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FOREWORD 

The principal aim of health care research at IIASA has 
been to develop a family of submodels of national health care 

, systems for use by health service planners. The modeling work 
is proceeding along the lines proposed in the Institute's cur- 
rent Research Plan. It involves the construction of linked 
submodels dealing with population, disease prevalence, resource 
need, resource allocation, and resource supply. 

This paper is an output of a collaboration between two 
Areas at IIASA. It describes how a health resource allocation 
model, developed in the Health Care Systems Task of the Human 
Settlements and Services Area, may be solved by using non- 
differentiable optimization techniques studied in the Optimiza- 
tion Task of the System and Decision Sciences Area. 

Related publications in Health Care Systems and in Non- 
differentiable Optimization are listed at the end of this report. 

Andrei Rogers 
Chairman 
Human Settlements 
and Services Area 

Andrzej Wierzbicki 
Chairman 
System and Decision 
Sciences Area 





An example of a health resource allocation model, solved 
previously by piecewise linear approximation with data from 
Devon, U.K., is solved using nondifferentiable optimization 
(NDO). The example illustrates a new application for NDO, 
and the novel approach makes clearer the workings of the model. 
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NONDIFFEZENTIABLE OPTIMIZATION 
PROMOTES HEALTH CARE 

David Hughes, Evgeni Nurminski, and Geoff Royston 

1 . INTRODUCTION 

Health care systems (HCS) and nondifferentiable optimization 

(NDO) are both studied at IIASA. Those who study HCS (like the 

first author) seek to model the features of health care systems 

that are common to different countries, so as to assist those 

who plan health services. The mathematicians interested in NDO 

(like the second author) seek to extend the classical optimi- 

zation techniques to functions that have "nonsmooth" regions 

where no unique gradient can be defined. Shigan et a1 (1979) 

describe recent progress at IIASA in HCS modelling. The papers 

from a recent IIASA workshop on WDO were brought together by 

Lemarechal and Mifflin (1978) . 
This paper reports how a health resource allocation model 

used by the third author was solved by minimizing a function 

with points of nondifferentiability. Section 2 describes how 

an example of the model arose in the joint strategic planning 

of health and personal social services in Devon, U.K., a county 

with a population of about 1 million. Section 3 formulates 

the model as a problem for NDO. Ways to obtain numerical solu- 

tions are reviewed in Section 4 which compares the solution of 

the example by NDO and by another method based on linear approxi- 

mation. Section 5 concludes. 



2 .  rlESOUxCE ALLOCATION i~IODELLI;W3 IN DEVON 

Devon is an area in the southwest of England, in which 

health services (e.g. hospitals, clinics) are managed by the 

Area Health ~uthority (AHA), and personal social services (e.g. 

residential homes, social workers) are managed by the Local 

Authority (LA). Many individuals receive both sorts of services 

which often overlap. After surgery, for example, some hospital 

patients may be discharged earlier if suitable nursing support 

is available for them at home. Elderly people may receive 

equivalent care in residential homes or in geriatric hospitals. 

The problem for Devon is to provide a balanced mix of health 

and personal social services within constraints on total resources. 

McDonald et a1 (1974) describe a model to help in this 

task. It models the balance chosen by the many agents in the 

HCS (doctors, nurses, social workers, etc.) between the use 

of health services and personal social services for different 

categories of patients. The model's underlying hypothesis is 

that the aggregate behavior of these agents can be represented 

as the maximization of a utility (or inferred worth) function, 

whose parar~~eters can be estimated from the results of previous 

choices. If these parameters do not change with time, the 

model can be used to simulate how future resource levels will 

be allocated in the HCS. Furthermore, because the underlying 

hypothesis is an optimistic one, the model may suggest reallo- 

cations. The full model is quite sophisticated with several 

special features. Only a simple version is reported here, both 

to clarify the presentation and because the example is one that 

actually arose in using the model to assist health care planning 

in Devon. 

Table 1 categorizes elderly patients (65 or older) under 

17 headings according to their housing, social isolation, physical 

disability, mobility and mental state. This categorization is 

part of a more detailed classification designed in conjunction 

with case workers who meet the patients. Table 2 lists 6 re- 

sources used in the domiciliary care of these patients. The 

first two resources (psychiatric and geriatric day hospitals) 
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Table 1.  Seventeen categories of elderly patients. 

