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PFEFACE

This paper representsthe results of a three month study,
in which several Junior Scientists from many countries took
part during the summer of 1979 at IIASA. While many of these
results are not fully completed, and some representonly pre-
liminary directions of research,we feel that the documentation
of the efforts nf the Junior Scientists is justified.
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ABSTRACT

Many problems that require decisionsmade over time can be
formulated as dynamic linear programs. Complications arise in
solving these programs when one allows stochasticelementsto
alter the state to state transitions. Finding the stochastic
linear programming solutions may be very difficult since their
formulation often greatly increasesthe problem size. This
paper shows that, under certain conditions, a simple deterministic
solution techniqueobtains the same optimal controls as more
complicatedstochasticmethods.

Key words: Dynamic linear programming, stochasticprogramming,
large scale systems.
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SOl-1E CONDITIONS FOR OPTHlAL DETERHINISTIC
SOLUTIONS TO STOCHASTIC ｄ ｙ ｎ ｍ ｾ ｉ ｃ LINEAR
PROGRAMS

John R. Birge

I. INTRODUCTION AND PROBLEM DESCRIPTION

Dynamic linear programming problems occur in a variety of

applications. They entail optimal control decisionsmade over

time. Complications arise when some stochasticvariation occurs

in the transition of the processto subsequentstates. In general,

complicatedstochasticprogrammingmethods are required to solve

these problems optimally. In some instances,however, a deter-

ministjc approachinvolving expectedvalues of the stochastic

elements is sufficient. We will show below conditions for this

result.

He write the basic dynamic linear programming problem in

the following form:

T-1
min I [c(t)x(t) + d(t)u(t)] + c(T)x(T)

t=O

(1. 1 )
s.t. G(t)x(t) + D(t)u(t) = f(t)

A(t)x(t) + B(t)u(t) = x(t+1)

for t = 0,1, ... , T-1

-1-
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where x(t) E Mn(t), a vector in n(t)-dimensionalEuclidean space,

u(t) E ｾｰＨｴＩＬ and f(t) E ｾＨｴＩＬ c(t) and d(t) are correspondingly

dimensionedvectors, and G(t), D(t), A(t) and B(t) are correspon-

ding matrices. In this problem, x(t) representsthe state of

the systemat time t and u(t) representsthe optimal control

applied at that time. \ve, therefore, wish to minimize a linear

cost function of these variables over time.

Problems occur in this systemwhen we introduce a stochastic

variation v(t), for some v(t) E V(t), where V(t) C ｾＨｴＩＮ tve

consider that this error or noise term enters the state transition

equation as:

A(t)x(t) + B(t)u(t) + E(t)v(t) = x(t+1) (1. 2)

where E(t) is a correspondinggiven non-stochasticmatrix. The

problem is then how to determine the optimal controls in order

to allow for this stochasticelement. The best possible solution

would be to know the outcome of the stochasticvariations through

time. The object then is to solve the problem:

T-1
J 1 (v(O), ... , v(T-1))::: min L [c(t)x(t)+d(t)u(t)] + c(T)x(T)

t=O

s.t. G(t)x(t) + D(t)u(t) = f(t)
(1. 3)

A(t)x(t) + B(t)u(t) + E(t)v(t) = x(t+1)

for t = 0, 1 , ... , T-1

for every realization (v(O), ... , V(T-1)). From these solutions,

one could take an expectedvalue of the different J(v(O) , ... ,V(T-1))

values and find the best possible expectedobjective function

value as

J 1 :: jJ1 (V(O)/ ... , V(T-1))dF(v(O), ... , v(T-1))

V(O)x·· ·xV(T-1)

,(1.4)
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where F(v(O), ... , v(T-1)) is the joint distribution function of the

stochasticelel.lents.

