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ABSTRACT 

During the last few years, multiobjective optimization has 
received growing attention: the number of publications related 
to this subject between 1 9 7 4  and 1 9 7 9  exceeds 120 .  There are 
many approaches, techniques and tools related to multiobjective 
decision-making and optimization; however, not all approaches 
are equally developed, and the resulting tools are often applied 
because of certain traditions rather than their suitability for 
solving a given problem. Therefore, this paper is devoted to 
a comparative evaluation of various approaches and tools. This 
evaluation is based, however, first on a classification of prob- 
lems of multiobjective decision making and optimization. There- 
after, the available approaches, methods, techniques and tools 
are shortly presented and evaluated in terms of suitability 
for various classes of problems. 

The final part of the paper presents a broader description 
of a relatively new approach based on reference objective levels, 
not fully developed yet but applicable in many classes of prob- 
lems. A new notion of extended threshold utility functions, 
other basic theoretical results, applicational examples and 
directions of further research related to this approach are 
presented. 





A METHODOLOGICAL GUIDE TO 
MULTIOBJECTIVE OPTIMIZATION 

A.P. Wierzbicki 

1 . INTRODUCTION 

Multiobjective decision making and optimization have many 

fields of application today. Their roots result from economic 

theory, but they are applied now in mathematical psychology, 

praxeology, in many environmental, sociological, and technical 

problems, in computer-aided design in engineering, and in control 

problems. The theory of multiobjective optimization is now a 

standard part of mathematical programming; however, its various 

applications still result in vexing methodological and theoreti- 

cal questions. 

An abstract problem of multiobjective optimization is well- 

defined for all but practical purposes, for its solution is a 

set rather than a single point. To choose a single point out 

of this set, additional information is required. Were this 

information explicit and readily available, the problem would 

not be a multiobjective one. The most important questions in 

multiobjective optimization are where, how, and in what form 

this additional information can be obtained. As to the question 

where, there is a universally accepted answer: from a "decision 

maker", that is, a person, an expert, a manager, or a group of 

them, or even an organization involved in decision making. The 



questions how and in what form are often answered in relation 

to the existing theoretical approaches and resulting techniques 

rather than, as they should be answered, in relation to the par- 

ticular problem, to the needs of the decision maker or decision 

making organization. 

2. PROBLEMS OF MULTIOBJECTIVE DECISION MAKING AND OPTIMIZATION 

Three notions are basic for multiobjective problems: alter- 

natives or alternative decisions, their attributes and related 

objectives, and a natural partial ordering of alternatives and 

attributes. Alternatives are just possible actions; alternative 

decisions are related to a choice of either an alternative, or 

a subset of alternatives described by additional constraints. 

For example, if alternatives are approvals of various nuclear 

power plant sites, alternative decisions might be related to 

the choice of sites for three power plants simultaneously, 

which is a different problem than choosing the si&for just one 

of them. The generation of alternatives and alternative decisions 

is often a most difficult part of the problem, and requires 

additional information, knowledge and ingenuity. 

Attributes are various common characteristics of the alter- 

natives, pertinent to the problem. Sometimes, several attributes 

might be strongly correlated and can be aggregated into a compo- 

site one; some attributes might not be relevant for the problem 

at hand, some important attributes might be missing in the first 

description of the problem. The choice of a minimal set of 

pertinent attributes is again a most difficult part of the 

problem, highly judgemental and relying on sufficient information. 

It is usually assumed that attributes are quantifiable, that 

is, they can be measured on some natural or artificial, numerical 

or descriptional scales. Quantified and, if necessary, aggre- 

gated attributes become objectives. A natural partial ordering 

of objectives and thus underlying attributes and alternative 

decisions is usually evident. For example, we can choose the 

scales for relevant attributes to represent the concept of multi- 

objective maximization, that is, such that an alternative 



decision is better than another one if all objectives attained 

under the first decision are not smaller and some are larger 

than those attained under the second one; the objectives repre- 

sent then gains, profits, wins, etc. Clearly we could also 

choose the convention of multiobjective minimization by just 

inverting the scales, but for the purpose of a unified descrip- 

tion the convention of maximization is adopted in this paper. 

The quantification of attributes and the choice o f  reasonable 

scales again relies very much on available information. But the 

most crucial step in further eliciting the information pertinent 

to the problem is the stage of mathematical modelling, that is, 

describing the dependence of objectives on alternative decisions 

by functional relations. 

There are many multiobjective problems where we cannot do it, 

where the attributes and objective levels attained under alter- 

native decisions can be assessed only by experts, for example, 

when some of the attributes are of aesthetical or political 

nature. These problems shall be called the multiobjective 

decision making problems, since an actual optimization can be 

performed only implicitely in such a case. However, if a mathe- 

matical model of the relations between alternative decisions 

and all objectives can be built, then the available information 

is aggregated in a convenient form for further analysis and 

results in possibilities not only of multiobjective optimization, 

but also of automatic generation of other alternative decisions, 

etc. Naturally, the question of an adequate and reliable mathe- 

matical model of the given problem has a paramount importance 

here. 

However, all the above questions and resulting classifications, 

although basic, do not express the essence of difficulties re- 

lated to multiobjective optimization or decision making. Even 

if we eliminate by some procedure all dominated alternatives-- 

that is, such alternatives that a better one can be found in the 

sense of the natural partial ordering of the objectives--the 

set of remaining nondominated alternatives is usually large and 

its elements are incomparable in the sense of the natural partial 

ordering. To choose between them, to introduce a preference 



ordering (a c o m p l e t e  ?reordering, a complete ordering of equi- 

valence classes) in the set of alternatives, additional infor- 

mation must be obtained from experts or decision makers. The 

central questions of multiobjective optimization are how and in 

what form to obtain this additional information. The right 

answer to these questions depends very much on the properties 

of the problem and the attitudes of decision makers, and should 

not be biased by available mathematical approaches and techniques. 

The following classification is proposed herreto express these 

properties and attitudes: 

l o .  Aggrega te  p r e f e r e n c e s .  One of the basic questions in eco- 

nomic theory is how to represent a large number of decision 

makers ("economic agents") making independent but in a sense 

similar decisions. Another question, typical for mathematical 

psychology, is the description of a single decision maker making 

repetitively similar decisions under the assumption of non-vary- 

ing preference pattern. The basic and intensively studied ques- 

tion is then how to represent the preference pattern, revealed 

by a large number of actual decisions, in an aggregated form, 

suitable for further analysis. Most of the extensive work on 

utility and value theory--see, e.g., [ 6 ] , [I 0 ] , [I 4 1 --is con- 

cerned with this question. 