Defining Factors 
- 

Patient Housing Social Physical Mobility Degree of 
category condition isola- disability dementia 

tion in mental 
(1) (2) (3) ( 4 )  state 

1 poor/good mild very severe severe/mild severe 

2 poor/good mild severe mild severe 

3 poor/good mild very severe severe/mild mild 

4 poor/good severe severe mild/good mild 

5 poor/good mild severe mild/good mild 

6 poor/good severe mild mild/good mild 

7 poor/good mild mild mild/good mild 

8 poor mild very severe severe/mild none 

9 good 

10 poor 

1 1  good 

12 poor 

13 good 

14 poor 

15 good 

16 poor 

17 good 

mild very severe 

severe severe 

severe severe 

mild severe 

mild severe 

severe mild 

severe mild 

mild mild 

mild mild 

none 

none 

none 

none 

none 

none 

none 

none 

none 

(1) Good housing means easy access to inside toilet and hot 
water. Poor housing means neither. 

(2) Mild social isolation means not living alone. Severe 
social isolation means living alone. 

(3) &lild - unable to carry out household care. Severe -unable 
to carry out household and personal care. Very severe - 
incontinent and/or unable to feed. 

(4) i4ild - can get around house, or can get out of house with 
aids or personal assistance. Severe - chairfast or bedfast. 



Table 2. Six resources for domiciliary care. 

Name of resource Unit of resource 

Psychiatric day hospital 

Geriatric day hospital 

Home nurse 

Day center 

Home help 

ideals 

day place 

day place 

WTE ' 
place 

W T E ~  

service 

IWTE = whole time equivalent (many nurses work only part-time). 



a r e  prov ided by t h e  AHA; t h e  o t h e r s  by t h e  LA. Other  i n s t i t u -  

t i o n a l  r e s o u r c e s  (such  a s  i n - p a t i e n t  h o s p i t a l s  and r e s i d e n t i a l  

homes) a r e  a l s o  used by e l d e r l y  p a t i e n t s  i n  Devon, b u t  f o r  t h i s  

e x e r c i s e  t h e i r  u s e  was supposed t o  be f i x e d .  

P a t i e n t s  i n  each  o f  t h e  17 c a t e g o r i e s  cou ld  r e c e i v e  many 

d i f f e r e n t  combinat- ions o f  t h e  6 r e s o u r c e s .  Tab le  3 ,  however, 

d e f i n e s  up t o  4 a l t e r n a t i v e  modes o f  c a r e  f o r  each  c a t e g o r y .  

These a l t e r n a t i v e s ,  which d e r i v e  from d i s c u s s i o n s  w i t h  c o n s u l t a n t s ,  

s e n i o r  n u r s e s  and o t h e r  p r o f e s s i o n a ~ s ,  i n d i c a t e  how much o f  each  

r e s o u r c e  might  b e  used t o  p rov ide  e q u i v a l e n t  l e v e l s  o f  c a r e  f o r  

each  p a t i e n t .  I n  a s e n s e ,  t h e  r e s o u r c e  l e v e l s  i n  t h e s e  a l t e r -  

n a t i v e  "packages"  r e p r e s e n t  i d e a l  s t a n d a r d s  which d o c t o r s  would 

l i k e  t o  a t t a i n .  Un fo r t una te l y ,  t h e s e  s t a n d a r d s  l i e  w e l l  above 

what can c u r r e n t l y  be  a f f o r d e d .  Devon AHA and Devon LA want 

t o g e t h e r  t o  p rov ide  a mix of  h e a l t h  and p e r s o n a l  s o c i a l  s e r v i c e s  

which t hey  can  a f f o r d  and w i t h  which t h e  HCS can  approach t h e  

i d e a l  s t a n d a r d s  f o r  a l a r g e  number o f  p a t i e n t s .  The model was 

used t o  a s s i s t  this d e b a t e  by s i m u l a t i n g  who g e t s  what.  