This approachof perfect information is not implementable

becauseof our assumptionthat the stochasticvariations cannot

be observedbefore the control in a period has been applied. ,qe

may, however, assurnethat, at any stageof the process,we are

able to observe the past. We can, thereby, use a backwards

inductive method of solution in order to find an optimal control

trajectory. We start by solving:

J(T,X(T)) - c(T)x(T) (1. 5)

We then continue to iterate backward by solving for every t:

J ( t -1 ,x ( t -1 )) - min c (t-1 ) x ( t -1) + d ( t -1 ) u ( t -1 )

+ IJ(t,X(t))dF(V(t-1))

V (t-1 )

(1. 6)

s.t. G(t-1)x(t-1) + D(t-1)u(t-1) = f(t-1) (1.6a)

A(t-1)x(t-1) + B(t-1)u(t-1) + E(t-1)v(t-1) = x(t)

In (1.6), the constraint (I.6a) implicitly enters the inte-

gral, so that x(t) is a function of v(t-1). This program finds

the lowest expectedremaining cost, given that we are in state

x(t-1) at t-1. This standarddynamic programming problem gives

us the value:

J 2 - J(O,x(O)) (1. 7)

If we consider the controls involved in solving the problem

by this method for different realizationsof (v(O), ... , v(T-1)),

we obtain J 2 (v(O), v(1), ... , v(T-1)) for every

(v(O), v(1), ... , V(T-1)) E V(O) x V(1)ooo x V(T-1). The expected

value is then:
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rJ
2

- jJ
2

(v(O), ... , v (T-1) )dF(v(O),... , V(T-1))

V ( 0 ) x •••x V (T'" )

(1. 8)

The method employed in finding J 2 yields an excellent

expectedsolution value, but the solution of problems in the

form of (1.6) are extremely difficult since x(t) dependson

both v(t-1) and u(t-1). For general distributions of v(t-1),

the objective value function representsa complicated integral

formula. Linear programming methods cannot, therefore, be

applied to this problem with a non-linear objective function.

By applying a discretedistribution for each v(t); (an approxi-

mation of the actual distribution), the problem can, however,

be transformedinto a stochasticlinear program. We assume,

for this next approach, that v(t) is independentof V(T) for

all L ｾ t. He also assumethe following probability distribution

for each t and some x E ｾＨｴＩＺ

if x = v 1 (t)

6'{v(t) = x}=

o

x = v 2 (t)

all other x

(1. 9)

We assumefurther, without loss of generality, that k is the same

for all t.

(1.6) becomes, according to this distribution:

*J «t-1),x(t-1)) _ min c(t-1)x(t-1) + d(t-1)u(t-1)

k
+ L p. (t-1)c (t)x. (t)

. 1 1 11=

(1.10)
s.t. G(t-1)x(t-1) + D(t-1)u(t-1) = f(t-1)

A(t-1)x(t-1) + B(t-1)u(t-1) + E(t-1)vi (t-1) = xi(t)

for i = 1, ... , k
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The solution to the problem of optimal control over the

*entire planning horizon is, therefore, J (O,x(O», where x(O)

is some given initial state. Solution by the iterative dynamic

programming techniquemay be quite complicated, however, because

*we must find J ＨｴＬｾＨｴﾻ for every possiblex(t) at every point

in time t. This is especiallydifficult since x(t) is not even

discrete. The following theorem allows us to consider instead

a single linear program.

*Theorem 1. The problem of finding J (O,x(O» derived above is

equivalent to:

J 3 - min c( 0) x (0) + d (0) u (0) + I p. (0) [c ( 1 ) x . ( 1 )+d (1 ) u. (1)]
i

O
10 10 10

+ , I p . . (1) [c (2) x . . ( 2 ) +d ( 2 ) u . . ( 2) ]
. . 10 ,11 10 ,11 1

0
,11ＱＱＧｾＰ

+

+ I
i T- 1 ' ••• ,

p. . (T-1)fc(T)X. . (T)]
i 0 10, ... , 1 T-1 L 10 ' .•• , 1T- 1

s.t.
G(O)x(O) + D(O)u(O) = f(O)

A(O)x(O) + B(O)u(O) + E(O)v. (0) = x. (1)
1 0 10

i O = 1, ••• , k

G(1)x. (1) + D(1)u. (1) = f(1)
1

0
1

0

i O = 1, •.. , k

i O = 1, ... , k

i
1

= 1, ... , k

(1.11)



the probability of events (vi (1), Vj (2),

we do not necessarilyassumeindependence.
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G(T-1)x. (T-1 ) + B(T-1)u. (T-1 ) = f (T-1 )
1.0 i T- 2 1.0

... ..
i T- 2

i O = 1 , ... , k.
= 1 , ... , k

i T- 2

A(T-1)x.
i T- 2

(T-1 ) + B(T-1)u.
i T- 2

(T-1 )
1.0

. 1.
0

+E (T-1 )v . (T-1 ) = x ..
i T- 1

(T)
1.T- 1 1.0

...

i O = 1 , ... , k.

i T- 1 = 1, ••• ,k

where p. 'k(3) represents
1.)

v k (3)) occurring. Here,

If independenceis present, then we have Pijk(3) = Pi(1) •

p j (2) • Pk (3) .

