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FOREWORD

The principal aim of health care research at IIASA has
been to develop a family of submodels of national health care
systems for use by health service planners. The modeling work
is proceeding along the lines proposed in the Institute's cur-
rent Research Plan. It involves the construction of linked
submodels dealing with population, disease prevalence, resource
need, resource allocation, and resource supply.

This paper is an output of a collaboration between two
Areas at IIASA. It describes how a health resource allocation
model, developed in the Health Care Systems Task of the Human
Settlements and Services Area, may be solved by using non-
differentiable optimization techniques studied in the Optimiza-
tion Task of the System and Decision Sciences Area.

Related publications in Health Care Systems and in Non-
differentiable Optimization are listed at the end of this report.

Andrei Rogers Andrzej Wierzbicki
Chairman Chairman

Human Settlements System and Decision
and Services Area Sciences Area
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ABSTRACT

An example of a health resource allocation model, solved
previously by piecewise linear approximation with data from
Devon, U.K., is solved using nondifferentiable optimization
(NDO). The example illustrates a new application for NDO,
and the novel approach makes clearer the workings of the model.
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NONDIFFERENTIABLE OPTIMIZATION
PROMOTES HEALTH CARE

David Hughes, Evgeni Nurminski, and Geoff Royston

1. INTRODUCTION

Health care systems (HCS) and nondifferentiable optimization
(NDO) are both studied at IIASA. Those who study HCS (like the
first author) seek to model the features of health care systems
that are common to different countries, so as to assist those
who plan health services. The mathematicians interested in NDO
(like the second author) seek to extend the classical optimi-
zation techniques to functions that have "nonsmooth" regions
where no unique gradient can be defined. Shigan et al (1979)
describe recent progress at IIASA in HCS modelling. The papers
from a recent IIASA workshop on WNDO were brought together by
Lemarechal and Mifflin (1978).

This paper reports how a health resource allocation model
used by the third author was solved by minimizing a function
with points of nondifferentiability. Section 2 describes how
an example of the model arose in the joint strategic planning
of health and personal social services in Devon, U.K., a county
with a population of about 1 million. Section 3 formulates
the model as a problem for NDO. Ways to obtain numerical solu-
tions are reviewed in Section 4 which compares the solution of
the example by NDO and by another method based on linear approxi-

mation. Section 5 concludes.



2. RESOURCE ALLOCATION [IODELLING IN DEVON

Devon is an area in the southwest of England, in which
health services (e.g. hospitals, clinics) are managed by the
Area Health Authority (AHA), and personal social services (e.g.
residential homes, social workers) are managed by the Local
Authority (LA). Many individuals receive both sorts of services
which often overlap. After surgery, for example, some hospital
patients may be discharged earlier if suitable nursing support
is available for them at home. Elderly people may receive
equivalent care in residential homes or in geriatric hospitals.
The problem for Devon is to provide a balanced mix of health

and personal social services within constraints on total resources.

McDonald et al (1974) describe a model to help in this
task. It models the balance chosen by the many agents in the
HCS (doctors, nurses, social workers, etc.) between the use
of health services and personal social services for different
categories of patients. The model's underlying hypothesis is
that the aggregate behavior of these agents can be represented
as the maximization of a utility (or inferred worth) function,
whose parameters can be estimated from the results of previous
choices. If these parameters do not change with time, the
model can be used to simulate how future resource levels will
be allocated in the HCS. Furthermore, because the underlying
hypothesis is an optimistic one, the model may suggest reallo-
cations. The full model is quite sophisticated with several
special features. Only a simple version is reported here, both
to clarify the presentation and because the example is one that
actually arose in using the model to assist health care planning

in Devon.

Table 1 categorizes elderly patients (65 or older) under
17 headings according to their housing, social isolation, physical
disability, mobility and mental state. This categorization is
part of a more detailed classification designed in conjunction
with case workers who meet the patients. Table 2 lists 6 re-
sources used in the domiciliary care of these patients. The

first two resources (psychiatric and geriatric day hospitals)



Table 1. Seventeen categories of elderly patients.