I n  o r d e r  t o  set  up some mathemat ics ,  w e  use  t h e  i n d i c e s  

i = 1 , 2  .... 17 p a t i e n t  c a t e g o r i e s  

k = 1 , 2  .... 6 r e s o u r c e  t y p e s  

R = 1 , 2  . . . . 4 c a r e  modes 

and l a b e l  t h e  numbers i n  Tab le  3 a s  

- 
'ikR 

- t h e  i d e a l  l e v e l s  o f  r e s o u r c e  t y p e  k 

i n  c a r e  mode R f o r  p a t i e n t  c a t e g o r y  i. 

Because of  r e s o u r c e  c o n s t r a i n t s ,  r a t h e r  lower r e s o u r c e  l e v e l s  

u ikR a r e  a c t u a l l y  ach ieved ,  and i t  i s  t h e s e  t h a t  t h e  model 

seeks  t o  p r e d i c t .  I t  a l s o  p r e d i c t s  

X - - 
i 2  t h e  numbers of  p a t i e n t s  i n  c a t e q o r y  i 

who r e c e i v e  c a r e  i n  node R 



Table  3 .  Resources needed by e l d e r l y  p a t i e n t s  i n  a l t e r n a t i v e  
modes o f  c a r e .  

P a t i e n t  Amount o f  r e s o u r c e  needed p e r  p a t i e n t  p e r  yea r  1 
ca tego ry  o f  
a s  d e f i n e d  c a r e  Psych. Geriatr ic Home Day Home Meals 
i n  Tab le  1 day day n u r s e  c e n t e r  h e l p  

h o s p i t a l s  h o s p i t a l s  

con t i nued  



Tab le  3  con t i nued  

P a t i e n t  'Ode Amount o f  r e s o u r c e  needed p e r  p a t i e n t  p e r  y e a r 1  
c a t e g o r y  o f  
a s  d e f i n e d  c a r e  Psych. G e r i a t r i c  Home Day Home Meals 
i n  Tab le  1  day day n u r s e  c e n t e r  h e l p  

h o s p i t a l s  h o s p i t a l s  

 he u n i t s  i n  t h i s  t a b l e  a r e  ( f o r  each r e s o u r c e  r e s p e c t i v e l y )  : 

- d a i l y  a t t e n d a n c e s  (1 p s y c h i a t r i c  day p l a c e  = 500 d a i l y  a t t e n d a n c e s .  

- d a i l y  a t t e n d a n c e s  (1 g e r i a t r i c  day p l a c e  = 1000 d a i l y  a t t e n d a n c e s .  

- v i s i t s  (1  home n u r s e  WTE = 3820 v i s i t s ) .  

- d a i l y  a t t e n d a n c e s  (1  day c e n t e r  p l a c e  = 125 d a i l y  a t t e n d a n c e s ) .  

- hours  (1 home h e l p / w ~ ~  = 1550 hours  

- meals  (1 meals  s e r v i c e  = 1000 m e a l s ) .  



so as to satisfy constraints on the total numbers d of patients i 
in each category receiving care, and the total resources Ak of 

each type available for care, 

Both di and Ak are assumed to be known, and Tables 4 and 5 

give the numbers of elderly patients, and the levels of health 

service and personal social service resources, used in the 

Devon exainple. The former arise from assuming that an approxi- 

mately constant proportion of the elderly need care; the latter 

from.certain assumptionsaboutgrowth in the U.K. health service 

It remains to specify the form of the utility function 

naximized by the model. It is 

where 

and where x,u - - denote {xiit i = 1,2,.., 17, R = 1,2,...,4}, 

{uikRl i = 1,2, ..., 1 7 ,  k = 1,2, ..., 6, R = 1,2, ..., 4),respectively. 

The funciton Z(x,u) - - is 

1) additive across i,k,R. This implies no correlation 

between the objectives of increasing each and every 

2) linearly increasing in x iR ' The extra benefit from 

taking care of one more patient in a particular care 

mode is independent of the number already cared for 

in that mode. 



T a b l e  4 .  Number o f  e l d e r l y  i n  Devon. 