Proof. The proof follows directly by induction on T, the number

of periods.

This characterization,becauseit does not require indepen-

dence, is more general than the dynamic programming solution in

*finding J (O,x(O)). It is also more easily implemented since

each state need not be specified.

Again, if we solve (1.11) and find J 3 , we use the given

controls and obtain different objective values for different

realizationsof (v(O), ... , v(T-1)). The expectedvalue is then

rJ3 :: JJ3 (V(0), ... ,V(T-1))dF(V(0), ... ,V(T-1))

V ( 0 ) x···ｾｾ V (T - 1 )

In this multistage stochasticlinear

ｾ ｯ ｮ Ｍ ｺ ･ ｲ ｯ partitions of the program matrix

different realizationsof v(t), appear.

program, many blocks,

correspondingto

The number of separate
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blocks increasesexponentiallywith thenumberof periods.

Tnis complication makes problems with a great number of transi-

tions very difficult to solve. One, therefore, ｵ ｳ ｾ ｡ ｬ ｬ ｹ requires

that the blocks are aggregatedor that expectedvalues are

substitutedfor the assumeddistribution. The most simplified

approachwould be to consider only expectedvalues for each of

the stochasticvariables, v(t).

The resultantdeterrninistic problem can then be written

simply as:

T-1
J 4 =min! [d(t)u(t)+c(t)x(t)] + c(T)x(T)

t=O

s.t. G(t)x(t) + D(t)u(t) = f(t)

A(t)x(t) + B(t)u(t) + E(t)v(t) = x(t+1)

for t = 0,1,... ,T-1

(1.12)

where v(t) = f v(t)dF(v(t)).

V (t)

Again, we take expectedvalues for actual realizationsof

v(t) to find:

J 4 =J J 4 (v(O), ... ,v(T-1) )dF(v(O), ... ,v(T-1))

V(O) x···x V(T-1)

A hierarchy exists among the four solutions to the stochastic

linear prograwning problem posed here. The following theorem

establishesthis.

Theorem 2. The optimal values for solutions to ｰ ｲ ｾ ｢ ｬ ･ ｭ ｳ such

as (1.1) with stochastictransition equation (1.2) are ordered

as:

(1.13)
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where V(t) is assumedconvex for all t.

Proof. The inequalities follow by observing that the successive

complications from J 4 to J1 involve inclusions of the previous

solution. The first inequality, J 1 ｾ J2 , follows from our use

of the optimal solution for any realization, (v'(O) , ... ,v'.(T-1))

in J,. Hence, J 1 (v ' (O), ... ,v'(T-1)) ｾ J 2 (v'(O), ... ,V'(T-1))

for any (v'(O), ... ,v'(T-1)). Integration preservesthe inequality,

so J 1 ｾ J 2 .

Since V(t) is assumedconvex, in J 3 , the discreteapproach

is, at best, an approximation. By definition, therefore, the

solutions by J 2 are always better. Hence, J 2 ｾ J 3 .

For the remaining inequality, observe that ｾ Ｈ ｴ Ｉ is included

in any J
3

solution becauseit is in V(t) and is a member of the

discreteapproximation for J3 . If ｾ Ｈ ｴ Ｉ is realized, one opti-

mizes in J3 . This is the only realization, for which, the

solution in J4 must be optimal. For all other v'(t), we have

J 3 (v ' (O), ... ,V'(T-1)) ｾ J 4 (v'(O), ... ,V ' (T-1)). Again, integration

yields J3 ｾ J4 . ｾｶ･ then have J1 ｾ J2 ｾ J3 ｾ J4· II
The question of choosing which of the above four solutions

to use dependson the complexity of the problem, the difficulty

of using the various techniques,and the actual differences

that may occur in the inequalities. If, for example, one

considereda problem, for which, J 1 = J 4, the value of perfect

information is zero and a deterministic solution technique is

adequateand recommended.

