem is stage I. We have here
the only unknown parameter, which becomes known at stage II.

In other words, two types of information about unknown parameter
o are available at the first stage:
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Figure 2
Staging Silistra's Irrigation System
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A) a€A, and
B) that at stage II parameter a will be known.

In comparison with the above mentioned problems 1 and 2
we now have some additional information B which is rather scant
at first sight. The question is whether it is helpful in reducing
the uncertainty and, if so, how to use it. 1If only the information
A) about parameter o had been available, the decision x' would be
obtained from the appropriate analogies of problem 1 or 2. 1In
this case the two-stage process in decision making would have
divided into two unconnected problems. It turns out that
the availability of information B influences the decision x!
because we now have at our disposal the broader choice of the
decisions x* which can be adapted to the parameter « becoming
known at the stage II. Mathematically, this means the decision
x% is a function of a.

Holding to one of the minimax principles above we can
rigorously formulate the following problem for the two-stage
process in decision making.

Problem 3. Find the minimax decisions %'and %% (a) such that

max H(%X!, %2, a) = min max H(x!, x2, a) (12)

a x!,x?% (a) a

subject to (2) and (3).

This form of the problem is rather inconvenient for numerical
or analytlc solution. In comparison with (11), the sought-for
decision %%(a) is a vector function of o rather than a finite
vector. Formally, that means we deal here with a problem of cal-~
culus of variations. Therefore, we will try to reformulate problem
3 by reducing (12) to an optimality condition such as (1Il).

For this purpose some allowable decision x' will be fixed.

It then follows from (12) that the second-stage decision x? must
be determined by conventional problem

m%n H(x',x%,a) (13)
X

subject to (2) for all a€A. Thus, the optimal strategy at the
stage II is a function of x! and o, i.e. x? = f(x!,a). Then the
condition (12) can be rewritten as follows:

max H(%X!,£(%',0),a) = min max H(x!,f(x!,a),a) ,
o x o« (14)

where f(x',a) is the known function. 1In principle, the relations
(11) and (14) are identical. It follows that the problem 3 can be
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solved by the same methods as problem 2. Flnally, it should

be stressed that such a reduction of problem 3 is attained at
high cost, i.e. by the solution of the optimization problem (17
with the two vector paramaters x  and o.

CONCLUSION

Thus, the problems 1,2 and 3 discussed above introduce us
to the problem of the synthesis of water resource systems to be
robust with respect to the deterministic, unknown parameters.
Each of these problems is characterized by its own approach to
reducing the uncertainty in a system's parameters. - e

1. Problem 1 is mainly concerned with guaranteeing
the admissible, local properties of robustness
of systems in the vicinity of the nominal values
of unknown parameters.

2. The solution of problem 2 provides a water
resource system with the extreme, global properties
of robustness with respect to variations in systems'
parameters.

3. Problem 3 introduces us to the synthesis of robust
systems under the multlstage process of decision

maklng

Each of these problems, especially 2 and 3, needs the
development of rigorous computatlonal or analytic algorithms
for its solution. ‘
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