P a t i e n t  Number o f  P a t i e n t  Number o f  
c a t e g o r y  e l d e r l y  p a t i e n t s  c a t e g o r y  e l d e r l y  p a t i e n t s  

T a b l e  5. Nodel  p a r a m e t e r s  f o r  example.  

Resource  R e s o u r c e s  Resource  costs E las t i c i t i es  
t y p e  a v a i l a b l e  i n  ( E  r u n n i n g  ( a s  d e f i n e d  i n  

Devon ( u n i t s  p e r  y e a r )  e q u a t i o n  ( 5 ) )  
as  i n  T a b l e  2 )  



3 )  zero when u ikR equals UikR for all i,k,.t. At this 

point, marginal increases in Z resulting from increasing 

resource levels equal the marginal resource costs Ck. 

1Jormally , U i k ~  < 'ikR for some irk,&, and Z is then 

negative. 

4) monotonically increasing and concave downwards in 

U i k ~  for Bk 5 0. This implies diminishing returns as 

the ideal resource standards are approached. The 

speed with which the returns diminish is measured by 

the power parameters Bk, or the corresponding elasti- 

cities F k' 

5 )  not unlike a similar function defined in the model 

D M 4  (Huqhes and ilierzbicki, 1979). DFtAl.1, however, 

does not incorporate the constraint (1)  and does not 

require MDO. 

idhether the results of maximizing the function Z(x,u), - - 
subject to the constraints of equations (1) and ( 2 ) ,  are good 

predictions of future HCS behavior, depends partly upon the 

two parameters Ck and Fk. The first of these (the marginal 

resource costs) can be estimated by various accounting analyses. 

But the second set of parameters (the elasticities) are much 

harder to choose. In Devon several runs were carried out to 

check the accuracy of models with different parameters in 

reproducing known historical allocations. Table 5 gives the 

vaiues  use^ in our example. 

The assistance provided to Devon was not limited to a couple 

of model runs like this one. Canvin et a1 (1978) describe in 

more detail how the project team worked with the iocal planners. 

In this paper, however, we concentrate on the model, and in 

particular on how to solve it. It is perhaps surprising that 

the maximization of (3) subject to (1) and (2) is not straight- 

forward. The next section explains why. 



3. SOLUTIOiJ OF THE $IODEL 

I n  p u r e l y  mathemat i ca l  terms t h e  problem i s  t o  f i n d  xiR 

and uikR, f o r  a l l  i , k , R ,  s a t i s f y i n g  

t h a t  maximize 

where 

There  are v a r i o u s  p o s s i b l e  approaches ,  o f  which t h e  most elemen- 

t a r y  would be d i r e c t  numer i ca l  s e a r c h .  W e  can ,  however, make 

more u s e  o f  t h e  forms o f  e q u a t i o n s  ( 1 )  - ( 4 ) .  ;Je n o t e ,  f o r  

example, t h a t  e q u a t i o n s  ( 1 )  - ( 3 )  a r e  l i n e a r  i n  xiR, and t h a t  

i f  uike w e r e  known f o r  a l l  i , k , R  t h e  problem would b e  a s imp le  

l i n e a r  program ( L P ) .  U n f o r t u n a t e l y ,  t h e  c o e f f i c i e n t  t e r m s  i n  

e q u a t i o n s  ( 2 )  and ( 3 )  a r e  f u n c t i o n s  o f  t h e  unknown v a r i a b l e s  

u  ikR' But i n  b o t h  e q u a t i o n s  w e  can  make a  p i ecew ise  l i n e a r  

a2prox imat ion  such  as 

by i n t r o d u c i n g  programming v a r i a b l e s  jxikR, j  = 1 ,  ..., 10 ,  t h a t  

s a t i s f y  

- 
: j = j  

j x i ,  = ( - I v i I R  
0 : J + J  I Y i I R  



In theory, LP techniques can then be used. In practice, the 

approach requires a computer program or LP package with special 

features. 

This analysis might suggest that difficulties arise because 

of nonlinearity in equations (2) and (3). In fact, these non- 

linearities can be handled using Lagrange multipliers. Doing 

this, we shall reveal a problem of NDO. 