II. CONDITIONS FOR ｏｐｔｉｉｾｌ ｄｅｔｅｾｬｉｎｉｓｔｉｃ SOLUTIONS

The solution to dynamic linear programming problems usually

seeks an optimal control for the entire planning horizon, [O,T].

This solution can, however, usually be altered after a certain

period of time. By following this procedure, one can observe

the behavior of stochasticvariables in this first period and

use the information to make better projections for the future.

The problem in this framework becomesone of finding the optimal
I
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first period control, given future controls and future uncer-

tainties. An entire optimal control trajectory is found, but

only the first period control must be implementedbefore one

allows for a changing environment. This method appearswell

adaptedto real world applicationsof optimal decision making

over time.

Within this repeatedsolution technique, one may still

have difficulties in finding the first period control because

of the large number of possibilities for future controls and

t,he first period's dependenceon this future. We will give

conditions, under which, the first period controls can be

found optimally by a deterministic approachas in (1.12). In

other words, we have the same u(O) controls for J 1 and J 4, and

need only solve deterministic·problems over time in order to

find the best possiblecontrol trajectory.

The following lemma will be used in finding these conditions

for a deterministidoptimal control solution. It follows from

sensitivity analysis on the standardprimal ｬ ｩ ｾ ･ ｡ ｲ program:

min cx

s.t. Ax = b

x > 0

(11.1)

Lemma 1. If B is an optimal basis for (11.1) and if B remains

feasible for all possible right hand side variations, then B

will remain an optimal basis.

Proof. We partition the matrix A and cost vector c into basic

and non-basicparts. (11.1) becomes:

(11.2)
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Now, if B is an optimal feasible basis for some h, then we

have associatedprices, TI, such that

(IIo2)

and we have

x = 0
N

(IIo3)

-1- -1
If x

B
remains feasible for b + 6b, i.e., if B b+B 6b > 0,

then the prices TI remain unchangedand the optimality conditions

(II.2) and (II.3) remain also. B is, therefore, still an optimal

basis.II
This lemma leads to a theorem for the optimal basis in a

stochasticlinear program. For this general program, we let b

in (II.1) be b ＨｾＩＬ a random variable, where ｾ E =:.

Theorem 3. If B is a feasible basis for (II.1) for any ｢ Ｈ ｾ Ｉ Ｌ

ｾ E =:, then B is an optimal basis for all ｢ Ｈ ｾ Ｉ Ｌ ｾ E ｾＮ

Proof. Apply Lemma 1 directly to the problem (II.1) with

constraints

x > 0

Now, by the assumption, no variation in ｾ will make BxB
｢ＨｾＩ=

infeasible. Therefore, by Lemma 1 , B is an optimal basis for

all b ＨｾＩ , ｾ E =:. II
This last result gives conditionsunder which the optimal

basis for every realization (v(O), ... , v(T-1)) in (I.3) will

be the same. ｾ ･ write the optimal basis for (I.3) as
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uB(O) B uB (1)- -- ___ XB(T)x (1)

DB (0) = f(O)-G(O)x(O)

BB(O)
B

- 1(2) = -A(O)x(O)-E(O)v(O)

GB (0) DB (1 ) = f (1 ) (11.4)

AB (1 ) BB (1 )
B

-I( 2)

B
-I(T) = -E(T-1)v(T-1)

Inverting this matrix gives unique values for the basic variables

for each realization (v(O) , ... , v(T-1). The objective value

is then

J = a(0)v(0)+···+a(T-1)v(T-1)+ k
1

where a(O) , ... ,a(T-1) and k are constantover ranges of

(v(O), ... , v(T-1») if the same basis remains. Therefore, if

the basis remains unchanged, from integration in (1.4),

J 1 = a(O)v(O)+···+a(T-1)v(T-1) + k (11.5)

Now, if v(t) E V(t) for all t, then an optimal solution of (1.12)

gives us the same value for J 4 as (11.5), since the optimal basis

is the same, implying the same weights a(O) , ... , a(T-1) and

constantk. We then have the following corollary to Theorem 3.