Defining Factors

Patient Housing Social Physical Mobility Degree of
category condition isola- disability dementia
tion in mental
(1) (2) (3) (4) state
1 poor/good mild very severe severe/mild severe
2 poor/good mild severe mild severe
3 poor/good mild very severe severe/mild mild
4y poor/good severe severe mild/good mild
5 poor/good mild severe mild/good mild
6 poor/good severe mild mild/good mild
7 poor/good mild mild mild/good mild
8 poor mild very severe seyere/mild none
9 good mild very severe severe/mild none
10 poor severe severe mild/good none
11 good severe severe mild/good none
l12 poor mild severe mild/good none
13 good . mild severe mild/good none
14 poor severe mild mild/good none
15 good severe mild mild/good none
16 poor mild mild mild/good none
17 good mild mild mild/good none
(1) Good housing means easy access to inside toilet and hot
‘water. Poor housing means neither.
(2) Mild social isolation means not living alone. Severe

social isolation means living alone.

(3) Mild - unable to carry out household care. Severe -unable
to carry out household and personal care. Very severe -
incontinent and/or unable to feed.

(4) Mild - can get around house, or can get out of house with
aids or personal assistance. Severe - chairfast or bedfast.



Table 2. Six resources for domiciliary care.

Name of resource Unit of resource
Psychiatric day hospital day place
Geriatric day hospital day place

Home nurse wrE !

Day center place

Home help WrE!

Meals service

'WTE = whole time equivalent (many nurses work only part-time).



are provided by the AHA; the others by the LA. Other institu-
" tional resources (such as in-patient hospitals and residential
homes)‘are also used by elderly patients in Devon, but for this

exercise their use was supposed to be fixed.

Patients in each of the 17 categories could receive many
different combinations of the 6 resources. Table 3, however,
defines up to 4 alternative modes of care for each category.
These alternatives, which derive from discussions with consultants,
senior nurses and other professionals, indicate how much of each
resource might be used to provide equivalent levels of care for
each patient. 1In a sense, the resource levels in these alter-
native "packages" represent ideal standards which doctors would
like to attain. Unfortunately, these standards lie well above
what can currently be afforded. Devon AHA and Devon LA want
together to provide a mix of health and personal social services
which they can afford and with which the HCS can approach the
ideal standards for a large number of patients. The model was

used to assist this debate by simulating who gets what.

In order to set up some mathematics, we use the indices

i=1,2.... 17 patient categories
k=1,2 .... 6 resource types
¢ =1,2 .... U care modes

and label the numbers in Table 3 as

Uikl = the ideal levels of resource type k

in care mode & for patient category i.

Because of resource constraints, rather lower resource levels
Ui, are actually achieved, and it is these that the model

seeks to predict. It also predicts

X590 = the numbers of patients in category i

who receive care in mode ¢



Table 3. Resources needed by elderly patients in alternative
modes of care.

. ; )

Patient Hode Amount of resource needed per patient per year1
category of

as defined care Psych. Geriatric Home Day Home Meals
in Table 1 day day nurse center help

hospitals hospitals

10

1 1 1125 85 235 120
2 100 1125 220 105
3 100 1125 220 105
2 1 200 ' . 330 65
2 540 105 110
3 770 155 100
3 1 150 520 175 65
2 690 85 235 120
3 910 310 205
m 1 125 165 530 25
2 250 75 235
3 165 125 530 25
m 255 825 150
5 1 100 105 100
2 105 105 100
3 150 145 100
6 1 250 80
2 50 245 50
3 285 100
7 1 50 40 10
2 50 40 10
3 ) 40 10
4 45 50
8 1 150 490 200 55
2 860 330 205
9 1 150 490 150 55
2 860 270 205
1 125 100 560 25
2 100 125 560 25
3 155 870 150

continued




Table 3 continued

igtiggiy ggde Amount of resource needed per patient per year1
as defined care Psych. Geriatric Home Day Home Meals
in Table 1 day day nurse center help
hospitals hospitals
11 1 100 110 555 50
2 100 125 500 25
3 155 810 150
12 1 75 75 145 25
2 65 105 130
3 90 185 100
13 1 50 80 85 50
2 65 105 70
3 - 90 125 100
14 1 50 275 50
2 50 275 50
3 320 100
15 1 50 215 50
2 50 215 50
3 260 100
16 1 50 .70
2 80 50
17 1 50 70
2 4o 70 10
3 20 50

1The units in this table are (for each resource respectively):

- daily attendances (1 psychiatric day place = 500 daily attendances.

- daily attendances (1 geriatric day place = 1000 daily attendances.
- visits (1 home nurse WTE = 3820 visits).
- daily attendances (1 day center place = 125 daily attendances).