We formulate the dual problem 

min 4 (A) - 

where 4 (A) is the solution to an internal problem - 

(1) = max max L(x,u,h) 
x>o u10 - - 

in which * denotes the optimal value or function, and 

is the result of adjoining the constraint of equation (2) to 

the function of equation (3) with Lagrange multipliers Ak. 
k = 1,2, ..., 6. We now have three embedded problems which we 

can take in turn, and under certain conditions (proved in the 

Appendix) the solution to this dual problem also solves the 

original problem. 

The first, innermost problem is easy to solve. Find 

u(x,A) so as to - - -  

rnax L(x,u,X) . - - - 
u o  - 





where 

* 
S t r i c t l y ,  t h i s  un ique  s o l u t i o n  f o r  x  - e x i s t s  o n l y  when t h e r e  

is  a s i n g l e  mode i n  each  c a t e g o r y  w i t h  maximum ciR. T y p i c a l l y ,  

however, c a t e g o r i e s  have more t han  one such mode, and i n  such  * 
c i r cums tances  a  un ique  s o l u t i o n  f o r  - x  canno t  b e  found u n t i l  * 
X is  determined.  Neve r the less ,  t h e  r e s u l t  of t h e  max imizat ion - 
i s  u n a f f e c t e d ,  be ing  e q u a l  t o  

There remains t h e  t h i r d  problem o f  choos ing  - X s o  a s  t o  

The d i f f i c u l t y  h e r e  i s  t h a t  sma l l  con t i nuous  changes i n  X ,  - 
wh i l e  caus ing  sma l l  con t i nuous  changes i n  - c,  can  cause  l a r g e  * 
and d i s c o n t i n u o u s  changes i n  t h e  LP s o l u t i o n  f o r  x  - . Because 

o f  t h i s ,  Q(X) - is  a  nonsmooth f u n c t i o n  o f  - A .  Loosely speak ing ,  

it has  " co rne rs "  l i k e  t h e  g raph  i n  F igu re  1 .  S o l u t i o n  methods 

which i g n o r e  t h i s  f a c t  may f a i l ,  e s p e c i a l l y  when t h e  s o l u t i o n  

l i es  on a  co rne r .  What i s  t h e  meaning o f  a  s o l u t i o n  f o r  X on 

a  " co rne r "  o f  @ ( A )  ? I t  means t h a t  more t h a n  one mode i n  each  

c a t e g o r y  has maximun ciR, and p a t i e n t s  i n  t h e s e  c a t e g o r i e s  a r e  

d i v i d e d  between two o r  more modes o f  c a r e .  I t  i s  t h e s e  mixed- * 
mode s o l u t i o n s , i n  which t h e r e  i s  no unique s o l u t i o n  f o r  x  u n t i l  * - 
X i s  found, t h a t  comp l i ca te  t h e  a n a l y s i s .  However, once t h e  - * * 
op t ima l  X i s  found,  t h e  v a l u e s  o f  u  a r e  a l s o  f i x e d  and t h e  - - 
d e t e r m i n a t i o n  o f  which modes a r e  a c t i v e  i n  each  c a t e g o r y  i s  a  

s t r a i g h t f o r w a r d  LP problem, 



X 

Figure 1 .  An example of a nonsmooth function. 



The r e s u l t s  d e r i v e d  above show t h a t  t h e  problem formulated 

a t  t h e  beginning of t h i s  s e c t i o n  can be so lved  by t h e  procedure 

dep ic ted  i n  F igu re  2 .  The two innermost problems a r e  so lved  by 

us ing equa t ions  ( 7 ) ,  ( 1 0 )  and ( 1 2 )  t o  determine @ ( A )  f o r  a  
p a r t i c u l a r  choi-ce of  - A .  The way i n  which an NDO a lgo r i t hm can 

be used t o  f i n d  t h e  va lue  of  - X t h a t  minimizes @ ( A )  - i s  desc r ibed  

i n  t h e  nex t  s e c t i o n .  

