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Preface

There is much that is appropriate and correct in the writings of these
philosophers. Their remarks, when they denounce other philo
sophers, are appropriate and correct. But when it comes to
their own contributions, they are usually not so.
LUDWIG BOLTZMANN

Connectivity, complexity, catastrophe: these are loaded words in the system
theory lexicon. At one level the words connote an intuitively satisfying
characterization of important aspects of processes that pervade modern life.
How often does one see descriptions such as "a tightly connected system,"
"a large, complex system," "a catastrophic outcome," and so on? Upon
more careful examination, though, the "three C's" appear as the smile of
the Cheshire cat rather than as a useful characterization of system-theoretic
properties. The problem is one of translation of intuition into operational
terms. Until the words are given a definite operational meaning within the
context of a given mathematical model of a particular problem, they mean
whatever one wants them to mean, a normal situation in philosophy but one
with obvious defects as a model for policy making or control.

In the pages that follow, we attempt a somewhat eclectic overview of
some of the recent work aimed at mathematically coming to grips with
connectivity, complexity, and catastrophe (ccc). In some sense, this book can
be regarded as an extended outline, as the goal has been more to range over
a wide variety of approaches to ccc, rather than to provide in-depth
coverage of a few particular approaches. Since there is by no means
consensus about how the basic concepts should actually be viewed, we feel
that our approach is at least defensible. Nonetheless, many readers may wish
for more details. For this reason, we have attempted to provide a balanced
reading list at the end of each chapter for those who wish to dig deeper.
Consequently, the book should be regarded as a high-altitude flight over
some of the mountaintops of the system theory world, not paying too much
attention to the fine points found only in the valleys. It is to be hoped that
this approach will make the basic ideas accessible to a wider range of
readers than would a purely technical treatment devoted to detailed excur-
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sions down into the valleys. For the same reason, we have also provided
numerous applications of the ccc ideas from a wide variety of fields. At
worst, these applications should assist the reader by providing motivation for
some of the more esoteric mathematics. At best, some of the applications
may justify the entire book; the reader himself must be the final judge.

As system theory is an intellectually alive, rapidly developing activity, it is
clearly impossible in a volume of such modest proportions to do justice to all
of the important work done in ccc. The choice of subject and selection of
results has been motivated by the author's personal prejudices and view of
the field. The reader will note an emphasis on tools and techniques based in
algebra and topology, as opposed to analysis. This is no accident: it is our
finn belief that the methodological future of large systems lies in the
development and extension of those areas of algebra and geometry that
characterize the global features of mathematical objects. Once the overall
landscape is identified, the local tools of analysis may be employed to
sharpen our knowledge of detailed behavior.

In overall outline, the book's structure is shown by the following
dependency diagram:

Chapter 1 I

I Chapter 2 I

/ ~
I Chapter 3 I I-C-h-a-p-'---te-r-4-1 1Chapter 5

Chapters 1 and 2 are devoted to a presentation of background philosophy of
systems and modeling. In particular, the vital point that the mathematical
fonn of the system description dictates the type of questions that can be
asked is addressed in the first chapter. There we are concerned with a
presentation of several alternative mathematical descriptions of a process
and a discussion of how each description possesses characteristic features
useful for analyzing certain subclasses of questions.

Chapter 2 is devoted to a rapid survey of several important system
theoretic ideas that do not fonn the main topics of the book but that,
nonetheless, are critically important to keep in mind in any analysis-among
these ideas are such concepts as identification, stochastic effects, constraints,
and optimization. A very brief introduction to ccc is also given in this
chapter in order to provide a backdrop for the more detailed treatment
given in the remainder of the book.



IX

In Chapter 3 we turn to the main topics of the book, beginning with
connectivity. A fairly detailed discussion of elementary simplicial homology
theory is given as the underlying basis of the q-analysis methodology of
R. H. Atkin. This technique for exploring connective structure is then sys
tematically exploited in a number of diverse areas. We also discuss the
connectivity question from the viewpoint of the algebraic theory of modules
and machines in this chapter and relate it to other state-variable approaches.

The complexity of a system is our leitmotiv for Chapter 4. Beginning with
a discussion of various features that a reasonable mathematical definition of
complexity should possess, we develop an axiomatic definition having its
basis in semigroup theory. This definition is explored in several applications
and is contrasted with alternative approaches from information theory and
topology.

The final chapter is devoted to a thorough discussion of stability theory in
all of its mathematical manifestations. After a rapid treatment of classical
notions involving input-output and Lyapunov stability, the chapter turns to
a more detailed discussion of qualitative ideas centering upon structural
stability. In particular, we present an extended account of catastrophe
theory and its relations to bifurcation analysis. In addition, several sections
are devoted to the topic of the "resilience" of a dynamic process. This notion,
originally motivated by ecological considerations, involves the ability of a
system to persist in the face of unknown (and possibly unknowable) external
disturbances. Details of several approaches to mathematically characterizing
resilience are given, along with an extended economic example.

It is patently clear that a book with such a wide array of topics and
techniques could not possibly be put together without the generous advice
and assistance of many people. I have been luckier than most authors in
having had the opportunity to "dry-run" the material past scientists from
many disciplines in an attempt to strike some suitable balance between
general comprehensibility and mathematical content. For their help in this
regard, I particularly wish to thank A. Casti, C. S. Holling, R. Dennis,
D. Ludwig, C. Muses, G. Leitmann, M. Shakun, D. Sahal, J. Dathe, and
M. Peschel.

New York City
October 1978
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1 System Concepts
and Descriptions

The mystery of their profession lies only in their terms.
THOMAS VAUGHAN

Sometimes he thought sadly to himself. "Why?" and sometimes he
thought, "Wherefore?" and sometimes he thought, "Inasmuch or
which?"-and sometimes he didn't quite know what he was thinking
about.
A. A. MILNE, Winnie the Pooh

INTUITIVE NOTIONS

One of the most pervasive and least well-defined concepts in modern
intellectual thought is the notion of a "system." In a vague, personal sort of
way, almost everyone who thinks about the matter for a moment can
visualize his own image of what constitutes a system. Sometimes it is even
possible to verbalize these fleeting images to describe hazy pictures of many
"elements" interacting in a "complicated" manner in order to achieve some
fuzzy "objective." Occasionally, the private system conceptualizations of
two individuals will overlap to a sufficient degree that a true meeting of the
minds can take place followed by meaningful discussion or collaboration.
More often, intellectual, professional, and cultural gaps are too great, and
communication breakdowns occur despite the good intentions and desires
for interaction of the parties involved. One of the primary goals of this
monograph is to provide a basis for common discussion of system-theoretic
issues by presenting numerous examples of system problems from many
disciplines and showing how they all may be described and analyzed by
means of a rather small number of abstract paradigms.

Of necessity, our treatment of the main topics in this book will involve a
certain amount of mathematics. This is to be expected, as the implications of
existing knowledge in fields such as biology, sociology, psychology,
economics, not to mention the "harder" sciences such as physics and
chemistry, are far too great to digest without abstractions, Le., without
mathematics. However, it is a pleasant surprise to discover that understand
ing most of the fundamental system concepts does not require much beyond
ordinary calculus, geometry, and elementary algebra. (In a few places, we
must employ somewat more sophisticated mathematics, such as semigroup

1



2

theory and homology theory. However, when these occasions arise, every
attempt will be made to motivate the formal mathematics with system
theoretic considerations and examples to ease the burden on the reader.)
Consequently, as we go along, we shall endeavor to illustrate the main points
more by examples than by exotic theorems, hoping thereby to convey the
essence of the matter without becoming too entangled in fine details.

Probably the simplest way to begin our exposition is to examine some
prototypical situations universally conceded to be "system" problems and
then to analyze these cases to uncover some of the unifying themes which
will be discussed in detail in Chapter 2. After the four examples of
system problems, we shall examine several possible mathematical structures
that may be employed to study system problems, our objective being to
emphasize the point that there is no such thing as the model of a system:
there are many models, each with its own characteristic mathematical
features and each capable of addressing a certain subset of important
questions about the system and its operation. What is important is that the
analyst have as many mathematical tools at his disposal as possible, tools
that he can use to probe the workings of the system at hand.

EXAMPLE 1 MACROECONOMICS

We consider an economic complex consisting of n sectors with output rates
Xl' X 2, ••• , x", respectively. Let us assume for the sake of definiteness that
the outputs are measured in dollars per year. The output of each sector is
used by itself, by the other sectors, and by the rest of the world-the
consumers.

Let a;j represent the value of output i required as input to produce 1
dollar's worth of output j; i, j = 1, 2, ... , n. Further, let Yi represent the rate
at which consumers absorb the output of sector i. On the basis of these
definitions. we have the relations

Xi = i aij~ + Yi'
;~l

i = 1, 2, ... , n.

This elementary model may be used to determine the amount of produc
tion required to meet a given consumer demand, given the currently
available "technology" (represented by the coefficients ai). Obvious exten
sions and generalizations are possible, forming the basis of what has come to
be called input-output economics. The matrix A =[a;J of technological
coefficients is often called a Leontief matrix, in honor of the founder of this
branch of mathematical economics.

EXAMPLE 2 WATER RESERVOIR DYNAMICS

A simplified version of a water reservoir system is depicted in Figure 1.1.
Here the states of surface storage at time t at locations 1-3 are denoted by
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kx3)---.Yj (t)

Streamflow
output

Uj (t)

Rainfall
inputs

U2 (t)

FIGURE 1.1 Water reservoir network.

x l (t+1)=-IIX I(t)-U I(t)+'I(t),

xz(t + 1) = -lzxz(t) - uit) + 'z(t),

X3(t + 1) = 13(x4- X3) - kx3(t) + UI (t) + uz(t),

X4(t + 1) = l,x I(t) + lzxz(t) -13(x4- x3).

The measured system outputs are
Yl(t) = kx3 (t),

yz(t) = l.b4 - x:-).

A number of crucial questions involving the feasibility of flood control,
optimal release strategies, accurate determination of groundwater levels,
and so on may now be approached using the above description of the
system.

Xj(t), xz(t), x3(t), respectively, while the state of groundwater storage
(including infiltration) is given by x4 (t). The constant k is for surface water
flow, while II and lz are for infiltration. The expression 13(x4- x3) signifies
the exchange between streamflow and groundwater. The outputs YI and yz
are the streamflow output and the contribution of groundwater to the
streamflow, respectively, while the external inputs 'I and 'z represent the
rainfall. The quantities UI and Uz denote the water release.

The continuity relations for the problem immediately yield the dynamical
equations

EXAMPLE 3 PREDATOR-PREY RELATIONS

A favorite problem of biologists and ecologists is the study of interactions
and interrelations among a collection of predators and their prey in a
localized spatial environment.

For clarity of exposition, we consider a single-trophic-level ecosystem in
which the predator and prey have been divided into disjoint sets. As an
example, let the predator set be given by

Y ={man, lions, elephants, birds, fish, horses},

while the prey are the elements of the set

X ={antelopes, grains, pigs, cattle, grass, leaves, insects, reptiles}.
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A problem of some delicacy and subtlety is the determination of precise
quantitative dynamic relationships between the predators and their prey.
Most often, all that can be asserted with confidence is that certain predators
feed on certain prey. In such instances, a surprising amount of information
concerning the underlying structure of the ecosystem may be obtained by
describing the system in terms of an incidence relation. That is, we formu
late a relation A between the sets X and Y defined as

"Predator y is A-related to prey x if and only if y feeds upon x."

A convenient way to represent A is by means of the incidence matrix A:

X
A Antelopes Grains Pigs Cattle Grass Leaves Insects Reptiles

Man 1 1 1 1 0 0 0 0
Lions 1 0 1 0 0 0 0 0

y Elephants 0 0 0 0 1 1 0 0
Birds 0 1 0 0 1 0 1 1
Fish 0 0 0 0 0 0 1 0
Horses 0 1 0 0 1 0 0 0

Here we have constructed a plausible incidence relation A, where a 1 IS

present if predator y feeds upon prey x, a 0 otherwise.
In later chapters, we shall indicate some of the rather nonintuitive

structure that can be obtained about the above predator-prey system from
properties of the incidence matrix A. The main point to note for now,
however, is that even in situations for which obvious dynamical equations
are not available, it may still be possible to formulate meaningful (and
tractable) mathematical representations of a given situation.

EXAMPLE 4 BINARY CHOICE

In many problems of practical interest, it is reasonable to assume that the
system operates so as to seek the minimum of some, possibly unknown,
potential function. In other words, in the absence of external perturbations
the dynamical motion of the system moves toward an equilibrium corres
ponding to the minimum of a "force" field, where the force may be physical,
social, economic, psychological, or "force X," depending upon the context.

To illustrate this notion, suppose we have a situation in which two choices
are possible, governed by a utility function U(x, a, b). Here x is the choice
variable and a and b are external parameters that influence the choice. We
can then define a function E(x, a, b) = - U to be disutility and construct a
model in which the function E is minimized.

A concrete example of the above idea can be given. For a particular
journey of a given individual we assume there are two different modes of
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travel A or B. The associated costs are CA and Ca, respectively. We let
AC = Ca -CA represent the cost difference. Further, assume that x <0
denotes the choice of mode A, while x > 0 represents travel by mode B. The
external parameters a and b are functions of the cost difference AC.

It is possible to construct functions a(AC) and b(AC) such that there
exists a number A so that

If AC is large and positive, then mode A is the only choice and x < o.
If AC is large and negative, then mode B is the only choice and x > o.
If 0 < AC< A, then mode A is the likely choice, but both are possible.
If - A< AC < 0, then mode B is the likely choice but both are possible.
If AC = 0, then both modes are equally likely.

The dashed path in Figure 1.2 shows what happens to the individual's choice
if AC is changed smoothly.

As will be noted in later sections, the foregoing setup can be well modeled
by employing Thorn's theory of catastrophes. The important point for the
moment is that the basic model for the process is generated only by the
disutility function E(x, a, b). A more detailed description of the internal
dynamics, which in most social situations are not available anyway, is not
required. In fact, as we shall observe later, even the precise form of the
disutility function E need not be known a priori. All that is required is that
we be willing to assume the existence of such a function. All else follows
from the mathematics and the data (including the precise form of Figure 1.2
needed to model the situation quantitatively).

x

Mode B 1- _--_L
I
I
I
+
I
I
I
I

-AI
I
I
I
\,
"" -.... _-

FIGURE 1.2 Binary choice of travel modes.

IA

•1
I
I
I
I Mode A
I

AC
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MATHEMATICAL DESCRIPTIONS

The examples of the preceding section have underscored the point that
many different types of mathematical description may be used to define a
given situation abstractly. An important question to ask, however, is why we
need any mathematical description at all. A partial answer was already
given, when we cited the complex implications of existing knowledge and
the need to abstract the essential features of descriptive models. However, a
number of other equally important considerations compel us to make use of
mathematical descriptions of one type or another:

Compactness. A verbal description of a process is likely to be cluttered
up with an excess of ambiguous ideas that cloud the main issues. The
compact symbolism of a mathematical model should eliminate fuzzy or ill
thought-out notions that may not be apparent in a lengthy verbal descrip
tion. In short, a mathematical description provides us with the model
building analogue of the familiar picture that is worth a thousand words.

Clarity. By associating each symbol in the mathematical description with
a known aspect of the process under study, we are able to see more clearly
the interrelationships between the various process variables. Furthermore, it
becomes far more apparent whether any essential variables have been
omitted or, conversely, whether redundant variables have been inadver
tently included in the process description.

Computability. Once the mathematical description has been agreed
upon, it takes on a life of its own, more or less independent of the process
itself. In other words, the mathematical description may be manipulated
according to the conventional rules of logic in the expectation that nontrivial
conclusions about the system may be arrived at. In addition, the mathemati
cal model provides the basis for various computational studies, culminating,
one hopes, in a predictive, rather than a descriptive, analysis of the system.

Let us now outline some of the principal types of mathematical descrip
tion that will be used throughout this book.