2 " .  Unknown p r e f e r e n c e s  i n  s i n g l e  d e c i s i o n s .  Very: often, 

important and novel decisions--such as siting nuclear energy 

plants, or setting 'standards for some new type of pollution-- 

are to be made by a body of decision makers who had not quite 

formulated a firm opinion on what type of decision they really 

like, had no clear opinion about the relevance of various attri- 

butes, simply because of lack of experience in such decisions 

or because of various uncertainties or even possible psychological 

biases related to such truly important and rare decision. The 

main task of a multiobjective decision theory in such cases 

(similar applications of multiobjective optimization are rather 

exceptional) is to help the decision makers to make up their 

minds. To do this a series of hypothetical alternative decisions 

can be constructed and evaluated by decision makers; the revealed 

preference patterns are helpful when making the actual decision. 



Extensive research is related to this class of problems and 

resulted in several successful applications, see e.g. [ 2  1, [12], 

[14lr [301. 

3". Conscious preferences in single or repetitive decisions, 

with possibly varying preference patterns. It is quite a common 

situation that decision makers have clear opinions about what 

they would like to achieve, have concious but possibly varying 

preferences. For example, planners in a planning office perform 

their task every year in varying economic situations. Very 

often in such cases mathematical models can be constructed and 

multiobjective optimization could be useful--provided that ade- 

quate procedures for the interaction between the decision maker 

and the model are developed. The model could be helpful to the 

decision-maker by generating new nondominated alternatives, 

meeting new requirements. However, there has been very little 

success in applying multiobjective optimization in such cases. 

There might be many reasons for this fact--see,.e.g., [ I  ]--but 

one of them is that the approaches and techniques useful for the 

classes 1" and 2" were usually adapted to solve problems of class 

3", where they cease to be useful. The decision makers, when 

certain that they could choose the best alternative provided 

they are presented with a reasonable set of them, do not like 

to waste time on hypothetical questions revealing their changing 

preference patterns; they simply would like to get new alterna- 

tives, closer to their changing requirements. This is a reason 

for the hypothesis that everyday single decisions are not made 

by maximization of utility functions but rather by establishing 

certain reference levels for objectives and .trying to satisfy 

them [26]. This also motivated research looking for new approaches 

and tools of multiobjective optimization, alternative to the 

classical approaches and tools. 

3. HISTORICAL PERSPECTIVE 

Pareto's original work in 1896 [I81 was motivated by economic 

problems. He introduced not only the basic notion of multiob- 

jective optimality, but also that of preference; clearly, the 

problems he considered belong to the aggregated preference class. 



He was also the first to use weighting coefficients in multiob- 

jective optimization. In the classical basic theory of multi- 

objective optimality, weighting coefficients play a central 

role: necessary and sufficient conditions of multiobjective 

optimality, equilibria and trade-offs, and utility maximization 

are basically related to weighting coefficients. 

Further work on economic theory was strongly related to the 

notion of preference and its representation by utility functions. 

Inthe foundations of general economic equilibrium theory, a 

consumer is assumed to maximize a utility function representing 

his preference ordering on commodity bundles. However, he is 

clearly an average  consumer and aggregate preferences of large 

numbers of consmers are really of interest here. An i n d i v i d u a l  

consumer in his everyday  decisions does not think in terms of 

maximizing utility, but in terms of goals, lists of things he 

is going to buy. The study of aggregate preferences and utility 

functions has reached a high mathematical level, with deep axio- 

matic basis, careful distinction between cardinal and ordinal 

utility functions, fine theorems on representations of prefer- 

ences by utility functions, an aggregations of many utility 

functions, on revealing preference patterns in many decision, 

etc.--see e.g., Debreu 1959 [6], Fishburn 1970 [lo]. f his 

development stimulated a broad mathematical psychology research 

on individual decision maker's behavior--see e.g. Hogarth 

1975 [13]. As long as repetitive decisions under nonvarying 

preferences (and thus, aggrega te  p r e f e r e n c e s ,  averaged i n  t i m e )  

were studied, the use of utility functions has been proved 

successful. However, certain behavioral phenomena were found 

not to be quite consistent with the utility approach--given a 

status quo, or reference objective levels, individuals adopt 

different, asymmetrical attitudes to the possibilities of 

losses as compared to gains with respect to the status quo. 

This is another confirmation of the hypothesis that individuals 

in everyday decisions think rather in terms of goals, reference 

objective levels, than in terms of maximizing utility. 



However, the assumption of individual utility maximization 

also guided other broad researches on individual and group deci- 

sion making. Interpersonal utility comparisons, transforming 

utility functions in the presence of uncertainty or in proba- 

bilistic choice situations, interactive procedures of group 

decision making based on utility identification, etc., were 

studied extensively and even applied successfully--see, for 

example, Keeney and Raiffa 1975 [14], Bell, Keeney and Raiffa 1977 

[2]. The successful applications of this broad theory are re- 

lated, however, to the cases of unknown preferences, where 

the decision makers were willing to take part in psychometric 

experiments in order to learn about their own preferences. In 

other cases, where the decision makers knew their preferences 

better, attempts to apply this theory have failed--see, for 

example, Clarke 1979 [3]. 

The need for an alternative approach, particularly for multi- 

objective optimization problems and for the case of conscious 

but varying preferences, has been perceived for a long time. 

Attainable reference objective levels have been used by Dyer 

1972 [7] , Kornbluth 1973 [I 51 and others in so-called goal pro- 

gramming. Far unattainable aspirations objective levels have 

been used by Sakluvadze 1971 [20] Yu and Leitmann 1974 [27] as 

so-called utopia-type points. Wierzbicki 1975-1979 [22], [23], 

[25], [26], developed an alternative basic theory of multiob- 

jective optimization where weighting coefficients and utility 

functions are replaced by any reference objective levels (attain- 

able or not, utopia-type or not) and by related penalty scalar- 

izing functions. Penalty scalarizing functions are in fact 

ad hoe constructed, only rough approximations of the preference 

patterns of a decision maker. However they depend heavily on 

and stress the importance of the information provided by him 

in the form of his desired objective levels. Therefore, they 

are particularly useful tools in case of varying preferences. 

These tools, although proved to be successful in several appli- 

cations, have not been widely tested yet. Moreover, there are 

still further developments of this theory to be investigated, 



as, for example, the consideration of uncertainties and proba- 

bilistic situations. Nevertheless, this theory represents well 

many observations on everyday, individual decision-maker's 

behavior: his thinking in terms of desirable goals or reference 

objective levels, his unsymmetrical attitude towards losses 

and gains in respect to the reference objective levels, his 

readiness to vary reference objective levels in varying situa- 

tions. The theory is not entirely separated from the classical 

theory: weighting coefficients might be determined a posteriori 

after a penalty scalarizing function has been used, and a penalty 

scalarizing function can be interpreted not only as an ad hoc 

approximation to a varying utility function, but even as a new 

type of utility function with stronger properties. 

4. BASIC THEORY 

Let Eo be the set of alternative admissible decisions and G 

the sFace of objectives x E E q E G. Let a mapping f:EO + G 0 
be given--either in the form of a mathematical model, for multi- 

objective optimization, or only implied by the specification of 

outcomes of any alternative decision, in a more general case. 