4 .  SOLUTION OF THE EXAMPLE 

I n  t h e  p rev ious  s e c t i o n ,  w e  showed how a  s o l u t i o n  t o  t h e  

example g i ven  i n  S e c t i o n  2  can be e a s i l y  found, once w e  have 

a  procedure f o r  f i n d i n g  t h e  - h which s o l v e s  t h e  NDO problem of  

min @(IL) - . 
X L O  - 

Such procedures a r e  ex tens ions  of t h e  procedures used f o r  

d i f f e r e n t i a b l e  op t im iza t i on .  Where t h e  l a t t e r  u s e  a  g r a d i e n t ,  

NDO procedures use  a subgrad ien t  de f i ned  a s  

Unl ike t h e  ' g r a d i e n t ,  t h e  subgrad ien t  i s  no t  unique.  There i s  

a s e t  of suppor t i ng  hyperp lanes a t  any p o i n t  of  n o n d i f f e r e n t i -  

a b i l i t y ,  and t h i s  i s  one of  t h e  a d d i t i o n a l  f e a t u r e s  t h a t  NDO 

procedures must handle .  

Another o b s t a c l e  t o  be overcome i s  t h a t  t h e  subgrad ien t  

does n o t  g e n e r a l l y  tend  t o  ze ro  a s  t h e  s o l u t i o n  i s  approached. 

Th is  makes it d i f f i c u l t  t o  i d e n t i f y  t h e  neighborhood of t h e  

optimum. Furthermore,  t h e  d i r e c t i o n  of -gh i s  n o t  g e n e r a l l y  

one i n  which @ ( A )  - dec reases ,  and a  s i n g l e  member of  a subgrad ien t  

set prov ides  very  s c a n t  in fo rmat ion  about  descen t  d i r e c t i o n s .  

Methods t o  s o l v e  NDO problems began t o  appear  i n  t h e  mid- 

s i x t i e s ,  and B a l i n s k i  and Wolfe ( 1 9 7 5 )  can be recommended 

a s  a  source  of  r e f e r e n c e s  and b a s i c  i deas .  Devon's problem 

was so lved us ing t h e  method descr ibed  i n  Nurminski and 

Zhel ikhovski  ( 1 9 7 4 )  t o  r e g u l a t e  t h e  s t e p  s i z e  i n  a  g e n e r a l i z e d  



F i g u r e  2.  S o l u t i o n  p r o c e d u r e .  
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c l a s s i c a l  d e s c e n t  p rocedure .  Al though t h e  o r i g i n a l  problem 

has  (17*4) + (17*4*6) = 476 v a r i a b l e s ,  t h e  d u a l  problem has  

on l y  6  v a r i a b l e s ,  and hence has  n e g l i g i b l e  s t o r a g e  requ i remen ts .  

The second a u t h o r  wro te  a  computer program -~ - . w i t h  . -  . abou t  - - - 50 FORTRAN 

s t a t e m e n t s ,  which makes r e p e a t e d  c a l l s  o f  a  s u b r o u t i n e  w r i t t e n  

by t h e  f i r s t  a u t h o r  t o  c a l c u l a t e  @ and , i ts  subg rad ien t .  The 

r e s u l t s  t a b u l a t e d  below were found by t h e  IIASA ~DP11/70 mini -  

computer w i t h  U N I X  t ime-shar ing  o p e r a t i n g  system. T h i s  sys tem 

makes convergence t i m e s  d i f f i c u l t  t o  a s s e s s .  Subsequen t l y ,  

however, t h e  computat ions were conf i rmed w i t h  t h e  commerc ia l ly  

a v a i l a b l e  NDO s o l u t i o n  r o u t i n e s  deve loped by Lemarechal (1978) .  

I t  took 0.5 CPU second t o  g e t  a  s o l u t i o n  w i t h  machine p r e c i s i o n  

on an IBM 370/168. 