INTERNAL DESCRIPTIONS

Since the time of Newton, the standard mathematical description of a
dynamical process has been in terms of differential (or difference) equations.
Such equations describe the time evolution of a given system in terms of
conveniently chosen variables, such as position, temperature, and velocity.
The general form of such a description is

x= !(x(t), u(t), t),

y (t) = h(x(t), u(t), t),

x(O) = xo
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where x(t) is an n-dimensional vector whose components represent the
"state" of the process at time t, y(t) is a p-dimensional vector of observed
outputs, u(t) is an m-dimensional vector of system inputs, and Xo is the
initial system state. In discrete time, these dynamics take the form of a
difference equation

x(k + 1) =F(x(k), u(k), k),

y(k) = H(x(k), u(k), k).

x(O) = Xo,

The most important point to observe about such a description is that it is
inherently local. The system equations describe the behavior of the process
in a local neighborhood of the current state. Implicit in such a description is
the assumption that precise local information may somehow be "pieced
together" to obtain an understanding of the global (in time or space)
behavior of the process. While this has proven to be a reasonably valid
conjecture for numerous problems in physics and engineering, there is far
less evidence for accepting this bold hypothesis in less well-understood
systems, especially those in the realm of the social sciences.

In connection with the local versus global issue, it is interesting to note
that up until the time of Newton and the invention of the calculus, local
descriptions of the sort described above were totally unheard of. Rather,
from antiquity, the description of physical processes was dominated by the
Aristotelian view that, "in the order of Nature the State is prior to the
household or individual. For the whole must needs be prior to its parts." This
viewpoint led to a physics in which the significance of set members is
explained in terms of the significance of the set (the whole). Modern physical
theories, of course, do exactly the opposite; the whole is "explained" in
terms of the elementary (local) parts. The views of Aristotle dominated
physical thought for many centuries until the experimentalist view pioneered
by Galileo and legitimized by Newton took over the stage. The complex
ities of contemporary life as seen in problems of politics, economy, and
sociology are stimulating a revival of interest in holistic theories, a turn of
events that should call to mind that other Aristotelian notion of "modera
tion in all things."

Some simple examples of local descriptions are provided by familiar
situations from elementary physics. For instance, the motion of a simple
pendulum of unit mass swinging at the end of a cord of unit length is well
known (via Newton's laws of motion) to be modeled by the dynamical
equation

x+ ax +sin x = u(t), (1.1)

where a is a frictional effect, u(t) is an external force applied to the bob, and
x(t) represents the displacement of the pendulum from its rest position.
Thus, Equation (1.1) describes the instantaneous rate of change of the
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pendulum's position and velocity as a function of its current position and
velocity--clearly a local description in the position-velocity state space. We
emphasize that this feature is characteristic of all differential (difference)
equation descriptions of dynamical systems.

EXTERNAL DESCRIPTIONS

The type of mathematical description of a system that is most familiar to the
experimental scientist is an input-output relationship. In many ways, such a
description is diametrically opposite to the specific local description previ
ously discussed, as now all local detail is obliterated and the only informa
tion given is a rule (mapping) associating outputs with inputs. No explanat
ory information concerning the "internal" mechanism that transforms the
inputs into outputs is given. For this reason, input-output relations are often
referred to as external descriptions of a system, whereas the specific local
description given earlier is called an internal description. Schematically, the
situation is as shown in Figure 1.3.

The system ~

Internal
description

on:

External description of L

FIGURE 1.3 Internal-external description of I.

From a purely mechanistic point of view, the preceding internal-external
descriptions suggest that we regard I as being a "machine" that transforms
inputs into outputs according to a prescription laid down by the internal
description: in other words, I is an information processor, in a generalized
sense. It is evident that the internal description tells us substantially more
about the workings of the system than the external since every internal
description generates an external one. Model building, however, is con
cerned with the converse question: Can every external description be
"explained" by an internal model? This question, the so-called realization
problem, forms one of the cornerstones of mathematical system theory,
about which more will be said later.
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The crudest possible situation in which input-output descriptions arise is
that in which we have only a table of elements (often, numbers) indicating
the response of I to various applied inputs (stimuli). If the set of possible
input functions is denoted by 0, while the set of possible output functions is
r, then the external description of I is equivalent to a map

f:O~r.

As mentioned, in many problem areas 0 and r are just finite sets of
elements, with f being a correspondence between them. Such situations
often occur, for example, in psychology, economics, business, and the social
sciences in general.

Examples Imagine a box that falls from a UFO. Assume that an experi
menter has no knowledge of the nature of the box or its contents, but that
he does possess certain resources for acting upon it (i.e., for applying
inputs) and certain resources for observing its behavior. For the sake of
definiteness, we assume that the sets 0 and r consist of the readings that
may be observed upon a set of dials on various measuring devices. A
possible input-output description of the experiment might then be

Time Input

10:05 Do nothing
10:06 Push the switch marked X

10:07 Accidentally pushed the
button marked "~"

Output

Box emits a whistle at 240 Hz
Pitch rises to 480 Hz and

remains steady
Box increases in temperature

by 20°F and starts vibrating

Note that this trivial example illustrates the fact that the inputs and
outputs are functions of time-we can never conduct the same experiment
twice! What may be done is to perform another experiment that differs
from the first in some way that is agreed to be negligible.

A far less trivial example of an external system description is provided
by the "behaviorist" school of psychology. A typical situation is one in
which an experiment is performed and the experimental evidence is
presented in a stimulus-response format. To a behaviorist, such an
external description constitutes the sum total of all that one can ever learn
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about the structure of the workings of the organism under study. Of
course, the "cognitive" school of thought would object to this in principle,
their claim being that an intemal model offers the only satisfactory
explanation.

On the basis of rather general system-theoretic results, we shall later
show that the behaviorist-eognitive dichotomy is actually an empty de
bate. Both schools are, in essence, making the same claim, and the debate,
from a system-theoretic point of view, has about as much content as an
argument over which side of a coin more accurately represents its value.

FINITE-STATE DESCRIPTIONS

Replacing the hypothesis of finite dimensionality of the state space with
finiteness, we are led to a class of systems that may be analyzed by purely
algebraic means. The importance of this change of finiteness condition
cannot be overemphasized, since the set of finite-state systems includes all
sequential digital computers.

The basic objects comprising a mathematical description of a finite-state
system I are

U, a set of admissible inputs
Y, a set of admissible outputs
Q, the set of states
A: Q x U ~ Q, the next-state function
'Y: Q x U ~ Y, the output function

Of course, it is assumed that the sets U, Y, and Q are finite. We denote the
system I by the quintuple I = (U, Y, Q, A, 'Y). (Remark: In the literature, this
is often called a circuit, with the machine characterized by the external
input-output function f: IIU~ Y, where IIU = {(UI, U z, ... , Un): n ~ 1 and
uj E U}. In this situation, [(UI, Uz, ... , Un) = Yn is interpreted as the output
at time n if uj is the input at time j, 1::5 j::5 n.)

As noted, computational considerations ultimately force us to reduce
every system problem to the above terms, explicitly or implicitly. Conse
quently, it is of considerable interest to thoroughly examine and understand
the algebraic structure inherent in the finite-state description. This structure
relies heavily upon the theory of finite semigroups, and much of it is beyond
the modest aims of this introductory report. However, we shall develop a
few of the elementary aspects in the chapter on complexity. For now, let us
fix ideas with an example.

Example Consider the situation in which the system I consists of the
rotational symmetries of an equilateral triangle. Some possible finite-state



11

spaces might be
a 0 1 O2 0 3D =[a,b,c], 0, 0

b C

CD =[c,a,b], 27T/3, 1
a b

bD =[b,c, a], 47T/3, 2.
c a

Any of the above state spaces, 0 1, O2 , or 0 3 , will suffice for describing I.
However, some of them may be more convenient for calculating the
actions of A upon the states. Here we have a good illustration of an
important point: the state space of a system need not have an intrinsic
connection to the physical process. It is purely a mathematical artifice
introduced to ease the burden of determining the output response to given
inputs.

Assume we have two possible state transition maps Al and A2 , corres
ponding to positive rotations of 120° and 240°, respectively, about the
triangle's barycenter. We can then tabulate the result of these transfor
mations in the different state spaces.

q A1(q) A2(q)

[a, b, c] [c, a, b] [b, c, a]
0 1 : [c, a, b] [b, c, a] [a, b, c]

[b, c, a] [a,b,c] [c, a, b]

0 27T/3 47T/3
O2 : 27T/3 47T/3 0

47T/3 0 27T/3

o
1
2

More compactly, we have

1
2
o

2
o
1

01~ 0 1;
AI: 02~ O2;

03~ 0 3;

0 1~ 0 1 ;

A2 : 02~ O2 ;

03~ 0 3;

A1(a, (3, y)=(y, a, (3)
A1(q) =q +27T/3(mod 27T)
A1(q) = q + l(mod 3).

A2 (a, (3, y) = «(3, y, a)
A2(q) = q +47T/3(mod 27T)
A2(q) = q +2(mod 3).
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The state space 0 1 , which seems needlessly complex, comes into its own
for more general systems I-for example, the general symmetries of the
triangle where we might have transformations such as "3: reflection in the
altitude. O2 and 0 3 do not have obvious extensions that also preserve
simplicity of calculation with respect to more general actions.

Alternate ways of describing a system state space are called coordinati
zations of I. It is of obvious interest to know if there are always
coordinatizations that are "good" with respect to the actions of the
system. We shall make the notion of "goodness" precise in a later chapter
and show that an affirmative answer is possible for all systems that have a
finite number of configurations with respect to the state-space actions.
The key to this problem is the algebraic structure of the system state
space model. In fact, the famous Krohn-Rhodes decomposition theorem
for finite semigroups establishes the relationship between arbitrary trans
formations on a finite state space and certain advantageous coordinatiza
tions of their action.

POTENTIAL AND ENTROPY FUNCDONS

As an alternative to the internal-external system descriptions given above, a
number of investigators have studied systems more from a goal-directed or
information-theoretic vantage point. The basis for such studies has been the
mathematical description of a system in terms of a potential or an entropy
function.

Arguing by analogy with classical mechanics and electromagnetic theory,
a potential function description of a dynamical process would state that the
response of the system to external inputs would be such that the state of the
system moves to the minimum of a suitable potential function. Depending
upon the particular system and assumptions of the investigator, such a
dynamic may be local in the sense that movement is toward the relative
minimum nearest the current state, or it may be global, in which case the
system always moves to the absolute minimum of the assumed potential
function. We illustrate the basic idea schematically in Figure 1.4, where we
assume the system state is given by x with f(x; a) being the describing
potential function depending upon an external parameter (input) a. Initially,
the system is in the state x(a). We then change a to the value a*, thereby
changing the location of the minima of f. Under the local movement
hypothesis, we have the picture (A), while the global assumption yields the
new system state as depicted in (B).

In rough mathematical terms, the potential function description of a
dynamical process consists of the following ingredients:

A system state (phase) space X
Possibly a collection of input functions n
A smooth-mapping f: X x n - R, the real numbers
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f (x; a)

x (a)

A

f

x (a) x (a*)

B

f

c

FIGURE 1.4 Potential function description. A, basic idea; B, local movement
hypothesis; C, global movement.

The system dynamics are then assumed to operate according to the principle
that for fixed input WEn, the observed state of the process will be a local
minimum of f. To be perfectly precise, we must specify in more detail the
sets X and n, and the properties of f. However, the foregoing setup will be
sufficient for understanding the basic ideas. We shall fill in more details in
Chapter 5.

In well-understood physical systems, potential-function descriptions have
proven very useful alternatives to internal descriptions. In classical physics,
the success of such descriptions is guaranteed by appeal to such well
established variational laws as Hamilton's principle, Fermat's principle, and
d'Alembert's principle for generation of appropriate potential functions in
any given situation. In most instances, internal description of physical
processes may be obtained from the potential function description by means
of the system Hamiltonian or the Euler-Lagrange equations.

In systems of the kind encountered in the social sciences, a potential
function description is far less secure than in the physical sciences, due to
the absence of reliable variational principles. However, in some cases arising
in stability analyses and catastrophe theory, it is not necessary to know the
precise form of the potential function, only to admit that one exists, in order
to characterize important qualitative aspects of the system. Problems of this
genre will form the basis for part of Chapter 5.

Closely related to the potential function description is the idea of describ
ing a system's behavior by an entropy function. As is well known from
traditional thermodynamics, entropy is a measure of the disorder present in
a given physical setup. Intuitively, then, negative entropy, or negentropy for
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short, measures the orderliness, and the entropy-theoretic description of a
dynamical process asserts that a system transforms negentropy in the input
into information. Thus, we have the basic underlying principle: all closed
systems change so that the variation of entropy is minimized. When stated in
such a form, the connections between the potential function description and
the entropy description become rather apparent.

To indicate the generality of the entropy description of a system l, we
briefly summarize the main points of a relativistic information theory of such
processses developed by G. Jumarie. The theory is founded upon the
following set of axioms:

Axiom 1. The system l is imbedded within a universe au and evolves only
because it has an objective v to perform.
Axiom 2. To achieve the objective v, l takes information I from its
environment and uses this information to modify its organization (inner
structure) a, to increase its negentropy state n, and to apply the action A to
its environment.
Axiom 3 (Evolution Principle). The structural entropy E of l is defined by
the equation

dE = dI/n

and is a nondecreasing function of the evolution of l.
Axiom 4. The universe au is blind, in that it cannot observe its own
evolution.

In the context of the above axioms, the system's state equation is given by

[(Ho, Hi' v) = 0,

where

H o = the external entropy of l with respect to a fixed observer R
Hi = the internal entropy of l with respect to an observer R

v = the objective of l as seen by the observer R

Note the critical role played by the observer R in the foregoing definitions.
This approach emphasizes the role of the observer (or decision maker) when
one defines a system and strongly suggests a kinematic approach based upon
analogues of the Lorentz transformations between two observers Rand R '.
We shall pursue this point in a moment.

Returning for a moment to the system state equation, we see that
knowledge of the function f would enable us to compute E by virtue of the
information exchange relation

dI = a dHo + {3 dHi,

where a and {3 are appropriate constants.
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Example A: Scalar Dynamics To consolidate these notions, consider the
simple dynamical system

x= u(t),

where x and u are scalar functions. It can be shown that the external
entropy Ho has the same properties as the time t; thus, we make the
identification t ...... H o • Moreover, it is reasonable to identify x, the internal
state, with the internal entropy Hi- Thus, the system dynamic is equivalent
to the equation

Now we attempt to obtain the state function t as given earlier. We should
have

at at at
- dHo+- dHi +- dv = O.
aHo aH; av

Lacking more information about the system, we shall assume that it has
constant objective, hence dv = O. We can now integrate the above equa
tion to obtain the relation

t(Hi, Ho, v) = Hi - f.H
o

u(S) ds = 0,
H:

where H~ is the external entr<;:>py at the initial time to' The preceding
analysis shows that the system x= u is not defined from the point of view
of information exchange with its environment; more precisely, the infor
mation exchange with the environment is zero.

Example B: Stationary Dynamics We now consider the dynamics

x= cf>(x(t)),

which, utilizing the same identification as in Example A, gives

To obtain the state equation, we must have

at
aH = 1~ t =Hi + x(Ho ),

I

at
aH = cf>(HJ~ cf>(HJ = x(Ho),

o

an inconsistency. Thus, we cannot regard the system dynamics as being
the state equation; rather, we must view it as the information exchange
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equation

dI = dHi - cf>(Hi ) dHo

=0.

Hence, this system exchanges no information with its environment and
evolves with a constant structural entropy. This interpretation is in agree
ment with the autonomous character of the system.

Before leaving the entropy description of a dynamical process, we discuss
the relativistic aspect. We noted earlier that the variables Hm Hi' and v
depend upon the observer R. Such an interpretation generates the
immediate question of what these quantities are, relative to another
observer R '. Adopting the appropriate quantities relative to the observer
R, standard relativity theory suggests a kinematic approach to the ques
tion in the Riemannian space defined by the geodesic

where the universal constant c is defined by

Hi(OU lOU) = cHo(OU IOU).