Qo = f(Eo) is then called the set of attainable objectives. If 

G = Rn and all objectives are to be maximized, the natural 

partial ordering in Qo is implied by the positive cone 

+ = {q E R ~ : ~ ~  > 0,. . ., Rn - > 0) and the strong positive cone qn - 
E+ n = R;\{O). 

A Pareto-maximal decision 2 E E and objective 4 = f(2) E QO, 0 
and the set GO of all Pareto-maximal objectives are then defined 

by : 

A 

tj = fen) , ( q  + i?) -n 
n Q o  = rn ; Q, = ra E Q ~ : ( G  + R+) n Q~=@). 

(2) 
If G is more abstract space, for example, a Hilbert space 

of trajectories of a dynamic model of national economic growth, 

then the above definitions can be easily extended by substituting 



n R+ by a chosen positive cone D c G, see, for example, [23]. 

However, the description in the paper is mostly restricted to 
n n the case G = R and D = R+. 

Weighting coefficients 

If the objectives qi = fi(x) are simply added with weighting 

coefficients 4, a linear scalarizing function is obtained 

The weighting coefficients are assumed to be at least nonnegative, 

n n h E R+; they are also usually normalized by requiring 1 A i  = 1 
i=l 

or 1 )  h 1 )  = 1 with any chosen norm in R ~ .  

Classical sufficient and necessary conditions of Pareto- 

optimality are usually stated in terms of weighting coefficients. 

n n 
If $ E Arg max .I hiqi, 9 E Arg max 1 hifi(x) with 

qEQU i=l xEEO i=l 

n h E O R ,  = {A E R ~ : A ~  > 0, ..., 
'n > 01, then $ E QO, 2 and $ = f(2) 

are Pareto-maximal. If $ = f ( 9 )  is Pareto-maximal' and the set 
A 

QO is convex then there exists h E R: such that 

n 
$ E Arg max l fiiqi. See, e.g., [ 5 ] ,  [ I l l .  

qEQo i=l 

Observe, however, that if the necessary conditions of Fareto- 

maximality should be checked, we know that there should exist 
A 

and appropriate h E 6: (provided the set Qo is convex) but it 

is difficult to find it. In fact, $ is Pareto-optimal if Q is 
0 

n 
convex and (i ,$) E Arg min max l hi(qi - Gi). Even 

1 1  h 1 1  =1, hER+ qEQoi=l 

the sufficient condition of. Pareto-maximality is not quite 
A 

operational, if we parametrisize the Pareto-set QO by defining 

-. 

4(h) = arg max I hiqi; the resulting $(A) can be easily dis- 
qEQ i=l 0 

continuous even if the set Qo is convex, see Figure 1. 



!Therefore, the parametrization G(X) is badly suited for 

scanning the Pareto set by changing A .  

Figure 1.  The use of weighting coefficients in multiobjective 
optimization: A 

a) the difficulty of finding the appropriate X for 
a given Pareto-optimal $; 

b) the discountinuity of $(A). 

Iloreover, the interpretations of weighting coefficients X 
i t  

though mathematically easy as the derivatives of a utility func- 

tion, relative prices or trade-off coefficients (see next para- 

graph) are not readily intuitive: without knowing the set Qo 

well, it is difficult to say which $ would correspond to a 

given A. All the drawbacks of weighting coefficients are more 

of pragmatical than theoretical character; but they result in 

serious difficulties when actually applying weighting coeffi- 

cients in multiobjective optimization. 

Despite these pragmatical drawbacks, the theory of the multi- 

objective optimization based on weighting coefficients has been 

extensively developed. Neighting coefficients are, in fact, a 
type of Lagrange multipliers; all existing theory on separation 

of sets by linear functionals can be used here, infinite-dimen- 

sional cases, saddle-points and duality theorems can be investi- 

gated--see, e.g., [ 8 1 ,  [ 3 1 1 .  Much hds been done in the use of 

weighting coefficients in multiobjective linear programming, 



i n c l u d i n g  v a r i o u s  t h e o r e t i c a l  i n v e s t i g a t i o n s  and computa t iona l  

a lgor i thms--see,  e .g . ,  [ 4 ] ,  [ 9 ] ,  [ 19 ] ,  [ 28 ] ,  [ 30 ] .  However, 

because o f  t h e  p ragma t i ca l  drawbacks ment ioned above, i t i s  

n o t  clear y e t  whether  t h e  a l go r i t hms  based on we igh t ing  c o e f f i -  

c i e n t s  are t h e  most p r a c t i c a l  ones.  Some p o s s i b i l i t i e s  o f  

a l t e r n a t i v e  f o rmu la t i ons  w i l l  be p r e s e n t e d  i n  t h e  nex t  pa ragraphs .  

By us ing  h y p o t h e t i c a l  q u e s t i o n s ,  "do you p r e f e r  t h e  v e c t o r  
1 2  outcome q t o  q  , o r  v i ce -ve rsa ,  o r  are y o u - i n d i f f e r e n t  t o  t h e  

c h o i c e  between them?", it i s  p o s s i b l e  t o  e s t a b l i s h  i n d i f f e r e n c e  

sets i n  t h e  space  G ,  see F i g u r e  2 .  The i n d i f f e r e n c e  sets a r e  

o rde red  i n  i n c r e a s i n g  p r e f e r e n c e ;  under some a d d i t i o n a l  assump- 

t i o n s ,  t h e y  cou ld  be  r e p r e s e n t e d  a s  l e v e l - s e t s  o f  a  f u n c t i o n  

c a l l e d  ( c a r d i n a l )  u t i l i t y  f unc t i on .  N a t u r a l l y ,  t h e  same l e v e l  

sets can  co r respond  t o  many f u n c t i o n s ;  t h e  class o f  a l l  f u n c t i o n s  

hav ing t h e  same l e v e l  sets c o i n c i d i n g  w i t h  g i ven  i n d i f f e r e n c e  

sets i s  c a l l e d  an  o r d i n a l  u t i l i t y  f u n c t i o n .  The p r e f e r e n c e  rela- 

t i o n  and u t i l i t y  f u n c t i o n  shou ld  be c o n s i s t e n t  w i t h  t h e  n a t u r a l  

p a r t i a l  o r d e r i n g  o f  t h e  space  G; i n  o t h e r  words, t h e  u t i l i t y  

f u n c t i o n  u ( q )  shou ld  be o rde r -p rese rv i ng  

o r  even s t r i c t l y  o r d e r  p r e s e r v i n g  

The fundamental  though s imp le  consequence o f  s t r i c t  o r d e r  pre-  

s e r v a t i o n  i s  t h a t  each  maximal p o i n t  of  a s t r i c t l y  order -pre-  

s e r v i n g  u t i l i t y  f u n c t i o n  i n  Qo i s  P a r e t o  maximal, 

$ E Arg max u ( q )  C aO. The re fo re ,  t h e  i n d i f f e r e n c e  set c o r r e -  
qEQ0 

sponding t o  $ is  t a n g e n t  t o  a t  $, and can  be  weakly s e p a r a t e d  

from Qo under a d d i t i o n a l  convex i t y  assumpt ions.  