- hours (1 home help/WTE = 1550 hours

- meals (1 meals service = 1000 meals).




so as to satisfy constraints on the total numbers di of patients

in each category receiving care, and the total resources A, of

k
each type available for care,
lel = dl, V1 (1)
L
L XjgUipg = Ay vk (2)
1,8

Both di and A

give the numbers of elderly patients, and the levels of health

K are assumed to be known, and Tables 4 and 5

service and personal social service resources, used in the
Devon example. The former arise from assuming that an approxi-
mately constant proportion of the elderly need care; the latter

from. certain assumptions about growth in the U.K. health service.

It remains to specify the form of the utility function
maximized by the model. It is

Z(x,u) =.Z Xizhikl(uikl) (3)
LK 2
where
B
C,U. k
hyp, (W) = =2 (U u) - 1 (4)
k ik
Bk =1 - 1/Fk (5)
and where x,u denote {Xil’ i=1,2,..., 17, 2 =1,2,...,u41},
'{uikl’ i=1,2,...,17, k=1,2,...,6, 2 =1,2,...,4},respectively.
The funciton Z(x,u) is
1) additive across i,k,%. This implies no correlation

between the objectives of increasing each and every

X 0Pike (Mikg) -

2) linearly increasing in X The extra benefit from

ig”
taking care of one more patient in a particular care
mode is independent of the number already cared for

in that mode.




Table 4. HNumber of elderly in Devon.

Patient Number of Patient Number of

category elderly patients category elderly patients
i d; i di

1 43 10 51

2 38 11 198

3 326 12 132

4 90 13 777

5 200 14 918

6 891 15 3410

7 703 16 339

8 184 17 2667

9 818 - '

Table 5. Model parameters for example.

Resource Resources Resource costs Elasticities

type available in (£ running (as defined in
Devon (units per year) equation (5))
as in Table 2)

k Ak Ck Fk

1 10 5830 0.595

2 30 9190 0.800

3 125 5665 0.800

Yy 79.6 374 0.202

5 773.5 1778 0.325

6 275.4 230 0.325
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3) zero when Uikg ik4 for all i,k,%. At this

noint, warginal increases in Z resulting from increasing

equals U

resource levels equal the marginal resource costs Ck.

Normally, u for some i,k,%, and Z is then

ike < Uikg
negative.

4)  monotonically increasing and concave downwards in
Uiy for Bk < 0. This implies diminishing returns as
the ideal resource standards are approached. The
speed with which the returns diminish is measured by
the power parameters Bk’ or the corresponding elasti-
citiles Fk.

5) not unlike a similar function defined in the model
DRAM (Hughes and Wierzbicki, 1979). DRAM, however,
does not incorporate the constraint (1) and does not

require NDO.

whether the results of maximizing the function Z(x,u),
subject to the constraints of equations (1) and (2), are good
predictions of future HCS behavior, depends partly upon the
two parameters Ck and Fk‘ The first of these (the marginal
resource costs) can be estimated by various accounting analyses.
But the second set of parameters (the elasticities) are much
harder to choose. In Devon several runs were carried out to
check the accuracy of models with different parameters in
reproducing known historical allocations. Table 5 gives the

values used in our example.

The assistance provided to Devon was not limited to a couple
of model runs like this one. Canvin et al (1978) describe in
more detail how the project team worked with the local planners.
In this paper, however, we concentrate on the model, and in
particular on how to solve it. It is perhaps surprising that
the maximization of (3) subject to (1) and (2) is not straight-

forward. The next section explains why.
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3. SOLUTIOWN OF THE HODEL

In purely mathematical terms the problem is to find Xi0
and u,

ika for all i,k,%, satisfying

1X4, =d; Vi (1)
'3
Yx. U, = A v k (2)
kK
i 212 1k%

’

that maximize

2{x,a) = L%lxig ik Uikg) (3)
where
B
c.U. k
hip, (W) = kBlkl = ) -1 ) (4)
k ik4

There are various possible approaches, of which the most elemen-
tary would be direct numerical search. We can, however, make
more use of the forms of equations (1) - (4). We note, for

example, that equations (1) - (3) are linear in X and that

'
if Ui, were known for all i,k,% the problem wouldlbe a simple
linear program (LP). Unfortunately, the coefficient terms in
equations (2) and (3) are functions of the unknown variables
Uipge But in both equations we can make a piecewise linear

approximation such as

Z(x,u) = 7 [1¥1elike (0-1) + o%; R4y, (0-2) (5)
ike !
+ e + 10xizhik2(1'o)
by introducing programming variables jxikl’ j=1,..., 10, that
satisiy
g, = | % i=3 . ¥ i,
I 0 j"'jl Vilz
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In theory, LP technigues can then be used. 1In practice, the
approach requires a computer program or LP package with special

features.