The Lorentz transformations relating Rand R' are then

Hi (I IR') = p[Hi(1 IR) + u(R IR')Ho(1 IR)],

v(1 IR') = v(1 IR),

. Ho(1 IR') =p[Ho(1 IR)+ u(R ~R') Hi (I IR)],
c

p == [1- uZ(R IR')/c zr ll2
,

where

u(R IR') ~ dHi(R IR')/dHo(R IR'),

that is, u(R IR') is the organizability of R from the viewpoint of R'.

In summary, the entropy approach to system analysis is based upon the
view that the system under consideration is seen as an integral unit, as a
whole. From this it follows that the system may be appreciated only in its
contrast with the environment, that is, with the "universe" involved. The
fact that the system is considered as a whole may be further specified in
detail by the notion of "connection." The whole complex of connections and
their characteristics leads to the ideas surrounding system "structure" and
"complexity," which shall occupy us throughout this monograph. We now
pass on to another type of system description that is particularly useful for
such structural studies.
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SETS AND RELAnONS

It is often stated that the abstract foundations of mathematics lie in set
theory and relations among elements of sets. Taking this remark as our
point of departure, it is certainly reasonable to think of defining a system in
similar terms. Obviously, a useful definition will require that the elements of
the defining sets and the relations linking the elements be tailored to the
particular system. However, once such specification has been made, the
sets-relations description of a system provides an extremely broad basis for
analyzing not only the connective structure of a process, but also its
dynamical behavior.

In general terms, we consider two finite sets X and Y whose elements are
relevant to the system I. For instance, the sets of predators and prey in an
ecosystem, the sets of vehicle types and roadways in a traffic study, or sets of
urban facilities and required services. We define a binary relation A on the
Cartesian product of X and Y to reflect the fact that, in the context of the
given problem, the pair of elements (x, y), X EX, YE Y are related. Thus,
A cXx Y.

To illustrate, consider a trivial example where X is a set of consumer
items and Y is a set of service facilities. For definiteness,

{bread milk, stamps, shoes}
X=

{Xl' X2, X3, X4} ,

{market, department store, bank, post office}
Y=

{Yl> Y2. YJ, Y4}

We define a relation A on X x Y by the rule

"x; is A-related to Yj if and only if good X; may be obtained at facility y/'

Thus,
A = {(Xl' YI), (X2, YI), (X3' Y4), X4 , Y2)}'

A convenient way to represent A is by the incidence matrix

A YI Y2 Y3 Y4

Xl 1 0 0 0

A= X2 1 0 0 0
X3 0 0 0 1
X4 0 1 0 0

Here, we have

[Al. = {l, (X;, Yj)~ A.
J 0, otherwIse
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Geometrically, the relation A may be interpreted as defining a simplicial
complex Kx(Y; A) in which the elements of Yare regarded as vertices, while
the elements of X are the simplices. For instance, in the above example, the
element Xl (bread) is a O-simplex consisting of the vertex Yl (market). As
long as K contains no r-simplices with r~ 3, we may also draw the picture of
Kx(Y; A). The previous example has the form

•• •
not a very interesting geometrical structure. However, it does show that the
complex has no connected components and that the vertex Y3 (bank) plays
no role whatsoever in the analysis of Kx(Y; A).

Having defined appropriate sets X and Y and a relation A, we can now
speak of another relation induced by A. This is the so-called "conjugate"
relation A* defined by reversing the roles of the sets X and Y. Thus,
A* c Y X X, with the rule of association now being

"y; is A*-related to Xj if and only if X; is A-related to Yj'"

Hence, we see that the incidence matrix for A* is just the transpose of that
for A, i.e.,

A*=A'.

The reversal of the roles of X and Y results in a geometrical complex
Ky(X; A*) for which X is the vertex set and Y the set of simplices. In the
above example, the reader may easily verify that the complex Ky(X; A*) has
the geometrical form

which is marginally more interesting than the totally disconnected structure
of Kx(Y; A). Here we see that the vertices Xl (bread) and X2 (milk) are
connected via the I-simplex Yl (market). We shall examine the implications
of these connectivity notions, as well as the total topological structure
contained in such incidence relations, in Chapter 3.

Before moving on to other matters, we give another example of system
description by sets and binary relations to indicate the generality of the
approach.

Example: The Game of Chess The world chess champion Emmanuel
Lasker once remarked, "There are 64 squares on the chess-board; if you
control 33 of them you must have an advantage." Obviously, this over
simplifies the situation but does show that chessmasters have always been
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concerned with the "strategic" nature of the game. This feature can
immediately be seen to be mathematically expressible as a relation
between the set of pieces and the set of squares on the board. Thus, we
consider two relations Aw and AB , where Aw gives the relation between
the White pieces and the squares, while AB does the same for the Black
pieces.

Following the idea given above, we define the sets X and Y as

{pieces}
X=

{QR, QN, QB, Q, K, KB, KN, KR, QRP, QNP, QBP, QP, KP,

KBP, KNP, KRP}
Y ={squares}.

Here we have adopted the standard international notation for the
pieces {King, Queen, Bishop, Knight, Rook, Pawns}, and we assume that
the squares of the board are numbered in some consistent fashion. We
define the relations Aw, as follows:

"given ~ and Yj' then (~, Yj) E Aw if and only if piece ~ attacks square
Y· "J.

By "attacks" we mean that one of the following situations obtains:

If it is White's move, and if ~ is not a Pawn or the King, then ~ -+ Yj is
a legal move.

If ~ is a Pawn, then Yj is a capturing square for Xi.

If there is a White man on Yj' then ~ is protecting this man.
If ~ is the White King, then Yj is adjacent to the square occupied by Xi.

If the square Yj contains a Black man (other than the King) and if it is
White's move, then Xi capturing the Black man is a legal move.

The Black King is on Yj and is in check to ~.

A similar definition holds for the relation AB •

Note that Aw is a function of the mode of play-that is, it depends upon
the state of play (whose move it is, and the current positioning of the men
on the board). The relations Aw and AB might be interpreted as giving the
player's view of the board, while the conjugate relations A~ and A: give
the board's view of the player. We will return to a deeper analysis of this
example in Chapter 3.

The astute reader will recognize some similarities between the sets
relation description of a system and the more common graph-theoretic
description in terms of nodes and arcs (or vertices and links). Basically, the
above definition coincides with the graph-theoretic version if we let X = Y =
the vertex set, with the links being defined by the relation A. Obviously, a
great deal of flexibility is lost in such an arrangement, as much of the
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multidimensional nature of the relation A. is destroyed or, at best, obscured.
However, the graph-theoretic setup is quite useful in many situations, but,
as they have been extensively treated elsewhere, we shall not explore them
in detail in this monograph. The references at the end of the chapter will
provide an introduction for the curious reader.

Since the essence of system theory is dynamics, we must inquire about
how the notion of dynamical change is incorporated into the sets/relation
description of a process. This is accomplished by introducing the concept of
a pattern. In general terms, a pattern n is a mapping that associates a
number with each simplex in a complex: that is,

where CT' is a simplex from K, and k is an appropriate number system (reals,
integers, and so on). As each simplex in K has a certain geometrical
dimension associated with it determined by the number of its vertices, we
see that the pattern n is actually a graded pattern

where N = dim K = dimension of the largest simplex in K. Here each no is a
mapping on only the i-dimensional simplices in K.

We give an example to clarify the pattern concept. Consider the predator
prey system given as Example 3 in the section on intuitive notions. There we
had the sets

x = set of prey,

Y =set of predators,

with the incidence relation A. being given by the matrix

A. Xl Xz X3 X4 Xs X6 X7 Xg

YI 1 1 1 1 0 0 0 0
Yz 1 0 1 0 0 0 0 0

A= Y3 0 0 0 0 1 1 0 0
Y4 0 1 0 0 1 0 1 1
Ys 0 0 0 0 0 0 1 0
Y6 0 1 0 0 1 0 0 0

Thus, YI (man) is a 3-simplex, Y4 (birds) is a 3-simplex, and so on. A pattern
n would be a mapping that associates a number, say the population
currently present, with each such simplex. Since the simplices are graded by
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their dimensions, so is TI. Thus,

TIo: {ys(fish)} - current fish population

{Y2(lions)} - current lion population
TIl: {Y3(elephants)}- current elephant population

{Y6(horses)} - current horse population

TI2: empty

{YI(man)} - current human population
TI3:{Y4(birds)} _ current bird population.

The total pattern TI for this ecosystem is

TI = TIOEBTI I EBTI2 EBTI3 •

The notion of a system dynamic is now accounted for by changes in the
pattern TI at each moment of time. In Chapter 3 we shall take up a detailed
study of the interpretation of such changes either as forces imposed upon
the fixed geometry of the complex, or as "free" changes that are allowed by
the geometry. The former correspond to classical Newtonian forces, while
the latter are more in the spirit of Einsteinian or relativistic changes.

NOTES AND REFERENCES
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2 Basic Questions and
Perspectives on System Theory

What we need is imagination. We have to find a new view of the
world.
R. P. FEYNMAN

Imagination is more important than knowledge.
A. EINSTEIN

We have seen some of the principal means for describing dynamical process
es and their interaction with man and the environment. Now we turn to the
question of what to do with these descriptions. Philosophically, the
mathematical descriptions enable us to abstract certain seemingly important
features from a physical situation and to formalize the relationship between
various system components. However, the way in which we manipulate
these mathematical constructs in an attempt to gain insight into the process
is determined by the type of questions we ask. Thus, in this chapter we shall
examine several questions that are already considered in the systems lit
erature; we re-examine them here for the sake of completeness. Such
topics as stochastic effects, controlled dynamics, identification, and so forth,
while not central to the theme of this book, continue to generate important
system-theoretic results and form a partial backdrop for the development of
our major themes: connectivity, complexity, and stability, including catas
trophe theory.

Brief overviews of these areas will be given in this current chapter as a
prelude to the detailed discussions of each topic given in the following
chapters.

CONTROLLED VERSUS FREE DYNAMICS

The celestial observers of antiquity took the first steps on the long evolution
ary path to the systems analysis of today. However, their role was a purely
passive one: to observe. The ancient astronomers had no means with which
to influence the dynamical behavior of the systems they studied; they were
forced to be content with a type of analysis consisting of observations,

23
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classifications, and possible synthesis without the possibility of physical
experiments to modify the observed phenomena. Such is the situation facing
many workers in astrophysics, biology, linguistics, and sociology to the
present day. Scholars in these areas are, for the time being, condemned to a
life of observation without control.

Interesting and important as such observations are, it is unlikely that
system theory as we know it today would have evolved to its current level of
sophistication without the impetus of the desire to control events and the
recognition of the possibility of doing so. In other words, the modern system
analyst's principal role is that of an activist: to generate suitable external
inputs to ensure that the system behaves in a satisfactory manner. There are
clearly many unanswered questions involving psychological and moral con
siderations as well as physical constraints in such an interventionist
philosophy. Nevertheless, the active-passive, controlled motion versus free
dynamics dichotomy provides the simplest line of demarcation between the
classical and modern viewpoints on systems analysis, and current evidence
indicates no diminution of movement toward a more active role in any
situation where it seems possible to influence the process.

As an illustration of the contrast between the classical and modern views
of system study, we may think of the annual flooding taking place in the
Nile delta. For thousands of years classical analysts observed the phenome
non, correlated it with celestial positions, predicted the time and duration of
the next flood, and so on. In short, everything was done except control.
History records the tragedies associated with the famines that occurred
periodically because of this lack of control. Modern technology coupled with
control engineering now makes such whimsical turns of nature a thing of the
past. A series of dams and reservoirs on the Nile now provide a reasonably
regular flow of water to the delta region. This flow of life-giving water is the
result of an activist intervention into the natural dynamics of the hydrologi
cal process. However, we should also note that the type of regulation
actually employed has been somewhat of a mixed blessing, in that poor
planning has resulted in a reservoir network which has had bad effects on
part of the region. For instance, salinity has now increased in the Mediterra
nean, since the flood control network prevents the escape of fresh water
from the Nile, and the incidence of schistosomiasis along the lower Nile has
risen, also as a result of the suppression of the seasonal cycle. There have
been other important deleterious and unforeseen effects as well. Thus, the
project represents a case of inadequately thought-out control. In short, the
global consequences of the controlling actions were not thoroughly explored
prior to construction of the project and the result has been a cure which is
worse than the disease-a good object lesson for all large-scale system
analysts to ponder!

The preceding "cybernetic," or regulatory, point of view implies a trans-



25

formation of input by output in order to render an originally independent
variable partially dependent in accordance with some rule of convergence to
a certain standard or desired trajectory. The foregoing process may be made
more complex if there is another "inverse" transformation that can change
tne standard itself. This situation represents a simulation of an evolutionary
system.

The inverse transformation we have just discussed, consisting of input
modification and change of behavior standard via measured output, is the
essence of cybernetic control and regulation. That essence is more usably,
precisely, and concretely given in the above explanation than by the usual
terminology "feedback."

IDENTIFICATION

The initial phase in formulating a mathematical model of a given situation is
the process of identifying the relevant variables and their interrelationships.
Depending upon the particular type of mathematical description that seems
appropriate, the identification process may consist of such general issues as
determining the dimension of the state space, the internal system dynamics,
meaningful relations between sets of objects, and probability distributions
for random influences. In fact, there is a circular chain here, since the
identification process depends upon the type of mathematical description,
which in turn depends upon the success of the identification process, and so
on. The usual resolution of this dilemma is by means of iteration: a
provisional mathematical description is chosen, then modified according to
the degree of success of the identification leading to a new description, and
so on.

Undoubtedly, the best-developed type of system identification problem is
that of determining the internal description of a linear, constant-coefficient
input-output map. For ease of exposition, assume that the given system
operates in di1>d-ete time and that the initial time to = 0, with the initial state
Xo = O. It is then easily verified that the following relation holds between the
system input function u(t) and the output function y(t):

y(t)= L At-TU(T),
t>T~O

where the matrices {AJ are p x m. Thus, the (possibly infinite) matrix
sequence {A l , A z, ...} defines the input-output description of I.

If an internal description of I given by

x(t + 1) = Fx(t) +Gu(t),

y(t) = Hx(t),
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is to agree with the above external description, then the matrices F, G, and
H must be related to the sequence {Aj as

t = 1,2, .... (2.1)

x(O) = Xo.

The realization problem for linear dynamical systems is to find n x n, n x m,
and p x n matrices F, G, and H, respectively, such that the relations (2.1)
hold, with the dimension of the internal state n being as small as possible. In
other words, we want the most compact model possible, consistent with the
observed data.

Fortunately, good algorithms exist for carrying out the above realization
under the crucial assumption: the sequence {Aj possesses a finite
dimensional realization. If the {Aj do possess a realization of dimension
n <00, then the first 2n terms of {Aj uniquely determine all the remaining
terms (Cayley-Hamilton theorem). The problem, of course, is to find this
number n from the data {Aj.

As one might suspect, no such well-developed algorithms exist (yet) for
general nonlinear input-output maps, although certain classes of problems
possessing some type of littear or algebraic structure have been treated.

A situation that has been treated much more extensively than the very
general external- internal type of identification problem is the so-called
"parameter" identification problem. These problems generally arise when
great confidence exists in the basic internal structure of a process, except
that certain parameter values appearing within the structure are not known.
Thus, we assume that the dynamics are given by a differential (or difference)
equation

x= f(x, u, a),

y(t) = h(x, a),

where a is an unknown vector of parameters to be estimated on the basis of
the observed system output y(t). In some cases, the input function u(t) is
specially chosen to enhance the effect of the unknown parameters. What is
important about the preceding situation is the assumption that the system
structure functions f and h are known. We should also observe that no
assumption of linearity is made on f or h.