C l e a r l y ,  i f  $ = a r g  max u ( q )  and u  i s  d i f f e r e n t i a b l e  a t  4,  
+no 

t hen  



Figure 2. Indifference sets, utility function and Pareto- 
maximali ty . 

is a weighting coefficient vector corresponding to q .  Thus, in 

Figure 2, expresses the optimal trade-off or marginal rates 

of substitution between ql and q2 at $. Moreover, <i,q-~>+u($) 

is a linear approximation at $ to the ordinal utility function 

u(q). It is usually required [6] that a utility function satis- 

fies many additional axioms, related to its symmetry, convexity, 

etc. However, those properties of a utility'function are not 

very pertinent for the purpose of this paper. Many further 

interesting questions, related to aggregating utility functions 

of many decision makers, including uncertainties, etc., [14], 

are also not discussed here. We should note only that the notion 

of a utility function, though powerful, is not fully operational 

in many questions of multiobjective optimization. The knowledge 

of a utility function corresponds to full information about the 

optimization problem and transforms it to a single-objective one. 
But suppose we have less information and would like only to know 

whether a given Q is Pareto-maximal or not. Can we construct 

an ad izoc utility function that has maximum precisely at $? 

The answer to this question, though positive, does not result 

from classical utility theory. 



E x t e n d e d  t h r e s h 0  Zd u t i  Z i t y  f u n c t i o n s  

I f  an i n d i v i d u a l  d e c i s i o n  maker behaves d i f f e r e n t l y  i n  s i t u -  

a t i o n s  when he cannot  a t t a i n  c e r t a i n  g o a l s  ( t h e  t h r e s h o l d  of 

s u b s i s t e n c e  of a  consumer g i v e s  an a p p r o p r i a t e  example h e r e )  

t han  i n  s i t u a t i o n s  when he can a t t a i n  a l l  g o a l s  and has  t o  

a l l o c a t e  s u r p l u s ,  t h e n  h i s  u t i l i t y  f u n c t i o n  should  e x p r e s s  t h i s  

behav ior .  I n  t h e  maximizat ion convent ion,  g iven  a  t h r e s h o l d  

o r  r e f e r e n c e  o b j e c t i v e  l e v e l  q E Rn,  he does a t t a i n  a l l  
n  g o a l s  i f  q  E q + R+; suppose a  u t i l i t y  f u n c t i o n  u (  (q  - q) +) 

- - 
i s  de f i ned  f o r  t h i s  c a s e ,  where (q  - q ) +  = (max(0,q2 - q l ) ,  . . . , 

- - 
max(O,qn - q n ) ) ;  suppose u ( ( q  - q ) + )  2 0 and u ( ( q  - q ) + )  = 0 

i f  some of t h e  components of ( q  - q ) +  a r e  zero .  I f  q  $ G+R:, 
he j u s t  t r ies  t o  a t t a i n  h i s  g o a l s  a s  c l o s e l y  a s  it i s  p o s s i b l e ,  

- 
t h a t  is,  minimizes a  norm ) I  (q  - q ) + / [ .  Th is  extended u t i l i t y  

f u n c t i o n  t a k e s  t h e  form: 

where p > 0 i s  a parameter .  Th is  f unc t i on ,  which might be 

c a l l e d  an  extended t h r e s h o l d  u t i l i t y  f u n c t i o n ,  i s  no t  on l y  

o rde r -p rese rv ing ,  bu t  possesses  i n  f a c t  a  much s t r o n g e r  p rope r t y  

t h a n  t h e  c l a s s i c a l  forms of u t i l i t y  f unc t i ons .  Th is  p r o p e r t y  

might be c a l l e d  s t r i c t  o r d e r  r e p r e s e n t a t i o n  and c o n s i s t s  i n  t h e  

fo l low ing  r e l a t i o n :  

The s t r e n g t h  of t h i s  p r o p e r t y  r e s u l t s  from t h e  fo l low ing  lemma: 

G e n e r a l i z e d  n e c e s s a r y  c o n d i t i o n  o f  P a r e t o - m a x i m a l i t y .  I f  a  
n  1  f u n c t i o n  s : R  + R possesses  t h e  s t r i c t  o r d e r  r e p r e s e n t a t i o n  

p rope r t y  ( 8 )  , and $ E Q O  i s  Pareto-maximal, t hen  

$ = a r g  max s (q-$) ; max s (q-$) = 0 , 
+QO s'Q ( 9  

no mat te rwhether  t h e  set  Qo is  convex o r  n o t .  Moreover, i f  



- + 0 n 
q $ Qo - Rn, then max s (q-q) < 0, and if q E Q 0 - R+ (vhich 

h 

s'Q 0 

implies q $ QO) , then max s (q-q) > 0. 
+aO 

n 
The proof is elementary: since ($+R+) 17 QO = {$I due to ( 2 ) ,  

then s (q-$) s 0 for all q E Q q # $ due to (8) . Clearly, 
+ 0 - + 

s($-4) = 0. If S $  Qo - R,, then dist (Qo , q+Rn) > 0 and 
0 + 

s(~-:) = - 1 1  (q-q)+ll < 0 for all q E Q,. If Z E  Q 0 - Rn, 
- o+ 

then there exists qEQO such that q E q + ~ ~  and s(~-G) = u( (y-q)+) > 0. 

This generalized necessary condition of Pareto-maximality, 

illustrated by Figure 3, is particularly operational: given any 
- 
q E R", one can choose any utility function ~ ( ( ~ - q ) + )  of desired 

n - 
properties--for example, u ( (q-q) +)  = n (qi-qi) +--and any norm-- 

i = l  - - - 

for example, I I (q-q) + 1 = max (qi-qi) +--to formulate the extended 
i 

utility function (8). By maximizing the function, the attain- 

ability and Pareto-maximality of : is easily checked. Since 

this function is order-preserving, its maximal points are Pareto- 

maximal except in some degeneratecases, see Figure 3. 

//////////// q 1 
RZ 

a 1 
b b 

b) 

Figure 3. The use of an extended threshold utility function: 
a)necessary condition of Pareto-maximality for noncon- 
vex problems, b)a degenerate case where a maximal 
point of an order-preserving function is not 
Pareto-maximal. 



An extended threshold utility function can be treated as an 

cardinalutility function and be subject to psychometric identi- 

fication, though its identification might be more difficult than 

that of classical utility functions (the basic question is then 

how to identify the threshold q ? ) .  However, its main use is as 

an ad h o c  c o n s t r u c t e d  utility function, stressing the information 

contained in a threshold q specified by experts or decision 

makers. For the maximal points of s(~-;) depend mainly on q, 

although technically they depend also on the choice of u( (q-:)+), 

p ,  and the norm. 