This analysis might suggest that difficulties arise because
of nonlinearity in equations (2) and (3). 1In fact, these non-
linearities can be handled using Lagrange multipliers. Doing

this, we shall reveal a problem of NDO.

We formulate the dual problem

min ¢ ())
A

where ¢ ()) is the solution to an ihternal problem

¢(A) = max max L(E'E'A)
x>0 u>0
)x = d
* ok
=L(§_ 1 IA) ’

in which * denotes the optimal value or function, and

Lix,a/0) = ) Xjphyp, (a5,)
ik, %

6
A = L xgaug) *
k i,2
is the result of adjoining the constraint of equation (2) to
the function of equation (3) with Lagrange multipliers Ak’
k =1,2,...,6. We now have three embedded problems which we
can take in turn, and under certain conditions (proved in the
Appendix) the solution to this dual problem also solves the

original problem.

The first, innermost problem is easy to solve. Find

u(x,A) so as to

max L(x,u,})
u20
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oL

Setting T equal to zero gives
*

provided that x,, # 0, where

-F,

£y = (A /Cy) , (8)
are "reduction factors" which, when applied to the ideal resource
levels Uik%’ give the actual resource levels. In the model,

the ry do not vary across patient categories or modes of care,
and the balance between the reduction factors for different
resource types is controlled largely by the elasticities Fk' The
result defined by equation (7) is always positive and therefore

satisfies ‘the constraint on u. The result of the maximization is

*

L(x,u ,A) =b + ] CiX.0 (9)
ig
where

b = }) A

g Kk

1-F

. ) ZCkUle' i <&> k .
i2 X Bk Fk Ck

Strictly, Ciq is determined only when x., # 0. However, when

Xig = 0, the corresponding terms in equation (9) are zero anyway.
The second problem is also easy to solve. Find x(X) so
as to
* 3
max L(x,u ,})
x20
Ix=d

This is a very simple LP, for which the solution can be found

by inspecting Cig-
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*
0
EQ
]

=)

x =01 ' (10)
1 . —

o
=
“H
=

where

}

iz © mi"{ciz

*
Strictly, this unique solution for x exists only when there

iz a single mode in each category with maximum Cig°

however, categories have more than one such mode, and in such

Typically,

. * .
circumstances a unique solution for x cannot be found until
* N .
A is determined. Nevertheless, thé result of the maximization
is unaffected, being equal to

*

*
‘b(&_) L(E ' rl)

I

. (11)

JALA, + Jc.-d,
r Kk R

There remains the third problem of choosing A so as to

min ¢(i) . (12)

A>0
The difficulty here is that small continuous changes in 3},
while causing small continuous changes in ¢, can cause large
and discontinuous changes in the LP solution for 5*. Because
of this, ¢()) is a nonsmooth function of X. Loosely speaking,
it has "corners" like the graph in Figure 1. Solution methods
which ignore this fact may fail, especially when the solution
lies on a corner. What is the meaning of a solution for ) on
a "corner" of ¢(X)? It means that more than one mode in each
category has maximum Cigr and patients in these categories are
divided between two or more modes of care. It is these mixed-
mode solutions, in which there is no unique solution for 5* until
A* is found, that complicate the analysis. However, once the
optimal A* is found, the values of E* are also fixed and the
determination of which modes are active in each category is a

straightforward LP problem.
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,\f(x)

Figure 1. An example of a nonsmooth function.
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The results derived above show that the problem formulated
at the beginning of this section can be solved by the procedure
depicted in Figure 2. The two innermost problems are solved by

using equations (7), (10) and (12) to determine ¢ (X) for a
particular choice of A. The way in which an NDO algorithm can

be used to find the value of A that minimizes ®()) is described
in the next section.

4. SOLUTION OF THE EXAMPLE

In the previous section, we showed how a solution to the
example given in Section 2 can be easily found, once we have

a procedure for finding the A which solves the NDO problem of

min @ ()

A0
Such procedures are extensions of the procedures used for
differentiable optimization. Where the latter use a gradient,

NDO procedures use a subgradient defined as

g, = 3d(A) /oA .
Unlike the 'gradient, the subgradient is not unique. Theére is
a set of supporting hyperplanes at any point of nondifferenti-
ability, and this is one of the additional features that NDO
procedures must handle.