Corollary 1. If B is a feasible basis for every (v(O), ... , v(T-1»

E (V(O), , V(T-1) in (1.3) and if B is optimal for some

(v(O), , v(T-1») E (V(O),. - -, x(T-1), then J 1 = J 4 -

The equality would imply that using the expectedvalues of

stochasticvariables and a deterministic solution would be optimal_

We note, however, that implementationof the entire deterministic

control program may be infeasible. Different realizationsof
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the stochasticelementsmay lead to this infeasibility. We would

therefore like to find conditions for which the optimal controls

are independentof the stochasticelements. Otherwise, an in-

feasible value may result from a control that is ｾ function of

an expectedvalue, Le., when uB(O) ('l(O)) ｾ uB(O) ('l(O) + E').

To this end, we have anothercorollary:

Corollary 2. If B is a feasible basis for every

(v(O), ... , v(T-1)) E (V(O), ... , V(T-1)) in (1.3), and, if B is

optimal for some ('l(O), ... , 'l(T-1)) E (V(O), ... , V(T-1)), then

a set of optimal first period controls uB(O) does not depend

on (v(O), ..• , v(T-1)).

Proof. We consider a set {v. (0), ... , v. (T-1)} for i = 1, ... ,k,
ｾ ｾ

as realizationsof vet) in problem (1.10). Since B is feasible

for all (v(O), ... , v(T-1)), we obtain a feasible'basis for (1.11)

as

(11.6)

o

r---- -
I G

B
(k)

o

o

o
-------1

I
I
I

1- - - - - -t- - - -
I
I
J
I I
I Ｍｾ ,,

DB(O)
_----L.

BB (0) ;
I

- - - --I

o
BB(O)

｟ ｂ ｾ ｾ ｏ Ｉ ｟
o

.
-------

I
Io ,

-- ... _----
I· I

where

DB(O): 0
-- - -'---------
BB (0) :
- ---I

o :

= B for all i
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The result is equivalent to showing that DB(O) in (II.6) is

§quare (m(O) x m(O». We let DB(O) be (m(O) x m), where m > m(O)

in order to satisfy all inequalities for f(O) G(O)x(O) in (II.4).

Since B is square, we assumeit is [m(O) + n] x [m(O) + n].

The basis in (II.6) is [m(O) + kn] x [m(O) + kn]. GB(i) is

n x n(O). If m = m(O) + l, for l > 0, then n(O) = n - l. This

would mean the basis in (II.6) is [m(O) + kn] x [m (O)+,Q,+kn-kl],

a contradiction for k > 1. Therefore, DB(O) is m by ro, and uB(O) =

= [D B (0)]-1(f(0) - G(O)x(O» is independentof (v(O), ... , v(T-1».

By Corollary 1, these are optimal.II
We had to specify that the entire basis B was feasible

above. Below, we only fix the first period controls and consider

feasibility from there. This seemsmore realistic, given that

we do not know what we will do in the future.

We consider the 2-stagestochasticlinear program, (I.11)

with T = 1. We do not consider any fixed distribution in

writing (I.11). Any discreteapproximation is allowed. In

other words, if the solutions for ｾ and J 2 are impossible to

find, then we let (I.11) be the best possible solution.

The following theorem shows the 2-stageequivalenceof a

stochasticand deterministic program:

Theorem 4. If the basic control values u(O) are feasible for

all v(O) E V(O) in (I.3) where T = 1 and x(O) is fixed, and if
-Bu (0) are optimal basic values for some v(O) E V(O), then u(O)

are optimal basic values for any characterizationof the 2-stage

stochasticlinear program in (I. 11) . [Here, "characterization"

refers to any discreteapproximationof the distribution of

v(O)].

Proof. We assume (I.11) has the form

k
mi n (c (0 ) x (0» + d (0 ) u (0 ) + I p.c ( 1 )x. (1 )

i=1 1 1

s.t. D(O)u(O) = f(O)-(;(O)x(O)



-14-

B(O)u(O) - Ix 1 (1 ) = -E(0)v
1

(0)

-A(O)x(O)

B(O)u(O) - IX
2

(1) = -E(0)V
2

(0)
(II. 7)

• -A(O)x(O)
•
•

B(O)u(O) -Ix
k

(l) = -E(O)Vk(O)

-A(O)x(O)

Where x(O) is given.