Consider, for example, the dependence on the choice of norm. 

If the weighted sum of absolute values were chosen, ) I  (q-q)+I = 

n 
- - - 1 Xi(qi-qi)+, then, clearly, the choice of the norm would be 

i= 1 

(almost) equivalent to the choice of weighting coefficients, 

and would present some vexing problems. However, if the weighted 
- - 

maximum norm is chosen, 1 1  (q-q)+lI = max qi(qi-qi)+, then the 
i 

weighting coefficients qi  > 0 play quite a different role--they 

correspond to the choice of scales and.not to the choice of 

trade-offs, and a reasonable choice of scales is a basic problem 

in all computations and measurements, much more typical to be 

solved intuitively than the choice of trade-offs. Similarly, 

in the weighted Euclidean norm / I  (q-q)+ll = 
i=l 

the coefficients ti correspond to the choice of scales though 
A 

they imply a p o s t e r i o r i  weighting coefficients Xi--since, if 

s(q-6) is differentiable at its maximal point 6 ,  the corre- 

sponding weighting coefficients can be determined as in (6) 

with s in place of u. 

All these details--choice of the norm, of the penalty coef- 

ficient p ,  of the utility function u--play a truly technical 

role if the threshold or reference objective level 6 and the 

corresponding $ = arg min s(~-:) are used as the main infor- 
sEQ, 

mation exchanged between the decision maker and an optimization 



model in an interactive procedure generating nondaminated alter- 

natives corresponding to the requirements of the decision maker. 

The choice of the norm determines only the sense in which attain- 

able Pareto-maximal $ are close to unattainable reference levels 
- 
q. The choice of the utility function u determines only the 

sense in which surplus 4-q is allocated between various objectives, 

if the reference level is attainable. However if these details 

are chosen, a decision-maker in an interactive procedure learns 

quickly how to change his requirements q to obtain a desirable 

$--see Figure 4. The reason for this is that q is formulated 

in terms much more readily understandable to the decision-maker 

(no weighting coefficients, no trade-offs, just desireable 

levels of objectives) and that the parametrization $(:) = 

= arg max s(q-q) is usually much more sta.ble than the parametri- 
4EQ0 

zation $(A) = arg max <A,q>. 
+QO 

Figure 4. An iterative procedure generating nondominated alter- 
natives $ti = arg max s(£ (x)-$) and objectives 

xEX , 
U 

iji = f (pi) in response to .varying requirements qi of 
a decision maker. 



Examples of some possible forms of extended threshold utility 

functions are as follows: 

The latter function is differentiable, though the underlying 

ordinal function is not. Both functions are convex, both use 

the unmodified multiplicative utility function. However, this 

function can also be modified, for example: 

- . . - - 
(q-q) = min (p min (qi-qi) + I J IT (qi-qi) - p max (qi-qi) + I  

1 <i<n i= 1 1 <i<n 

to express the concept that the utility is related also to the - 
smallest surplus rnin (qi-qi)+; if the smallest surplus is less 

1 <i<n 

than the product of other surplusses multiplied by l/p2, then 

u (q-q) = p min (qi-qi) . When allocating the surplus, the 
1 <i<n - - 

smallest one has thus a "guaranteed" share. The indifference 

sets for the function (10c) are presented in Figure 5. Similar 

modification can be used also for linear utility functions, for 

two reasons: not only to "guarantee" a certain share of the 

smallest surplus, but also to modify the linear utility function 

continuously to zero if the smallest surplus becomes zero. This 

modified linear utility function results in the extended thresh- 

old function: 

- n 
s (q-q) = min (p min (qi-qi) , 1 (qi-qi) ; P > n , ( 1  Od) 

1 - <i<n - i= 1 

which is particularly well suited for linear programming purposes, 

since its maximization is equivalent to a linear programming 

problem: 



maximize y , q E Qo , y E To (4-9) = 

After solving this problem, the weighting coefficients can be 

a posteriori determined from the dual program. All the functions 

(10a, ..., d)  are order preserving and strictly order representing, 

for arbitrary 6 E Rn. 

P e n a l t y  s c a l a r i z i n g  f u n c t i o n s  

The extended threshold utility functions actually form a 

subclass of a broader class of functions of the form s (q-6) , 
constructed in order to ad hoc approximate the preferences of 

a decision maker who has stated a desireable reference objective 

level E Rn (attainable or not). These functions should satisfy 

the following requirements: 

1'. They should be order preserving and, if possible, strictly 

order preserving in q. 

2' . They should be order representing or, at least, order 

approximating. Order approximation property is a relaxation 

of the requirements of order representation, expressed by the 

following relation: 

n In other words, the set So should closely approximate G+R+ 
from above, where the closeness is expressed in terms of a conical 

n n n neighborhood R+E of the cone R+. Observe that the cone R+& can 

be used to define an E-Pareto-maximality by the requirement 

(6+kyE) " Qo = (, and that the generalized necessary condition 

of Pareto maximality from the previous paragraph can be easily 

restatedin terms of the order approximation property (11) and 

the &-Pareto maximality, see also Wierzbicki 1977 [ 2 3 ] .  



F igu re  5. I n d i f f e r e n c e  sets f o r  ex tended t h r e s h o l d  u t i l i t y  
f u n c t i o n s ,  a ) t h e  f u n c t i o n  ( 1 0 a ) ,  b ) t h e  f u n c t i o n  ( l o b ) ,  
c )  t h e  f u n c t i o n  ( 1  0c )  , d )  t h e  f u n c t i o n  11 0d)  , r e s u l t i n g  
i n  a  l i n e a r  programming problem (1 0c )  . 



3 O .  They should represent a concept of distance minimization 
n 

betueen q and q,  if q $ s + R+. 

4 O .  They should represent either a concept of surplus allocation, 
n or a concept of surplus maximization, if q E 6 + R+. 

Functions which satisfy the above requirements are called 

penalty scalarizing functions. While the first two require- 

ments have strict mathematical meaning and result directly in 

sufficient and necessary conditions of Pareto-maximality in terms 

of penalty scalarizing function maximization, the last two re- 

quirements are merely guidelines to construct such functions. 
n If we use a utility function in :+R+ to construct a penalty 

scalarizing function, we usually obtain an extended threshold 

utility function related to some concept of surplus allocation. 

But we can as well use other order-preserving functions in 

q + ~ y ,  for example, a norm. This results in the basic form of 

a penalty scalarizing function: 

The function is order-approximating with E - > l/p for arbi- 

trary norm. If the norm is Euclidean, the function is strictly 

order preserving (hence, each maximal point is Pareto-maximal) 

but not even quasi-concave. If the norm is the sum of the ab- 

solute vales, the functions is strictly order-preserving and 

quasi-concave or even concave far p > 2. 