Another obstacle to be overcome is that the subgradient
does not generally tend to zero as the solution is approached.
This makes it difficult to identify the neighborhood of the
optimum. Furthermore, the direction of e\ is not generally
one in which ¢()) decreases, and a single member of a subgradient

set provides very scant information about descent directions.

Methods to solve NDO problems began to appear in the mid-
sixties, and Balinski and Wolfe (1975) can be recommended
as a source of references and basic ideas. Devon's problem
was solved using the method described in Nurminski and

Zhelikhovski (1974) to regulate the step size in a generalized
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NDO algorithm

trial A

|

|

{

{

| Choose initial
[

|

|

|

%*

*
Calculate u (A), x ()

and ¢()\) using
equations (7), (10), (1
Calculate subgradient

9y

)

2) Determine new

— value for A

-— — — 2+ — — — — — — — -l
|
|
| o(A) no
| minimized
!
: yes
*
At=a
Figure 2. Solution procedure.
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classical descent procedure. Although the original problem
has (17*4) + (17*4*6) = U476 variables, the dual problem has
only 6 variables, and hence has negligible storage requirements.

The second author wrote a computer program with about 50 FORTRAN
statements, which makes repeated calls of a subroutine written

by the first author to calculate ¢ and its subgradient. The
results tabulated below were found by the IIASA PDP11/70 mini-
computer with UNIX time-sharing operating system. This system
makes convergence times difficult to assess. Subsequently,
however, the computations were confirmed with the commercially
available NDO solution routines developed by Lemarechal (1978).
It took 0.5 CPU second to get a solution with machine precision
on an IBM 370/168.

The same example was also solved by the third author using
the piecewise linear approximation described at the beginning
of Section 2. The computer package which was used (called
SCICONIC) had the necessary separable programming facility with
associated matrix generation and report writing. Starting from
the sclution to a similar problem, the central part of the
SCICONIC solution (the solution of the linearized problem as a
large LP) took 64 iterations and 1.7 CPU seconds; slightly
longer than the NDO solution. A solution from "scratch" might

have taken up to twice as long.

Table 6 gives the results obtained both by NDO and by piece-
wise linear approximation. Although the second method neither
uses nor calculates the Lagrange multipliers ) used by the first
method, the reduction factors r of equation (8) are calculated
by both methods and provide an equivalent comparison. We see
that they are practically identical, the small differences
(-1%) probably being due to rounding. We conclude that both
methods reached the same solution. The allocations of patients
to modes of care are identical in 12 modes énd different in the
remaining 5. These differences arise not from the different
solution methods but from the discontinuous nature of the solution
for 5* as a function of A. Because this particular example
was part of a hypothetical scenario, a direct validation of
these predictions for Devon is impossible. However, similar

runs have shown that the reduction factors can be quite accurately
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Table 6. Solutions to Devon example by NDO and linear approximation.

Reduction Factors (rk)

Solution via NDO Solutions via linear
approximation
Resource
types (k) 1 0.741 0.745
2 0.451 0.453
3 0.373 0.374
[} 0.652 0.653
5 0.536 0.536
6 0.257 0.257
Allocatioﬁ of patients to modes (Xil)
Solution via NDO Solution via linear
approximations
Modes (2) Modes (%)
1 2 3 4 1 2 3 q
Patient 1 43 43 !
categories 2 38 38
(1) 3 277 49 233 93
4 7 33 63 27
5 200 200
6 20 871 891
7 703 703
8 184 184
9 818 818
10 43 8 51
11 196 2 169 29
12 132 132
13 777 777
14 918 918
15 3410 3410
16 339 339

17 2667 2667
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predicted (Coverdale and Negrine, 1978), although the actual use
of different modes of care is usually more homogeneous than

predicted by the model. Canvin et al (1978) give some more
results for Devon. The extreme modal allocations can be regarded

as optimistic predictions of reallocations within the HCS,
giving reduction factors that are slightly higher than would
be obtained in practice. When historical factors seem likely
to prevent this, appropriaté constraints can be easily applied

in the model and incorporated in either method of solution.