As a simple illustration of the above class of problems, consider the
problem of logistical growth of a population described by the dynamics

~: = rx(1 - ~ ) - Ex,

Here x(t) is the population at time t, r is the net proportional growth rate of
the population, K is the environmental carrying capacity or saturation level,
E is the harvesting rate, and Xo is the initial population. Assume that
measurements can be made of the total population present at each instant,
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that is,
yet) = x(t),

but that t!le carrying capacity K is unknown. Thus, the parameter identifica
tion problem consists of estimating K on the basis of observations of the
total population. It is easy to see that, for this simple case, we have

K=. (E )'x+ -r x
for each t > O.

Thus, observing yet) over any interoal suffices to determine K. However, the
more practical situation of a finite number of values of yet) introduces
approximation procedures of various types.

More general versions of the preceding problem involving uncertainties in
measuring x(t), multiple species, and so on lead to mathematical problems
of some complexity. We refer to the chapter references for details of many
of the proposed solution methods.

The identification question for more general system descriptions of the
potential function or sets-relation type is less well-structured and certainly
less well-studied. Basically, these descriptions rely much more heavily upon
the analyst's intuitive understanding of the process under study than do the
external or internal differential equations type of description. Thus, the
identification problem in such settings is much more of an art than a science,
consisting primarily of isolating appropriate sets and relations (or energy
functions) that lead to interpretable results. It is clearly of some interest to
systematize the selection of meaningful sets and relations. We shall indicate
some approaches to this task in Chapter 3.

CONSTRAINTS

Good systems analysis, like good politics, is the art of the possible. When
considering the mathematical formulation of a problem, the analyst must be
aware of the external and internal constraints that may limit his freedom in
choosing control strategies. Various considerations involving quantities of
available resource, minimal demands that must be met, available technol
ogy, computing capability, manpower, time, and so on, all combine to
severely reduce the options open to a decision maker.

We distinguish two fundamentally different types of constraints:

• Internal-constraints imposed by the system structure itself,
• External-constraints imposed upon the performance of the system by

outside agencies.

Let us examine these constraints in a bit more detail.



28

Internal constraints arise as a result of restrictions involving the control
ling or measuring process, that is, constraints upon how the system may
interact with the outside world. Generally speaking, these types of con
straints are most easily seen when we use an internal system description in
terms of differential, or difference, equations. We illustrate the concept of an
internal constraint with an example from the biomedical area.

Example: Pharmacokinetics Consider a cardiac patient who receives the
drug digitoxin and metabolizes it to digoxin. Since with digitoxin there is a
rather fine edge between the lethal amount and the therapeutic amount, it
is important to be able to determine the amount present in the body
accurately when comtemplating additional doses.

The mlllticompartment model used to describe the kinetics and metabol
ism of digitoxin is shown in Figure 2.1. Here X represents the digitoxin

FIGURE 2.1 Multicompartment structure for digitoxin metabolism.

compartment of the body, Y is the digoxin compartment, 51 and 52 are
urinary excretion sinks, and 53 and 54 are nonurinary sinks, while the ki

are diffusion rate constants, i = 1,2, ... ,5.
It is more or less standard practice to assume that when a dose of

digitoxin is given, approximately 92 percent of the dose is immediately
taken up in compartment X and that about 85 percent of the remaining 8
percent is instantly taken up in Y. The dynamics of the drug concentra
tions in the various compartments are assumed to be given by the
equations

x = -(k1 + k 2 + k4 )X,

¥= k 2 X -(k3 + ks)Y,

51 = k 1X,

52 = k 3 Y,

53 = k4 X,

54 = ks Y.
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The initial conditions are

X(O) = 0.92D, Y(O) = (0.85)(0.08)D,

Sl(O) = S2(0) = S3(0) = S4(0) = 0,

where D represents the dose given.
We assume that only the urinary excretions of digitoxin and digoxin can

be measured. Thus, the system outputs are

Yl(t) = Sl(t),

Y2(t) = S2(t).

This assumption, which is very realistic in practice, constitutes what we
have termed an internal constraint on the system. Because of this con
straint, not all of the internal system variables are accessible to direct
measurement.

In the context of the basic problem faced by the cardiologist, we would
like to know whether measurements of the variables Yl and Y2 suffice to
determine the unknown initial dosage D. This is a problem of observabil
ity, whose treatment can be found in the references at the end of the
chapter.

External constraints are of a qualitatively different character. As noted,
such constraints arise not from physical or structural limitations in the
process, but from the desires of the external decision maker. Generally, such
considerations involve finite resource limitations, capacity considerations,
minimal demand levels, and so on. The key point is that they are restrictions
imposed from the outside and have nothing to do with mathematical
restrictions induced by the model itself.

Typical examples of external constraints arise in management problems
where a finite amount of money is available to achieve various objectives.
For instance, consider a corporate advertising manager who has a budget of
M dollars, which he must allocate for ads in newspapers, magazines, TV,

radio, and billboards, say. Assume that a sales amount f;(x;) is generated as
a result of allocating X; dollars to communications medium i, i = newspapers,
magazines, and so on. Here the f;(.) are assumed to be known functions.

Clearly, since the corporation wishes to maximize sales, the advertising
manager faces the problem of maximizing

over all allocations {xnewS' x mag' Xradim XTV , Xbill}, subject to the external con
straint
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FIGURE 2.2 Aircraft trajectories.

Here we see the role of the external constraint. It arises from the finite
advertising budget, not from the way in which the system is assumed to
interact with the external world.

As another example of an external constraint, we cite the problem of a
pilot who wishes to move from point A to point B in minimum time (see
Figure 2.2). Depending upon the characteristics of the aircraft and other
assumptions, a mathematical formulation of the situation may suggest the
trajectory depicted in Figure 2.2b as being optimal. Such a situation clearly
does not reflect the realistic constraints of the situation, which must be
imposed from the outside to make the problem physically meaningful. The
proper external constraint (y > 0) will then yield an optimal trajectory more
like that of Figure 2.2.a.

STOCHASTIC EFFECTS

Although the main thrust of this monograph is such that we shall not treat
uncertainties in any detail, it must be kept in mind in most realistic systems
problems that virtually nothing is known (for sure)! Regardless of the
particular mathematical description chosen, uncertainties will exist as to the
dynamics, objectives, constraints, and other aspects. If we are fortunate,
probability distributions will be known with confidence for the uncertain
variables. In the majority of cases, even the probability distributions will be
unknown, and we will be faced with an adaptive situation. In any case, we
cannot consider an analysis complete without a thorough investigation of the
uncertainties inherent in the model.

Throughout the remainder of this book, we shall adopt the bold
hypothesis that all uncertain effects can be neglected. Thus, we are assuming
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perfect knowledge of input-output responses, state transitions, and so on.
Clearly, such an assumption must be justified by results. We shall attempt to
provide the appropriate rationalizations as we go along.

OPTIMIZATION

One of the most vexing aspects of social and economic problems is the
question of criterion. In other words, by what means should one course of
action be compared with another? Fortunately, dynamical processes arising
in physics and biology often have reasonably well-understood objectives,
generally arising from various minimum principles or conservation laws.
However, the transference of these principles to a social setting is forced, at
best, and is usually impossible.

Since our objective in this volume is to study system structure indepen
dent of optimization aspects, we shall have the luxury of avoiding the
"choice of criterion" quandary. But, to indicate the magnitude of the
problem, let us consider a simple example illustrating how selection of
different criteria can lock the decision maker into qualitatively distinct
control policies.

Consider a situation in which the system dynamics are given by the scalar
linear differential equation

x(O) = c,

where u is the input or control function. Furthermore, assume that the
control resource that may be expended is subject to the restriction

lu(t~ $1, for all t ~ O.

Such a situation might arise, for example, in controlling an automobile,
where u would represent the speed.

One criterion that might be imposed upon the above process is to demand
that the initial state c be transferred to a prescribed state, say x = 0, in
minimum time. It is well known that the solution to this problem is given by

* {+1,u (t) =
-1,

c<O
c>O,

that is, a "bang-bang" control law is optimal. On the other hand, assume
that one wants to minimize the deviation of the state and the total control
energy used, with the cost given by the quadratic form

J = LT

(X 2 + u 2
) dt.
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In this case, it is easy to show that the optimal control law has the form

u *(t) = tanh (T - t)x(t),

a feedback solution.
The preceding results show that even the qualitative character of the

optimal control law is critically shaped by the choice of criterion. In the first
case, we have a law that swings from one extreme to the other, depending
upon the initial state. In the second case, the optimal law is generated by the
system action itself and exhibits no discontinuities whatsoever. The important
point is that the dynamics themselves remain the same. Only the choice of
criterion brings about the fundamental difference in the optimal laws.

GLOBAL PERSPECTIVES

As we have repeatedly emphasized, the development of global, as opposed
to local, system properties is the goal of our study. In many ways, this is a
reaffirmation of the "holist" philosophy of structures that, as noted earlier,
reigned supreme in scientific studies from the time of Aristotle until the
seventeenth century. At that time, the "reductionist" view, later exemplified
by Newton's equations of motion, took over the stage and has dominated
scientific philosophy and practice until quite recently. However, pressures of
problems that do not yield to the reductionist approaches are now generat
ing renewed interest and study of the holist, or global, approaches. Our goal
is to catalogue a few of the more promising directions, involving questions of
connective structure, complexity, and stability.

To illustrate the conceptual difference between local and global descrip
tions in simple fashion, consider the familiar situation of the simple pen
dulum depicted in Figure 2.3. If we let x(t) denote the position of the
pendulum as measured from the vertical, then in the local neighborhood of
any such position, we have the dynamical equation of motion

X+sin x =0, x(O) = xo, x(O) = 0,

FIGURE 2.3 The simple pendulum.

m = 1
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where we have normalized units. This equation is a description of the local
behavior of the pendulum in the (infinitesimal) neighborhood of any position
x(t). Using this description, a reductionist would attempt to "piece to
gether" the local description at many points, thereby arriving (hopefully) at
an understanding of the global behavior. Sometimes such an approach is
successful, but unanticipated obstacles often complicate the reductionist's
life.

A holist might analyze the pendulum from the following viewpoint. He
would notice that certain global properties of the system must hold and, as a
result, any local behavior must be such as to adhere to the constraints
imposed by the global situation. If these constraints are sufficiently restric
tive, the globalist would argue that all local motion is rigidly determined by
the global restrictions.

For the pendulum, such a global constraint is provided by Hamilton's
principle, which holds that the global system motion must be such that the
total energy of the system is minimized. Introducing the Hamiltonian

H = kinetic energy +potential energy,

we see that the system motion must be such that

H(x, i) = (l/2).e+ I-cos x

is minimized. Hamilton's equations of motion then lead to the dynamics
given earlier. The critical point here is that the local equations of motion are
now deduced as a consequence of a global principle and not on the basis of
local arguments and an appeal to Newton's second law. Conceptually, this is
a fundamental difference.

As we might suspect, in the types of systems encountered in the social,
economic, and management sphere, the search for global understanding will
have to do without such well-established and unambiguous concepts as
Hamilton's principle. In fact, there exists no such general laws for such
systems, at least not yet. Thus, we shall have to be content with presenting a
number of different global system properties and various techniques for
operating with them in the hope that illumination of different facets of the
picture will give insight into the structures involved.

As a more contemporary example of the use of global approaches to
system problems, we consider the following road congestion situation. In
view of the many parameters involved in road traffic interactions, the analyst
tries to "piece together" the local descriptions provided by queuing theory,
Monte Carlo simulations, and other methods. Using this approach, many
details can be revealed, but in most cases it is not clear how the results
obtained can be transferred to other traffic situations. A holist in this case
may remember an analogy from the mechanics of particles and may try to
describe the type of traffic situations by a simple time equation, neglecting
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distances between vehicles, reasons for jams, and so on. His characteristic
parameter in this case will be q, the vehicle density in vehicles per hour on a
road interval of 1 kilometer length. The time TA in minutes, which is needed
by a vehicle to travel 1 kilometer of the road under consideration, can be
expressed as the sum of two quantities:

TA =TAO + k . nA,
with

TAO = time needed to travel a road interval of A = 1 km, if not
delayed by other vehicles (q = 0) (TAO = 0.5 min/km, for in
stance, corresponds to a free traffic speed of 120 km/h).

k . nA = additional time needed for the interval A = 1 km, which is
proportional to the number nA of vehicles, which are present in
A during the time interval TA (Le., the delay under congestion
conditions is a linear function of the number of deceleration
and acceleration events or of the number nA of participating
vehicles).

1.8

1.6

.=1 EE-'"
~

-<
f-< 1.4

1.2

1.0

0.8

o
o

q
FIGURE 2.4 Delay caused by traffic jam. Time equation: TA= TAo + k 60' TAo
Curve for TAo = 0.50 and k = 0.0266.
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The number nA is a product of traffic density q and time duration TA :

q' TA
nA=~'

Resolving the whole expression for TA , we get

TAOT
A

=_....:..:::...-

l-k!L
60

As illustrated in Figure 2.4, TA = f(q) is a convex curve: each additional
vehicle, which causes an increment of q, is not only delayed in the interval
A, but is itself the reason for a further delay of the following vehicles. For
TAO = 0.5 and k = 0.0266, Figure 2.4 shows a fair agreement between
experimental data, and this simple equation for q gives values well below
the theoretical "total jam" density qoc = 2,255 vehicles/hour.

The traffic congestion problem shows how the holist's approach rather
than a "local" description can provide a meaningful model of the time delay
in a traffic jam.

CONNECTIVITY AND GRAPHS

We now turn to the major topics of the book: connectivity, complexity, and
stability. Each of these focal points will be briefly examined in the remaining
sections of this chapter as a prelude to the detailed treatment of each
presented in the remainder of the book.

Perhaps the most basic of all qualitative systems properties is the connec
tive structure of the system. On intuitive grounds it seems evident that
without a connective structure, there would be no system at all, since the
very essence of the systems concept relates to notions of "something" being
related, that is, connected to "something" else. Various strategies have been
proposed for capturing the connective structure in mathematical terms,
with the most successful being ideas stemming from graph theory and alge
braic (combinatorial) topology. Of course, it should come as no surprise that
the appropriate mathematical tools are basically algebraic in nature, since,
more than any other branch of mathematics, algebra is concerned with the
question of determining how "simple pieces" are put together. We shall go
into the algebraic issues surrounding system connectivity in the next chapter,
but for purposes of orientation we present some of the main issues now as a
preliminary roadmap.

The essence of the connectivity issue is to understand the mathematical
structures describing how the components of a system I are related to each
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FIGURE 2.5 Graph-theoretic representation of I.

other. If we imagine a system in which it is possible to distinguish n different
components (subsystems), then we might try to represent the connective
structure of I by a graph (Figure 2.5).

Here the n nodes represent the n subsystems of I, and an arc connecting
subsystems i and j denotes that these two subsystems are related, or
connected, in some fashion. For example, i receives inputs from j, i
regulates j, and so on. Many refinements of the basic setup are clearly
possible. For instance, we could introduce an orientation upon the arcs to
form a directed graph (digraph). Such a representation of I would enable us
to study more detailed situations in which i affects j, but not conversely. We
could also study various strengths of connectivity by associating a numerical
value with each directed arc, and so forth. All of these considerations are
directed toward the basic goal of determining which components of I affect
other components and by how much. Basically, graph-theoretic models give
us some insight into how it might be possible to decompose I into small
pieces without destroying the main features which make I a system.

Let us examine the following simple system to indicate the main ideas.

Example: Food Webs and Ecological Niches We consider an ecological
system consisting of a set of animals or plants. The food web of the
community is a digraph whose vertex set is the set of all species in the
community. An arc is drawn from species i to species j if i is a prey of j.
We have already seen examples of this setup in connection with the
sets-relation description of a system. Here we examine a different system

Birds

Fox Insect Grass Antelope

FIGURE 2.6 Digraph of a simple ecosystem.
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consisting of five species: birds, insects, grass, antelope, and fox. A
plausible digraph representing this system given as Figure 2.6.