It is, in fact, the simplest extension of the linear utility 
+ + 

function in $Rn to other linear forms if q $ G+R,, see Figure 

6b- Its maximization is equivalent to a linear programming 

problem of the form: 

- 
~ ( q - q )  = ~ y ~ R ~ : y . < q . - q ~ ,  1- 1 yi(p-l)(qi-qi), all i=l,...,nj . 

The arbitrary choice of the weighting coefficients hi = 1 in the 

sum of absolute values norm has only a technical character here, 



since the solutions of (13) are usually at vertices of ~ ( q - q )  
h 

and the a posteriori determined weighting coefficients Xi, 

corresponding to a Pareto-maximal 4 and obtained from a dual 

program, are different than 1. 

If the norm in (1 2) is maximum norm, the t h e  functions is 

only order preserving and not quasi-concave, see its level sets 

in Figure 6c. However, it is a convenient function when the 

surplus q-q should be maximized in its norm subject to the 
n 

soft constraint q-q E R+, expressed by the penalty term 

-p  1 1  (4-4) + I 1  . The function (1 2) extends and generalizes known 

goal programming [7] , [I 51 and utopia point [21] , [27] approaches. 

Morever, the function (12) can also be used if the objective 

space is infinite-dimensional, for example, a space of dynamic 

trajectories. In a Hilbert space, the vector (q-q)+ should be 

then understood--see [24]--as the projection of q-q on the dual * 
cone D = {q*~~:<q*,q> - > 0 for all  ED), where D is the cone 

used instead of R: in the extended definition of Pareto-maximality; 

and additional condition D C - D* should be also satisfied. More 

generally, in any linear lattice space, the function (12) takes 

a little more complicated form--see Wierzbicki 1977 [23]. 

Another group of penalty scalarizing functions is more 

closely related to the concept of goal programming [7], [15]. 

Suppose an objective ql  is chosen to be maximized under con- 
- d 

straints q2 2 q2,..., qn -2 qn' These constraints could be 

treated as soft ones and expressed by the penalty function: 

where 4, does not influence the maximization of the function 

but is subtracted for the sake of complete presentation. In the 
-n - - - 

original goal programming formulation, q - (q2, ...,q should 

be attainable reference objective levels. However, the function 

(14) is (strictly) order-preserving in q for any norm in R n-1 

(not strictly, if the maximum norm is used), any p > 0 and 

any ,  n o t  n e c e s s a r i l y  a t t a i n a b l e  q = (ql ,qn)--see Wierzbicki 

1978 [25]. This function is also order-approximating with 

E - > l/p. Therefore, it is a penalty scalarizing function 



expressing the concept of surplus maximization in one coordinate 

if q is attainable, and a concept of distance minimization if 
- 
q is not attainable. 

Figure 6. Level sets of penalty scalarizing functions: a)when 
the Euclidean norm is used, b)when the sum of absolute 
values norm is used, c)when the maximum norm is used; 
and d)an illustration of E-Par-eto maximality and of 
the weak separation of Qo and +R: by S o  = B+R:&. 



The function (14) is concave; if either the sum of absolute 

values or the maximum norm is used, its maximization is equiva- 

lent to a linear programming problem. For example, if the 

maximum norm is used, the equivalent problem is: 

r -r 
maximize (ql-ql-py) I q E Q o  1 Y E Y o ( q - 4 )  ; 

all 

Again, after finding a solution $ to this problem, the corre- 
FI 

sponing weighting coefficients X = (1, h 2  , ... , in) can be obtained 

from the dual program. 

The function (14) can be also generalized to an objective 

space G = R1xGr, where Gr is a Hilbert space, a linear lattice 

space, etc. 

5. APPLICATION FIELDS OF REFERENCE OBJECTIVE SCALARIZATION 

A n a l y s i s  o f  m u l t i o b j e c t i v e  o p t i m i z a t i o n  m o d e l s  

When building a multiobjective optimization model, the ana- 

lyst must experiment with it and scan the Pareto-set, that is, 

obtain a representation of it. Since the nature of the Pareto- 

set is, as a rule, not a priori known, an application of weighting 

coefficients to scan the set can lead to quite inconclusive 

results while the use of a penalty scalarizing function with 

changing reference objective levels gives reasonable represen- 

tation of the set--see, for example, [ 2 2 ] .  Experience in 

application of this method to some nonconvex problems of engi- 

neering design shows that the scalarizing penalty function of 

the form (14) is best suited for this purpose. By maximizing 

independently various objectives, approximate ranges of their 

change in the Pareto-set can be established. It is reasonable 

then to choose as ql the objective with the most uncertain 

range of change- for other objectives, a grid of reference 

levels can be constructed, and used consecutively in the function 

(14) 



If the problem is nonlinear, it might be worthwhile to use 

instead of the function (14) its differentiable variant 

with the Euclidean norm. The function, though not quite order- 

approximating, is still strictly order-preserving for all 

p > 0. The maximal points of this function, although they 

usually violate the assumed reference levels slightly (depending 

on the choice of the penalty coefficient p) are Pareto-maximal 

points, hence neither an iterative increase of the penalty 

coefficient nor other iterative techniques of constrained 

optimization are needed here. Since the function (16) is 
A 

differentiable, at each Pareto-maximal point q the corresponding 

vector of weighting coefficients X can be computed from a formula 

analagous to (6) . 
If a multiobjective linear programming problem is investi- 

gated, a similar procedure based on the formula (15) can give 

more reasonable representation of the Pareto-set than a para- 

metrization via weighting coefficients. The assumed .reference 

objective levels are then precisely satisfied (as long as they 

are attainable and the obtained Pareto points are also €-Pareto 

optimal with E = l/p), since the function (14) equivalently 

represented by (15) is an exact penalty function. 

Interactive procedures of mu2tiobjective optimization 

The main strength of reference objective scalarization 

consists in the possibility of contructing efficient interactive 

procedures of multiobjective scalarization. There are many 

possible variants of such procedures, though all of them are 

based on the principle explained in Figure 4. The decision- 

maker specifies a reference objective point, and the optimization 

model responds with one or more Pareto-maximal alternatives, 

in a sense close to the decision maker requirements (or better, 

if the requirements are attainable). Then the decision-maker 

either chooses one of the alternatives, or modifies his reference 

objective point. 