The same example was a l s o  so l ved  by t h e  t h i r d  a u t h o r  u s i n g  

t h e  p iecew ise  l i n e a r  approx imat ion d e s c r i b e d  a t  t h e  beg inn ing  

o f  S e c t i o n  2 .  The computer package which was used ( c a l l e d  

SCICONIC) had t h e  necessa ry  s e p a r a b l e  programming f a c i l i t y  w i t h  

a s s o c i a t e d  m a t r i x  g e n e r a t i o n  and r e p o r t  w r i t i n g .  S t a r t i n g  from 

t h e  s o l u t i o n  t o  a  s i m i l a r  problem, t h e  c e n t r a l  p a r t  o f  t h e  

SCICONIC s o l u t i o n  ( t h e  s o l u t i o n  o f  t h e  l i n e a r i z e d  problem a s  a  

l a r g e  LP) took  64 i t e r a t i o n s  and  1 .7  CPU seconds;  s l i g h t l y  

l o n g e r  t h a n  t h e  NDO s o l u t i o n .  A s o l u t i o n  from " s c r a t c h "  might  

have t aken  up t o  t w i c e  a s  l ong .  

Tab le  6  g i v e s  t h e  r e s u l t s  o b t a i n e d  bo th  by NDO and by p iece -  

w i s e  l i n e a r  approx imat ion.  Al though t h e  second method n e i t h e r  

u s e s  nor  c a l c u l a t e s  t h e  Lagrange m u l t i p l i e r s  X used by t h e  f i r s t  - 
method, t h e  r e d u c t i o n  f a c t o r s  r o f  e q u a t i o n  ( 8 )  a r e  c a l c u l a t e d  - 
by bo th  methods and p rov ide  a n  e q u i v a l e n t  comparison. W e  s e e  

t h a t  t h e y  a r e  p r a c t i c a l l y  i d e n t i c a l ,  t h e  s m a l l  d i f f e r e n c e s  

( ( 1 % )  probab ly  be ing  due t o  round ing.  W e  conc lude t h a t  b o t h  

methods reached  t h e  same s o l u t i o n .  The a l l o c a t i o n s  o f  p a t i e n t s  

t o  modes o f  care a r e  i d e n t i c a l  i n  1 2  modes and d i f f e r e n t  i n  t h e  

remain ing 5. These d i f f e r e n c e s  a r i s e  n o t  from t h e  d i f f e r e n t  

s o l u t i o n  methods b u t  f rom t h e  d i s c o n t i n u o u s  n a t u r e  o f  t h e  s o l u t i o n  * 
f o r  x - a s  a  f u n c t i o n  of A .  Because t h i s  p a r t i c u l a r  example - 
was p a r t  o f  a  h y p o t h e t i c a l  s c e n a r i o ,  a d i r e c t  v a l i d a t i o n  o f  

t h e s e  p r e d i c t i o n s  f o r  Devon i s  imposs ib le .  However,' s i m i l a r  

r u n s  have shown t h a t  t h e  r e d u c t i o n  f a c t o r s  can be q u i t e  a c c u r a t e l y  



Table 6. Solutions to Devon example by NDO and linear approximation. 

Reduction Factors (rk) 

Solution via NDO Solutions via linear 
approximation 

Resource 
types (k) 1  0 . 7 4 1  

2  0 . 4 5 1  
3  0 . 3 7 3  
4  0 . 6 5 2  
5  0 . 5 3 6  
6  0 . 2 5 7  

Allocation of patients to modes (xiL) 

Solution via NDO Solution via linear 
approximations s 

Patient 1  43 43 I 

categories 3 8  3 8  



predicted (Coverdale and Negrine, 1978), although the actual use 

of different modes of care is usually more homogeneous than 

predicted by the model. Canvin et a1 (1978) give some more 
results for Devon. The extreme modal allocations can be regarded 

as optimistic predictions of reallocations within the HCS, 

giving reduction factors that are slightly higher than would 

be obtained in practice. When historical factors seem likely 

to prevent this, appropriate constraints can be easily applied 

in the model and incorporated in either method of solution. 

5. CONCLUSION 

The example analyzed here is interesting because it tests 

alternative ways to solve a practical example. Although the 

NDO solution was faster, it had none of the diagnostic or pre- 

sentational printouts available from the SCICONIC solution, 

being written primarily to see how a different method would 

solve the example. On the other hand, the programming of a 

full-scale solution program to use NDO would appear to be 

straightforward. Because the main burden of computing falls 

on the subroutine that solves the internal problem (and - not 

on the NDO routines) there is more room to extend the scope of 

the model wherever this might be necessary. Provided that 

modifications to the model do not damage the duality results 

exploited in the solution, the small NDO routines can remain 

unchanged. 