From the food web graph we can generate the adjacency matrix, which
corresponds to the incidence matrix for the sets-relation description, as
well as several other interesting quantities characterizing important as
pects of the system. For instance, the adjacency matrix of the above
system is

i
j

1 2 3 4 5

Birds 1 0 0 1 1 0

Fox 2 1 0 1 0 0

Insect 3 0 0 0 1 0

Grass 4 0 0 0 0 0

Antelope 5 0 0 0 1 0

We shall return to this example in the next chapter, where we examine its
connective structure using algebro-topological tools. For now, it is suffi
cient to note that some of the components (grass, for instance) seem to be
more central to the system than others (e.g., birds). These observations,
which are self-evident from Figure 2.6, are related to such ecological
notions as trophic level and competition and will be formalized in later
sections. The main point to note is that the graph-theoretical description
enables us to visualize some of the inherent geometry present in the
adjacency matrix.

Important as the graph-theoretic analyses are for visualizing connectivity
patterns, they face inherent geometric, as well as analytical, obstacles, when it
comes to accounting for the dimensionality of the systems components. On
general principles, one would expect that attempting to account for mul
tidimensional structure by planar graphs or, more generally, graphs drawn in
the plane (they are not the same), would destroy or, at best, obscure much
of the geometric structure of the system. Thus, we turn to an alternative
characterization of system connectivity inspired by topological considera
tions.

CONNECTIVITY AND SIMPLICIAL COMPLEXES

Roughly speaking, a simplicial complex consists of a set of vertices X and
set of simplices Y formed from the vertices according to a given binary
relation A. The simplicial complex Ky(X; A) then consists of the set of
simplices Y linked together through shared faces, i.e., through common
vertices. For example, in the food web example given above, we might take

Y = X = {birds, fox, insects, grass, antelope},
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with the relation A being that simplex Yi consists of all those vertices Xi such
that Xj is a prey of Yi' Thus, we would have

Y1 =Birds = 1 - simplex consisting of the vertices
Insects and Grass

Y2 = Fox = I-simplex consisting of the vertices
Birds and Insects

and so on. (Note that an n-simplex consists of n + 1 vertices and that the
dimension of a simplex is equal to the number of its vertices minus 1).

Generally, we represent a v-simplex Up by a convex polyhedron with
(V + I)-vertices in the euclidean space EP and the complex Ky(X; A) by a
collection of such polyhedra in some suitable space EO<. Although it would
be safe to choose a = sum of all the simplex dimensions in Ky(X; A), the
fact that many simplices share a common face suggests that a smaller value
of a might suffice. In fact, it can be shown that if dim Ky(X; A) = n, then a
sufficient value for a is a = 2n + 1. For instance, if dim Ky(X; A) = 1, the
highest order Up is V = 1, and we expect to need a three-dimensional space
E 3 to represent an arbitrary complex of dimension one geometrically. This is
illustrated by the old game of trying to draw in a plane (in E 2

) the lines
that join three houses HI, H2, and H3 with the three utilities gas,
electricity, and water and to do so without any of the lines crossing. The fact
that this cannot be done without such a crossing illustrates the theorem. In
Figure 2.7 we show the dilemma in E 2

, and in Figure 2.8 we show its
solution in E 3

•

Utilizing geometric intuition, we may study the multidimensional connec
tivity structure of the complex Ky(X; A) in many different ways by algebraic

Gas

FIGURE 2.7 Crossing problem in E 2
•

Electricity
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FIGURE 2.8 Solution of the crossing problem in E 3
•

means. Since we shall thoroughly study these matters in the next chapter, let
us now indicate only a few of the high points:

• q-connectivity. It is of concern to examine those chains of connection
in Ky(X; A) such that each simplex in the chain shares q + 1 vertices with its
adjacent neighbors, q = 0, 1,2, ... dim K -1. Geometrical1y, these chains
provide much of the local multidimensional information concerning how the
simplices are connected to each to form the complex. We might envision a
situation in which we could only "see" in dimensions ~q (with special glasses,
say); then viewing Ky(X; A) would show the complex being split into Qq
disjoint pieces. Such a geometrical idea can be formulated into the notion of
an algebraic theory of q-connection, providing much insight into the transfer
of information within the complex.

• Eccentricity. To understand how individual simplices "fit" into the
complex, we can introduce the concept of eccentricity. Here we measure
both the relative importance of the simplex to the complex as a whole (by its
dimension) and its relative importance as an agent of connection (by the
maximum number of vertices it shares with any other simplex). Eccentricity
then enables us to visualize and measure how well integrated each simplex is
into the entire complex.

• Patterns. As already noted in Chapter 1, the notion of a system
dynamic may be superimposed on the complex by introducing a mapping
from each simplex of Ky(X; A) into an appropriate number field:

i = 0,1, , dim K,

r = 1, 2, ,card K.

The pattern TI embodies the dynamical changes taking place in the complex
as time unfolds. Since each simplex CTj has a characteristic geometric
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dimension, so do the numerical quantItIes associated with (Tj, and these
features are intertwined with the geometric structure of K through the chains
of connection. As we shall point out later, the geometric structure then
imposes various constraints upon the change of pattern, that is, upon the
system dynamics.

• Homotopy. It is of theoretical and applied interest to ask "how close"
a given simplex or chain is to another simplex or chain in the complex. This
question can be precisely formulated and studied by introducing the notion
of homotopy into the situation. Basically, homotopy is concerned with the
question of whether a given chain may be deformed into another chain
without meeting any geometrical obstacles during the deformation process.
For instance, the curves A and A' on the torus of Figure 2.9 are homotopic,

CS iVA

FIGURE 2.9 Homotopy on a torus.

while the curves Band B' are not, since the geometric obstacle of the
"hole" in the center prevents B from being continuously deformed into B'.
Notions analogous to this simple geometrical situation can be defined for the
complex Ky(X; A) and prove useful in analyzing its structure.

Although the preceding geometrical concepts are elementary from a
purely mathematical viewpoint, they represent a great deal of the informa
tion needed to understand the static geometry of a given relation and the
dynamical implications of its associated connectivity structure. Such sweep
ing claims will be validated by numerous examples in the next chapter.

COMPLEXITY

Of all the adjectives in common use in the systems analysis literature, there
can be. little doubt that the most overworked and least precise is the
descriptor "complex." In a vague intuitive sense, a complex system refers to
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one whose static structure or dynamical behavior is "unpredictable," "coun
terintuitive," "complicated," or the like. In short, a complex system is
something quite complex-{)ne of the principal tautologies of systems
analysis!

Fortunately, stimulated by problems arising in computer science, a
number of investigators have begun to make a methodological assault on the
concept of complexity and to devise various means to quantify the notion.
We shall discuss a number of these results in a later chapter. For now, let us
discuss only some of the main ideas and the basic philosophical points
surrounding this important qualitative concept.

Basically, complexity refers to two major aspects of a system: (a) the
mathematical structure of the irreducible component subsystems of the process
and (b) the manner in which the components are connected to form the
system. These points imply, of course, that complexity is an attribute of the
system itself, obscuring the fact that it is actually a relationship between an
observer and the thing observed. However, this relativistic aspect will be
suppressed throughout our introductory treatment in this book.

The first point noted above implies that the apparent complexity of a
system can be lowered by grouping its variables into subsystems, as for
example, in a schematic diagram of a radio, where the various system pieces
(resistors, transistors, and so on) are grouped into components, such as
tuning circuits and power supply. The goal of such a decomposition, of
course, is to enable the analyst to see the system as less complex by being
able to interpret it as a nearly decomposable collection of interrelated
subsystems. We should note, however, that although the interactions be
tween subsystems may (hopefully) be weak, this does not imply that they are
negligible.

The second main point interfaces strongly with the connectivity concepts
discussed previously. Such issues as dimensionality, hierarchy, length of
connective chains, and data paths all fall into this broad category. Questions
involving dynamical behavior are clearly intimately involved with both the
structure of the "pieces," as well as with how the pieces are put together.

Fundamentally, then, the analyst must concern himself with two aspects of
the complexity question-the structural or static complexity involving the
connectivity and structure of the subsystems and the dynamical complexity
surrounding the time behavior of the system. That these measures may be
relatively independent is illustrated by simple cases. For instance, a wrist
watch certainly possesses a high degree of static complexity but its dynami
cal complexity is essentially zero, assuming it is operating as designed. On
the other hand, consider the nonlinear oscillator described by the Van der
Pol equation
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As is well known, this system can have complicated "flip-flop" behavior
depending upon the parameter A, and, in fact, it is precisely this "compli
cated" behavior that makes the circuit of theoretical and applied interest.
However, from a structural view, the Van der Pol oscillator is certainly not a
complex circuit.

To illustrate some other aspects of the type of counterintuitive behavior
that seems to characterize complex systems, consider the idealized linear
social process depicted in Figure 2.10. As is evident from the structural
setup, this example is for illustration only, and the social assumptions should
not necessarily be taken seriously.

Electricians
school

Job
shop

Electrical
contractor

M

>----p

E

FIGURE 2.10 Simplified industrial economy of a developing country.

In Figure 2.10, we have a developing country whose nonagricultural
economy has two kinds of workers and two factories: Machinists work in the
job shop and electricians work for the electrical contractor. Both the job
shop and the electrical contractor have a capacity for a fixed number of
workers, and they try to operate at full capacity. Workers leave the work
force sufficiently often that the number of workers is equal to the yearly
output of the schools. There are three schools: two small schools, specializ
ing in training machinists and electricians, and one large government school,
which trains an equal number of both kinds of workers. The government
trains two workers per dollar. The private schools train one worker per unit
of demand, but, because these schools can be more selective in their
students, they train their students to twice the productive capacity of the
government-trained worker. The government subsidizes the factories so that
they will take all workers trained in the government school. The following
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equations describe the situation:

M=Dm-sG,

P=Dm +sG+D"

E=sG+D"

where

M = number of machinists
E = number of electricians
P = total productive capacity (in terms of privately

trained students)
D m =demand for machinists
De =demand for electricians
sG = yearly output of the government school

Note that the scaling in the equations is unimportant, as the phenomena we
shall present are invariant under scaling.

Assume that the control problem is such that it is desired to control the
number of machinists and electricians and the total productive capacity. The
controllers are the two factories and the government. The government
controls P with sG, while the job shop controls M with Dm and the
electrical contractor controls E with De.

The above situation generates the following paradoxical behavior: Sup
pose that the two factories have been operating at full worker capacity. The
government then increases sG by one unit. In turn, the two factories
decrease De and Dm each by a unit amount to avoid overflowing. The net
effect on P of the changes in D m and De is minus two units. Thus, the
overall effect on P of a single-unit increase in sG is a unit decrease in P. This
conclusion is independent of the detailed control strategies and depends only
upon the structure of control and the objectives as seen by each controller.

The paradox could be removed if the government could manipulate D m or
De instead of So. However, the basic problem arises because of the effect of
other control actions on the apparent relationship between a controlled
variable (M, P, or E) and the corresponding decision variable (Dm, sG, and
De)' The moral of the example is that seemingly elementary systems can
give rise to very unexpected (and unpleasant) outcomes if the complexity of
interactions is not thoroughly understood. Another important point to note
is that, contrary to conventional wisdom, the nonintuitive aspects are not
due to nonlinearities, stochastic effects, or the like. They are attributable
solely to the system structure and the interactive connections and constraints
of the composite subsystems.

The preceding example serves to illustrate still another important com
plexity concept-namely, the distinction between design complexity and
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control complexity. RougWy speaking, design complexity corresponds to a
combination of the static and dynamic complexity when no controlling
action is present or, more generally, to the transformation process in which
full use of system potential is made. However, this transformation process
may not result in stable configurations. For instance, unstable configurations
may result from a gap between computability requirements of the entire
system and the computational capacities of the connected subsystems at
tempting to realize the entire system.

By control complexity, we understand the complexity level that results
from computations that keep the entire system under complete control.
Unstable configurations may occur if some subsystems are unable to com
pute (adjust) fast enough in order to adapt to changes of input (external
stimuli).

The relation between design and control complexity is called evolution
complexity, and a system is said to be in perfect balance whenever the
utilization of its potentialities is complete, that is, when design and control
complexity coincide.

Example: Jacob-Monod Gene Model We assume the cell is divided into
two parts: metabolism M and genetic control G. One way to consider the
interaction within the cell is as follows. G is attempting to control M,
where G samples the output of M and then applies a correction input into
M (the usual feedback setup of control theory). If G accomplishes its
action according to the design complexity and does not compute more or
less than is required, then stable configurations will result and design and
control complexity will coincide. Otherwise, a breakdown may occur.

Other models of a more realistic nature are explored in Chapter 4, where
we consider applications of complexity concepts to the following types of
dynamic systems:

• Competitive economic models of resource allocation and models of the
"tragedy of the commons" type;
• Specific models of resource depletion and environmental pollution
• Structural models of spatiotemporal development

In summary, we can say that complexity is a multivalued concept involv
ing static, dynamic, and control aspects. Static complexity represents essen
tially the complexity of the subsystems that realize the system, dynamic
complexity involves the computational length required by the subsystem
interconnection to realize the process, and control complexity represents a
measure of computational requirements needed to keep the system behaving
in a prescribed fashion. Ideally, a mathematical theory of complexity should



45

reach a level similar to a theory of probability. Whereas probability can be
conceived as a measure of uncertainty in particular situations, complexity
may be considered as a measure of understanding of the system's behavior.

STABILITY

Following connectivity and complexity, the third leg of our system-theoretic
triangle in this book is stability. In rough terms, we have seen the relevance
of connectivity and complexity to the understanding of system structure, but,
for the most part, the dynamical behavior of the process has been under
played. The variety of stability concepts will rectify this situation.

Unfortunately for the analyst, the term "stability" has been vastly over
worked in the systems literature, having been used to denote everything
from classical Lyapunov stability to organizational rigidity. The only com
mon ground among all these uses of the stability concept has been that
stability means the capability of something (the system, perhaps) to react to
changes in its environment (e.g. perturbations, random disturbances) and
still maintain approximately the same dynamical behavior over a certain
time period (possibly infinite). Clearly, there is no hope for a mathematical
study of stability with such a vague, shadowy "definition". But, it does
provide the intuitive basis for more precise definitions and results.

For the sake of exposition, it is convenient to divide stability studies into
two broad categories. The first we shall term "classical," using the word to
denote concepts and results centering upon external perturbations acting
upon a fixed system: that is, the system, itself, does not change, only its
external environment. A simple example of such a situation is again the
classical pendulum, depicted in Figure 2.11.

FIGURE 2.11 Simple pendulum.
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If the equilibrium position (6 = 0) is perturbed to the position 6*, we can
ask whether the position 6 = 0 will again be reached after a sufficiently long,
possibly infinite, time interval. It is evident both from the physics and from
the mathematics that this will indeed be the case for all perturbations
6 f 180°. Thus, the position 6 = 0 is a stable equilibrium (in the sense of
Lyapunov). The position 6 = 180° is an unstable equilibrium, as an arbitrar
ily small perturbation from it will ultimately send the system to the stable
position 6 = O. The main point here is that the system dynamics are not
affected by the initial displacement. Thus, we have a classical situation in
which only the external environment (the displacing agent) is changing, not
the system structure.

For the most part, classical stability analyses are concerned with the
equilibrium points of the system and the dynamical behavior of the process
in the neighborhood of these points. Various techniques for analyzing such
situations have been perfected to a high degree; they will be discussed in
Chapter 5.