Var ious v a r i a n t s  o f  such a  procedure  were d e s c r i b e d  and 

ana lyzed  i n  Wie rzb ick i  1979 [26] and K a l l i o  and Lewandowski 

1979 [ 1 6 ] .  For  example, g i ven  a  r e f e r e n c e  o b j e c t i v e  p o i n t  qJ, 
t h e  o p t i m i z a i t o n  model de te rm ines  f i r s t  ~j = a r g  max s ( q - q J ) ,  

-0 
t hen  d  = 1 1  qJ-Qj 1 1  and a d d i t i o n a l  r e f e r e n c e  p o i n t s  
- j , i  1-a 
9 . . = q3+d .  e t o g e t h e r  w i t h  a d d i t i o n a l  a l t e r n a t i v e s  

3 i  cJ f l=  a r g  max ~ ( ~ - q j ' ~ ) .  H e r e  ei = ( 0  ,..., 1 ... ,O) i s  t h e  i f  
q€Qo 

i - t h  u n i t  b a s i s  v e c t o r ,  and f o r  each r e f e r e n c e  o b j e c t i v e  p o i n t  

qJ t h e  p rocedure  responds  w i t h  n+l a l t e r n a t i v e  Pareto-maximal 
-1 j  p o i n t s  aJ ,  i. I f  d  = 1 1  q  -a 1 1  i s  l a r g e ,  a t  t h e  beg inn ing 

j 
o f  t h e  p rocedure ,  t h e n  t h e  a l t e r n a t i v e s  e l f i  a r e  more wide ly  

sp read .  I f  t h e  decis ion-maker moves h i s  requ i rements  qj t o -  

wards t h e  P a r e t o - s e t ,  t hen  d  d e c r e a s e s  and t h e  p rocedure  gener-  
j 

a t e s  a l t e r n a t i v e s  QJ more f i n e l y  d e s c r i b i n g  t h e  P a r e t o - s e t  

i n  t h e  reg ion  o f  d e c i s i o n  makers '  i n t e r e s t s .  A d d i t i o n a l  condi-  

t i o n s  which gua ran tee  t h e  convergence o f  t h i s  p rocedure  a r e  

g iven i n  [261. However, i t i s  p r a c t i c a l l y  s u f f i c i e n t  t o  ask  

t h e  d e c i s i o n  maker t h a t  he moves h i s  requ i rements  qJ g e n e r a l l y  

i n  t h e  d i r e c t i o n  o f  t h e  P a r e t o - s e t  ( desc r i bed  t o  him by t h e  

a l t e r n a t i v e s  $ I ,  Q j '  i, , and he u s u a l l y  t e r m i n a t e s  t h e  p rocedure  

a f t e r  a  sma l l  number o f  i t e r a t i o n s .  Moreover, i f  w e  assume 

t h a t  t h e  decis ion-maker has  a  p r e f e r e n c e  r e l a t i o n  d e s c r i b e d  

by a  u t i l i t y  f u n c t i o n ,  it i s  e a s y  t o  show t h a t  t h e  t e r m i n a l  

p o i n t  o f  t h i s  p rocedure  does approx imate ly  maximize h i s  u t i l i t y ,  
I 

s i n c e  t h e  n+l a l t e r n a t i v e s  cou ld  be used t o  i d e n t i f y  h i s  p r & f -  

e r e n c e s ,  and i n d i f f e r e n c e  sets. Such an  i n t e r p r e t a t i o n  i s ,  

however, no t  necessary :  t h e  d e c i s i o n  maker is n o t  asked  about  

h i s  p r e f e r e n c e s  du r i ng  t h i s  procedure ,  he mod i f i es  o n l y  h i s  

requ i rements  i n  a  n a t u r a l  and e a s i l y  unde rs tandab le  f a s h i o n .  

T r a j e c t o r y  o p t i m i z a t i o n  

I n  t y p i c a l  f o rmu la t i ons  o f  dynamic o p t i m i z a t i o n ,  s i n g l e  o r  

m u l t i p l e  o b j e c t i v e s  a r e  o b t a i n e d  th rough  agg rega t i ng  t h e  dynamic 

t r a j e c t o r i e s  by i n t e g r a l  f u n c t i o n a l s .  T h i s  t echn ique  i s  mot i -  

v a t e d ,  however, by t h e  t r a d i t i o n a l  mathemat ica l  approaches  t o  

dynamic o p t i m i z a t i o n ,  and n o t  n e c e s s a r i l y -  by t h e  needs o f  t h e  

r e a l  world.  Exper ienced a n a l y s t s ,  economis ts  and d e c i s i o n  makers 

o f t e n  e v a l u a t e  i n t u i t i v e l y  e n t i r e  t r a j e c t o r i e s ,  f u n c t i o n s  of 

t ime,  b e t t e r  t han  a g g r e g a t e  i n t e g r a l  i n d i c e s .  Adopt ing t h e  



viewpoint of the classical utility theory, we could say that 

they do have their own utility functionals, expressing their 

preferences over trajectories. However, how one can idencify 

experimentally a utility function depending on an infinite 

number of objectives, or, after a discretization of time, even 

a utility function depending on a very large number of objec- 

tives? Clearly, we need here an ad hoc approximation of decision 

maker's preferences, constructed with the help of the best 

available information. Once the decision maker is experienced 

in evaluating trajectories, he can state his requirements in 

terms of a r e f e r e n c e  t r a j e c t o r y  q(t2,a scalar- or vector-valued 

function of time (for example, the gross national product and 

the inflation rate versus time, see [ 2 6 ] ) .  Since the penalty 

scalarizing functions can be directly generalized to infinite- 

dimensional spaces, hence, if a dynamic model of the problem is 

available, it is possible to choose an appropriate objective 

space, to fomulatea penalty scalarizing functional, to apply 

any known dynamic optimization technique, and thus to construct 

an optimization model. The model responds to the decision- 

maker's requirements by (generalized) Pareto-optimal trajectories, 

in a sense close to the required if the latter are not attainable, 

and in a sense better than the required if the latter are attain- 

able. 

Tile simplest choice of the objective space is the space of 
2  square interable functions L [O;T]  where T is the time horizon, 

2  with the positive cone D =  EL [O; TI :q (t) 1 0  almost everywhere 

on [ O ; T ] ) .  The corresponding penalty scalarizing functional 

similar to ( 12) becomes then: 

If the time is discretized, then the sum replaces the integral; 

the problem becomes finite-dimensional, but it is still more 

convenient to think in terms of trajectories than in terms of 

separate objectives. Many other choices of the objective space, 

of the scaling of trajectories (for example, in terms of de- 

flation rates), etc., are possible. 



The c o n c e p t  o f  t r a j e c t o r y  o p t i m i z a t i o n  v i a  p e n a l t y  f u n c t i o n  

s c a l a r i z a t i o n  h a s  been a p p l i e d  by K a l l i o  and ~ e w a n d o w s k i  1979 

[16] i n  a s t u d y  o f  a l t e r n a t i v e  p o l i c i e s  f o r  t h e  F i n n i s h  f o r e s t r y  

i n d u s t r i a l  s e c t o r .  The r e s u l t s  o f  t h i s  s t u d y  c o n f i r m  t h e  view- 

p o i n t  t h a t ,  i n  some c a s e s ,  r e f e r e n c e  t r a j e c t o r i e s  p r o v i d e  f o r  a  

b e t t e r  i n f o r m a t i o n  t h a n  a g g r e g a t e  s c a l a r  i n d i c e s .  