Next, we assume u
l

(0) is optimal for (II. 7). For any

x
i
(l), we have

D(O)u ' (0) = f(O) - G(O)x(O)

B (0) U I (0) - Ix i (0) = -E(O)v. (0)
ｾ

-A(O)x(O)

(11.8)

as a feasibility condition. Now,

(II. 8) is true for v. (1) = v(l).
ｾ

since v(l) = v. (1) for some i,
ｾ

But u(O) is optimal here, so

d(O)u(O) + c(l)x(l) < d(O)u' (0) + c(l)x ' (1) (II. 9)

where x(l) = E(O)v(O) + A(O)x(O) + B(O)u(O) and

Xl (1) = E(O)v(O) + A(O)x(O) + B(O)u' (0). (11.9) is, therefore,

equivalent to

d ( 0 ) u ( 0 ) + C ( 1 ) B( 0 ) u ( 0 ) 2. d (0) u ' (0) + C ( 1 ) B ( 0 ) u I (0)

(11.10)

From (11.10) we have

p. (d(O)u(O)+c(l) [B(O)u(O)+A(O) x(O)+E(O)v. (0)])
ｾ ｾ

(11.11)

< p. (d(O)u ' (O)+c(l) [B(O)u ' (O)+A(O)x(O)+E(O)v. (0)])- ｾ ｾ



-15-

and summation and the substitution, xi (1)=E(0)vi (O)+A(O)x(O)+

B(O)u(O), yields

k k
d(O)u(O) + I p.c(1)x.(1) < d(O)u'(O) + I p.c(1)x'i(1), (II.12)

Ｇ Ｑ ｾ ｾ Ｇ Ｑ ｾ
ｾ ］ ｾ ］

where xi and xli are feasible by assumptionfor (11.7).

Therefore, u(O) are optimal basic values for any distri-

bution approximation in (I.11) ·11

The significanceof this theorem is that, if one knows

that a given solution will not give infeasible results in the

next periods, then one need only solve a deterministic problem,

in which, the stochasticelement has been replacedby an expected

value. The solution found in this manner will then be as good

as any stochasticprogramming solution in finding the best first

period controls. Problems, of course, arise if the first period

controls do lead to future infeasibilities.

It would also be beneficial to know what characteristics

a basis for (1.11) must have, if one set of first period controls

is optimal for all characterizationsin (1.11). We show this in

the following theorem.

Theorem 5. If basic controls u(O) are optimal and constant

for all characterizationsof (I. 11) (for T = 1), then u (0) is

feasible for all v(O) E V(O) in (1.3) and optimal for some

V(O) E V(Q).

Proof. We again have the form (11.7) and for v. (0) arbitrary
ｾ

in (II.8), for u(O) feasible in (I.11), we must have u(O) feasible

for (1.3) and any v(O) E V(O).

Optimality for some v(O) is trivial, since we can take

our problem (1.11) to be the case of k = 1, where only v(O)

is assumedin a degeneratedistribution. II
Theorems 4 and 5 lead directly to the following Corollary.

Corollary 3. Basic controls, u(O) are optimal for all charac-

terizations in (1.11) for T = 1, if and only if the u(O) values

are feasible for all v(O) E V(O) and optimal for some

v(O) E V(O).
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This result gives necessaryand sufficient conditions for

J1 and J 4 to lead to the same optimal first period controls. It

should be noteq, however, that v(O) must belong to the set of

possibleV(O). This is always true if v(O) is an expectedvalue

and the distribution of v(O) is continuous. If v(O) has a dis-

crete distribution, the mean may not belong to the domain of

the variable and the result will not necessarilyhold.

This result may be useful in solving problems where future

uncertaintiesare involved. If one can formulate these problems

so that infeasibilities are removed, then one may be assured

that a deterministic approachin which the mean value is in

the domain of the stochasticelements is best. The problem of

dealing with infeasibilities necessitatesa stochasticapproach

and a more complicatedsolution procedurein the form of Problem

(1.11).
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