Important as such classical equilibrium-centered concepts are in physics
and engineering, their utility in systems arising in biology, economics, and
the social sciences must be viewed with some reservation. The basic problem
is that systems of this kind almost always operate far from equilibrium and
are constantly being subjected to modifications that change the equilibrium
positions. In short, the time constants of these problems are much too great
for equilibrium analyses to be of more than marginal value in many cases.
Of course, the systems of physics and engineering generally have much
shorter transient times, and so the classical notions have proven very useful
for studying electronic circuits, vibrations of plates, and so forth. However,
what's good for the goose may not necessarily be good for the gander, too,
and a careful analysis of the situation must be made before attempting to
apply such ideas in other areas. (Workers in areas such as equilibrium
economics, equilibrium ecology, and steady-state urban growth, please take
note!)

The modern stability counterpart to the equilibrium-oriented classical
view is the concept of structural stability. Here we are concerned with how
the qualitative behavior of the system trajectories change when the system
itself undergoes perturbation. Thus, we are studying the behavior of a given
system with respect to the behavior of all "nearby" systems. If the target
system behaves "about the same" as its neighbors, then we say it is
structurally stable. Otherwise, it is structurally unstable. To make these
notions precise, we must be very specific about what constitutes a nearby
system, the class of perturbations allowed, and the meaning of similar
behavior. However, the general idea is clear: a sufficiently small perturba
tion to the dynamics of a structurally stable system will result in a corres
pondingly small change in its dynamical behavior.
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Let us consider the classic example of a structurally unstable system
the undamped simple harmonic oscillator. The system dynamics are

x+C 1X+C 2 X=0

x(O) = a, x(0) = O.

We are interested in studying the effects of the parameters C1 and C2 upon
the system trajectories. On physical grounds, we consider only the systems
for which C 1 ~ 0, C2> O.

Considering the motion in the (x, x)-plane, we see easily that if C1 = 0, the
trajectories are concentric circles centered at the origin with radii a.JZ;. (see
Figure 2.12). Assume now that we introduce some damping into the system.

.,--+----+--+--+---+---+-x

FIGURE 2.12 Trajectories of the undamped oscillator.

Mathematically, this means that C1> O. If ci > 4C2' the equilibrium point
x = x= 0 in the (x, x)-plane will be a node (Figure 2.13a); otherwise, it is a
focus (Figure 2.13b).

In either case the origin is stable with respect to perturbation in C1 or C2'

This situation is in stark contrast to the undamped case C1 = 0 in which the
origin is a center and its qualitative character may be changed by an
arbitrarily small change of C1• Thus, the systems with Cl "10 are structurally
stable, in that the qualitative character of the equilibrium point (node, focus)
is preserved under small changes of the system structure.

Since the structural stability ideas are closely related to the behavior of
system trajectories as they move toward an equilibrium point, we must be
concerned with those regions of the state space that correspond to domains
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FIGURE 2.13 Phase plane portraits of system trajectories.

of attraction or repulsion for a given equilibrium. That is, given a particular
equilibrium x*, assumed for simplicity to be a fixed point, what initial points
of the system will ultimately (as t~ (0) end up at x*? Graphically, we have
the situation shown in Figure 2.14. Even in two dimensions, the situation
can become quite complicated when we allow limit cycles and periodic

FIGURE 2.14 The domain of attraction of a fixed point in R 2
•

trajectories as equilibria, and the picture in more than two dimensions is still
very unclear. However, much is known about characterizng the domain of
attraction and the associated structural stability questions, which we shall
explore in the last chapter of this volume.

A slightly more complicated example of a structurally unstable situation is
seen in the following ecological problem.

Example: Antisymmetric Predator-Prey System Here we assume that m
species interact with the population of the ith species, denoted by Ni(t). If
ai represents the birth rate of species i, while au is the rate of predation of
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species i by species j, then the Lotka-Volterra system dynamics are

The nontrivial equilibrium populations N~ must satisfy the linear alge
braic system

m

L (XiiN1' = a;.
j~l

Under the questionable assumption that the interaction matrix A = [(Xij]

is antisymmetric, i.e., (Xij = -(Xji, it can be shown that the system exhibits
purely oscillatory behavior when it is displaced from any equilibrium,
since the characteristic values of any antisymmetric matrix are purely
imaginary. (It should be noted that the antisyrnmetry assumption is
biologically equivalent to saying that the biochemical conversion of 1
gram of prey species j is a constant for all members of the ith predator
type; that is, the constant is independent of the type of prey being eaten.)
In addition, it can be shown that the quantity

m

Q = L [Ni (t) - N1' log N; (t)]
i =1

is constant along trajectories of the system.
The above conservation law is a consequence of the oscillatory charac

ter of the system and is analogous to the conservation of mechanical
energy associated with the ideal frictionless pendulum studied earlier.
However, as soon as we lose the precise antisymmetric character of A,
then the system equilibria become either nodes or foci (stable or unsta
ble). Hence, again the introduction of an arbitrarily small change in the
system destroys the qualitative behavior of the trajectories. Hence, the
system is structurally unstable. Furthermore, the antisymmetric models
apply only to a system with an even number of species, since antisyrn
metry implies that the characteristic values of A occur in imaginary pairs.
If m is odd, then the unpaired characteristic value must be zero, giving
rise to a singularity in the interaction matrix. Thus, the foregoing system
might also be said to be structurally unstable with respect to perturbations
in dimension, although we shall not pursue this type of instability in
subsequent chapters.

CATASTROPHES AND RESILIENCE

Since the location of system equilibria and their associated domain of
attraction depends upon the precise dynamics of the system under study, it is
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of great interest to know how these objects change as the system is
perturbed to a nearby system. It is of the greatest practical concern to know
if such a perturbation will result in a given state of the system shifting from
one domain of attraction to another, since such a shift has dramatic
implications for long-term behavior. Catastrophe theory has been developed
as one tool for analyzing such situations.

In the standard catastrophe theory setup, we assume that we are in
terested in a process whose dynamics are governed by some potential
function and that the stable equilibria of the process correspond to local
minima of this potential. It is imperative to note that precise knowledge of
the potential function itself is not needed to apply the theory, only the
assumption that such a function exists. We then assume that a certain
number of output variables are measured, being generated by the system as
a result of input parameters. In the "elementary" catastrophe theory, the
equilibrium outputs are all assumed to be simple fixed points. Roughly
speaking, we fix a level of the input parameters, wait (infinitely long!) for the
steady-state output to appear, then reset the input variables to new values
and repeat the process. In this way, we obtain a surface of equilibria in the
output space, graphed as a function of the input parameters. In loose terms,
a "catastrophe" occurs when there is a discontinuous change in the output
space behavior as a result of a smooth change of inputs.

We illustrate the situation in a system with two inputs and one output (the
"cusp" catastrophe).

Example: Central Place Theory In geographic analysis, one measure of the
diversity of goods and services available in a given region is its "central
place" level. Of course, there are many factors that influence the central
place level, but two of the most important are population and expendable
income per capita. Thus, suppose we wish to analyze the changes in
equilibrium central place levels as a function of changes in population and
expendable income in a given region. Since no one really knows how the
central place dynamics operate anyway, there seems to be no reason to
hesitate to assume that some unknown potential function governs the
situation and that the equilibrium central place levels (for fixed population
and income levels) correspond to local minima of this function.

Letting population and expendable income be the input parameters,
with the central place level (dimensionless) being the output, the
catastrophe-theoretic results in Chapter 5 lead to the picture in Figure
2.15. The manifold M represents the various equilibrium central place
levels as a function of the two inputs. The most interesting features of the
surface M are the two fold lines I and II, which meet at the cusp point O.
In the figure, these lines have also been projected onto the population
income plane.
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Population
FIGURE 2.15 Catastrophe manifold for central place theory.

The cusp manifold M makes it clear how discontinuities in central place
level may occur through seemingly minor population or income shifts.
One such cycle ABCD is depicted in the figure. Here a decrease in
population leads (with no change in per capita income) to the point B,
whereupon a further population change discontinuously drops the central
place level to C. Increasing population (again with constant per capita
income) then moves the system to D, where the central place level then
jumps back to A. It is important for the reader to understand that the
cycle ABCD is not the dynamical motion of the system! It is only a
sequence of equilibrium central place levels, parametrized by population
and income. In Figure 2.15, we have also projected the cycle ABCD onto
the input space, so that we can follow changes there. Note that as the
inputs first enter the shaded cusp region, nothing unusual happens to the
central place level. The level drops precipitously only at B, when the
system leaves the critical region. The system then reenters the cusp
region, again with no interesting central place changes until it leaves the
region at D. The point to note is that discontinuous central place changes
(up or down) occur only when the system crosses out of the cusp region by
traversing the fold line opposite to that which it passed to enter into the
critical region. We shall explore much more of the geometry of this
situation in the last chapter.

In order to connect the catastrophe theory picture with our earlier
remarks on the importance of the domain of attraction, we note that the
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FIGURE 2.16 Shifting domains of attraction.

passage from the domain of attraction of one attractor to another corres
ponds to the situation shown in Figure 2.16. The point x initially lies in the
domain of the attractor P. Because of changes in the system dynamics, the
domain of attraction of P shrinks from I to II, while that of Q expands from
1 to 2. The point x is now drawn toward Q rather than P. Of course, the
locations of P and Q themselves depend upon the system structure, so the
points in the figure are actually regions containing P and Q. What is
important is that the regions P and Q are disconnected. Thus, perturbations
in the system structure that lead to the picture shown in Figure 2.16
generate a discontinuity in the output, if the output observed happens to be
the location of the equilibrium.

Returning to the catastrophe theory discussion, we see that the fold lines
correspond to exactly that combination of input parameters that leads to
discontinuous changes in the equilibria. Hence, the catastrophe theory
picture allows us to characterize changes in the domain of attraction
geometrically without having to go through the intermediate state space.
We should note that catastrophe theory tells us little about where a given
domain of attraction lies in state space; it tells us only about what regions of
input (or parameter) space may lead to a given state being transferred from
one domain to another. Often this is sufficient for applied work.

We close this chapter with a few words on the concept of resilience. It has
been recognized, especially by ecologists, that one of the most desirable
qualitative features that a system can possess is the ability to absorb
impulses (expected or not) without entering into a fatal type of behavior. In
other words, resilience should measure, in some sense, the ability of the
system to persist. Naturally, to make mathematical sense of this concept,
precise definitions are needed of the type of impulses allowed and the
meaning of "persist." We shall attempt some of this in Chapter 5.
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Even this intuitive description of resilience shows that the notion is
intimately tied up with the question of system domains of attraction and the
change of these regions by artificial or natural causes. If such changes cause
the current system state to be shifted into the domain of a "fatal attractor,"
then clearly we would say the system is not resilient to that class of impulses
or inputs. Otherwise, it is resilient to a greater or lesser degree. One of our
objectives in Chapter 5 will be to provide plausible measures of resilience
and examples of resilient and nonresilient (rigid?) systems.
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3 Connectivity

So then always that knowledge is worthiest ... which considereth
the simple forms or differences of things, which are few in number,
and the degrees and coordinations whereof make all this variety.
FRANCIS BACON

Man follows the ways of the Earth, the Earth follows the ways of
Heaven, Heaven follows the ways of Tao, Tao follows its own way.
LAO-TZU, Tao Teh Ching

In elementary books on systems analysis, one often sees a statement such as
"a system is a collection of interrelated elements." While this hardly suffices
as a definition, the intuitive notion that a system constitutes a connected set
of objects is made explicit. One might even say that connectivity is the very
essence of the "large-scale" system concept, since, a fortiori, a system whose
components do not interact is unlikely to pose much of an analytical
problem (or to represent a very interesting physical process).

The question to be addressed in this chapter is how to describe the
connective structure of a system in mathematical terms. In view of the many
different mathematical formulations of a system given in the preceding
chapters, it will be necessary to consider the connectivity question from
several points of view; however, all the viewpoints will have the objective of
making explicit the essential connections between system components and
the manner in which these connections influence the behavior of the process.

To illustrate, consider an input-output description given by the set of
linear algebraic equations

Ax=b.

If we identify each component of x with a subsystems and regard b as the
system input, it is clear that the off-diagonal terms in A determine the
interaction between component subsystems and any analysis of the connec
tive structure of the process must be centered upon the zero/nonzero pattern
and the magnitude of these elements. We shall present a substantial
generalization of this basic concept below within the framework of a linear
dynamical process. On the other hand, if our system is described qualita
tively by a planar graph, where an arc between two nodes indicates that the
subsystems represented by the nodes are connected in some fashion, the

57
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relevant object for studying the connective structure is the system intercon
nection matrix E, whose (i, j) element is 1 if and only if subsystems i and j
are connected, 0 otherwise. As will be shown later, the off-diagonal ele
ments of E, while important, do not tell the whole story of the system's
connective structure, and a more topological, rather than algebraic, ap
proach is required.

The picture that will emerge from our analysis is that connective structure
is a multifaceted, multidimensional notion that requires tools from both
algebra and topology to characterize adequately the way in which a system is
composed from its components. Depending upon the manner in which the
system is described, different aspects of the connectivity question will
present themselves and different questions will be appropriate. Our goal will
be to survey the most interesting of these questions and to attempt to supply
an array of mathematical tools for their resolution.

Since connectivity is essentially an algebraic notion, this chapter is heavily
flavored by mathematical constructs and ideas from abstract algebra and
topology. In particular, the first half of the chapter is devoted to a semi
intuitive discussion of simplicial complexes and algebraic topology in order
to provide a suitable framework for analyzing connectivity when a set
relation model of a system is employed. The second half of the chapter shifts
to the algebraic theory of semigroups as a suitable mathematical basis for
studying connectivity in a dynamical context. In addition, the semigroup
material will be extensively employed in the complexity studies of the
following chapter.

COMPLEXES AND CONNECTIONS

As observed in Chapter 1, the simplicial complex forms the natural
mathematical generalization of a planar graph, an extension that is critical to
examination of the multidimensional nature of a given binary relation. For
geometrical, as well as expository, reasons, we begin our study of connective
structure by examining complexes.

As simplicial complexes are nothing more than collections of simplices
joined through a sharing of vertices, the most natural connective concept
here is the dimensional one, that is, the dimension of the face shared by two
simplices. Since we are interested in the complex, it is most appropriate to
consider the idea of a chain of connection, reflecting the fact that two
simplices may share no common face, yet be connected to each other by an
intermediate sequence of simplices. Taking account of the dimensional
aspects of the situation, we are led to the concept of q-connectivity.

Definition 3.1. Given two simplices O"j and O"j in a complex K, we say they
are joined by a chain of q-connection if there exists a sequence of simplices
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{<TaX~t in K such that

1. <Ti is a face of <Tal

2. <Tan is a face of <Tj

3. <Ta , and <Ta", share a common face of dimension, say, f3i

4. q = min {i, f3t, f32' ••• , f3m j}

(Here we employ the standard convention that a subscript on a simplex
indicates its geometrical dimension, e.g., dim <Ts = s.)

It is easily verified that the concept of q-connection defines an equival
ence relation upon the simplices of K. Thus, a natural way to examine the
global connective structure of the complex K is provided by studying the
q-equivalence classes. For each dimensional level q = 0, 1, ... ,dim K, we
shall determine the number of distinct equivalence classes Oq and shall call
this the operation of performing a "q-analysis" of K. The vector

will be called the first structure vector of the complex.
The information contained in 0 captures some of the global structure of

the complex K in the following sense. In order for two simplices A and B to
belong to the same q-connected component of K, there must exist a chain of
intermediate simplices connecting A and B such that the "weakest link,"
dimensionally speaking, in this chain has dimension greater than or equal to
q. It is evident from Definition 3.1 that if two simplices are q-connected,
then they are also q -1, q -2, ... ,0 connected as well. Hence, we may
regard K as being constructed out of multidimensional tubes of simplices,
and the vector 0 tells how many tubes of each dimension there are in K.

Alternatively, we may conceive of q-connection in the following manner.
Imagine being able to view the complex through a pair of spectacles that
enable one to see only in dimension q and higher. Looking at a geometrical
representation of K through such spectacles, we would see the complex split
up into Oq disjoint (disconnected) pieces. Hence, we note in passing that the
number 0 0 is identical with the topologist's zeroth Betti number, although
the other Oq, q ~ 1, do not coincide with the higher Betti numbers. 0 0 , of
course, represents the number of disconnected components of K, when K is
viewed at all dimensional levels.