Semi-regularization of solutions of optimization models 

I f  a s i n g l e - o b j e c t i v e  o p t i m i z a t i o n  model p o s s e s s e s  many 

comparab le  s o l u t i o n s ,  a s t a n d a r d  t e c h n i q u e  o f  c h o o s i n g  between 

them i s  t o  f i n d  t h a t  o n e  which is  c l o s e s t  t o  a g i v e n  r e f e r e n c e  

po in t - -no t  n e c e s s a r i l y  i n  t h e  s o l u t i o n  s p a c e ,  b u t  i n  any  s p a c e  

o f  chosen  i n d i c e s  i n  which a  r e f e r e n c e  p o i n t  c a n  be  found  from 

e a r l i e r  e x p e r i e n c e  and e x p e r t i s e .  Denote t h e  o r i g i n a l  o b j e c t i v e  

by q1  = f l ( x )  and t h e  a d d i t i o n a l  i n d i c e s  by ( q 2 ,  . . . , q n )  = 

= qr = f r ( x )  and l e t  t h e  r e f e r e n c e  p o i n t  qr be g i v e n ;  w e  o b t a i n  

t h u s ,  i n  f a c t ,  a  m u l t i o b j e c t i v e  problem. The t y p i c a l  t e c h n i q u e  

o f  choos ing  between v a r i o u s  x  E X n e a r l y  maximizing f l ( x )  i s  0 
t o  maximize a  p e n a l t y  f u n c t i o n ,  f o r  example:  

or, f o r  l i n e a r  problems:  

f o r  s u f f i c i e n t l y  s m a l l  p > 0. T h i s  g e n e r a l  t e c h n i q u e  i s  a  c a s e  

o f  Tikhonov r e g u l a r i z a t i o n  o f  s o l u t i o n s  o f  b a d l y  d e t e r m i n e d  

problems.  I t  a l s o  h a s  v a r i o u s  d e e p  i n t e r p r e t a t i o n s .  F o r  example,  

w e  are o f t e n  s u r e  t h a t  a  ma themat i ca l  model d e s c r i b e s  t h e  r e a l i t y  

s u i f i c i e n t l y  w e l l  f o r  d e c i s i o n s  a n d . t h e i r  outcomes known from 

e x p e r i e n c e .  However, t h e  o p t i m a l  s o l u t i o n s  f o r  t h e  model can  be  

. f a r  from t h o s e  known from e x p e r i e n c e ,  and w e  c a n  doub t  whether  

t h e  model is  s u f f i c i e n t l y  e x a c t  i n  t h i s  new r e g i o n  o f  d e c i s i o n s  

and outcomes.  T h i s  q u e s t i o n  a r i s e s  p a r t i c u l a r l y  o f t e n  i f  l i n e a r  

programming models are used ,  and w e  c o n s i d e r  o n l y  some v e r t i c e s  

o f  t h e  a d m i s s i b l e  set ,  c o r r e s p o n d i n g  e i t h e r  t o  o p t i m a l  o r  n e a r l y  



optimal solutions. Clearly, if there are many solutions which 

differ only a little in the objective function level q = fl(x), 1 
we should choose the one that is in a sense closest to those 

known from experience. 

Observe, however, that the penalty functions (1 8) , (1 9) 

are special cases of the scalarizing functions (1 4) , (1 5), (16) 

if we are sure that the reference point qr ,is not attainable. 

If it is attainable, we do not always want only to be close to 

qr: we might as well like to exceed qr in some or all of its 

components (examples of such indices might be some energy con- 

servation indices, gross national product, etc.). Denote, 

therefore, cr = (qs,ct) where Fs contains those components which 

are to be exceeded, if possible, and qt those ones which should 

only be kept close to. Then the following penalty scalarizing 

function: 

t t  
expresses the principle of semiregularization: keep q- =f (x) close 

-t S Si 
to q and either keep close to or exceed qsby q =f (x). Other 

forms of this function, as in (1 5) , (1 6) , are also possible. 

Sinlilarly as in equation (14) , the reference level c1 does not 

have any meaning but of theoretical convenience in formulating 

an order approximation property. We can define a new positive 
n cone D in K by D = {q~~n:q l l~ ,q i lG  for iEs, q.= 0 for iEt} 

l. t where s and t denote the sets of indices for qS and q , and 

prove that the function (20) is DE-order approximating, that is 
d f if So = {q Rn:s (q-q) - >O}, then + D C,sOC q + DE, 

DE = {q~~n:dist(q,D) - < € 1 1  q 1 1  1, E = max(l/ps,l/pt). The 

function ( 2 3 )  is also D-order preserving. These notions can 

be generalized as well to the case when qS and qt are elements 

of infinite dimensional spaces. 

The semiregularization of solutions of optimization models 

is khus a special case of rnultiobjective optimization with 

appropriately defined positive cone, and the techniques of 

scanning the Pareto-set, interactive procedures or trajectory 

optimization techniques described in the above paragraphs can 

be used here. 



Compromise-aiding procedures for cooperative games 

If the decisions represented in a multiobjective optimization 

model can be made in reality by several distinct decision-makers, 

then the model is actually a game model: to accept a solution 

proposed by the model the decision makers have to agree about 

goals. It is natural, therefore, to construct compromise-aiding 

procedures where the decision makers bargain only in terms of 

reference objective levels and an optimization model provides 

them with various alternative Pareto-maximal solutions in re- 

sponse to their desired reference objective levels. Several 

variants of.such a technique has been analyzed recently in 

Kallio and Lewandowski 1979 [ 1 6 ]  and Wierzbicki 1979 [ 2 6 ]  ; the 

latter paper also contains a convergence analysis of such a 

procedure. 

6. CONCLUSIOLJS AND POSSIBLE EXTENSIONS 

An alternative approach to multiobjective optimization, 

based on the notion of reference objective levels rather than 

on weighting coefficients or utility functions, has many aspects. 

On one hand, it is a pragmatical approach: the information that 

is most likely to be obtained from the decision makers is used 

in order to construct rough, ad hoc approximations of their 

possibly varying preference patterns. However, this approach 

is also consistent with some practically observed behavioral 

properties of decision makers, namely, with the non-symmetrical 

attitude to the prospects of not attaining or to exceeding 

stated goals. On the other hand, the approach is well-founded 

mathematically: all basic theorems of multiobjective optimi- 

zation, including sufficient and necessary conditions of Pareto- 

optimality, etc., can be equivalently or even more generally 

stated in terms of reference objective levels and penalty 

scalarizing functions than in terms of weighting coefficients 

and utility functions. 

Although this approach is certainly not "the one" best 

suited to solve all classes of multiobjective decision-making 

and optimization problems, however sofie problems of repetitive 



decisions based on mathematical models, with varying preferences 

of decision makers, can be much more conveniently solved by this 

approach than by other known approaches. Much remains to be done, 

however, in a wider testing of this approach in many applicatianal 

fields. There are also important mathematical questions to be 

further investigated: the use of reference objective levels 

in stochastic optimization, in situations of uncertainty, a 

possible treatment of risks by this approach, etc. 
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