From the point of view of resource allocation modelling, 

the new analysis of this example makes plain what solving the 

model actually means, and helps discussions about whether the 

right model is being solved. Within the framework of strategic 

planning in Devon, the results of Table 5 indicate how current 

levels of care are likely to change, and suggests what pattern 

of model allocation will follow if the many agents in the HCS 

act (or can be encouraged to act) so as to maximize levels 

of care. 



REFERENCES 

Balinski, M.L., and P. Wolfe (eds.) (1975) Nondifferentiable 
Optimization, Mathematical Programming Study 3. Amsterdam: 
North-Holland. 

Canvin, R., J. Hamson, J. Lyons, and J.C. Russell (1978) Balance 
of care in Devon: joint strategic planning of health and 
social services at AHA and county level. Health and 
Social Services Journal 88(4604):C17-C20. 

Coverdale, I.L., and S.M. Negrine (1978) The balance of care 
project: modelling the allocation of health and personal 
social services. Journal of the Operational Research. 
Society 29 (1 1 ) : 1043-1 054. 

Hughes, D.J., and A.P. Wierzbicki (1979) DRAM: a Model of 
Health Care Resource Allocation. RR-79-00. Laxenburg, 
Austria: International Institute for Applied Systems 
Analysis. 

Lemarechal, C. (1978) Nonsmooth Optimization and Descent Methods. 
RR-78-4. Laxenburg, Austria: International Institute for 
Applied Systems Analysis. 

Lemarechal, C., and R. Mifflin (eds.) (1 978) Nonsmooth 
Optimization. Proceedings of anIIASA Workshop, March 
28-April 8, 1977, Pergamon Press. 

McDonald, A.G., C.C. Cuddeford, and E.M.L. Beale (1974) flathe- 
matical models of the balance of care. British Medical 
Bulletin 30 (3) :262-270. 

Nurminski, E.A., and A.A. Zhelikhovski (1974) Investigation of 
one regulating step. Cybernetics 10 (6) : 1027-1 031. 



S h i g a n ,  E.i\(. , D . J .  Hughes, and  P.I. K i t s u l  (1979)  H e a l t h  C a r e  
Sys tems M o d e l l i n g  a t  IIASA: A S t a t u s  R e p o r t .  SR-79-4. 
Laxenburg ,  A u s t r i a :  I n t e r n a t i o n a l  I n s t i t u t e  f o r  A p p l i e d  
Sys tems A n a l y s i s .  



APPENDIX : Duality Results 

\ 

Section 3 shows how the original problem is troublesome 

because it is nonconvex with respect to x,u. - - It might create 

difficulty in finding optimal values of primal variables x,u 

when optima.1 values of dual variables are given. Generally, in 

nonconvex cases there is a duality gap between primal and dual 

problems,and in these cases direct use of a duality approach is 

hindered it it is possible at all. Fortunately, this does not 

occur in our case due to the convexity of the sets of primal 

variables which maximize the Langrangian for the dual variables 

given. These sets S (A) : 

consist in fact of a unique u and a set of x which are solutions 

of the obviously convex LP problem discussed in Section 3. 

* 
For optimal X which solves problem (12) we can show that * * 

the set S(X ) contains the optimal primal variables x (there * 
is no problem with u due to its uniqueness). In fact, so far * 
as X is optima1,there is a zero subgradient of the function * 
@ (A) (1 1) at the point X . Correspondingly there are points * xJ , uJ , j = 1,2,. . . , E S (A ) and nonnegative weights a such that 

j 



and 

where 

* * 
a l s o  l i e s  w i th in  t h e  convex s e t  s ( A  - ) .  B U ~ ,  wi th  equat ion  (13) I 

t h i s  s o l u t i o n  s a t i s f i e s  c o n s t r a i n t  ( 2 ) .  This  guarantees  t h a t  * * * * 
t h e  dua l  s o l u t i o n  - x ( A  - ) ( A  - ) a l s o  so l ves  t h e  o r i g i n a l  problem. 
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