In order to fix the preceding ideas firmly, consider the elementary
example of a system characterizing the goods-service facilities of a primitive
town as presented in Chapter 1. Imagine that the set

x = {bread, milk, stamps, shoes}
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represents the goods of interest, while the set

Y ={market, department store, bank, post office}

represents the service facilities. A natural relation A c Y x X linking these
two sets is

(Yi' Xj) E A if and only if good Yi is obtainable at facility Xj.

Then clearly

The incidence matrix A for this relation is

Y1 1 1 0 0

A=Y2 0 0 0 1

Y3 0 0 0 0

Y4 0 0 1 0

while the geometrical view of the complex is given as

where we use X as the vertex set, Y as the simplex set. Note that the
"empty" simplex Y3 does not belong to the complex Ky(X; A) unless we
agree to augment K by adding the empty vertex 0 to X, representing a
(-I)-dimensional simplex.

As is evident from the geometry, the above complex consists of the
I-simplex Y1' and the two O-simplices Y2 and Y4. Clearly, this "system"
displays a very low level of connectivity. By inspection, we can see that
0 1 = 1, the simplex Yl> while 0 0 = 3, the disjoint O-components being the
simplices Y1' Y2' and Y4. Hence, the first structure vector for this complex is

0=(1 3).

ECCENTRICITY

While the preceding type of analysis can be quite revealing as far as the
global connective structure is concerned, it provides little information about
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the way in which any individual simplex fits into the total complex. Since the
simplices themselves represent meaningful entities within the problem con
text, it is important to determine how well "integrated" each individual
simplex is into the whole structure. In an attempt to capture this concept, we
introduce the idea of "eccentricity."

Definition 3.2. The eccentricity of a simplex u is given by the formula

q-4
ecc (u) = --;--1 '

q+

where q is the dimension of u as a simplex, and 4 is the largest q value at
which u is connected to some other simplex in K.

The difference q- 4 is a measure of the unusual, "nonconforming" nature
of u; however, q-4 = 2 is presumably more revealing if 4 = 1 than if 4= 10.
Thus, we use the ratio above rather than the absolute difference q- 4 as a
measure of eccentricity. Note also that ecc (u) = 00 if 4= -1, that is, if u is
not connected to any other simplex in K. This agrees with our intuition that
a simplex is maximally eccentric if it is totally disconnected from the
remainder of the complex.

With regard to the simple complex of the previous section, it is easily
computed that

indicating that each simplex is totally disconnected from the others. We shall
present a more interesting example of the eccentricity notion in the next
chapter.

HOLES AND OBSTRUCTIONS

As noted above, the q-analysis of a simplicial complex provides information
about the multidimensional chains of connection of the simplices comprising
K. A question of interest centers on the structure between these chains. We
might regard K as being a type of multidimensional Swiss cheese with the
chains of q-connection forming the substance of the cheese. We now wish to
study the structure of the holes in the cheese. First, we must turn to a bit of
advanced mathematics, but we shall return to "reality" again in the section
on predator-prey relations (p. 70).

In the language of algebraic topology, the study of the multidimensional
holes in a complex is called homology theory and involves the concepts of
chains and boundaries. We restrict the discussion to the case of a relation A
between two finite sets X and Y; in particular, AC Y x X and A*C X x Y.
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Either of the two simplicial complexes Ky(X; A), Kx(Y; A*) possesses a
finite dimension and a finite number of simplices.

We therefore take the case of such a complex, say, Ky(X; A), in which
dim K = n; we assume that we have an orientation on K, induced by an
ordering of the vertex set X, and that this is displayed by labeling the
vertices Xl' X2, ••• , Xb with k ~ n + 1. We select an integer V such that
0::5 V::5 n and we label all the simplices of dimension V as u~, i = 1,2, ... , hr"
where we suppose that there are hr, p-simplices in K.

We now form the formal linear sum of these p-simplices and call any such
combination a v-chain, allowing multiples of anyone up' We denote the
totality of these p-chains by Cp and one member of Cp by cp. Thus a typical
V-chain is

with each mi E J where J is an arbitrary Abelian group. We can then regard
this set Cp as a group (an additive Abelian group) under the operation +, by
demanding

Cp + c~ = (m l + mDu~+ ... + (mh" + mh)u~D

together with the identity (zero) Op for which each mi =O. Combining every
group Cp, for p = 0, 1, ... , n, we obtain by the direct sum the chain group
C., written

C. = COEaCI Ea ... EaCn •

Any element in C. is of the form

With every p-chain cp we now associate a certain (p -I)-chain, called its
boundary, and denoted by acp • We define acp precisely in terms of the
boundary of a simplex aup , and if cp = Ii miu~, we take

In other words, we require that a be a homomorphism from Cp into CP-I'
If a typical up is up =(X I X2 •.• Xp+l), we define aup by

where ~ means that the vertex X; is omitted.
Figure 3.1 shows a geometric representation of a U2 = (X IX2X3), together

with the orientation and the induced orientations on the edges. In this case

aU2 = a(XIX2X3)

= (-1)2(x2x 3) + (-1)3(X IX3) + (-1)4(x l x2);
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FIGURE 3.1 A 2-sirnplex with its faces oriented.

this means that

which is a I-chain, a member of C I .

The boundary of a chain can be seen as its image under the operator a,
which is a map

for p= 1, ... n.

Not only is aa homomorphism (it preserves the additive structure), but it is
easily seen to be nilpotent-that is to say, a(acp ) = 0 in Cp -2> or

a2 = 0 (the zero map).

In the case shown in Figure 3.1, we have

a2u2 = a(au2) = a(u ~ - ui + ui)

= a(X2X3) - a(XIX3)+ a(XIX2)

= (X3)- (X2)- «X3) -(Xl») +(X2)-(Xl)

=0.

Since a: Cp ---+ Cp- l is a homomorphism, the image of Cp under amust be a
subgroup of Cp-l; we denote this image acp variously by im aor by Bp- l,
and, because a is nilpotent, we see that

aBp _ 1 = 0 in Cp -2> or a(im a) = o.

Those p-chains cp E Cp that are such that their boundaries vanish (that is,
acp = 0) are called p-cycles. They form a subgroup of Cp, being the kernel of
the homomorphism a, and are usually denoted by the symbols zp, the whole
subgroup being Zp. The members of Bp (which is acp+ l) are clearly cycles
too, by the above, and so Bp C Zp. In fact Bp is a subgroup of Zp.

The members of Bp are called bounding cycles (they are cycles in an
identical or trivial sense), and those members of L;, that are not members of
Bp can be identified as representatives of the elements of the factor group



64

(or quotient group) ~/Bp. The members of this factor group are of the form

Zp +B p ,

and, if we select one member, say zp, out of this equivalence class, we can
also denote it by [zp]. When two p-cycles z~ and z; differ by a p-boundary,
then z~-z;EBp and we say that z~ and z; are homologous (often written as
z ~ ~ z;). This is a relation on the set of cycles, and it is easy to see that it is
an equivalence relation. The quotient set Zp/ ~ , under the relation of "being
homologous to," is the quotient group Zp/Bp, the group structure being
determined by the operation + on the members zp + Bp. In this group
structure, the set Bp acts as the additive identity (the "zero"), since

(zp+Bp)+Bp =zp+Bp

for all Zp.

This pth factor group Zp/Bp is what is called the pth homology group and
is denoted by H p :

H p = Zp/Bp, p = 0,1, ... , n.

The group of cycles ~ being mapped to zero by the homomorphism a is
what is known as the kernel of a (written ker a) and so we find the
alternative form

H p = ker a/im a.

The operation of a on the graded group C. can be indicated by the
sequence:

a
C. = CoEB C1EBC2 EB ... CpEBG,+l ... EBCn ,

together with the symbolic diagram of Figure 3.2, where Bp is represented
by the shaded bull's-eye in Cp ; ~ is the inner ring surrounding this shaded
portion.

When H p =0, there is only one equivalence class in the factor group and
this is Bp; every zp E Bp; every cycle is a bounding cycle. When Hpi' 0, there
is more than one element in the factor group and so there must be at least

FIGURE 3.2 A nilpotent a operating on a graded group C.
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one cycle that is not a bounding cycle at this level. In Figure 3.1 we have
HI =0 because the only I-cycle is the combination CT~-CTi+CTi (and multi
ples thereof), and this is aCT2. Because there is no C3 , there cannot be a B2
(the CT2 is not the boundary of anything) and since aCT2 ¥- 0, Z2 is also empty.
Under these conditions we also write H 2= O. When Hp = 0 we speak of the
homology being trivial at the p-Ievel; when we say that "the homology is
trivial," without specifying the values of p, we mean that H p = 0 for all
values of p other than p = O. This latter group H o is never zero, except
possibly when the complex K is augmented by inclusion of the simplex
whose vertex set is empty.

We can see in Figure 3.1 that the homology is trivial, and also that Ho¥- 0,
for any Co is of the form

Co = m (Xl) + m2(x2 ) + m3(x3),

and, taking the boundary of a point to be zero, it follows that Co must be a
O-cycle, Co E Zoo But the vertices Xl' X 2 , X 3 form part of an arcwise-connected
structure in the sense that I-chains CI, c~ exist such that

(x2 ) = (XI)+aCI

(x3 ) = (Xl) +ac ~

(in fact, we need only take CI = CTi and c~ = CTi). Hence we have

Co= Zo= (m l + m2 + m3)(xl)+a(some I-chain).

Hence the vertex Xl acts like a specially chosen O-cycle zo; all the possible
O-cycles in the structure can be generated by writing

Zo = mzo+ a(some I-chain),

and zo, consisting of a single point, cannot be the boundary of any I-chain.
Hence Zo e Bo and so H o¥- 0; in fact H o contains a single generator, and,
being an additive group, it is isomorphic therefore to the additive group J
(which is generated by a single symbol, namely, 1). Thus we see that for the
complex represented in Figure 3.1,

Ho=J,

or, preferably, we should use the symbol for isomorphism and write Ho==J.
The above argument shows that this structure is characteristic of the

complex's being arcwise connected, and we can therefore generalize it to
give the result:

if K possesses k connected components, then

Ho(K) = JEBJEB ... EBJ

with k summands. This number k is also known as the zero-order Betti
number of K; it then is written as f30.
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BETTI NUMBERS AND TORSION

The groups Cp , ~, Bp already discussed are examples of finitely generated
free groups, there being no linear dependencies between the generators of
any of them. But this property of being "free" is not necessarily true of the
factor group H p • Indeed, in general, we find that H p can be written as the
direct sum of two parts, of which one is a free group and the other is not. To
explain this idea, and to illustrate it by a practical example, we write our
general H p in the form

H p = G~EB Tor H p ,

where G~ is to be a free group and Tor H p is to be called the torsion
subgroup of H p • Any element of Tor H p , say h, is such that nh = 0 for some
finite integer n (with 0 being the additive identity of the group H p ). In the
context of boundaries and cycles, this means that h can be written in the
form h = zp +B p , because h E Hp, and that there is an n such that

nh = nzp+ nBp;

this element must be in Bp (the zero of the factor group). But this means
that, although zp ~ Bp, it must be that nzpE B p for this particular value of n.
This rather strange behavior of certain torsion cycles is the property that the
subgroup Tor H p characterizes.

Members of the free group G~ cannot behave in this way; if zp E G~ and
zp~ Bp, then nZp~Bp for any nonzero value of n. For this reason a free group
is often called an infinite cyclic group, in contrast to the finite cyclic groups
that go to make up Tor H p • Thus G~ will consist of summands of type J (the
number of summands will equal the number of distinct generators of G~),

while Tor H p will consist of summands of type Jm (the additive integers
modulo m if J = integers) for some choices of m. This must be so because a
group like Jm is an additive Abelian group with the property that if hE Jm

then mh = O. If Tor Hp contains a number of subgroups then each one will
be isomorphic to some Jm , for a suitable m.

The number of generators of G~ (the number of free generators of H p ) is
called the pth Betti number of the complex K, sometimes written as ~p.

p-HOLES

We have seen (Figure 3.1) the case of a complex K possessing a trivial
homological structure; in that example, HI = 0 because the triangle (T2 is
filled in. If we cut out the inside of this (T2' leaving only the edges, then we
find that HI = J, because there is now a single generator in the shape of
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which is not the boundary of a (1'2' the (1'2 having been removed. Thus the
single generator of HI represents the presence in K of a hole, bounded by
I-simplices (edges), which we shall call a I-dimensional hole. If the complex
K contained two hollowed-out triangles, then HI would be isomorphic to
the direct sum of J and J, written HI = JffiJ. Similarly if a geometrical
representation of the complex K possessed a spherical hole (bounded by the
surface of a sphere), we would find that H 2 would contain a single generator
Z2 E B 2 ; and if we found that H 2 = JffiJ, we could interpret it as meaning
that K possessed two 2-dimensional holes.

In general, then, we wish to stress the interpretation of the free group G~

as an algebraic representation of the occurrence of p-dimensional holes in
the complex K; the precise number of these holes is given by the pth Betti
number {3p. A geometrical representation of the complex-as far as G~ is
concerned-therefore looks like a sort of multidimensional Swiss cheese.

The q-connectivity analysis discussed above is dedicated to showing us the
structure of the "cheese" in between the holes. The possible interpretation
of the torsion subgroup Tor H p is more elusive in this cheeselike context,
but the following example shows that it can have a very practical significance
in another.

Example Denote the faces of a gambler's die by the symbols
v \ v 2

, v 3
, v 4

, v 5
, v6

• Let these be the vertices of a 5-simplex and let K be
this simplex together with all its faces; for example, a typical I-simplex is
the pair (v'v i ) with i i' j. Impose the induced orientation on K, induced by
the natural ordering of the vertices. Now conduct a series of experiments
in which the die is successively thrown until there is a repetition of a
die-face; in this, interpret the sequence {v\ Vi} as the negative of the
sequence {Vi, Vi}. The result of a series of successive throws is to observe an
element in the graded chain group

C. = COffiCI ffiC2 ffi C3 ffi C4 ffiCs.

Notice that the boundary of the run (123) is the I-chain (12), (23), (31).
In the first place, we expect the experimenter to be able to observe

every possible distinct run and series of runs. It would then follow that in
the graded chain group every cycle is a boundary and so

H p = 0 for p = 1, 2, 3, 4;

thus the homology is trivial.
But now let us alter the arrangement so that the experimenter suffers

the handicap of working with a laboratory assistant who sees to it (by
doctoring the records) that, let us say, the run (123) never occurs-either
by itself or as a face of any other run. This results in a drastic alteration of
the complex K and its associated chain group. For example, the sequence
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(123456) never occurs, since it contains (123). Furthermore, in the new
complex K', there exists a cycle

Zj =(12)+(23)+(31)

that is not a boundary. Hence the intervention of the assistant is reflected
in an increase in the first Betti number (31 from the value 0 to the value 1.
The assistant is responsible for punching a hole in the complex; the
homology group HI is now isomorphic to J.

Let us go further and alter the arrangements yet again. Suppose that the
experiment is conducted by two fair-minded gamblers. They begin by
noticing that the probabilities of distinct runs corresponding to typical
simplices UI, U 2 , U3, U4, Us are 5/6, 5/9, 5/18, 5/54, and 5/324. Since they
intend to bet on the experiment, our two gamblers agree to weight the
simplices so as to even up the chances. They do this by introducing new
(weighted) simplices as generators for the new chain group C. These
generators u: are related to the old generators Ui by the formulae

I
Us = Us·

Now the homology has been altered once more; for example,

54{(12) +(23) +(31)}

is in Z~ but not in B~, because the latter consists of multiples of 108 Li u~,
108 being the lowest common multiple of 36 and 54. Hence there exists a
cycle ZI such that 2z1 E B~. This makes a contribution to HI of the
summand J2 ; HI now contains a torsion subgroup Tor HI' In fact,

HI = J2 E9J2 E9·· . E9J2 ,

there being 10 summands in all. The other H p are not affected, and H p = 0
for p = 2, 3, 4.