5. CONCLUSION

The example analyzed here is interesting because it tests
alternative ways to solve a practical example. Although the
NDO solution was faster, it had none of the diagnostic or pre-
sentational printouts available from the SCICONIC solution,
being written primarily to see how a different method would
solve the example. On the other hand, the programming of a
full-scale solution program to use NDO would appear to be
straightforward. Because the main burden of computing falls
on the subroutine that solves the internal problem (and not
on the NDO routines) there is more room to extend the scope of
the model wherever this might be necessary. Provided that
modifications to the model do not damage the duality results
exploited in the solution, the small NDO routines can remain

unchanged.

From the point of view of resource allocation modelling,
the new analysis of this example makes plain what solving the
model actually means, and helps discussions about whether the
right model is being solved. Within the framework of strategic
planning in Devon, the results of Table 5 indicate how current
levels of care are likely to change, and suggests what pattern
of model allocation will follow if the many agents in the HCS
act (or can be encouraged to act) so as to maximize levels

of care.
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APPENDIX : Duality Results

Section 3 shows how the original problem is troublesome
because it is nonconvex with respect to x,u. It might create
difficulty in finding optimal values of primal variables x,u
when optimal values of dual variables are given. Generally, in
nonconvex cases there is a duality gap between primal and dual
problems, and in these cases direct use of a duality approach is
hindered it it is possible at all. Fortunately, this does not
occur in our case due to the convexity of the sets of primal
variables which maximize the Langrangian for the dual variables
given. These sets S(A):

s(A) = {(x,,uy) = ¢(}) = L(x,,uy,)} ,
consist in fact of a unique u and a set of x which are solutions

of the obviously convex LP problem discussed in Section 3.

For optimal A* which solves problem (12) we can show that
the set S(A*) contains the optimal primal variables x* (there
is no problem with u* due to its uniqueness). In fact, so far
as A* is optimal, there is a zero subgradient of the function

%
®(A) (11) at the point X . Correspondingly there are points

j o3 . * . .
x~,u’, j =12,..., € S(A ) and nonnegative weights aj such that
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* . .
also lies within the convex set S () ). But, With equation (13),

this solution satisfies constraint (2). This guarantees that

*x ok *  k
the dual solution X (A ),u (A) also solves the original problem.



-25-

RELATED IIASA PUBLICATIONS IN HEALTH CARE
SYSTEMS AND IN NONDIFFERENTIALBE OPTIMIZATION

Mifflin, R. (1976) Semismooth and Semiconvex Functions in
Constrained Optimization. RR-76-021.

Mifflin, R. (1977) An Algorithm for Constrained Optimization
with Semismooth Functions. RR-77-003.

Propoi, A.I. (1977) On the Theory of Max-Min. RM-77-013.

Gibbs, R.J. (1977) Health Care Resource Allocation Models--A
Critical Review. RM-77-53.

Lemarechal, C. (1978) Nonsmooth Optimization and Descent
Methods. RR-78-004.

Gibbs, R.J. (1978) The IIASA Health Care Resource Allocation
Sub-model: Mark 1. RR-78-8.

Gibbs, R.J. (1978) A Disaggregated Health Care Resource
Allocation Model. RM-78-1.

Mifflin, R., C. Lemarechal, and M.A. Keyzer (1978) Computing
Economic Equilibria through Non-smooth Optimization.
RM-78-013.

Hughes, D.J. (1978) The IIASA Health Care Resource Allocation
Sub-model: Mark 2--The Allocation of Many Different
Resources. RM-78-50.

Mifflin, R., and C. Lemarechal (1978) Nonsmooth Optimization.
CpP-78-002.



_26_

Gibbs, R.J. (1978) Computer Programs for the IIASA Health Care
Resource Allocation Sub-model, Mark 1--A User's Guide.
WP-78-15.

Hughes, D.J. (1978) The IIASA Health Care Resource Allocation
Sub-model: Formulation of DRAM Mark 3. WP-78-46.

Nurminski, E.A. (1978) Non~-Differentiable Optimization with
e—-Subgradient Methods. WP-78-55.

Nurminski, E.A. (1978) On e~Differentiable Mappings and their
Application in Nondifferentiable Optimization. WP-78-58.

Ermoliev, Yu.M. (1978) Methods of Nondifferentiable and
Stochastic Optimization and their Applications. WP-78-62.

Wierzbicki, A. (1978) Lagrangian Functions and Nondifferentiable
Optimization. WP-78-63.

Hughes, D.J. (1978) The IIASA Health Care Resource Allocation
Sub-model: Estimation of Parameters. RM-78-67.

Nurminski, E.A. (1979) Conceptual Newton Method for Solving
Multivalued Inclusions: Scalar Case. WP-79-50.