The gambler's complex therefore possesses torsion that is expressed in
HI' It is thereby clear that the torsion can be introduced into H(K) in
different ways, which give different summands Jm , by altering the odds on
the outcome of the experiments. Thus u~ = 48uI leads to 10 summands
J3 , with

COCHAINS AND COBOUNDARIES

We can associate with a chain group C. (with coefficients in 1) a dual
concept, namely that of mappings from C. into J. In doing this we introduce
the concept of a cochain, dual to that of a chain; every such cochain is a
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mapping from C. into J:

cP: Cp -J.

Precisely, we denote a p-cochain by cP, and we also demand additivity

cP(Cp + c~) = cP(Cp) + cP(c~).

We can build up any particular p-cochain cP in terms of a set of mappings
from the p-simplices up into J. Hence, prior to the notion of a cochain, we
can have the notion of a cosimplex uP, which is simply a mapping

uP: {u~} - J,

without any additive structure assumed. If there are ltv p-simplices in K we
can define a basis for the cosimplices as the set of ltv mappings {uf, i =
1,2, ... , ltv} where

uf(u~) = ° if i~ j

= 1 if i = j.

Then every cosimplex uP is the sum of the uf; that is,

and every p-cochain is a linear combination

together with the linearity condition. The zero cochain map (for any p) is the
one defined by mj = 0, for all values of i, and the whole set of p-cochains
form an additive group CP. Hence the graded cochain group is the direct
sum

where n = dim K. To complete the duality, we can define a coboundary
operator [j which is the adjoint of a. Adopting the inner product notation
(cp , cP) for the value (in 1) of cP(cp ), we define [j by

(acp +1> cP) = (cp +1, [jcP),

which shows that [j: CP - CP+l. It is also clear that [j is nilpotent, [j2 = 0,
since

0= (0, cP) = (a2
Cp +2, cP)

= (acp + 2, &P)

= (Cp+2' [j2C
P) for all choices of cP +2>
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and so J)2C
p must be the zero map. We now have the dual cohomology

groups, HP(K;J) defined by

HP = ZP/BP= ker Slim S.

PREDATOR-PREY RELATIONS: A HOMOLOGICAL
EXAMPLE

The preceding homological considerations can be well illustrated by exami
nation of a classical ecological situation, the predator-prey ecosystem.
Graphically, we have the system shown in Figure 3.3, consisting of the
fifteen species indicated. An arrow from species i to species j denotes that i
preys on j.

Since the only objects present in the food web are the species themselves,
it is natural to define the sets X and Y to be the same, namely, X = Y = the
collection of all species in the web. We shall use the notation ~ (= yJ to
denote the ith species numbered according to the key in Figure 3.3.

Each species in the web may be either a predator or prey (or both). Thus,
to obtain a complete picture of the interconnections in the food web we
define two relations on the set X x X: the predator relation APRD and the
prey relation ApRy • These relations are defined in the obvious way. For
instance, (~, Xj) E ApRD if and only if ~ is a predator of Xj' i, j = 1,2, ... ,15.
The incidence matrix for ApRD is easily obtained from Figure 3.3 as

ApRD =

ApRD Xl X 2 X 3 X 4 X 5 X6 X7 Xg X9 X lO X ll X l2 X13 X l4 Xl5

Xl 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0
X2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
X3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
X4 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0
X5 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

X6 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
X7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Xg 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
X9 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
X lO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Xll 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
X l2 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
X 13 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Xl4 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
X l5 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0
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Key:
1. Bear
2. Bird
3. Deer
4. Fox
5. Gartersnake

6. Insect
7. Plant
8. Rabbit
9. Racoon

10. Rodent

11. Salamander
12. Skunk
13. Toad
14. Wildcat
15. Wolf

FIGURE 3.3 Predator-prey ecosystem.

Performing the q-analysis, we obtain the predator connectivity pattern:

at q=5, Os= 1, {x4}

q =4, 0 4 =1, {X4}

q=3, 0 3 =2, {x4}, {XIS}

q=2, O2 =3, {X4}, {Xl}, {XIS}

q = 1, 0 1=2, {Xl' X4, X9, X12, X14' XIS}, {Xs}

q=O, 0 0 = 1, {all except X7' XlO}
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The structure vector is

The analysis shows that from the predator viewpoint, the complex is
well-connected at the high and low q values, but splits into several discon
nected components at the intermediate q levels.

Since more than a single component at a level p comes about because
there exist two p-dimensional species that are not p-connected, the notion
of a geometrical obstruction is suggested. Hence, we define the obstruction
vector (J = Q - U, where U is the vector all of whose components are 1. The
components of (J measure the obstruction of a "free flow of information" in
the complex at each dimensional level. In the preceding example, the
obstruction at the q = 3 level means that the simplices X 4 (fox) and XIS

(wolf), while they each feed on at least four species, are not connected
(directly or indirectly) by any four species, and, consequently, an unimpeded
exchange of prey between fox and wolf is impossible at the 3-level. In other
words, the obstruction vector is a rough indicator of alternatives available to
predators at each q-Ievel.

We remarked earlier that the integration of individual simplices into the
complex may be studied by computing their eccentricities. Following Defini
tion 3.2, we obtain the predator eccentricities shown in Table 3.1.

TABLE 3.1 Predator Eccentricities

Species Eccentricity Species Eccentricity Species Eccentricity

1 1/2 6 0 11 0

2 0 7 co 12 0
3 0 8 0 13 0
4 2 9 0 14 0
5 1 10 co 15 1

Thus, aside from species 7 (plant) and 10 (rodent), which are not even in
the predator complex, we see that the least homogeneous member is species
4 (fox). This comes about principally because the fox has so many prey that
he does not share with any other high-dimensional animal.

These results indicate that eccentricity is a measure of flexibility of species
in their feeding-i.e., a measure of their ability to absorb changes in the web
without starving. Again, this interpretation calls to mind the resilience
concept, but now at the individual species level.

A totally analogous discussion and analysis can also be carried out for the
prey relation ApRy• To conserve space, we present the final results of the
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q-analysis and eccentricity calculations as checks for any reader who feels
sufficiently motivated to carry out the details for himself. The q-analysis
gives

at q = 5,

q =4,

q =3,

q =2,

q = 1,

q=O,

Os = 1, {X6}

0 4 = 3, {x6 }, {x7 }, {X lO},

0 3 = 3, {X6}, {X7}, {XlO},

Oz = 4, {X6}, {X7}, {x lO}, {Xz}

0 1 = 2, {xz, X3' X6' xs, X lO}, {X7},

0 0 = 1, {all except Xl' X4 , X 9, X14' X1S}·

s 0

The structure vector is 0 = (1 3 342 1).

The eccentricities are shown in Table 3.2. Again, as in the predator
complex, we see that the high-dimensional simplices X6 (insects), X7 (plants),
and XlO (rodent) have the highest eccentricities (except for those species that

TABLE 3.2 Prey Eccentricities

Species Eccentricity Species Eccentricity Species Eccentricity

1 00 6 2 11 0

2 1{2 7 4 12 0

3 0 8 0 13 0

4 00 9 00 14 00

5 0 10 3{2 15 00

are absent from the complex), indicating that they are relatively unaffected
by minor changes in the food web. Of course, since the prey relation reflects
the web from the viewpoint of the prey, this means that addition or deletion
of predators would likely have little effect on the high-dimensional prey
species-they will continue to provide meals for much of the complex.

From a homological point of view, we examine the relation ApRD for
nontrivial bounding cycles. At dimension level q = 1, we have the four
simplices us, u 9

, u l2
, U

14. It is easily verified that

a(u9+u12_u14) = 0,

which means that the chain U9+U1Z_U14 is a candidate for a bounding
cycle. The question is whether there is a 2-cycle in K whose boundary
equals u 9

+ U
1Z

_U
14

• Since the only 2-simplex in K is Uz =(X3X7XlO), whose
boundary is (X7XlO)-(X3XlO)+(X3X7) -1= U9+U12_U14, we see that U

9
+U

1Z
_

U
14 is a 1-cycle, which is not a bounding cycle. Thus, we see that

2
1

={U9+U1Z_U14},
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which implies trivially that ZI is generated by the cycle 0'
9 +0' 12 - 0' 14.

Similarly, since 0'2 = (X3X7 X lO) is the only 2-simplex,

B 1 = {(X7XlO)-(X3XlO)+(X3X7)}

is the only bounding 1-cycle and we have the homology groups

Ho=J·

Since there exists no integer n such that n(0'9+0'12_0'14)EB 1, the complex
has no torsion, and, finally,

H 1 =J.

The Betti numbers are (31 = (30 = 1, with all other (3i = 0, i = 2, ... , 5.
The conclusion of the preceding analysis is that the predator complex

contains a "hole" at the 1-level, which is bounded by 1-simplices. The
physical interpretation of this hole is not entirely obvious, but it intuitively
means that there exists a type of cyclic, or periodic, circulation of prey
between the predators raccoon, skunk, and wildcat at the 1-dimensional
level. A deeper interpretation would require a more detailed analysis of the
dynamics of the system.

A similar analysis for the prey complex shows that the homology is trivial
at all levels, so that no nontrivial bounding cycles exist.

HIERARCHICAL SYSTEMS AND COVERS

In recent years, a theme running through much of mathematical system
theory research has been the idea of hierarchical decision making. The basic
idea is to recognize that problems of communication and uncertainty in large
systems makes centralized decision making inefficient, if not totally ineffec
tive. Consequently, for reasonable system behavior and organization, it is
necessary to decompose the system into subsystems under the command of
local controllers, whose decisions are coordinated with those of controllers
at other hierarchical levels. A quick glance at the organization chart of any
large finn or institution will confinn the universality of such decision making
structures.

Since hierarchical organization is clearly dependent upon the manner in
which the system pieces (subsystems) are connected, the question naturally
arises of how the preceding topological connectivity concepts may be
extended to include the hierarchical considerations. Our approach to this
question shall be through the use of the set-theoretic concept of a cover.

Definition 3.3. A (finite) collection of sets A = {A;}?~1 forms a cover of the
(finite) set X if and only if

Ai E ~(X), the power set of X
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and
n

X=U Ai·
i=l

If, in addition, we know that Ai n A j = 0 (the empty set), then A is called a
partition of X.

By the foregoing definition, we see that the elements of A are subsets of
X (see Figure 3.4). Consequently, we can regard the Ai as being at the
(N+ I)-level if the elements of X are assumed to be at the N-Ievel. (Here
we use N to indicate a nominal, or normal level with no quantitative
significance attached to the symbol N.)

FIGURE 3.4 A cover of X.

We may now define a hierarchy H by relations of the type (Ai, Xj) ElL if
and only if X j E Ai' Such a relation IL will also be represented by an
incidence matrix of zeros and ones, just as for the N -level relation A. The
idea can also be extended in an obvious way to additional hierarchical levels
and diagonally across levels, as is depicted in Figure 3.5.

Level Sets

N+2 -----L-----

1
N + 1 A----- B -----

pl~!
N x-l-..y ----- z

N - 1 p------------

FIGURE 3.5 Hierarchical levels of sets and relations.

The hierarchical notions just considered are also intimately connected
with Bertrand Russell's famous "theory of types," in which he insisted that
we must not confuse the elements of a set with "sets of elements" with
"sets of sets of elements," and so on. Such profound logical distinctions
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immediately enable us to sort out many logical paradoxes, among them the
barber paradox:

In a certain town, every man either shaves himself or is shaved by the (male) barber.
Does the barber shave himself?

The problem here is that if X = set of men in the town, then the barber as a
barber and not a man is not really a member of X, but rather a member of
the power set of X, namely the subset of X consisting of those men who
shave themselves. Thus, we cannot ask questions of members of ~(X) as if
they were members only of X.

APPLICATIONS OF q-CONNECTIVITY TO CHESS AND
SHAKESPEAREAN DRAMA

As an entertaining way of illustrating some aspects of q-analysis, we
consider the game of chess and Shakespeare's play A Midsummer Night's
Dream. In addition to being fields of study that are, by and large, outside the
realm of traditional systems analysis methodology, these examples provide
ample ammunition to support the proposition that almost every aspect of
human affairs contains some nontrivial mathematical aspects, provided we
are clever enough to employ the right kind of mathematics.

CHESS

It is almost a tautology to state that the game of chess is a relationship (of
some type) between the playing pieces and the squares of the chessboard.
Thus, to employ the q-analysis approach to analyzing connective structure,
the sets X and Yare relatively clear, viz,

X = {playing pieces}, Y = {squares of the board}.

For reasons that will become apparent in a moment, it is convenient to
partition X into the two subsets Xw, consisting of the pieces of White, and
XB , the Black pieces.

One relation between X and Y, which at first sight seems promising, is to
say that (X;, Yi) E A if and only if piece Xi occupies square Yi. However,
following up the consequences of this relation does not lead to any interest
ing insights into the structural aspects of a given board situation. The
problem is that this relation does not incorporate any of the rules of the
game. Hence, a more elaborate relation between X and Y is needed.

As it turns out, a very useful relationship between the pieces and the
squares is provided by the notion of a piece "attacking" a square, as noted
earlier, in Chapter 1. Since we have made the separation of X into White
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and Black pieces, there are two relationships Aw and AB induced by the
above rules for White and Black, respectively.

While the rules given in Chapter 1 defining the relations Aw and AB

characterize the player's view of the board (since we regard the squares as
the vertices in the complex, while the pieces are the simplices), the conju
gate relations A~ and A:, obtained by interchanging the roles of X and Y,
provide the board's view of the players. Presumably, all four relations are
needed to characterize a given situation at any mode of play.

The implications of the preceding ideas for positional analysis and auto
mated chess-playing have been extensively pursued elsewhere and the
interested reader should consult the chapter references for details. We only
note here that if one compares the maximum dimension of the pieces as
simplices generated by the relations Aw and AB with the classical piece
values, we obtain Table 3.3.

TABLE 3.3 Comparison of
Chess Piece Values

Max.
Piece Dimension

Pawn 1
Knight 7
Bishop 12
Rook 13
Queen 26

Classical
Value

1
3
3
5
9

We see in the table that the relative differences between the simplicial
values correspond rather closely to the relative strengths obtained on
empirical grounds. The only real discrepancy is the Knight vs Bishop, where
the simplicial values would suggest the Bishop as being somewhat more
valuable. However, this conclusion is conditioned by the assumption that the
values are calculated on the basis of an open board with no obstacles, i.e.
they are the maximal possible values. In general, the strength depends upon
the particular situation, as any chess player knows.

The hierarchical considerations introduced above are particularly relevant
for the chess-playing setup, since such well-known chess concepts as strong
squares and weak squares, control of the center, and strong or open files
may all be mathematically interpreted in the language of sets, covers, and
dimensions. Thus, q-analysis certainly seems to provide a totally new
approach to the analysis of chess situations, one that may surely be coupled
with efficient computers and searching algorithms to yield an effective
computational approach to the game.
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A MIDSUMMER NIGHT'S DREAM

We close our discussion of topological connectivity by examining Shakes
peare's A Midsummer Night's Dream from a q-analysis point of view, Our
objective, of course, is not to provide an in-depth literary critique, but
rather to give some insight into the use of q-analysis as a language of
structure in an area ordinarily far removed from traditional systems
methodology.

As always, our starting point is the identification of relevant sets and
relations.

We somewhat arbitrarily divide the play into three main sets:

A = the play, the acts, the scenes, the subscenes
B = the characters
C = the commentary, the play, the subplots, the speeches

The elements of these sets and their various hierarchical levels are as
follows:

Set A
(N+2)-level
(N + I)-level
N-Ievel
(N -I)-level

The play
The acts {aI, a2' a 3 , a 4 , as}
The scenes {SI' S2, •.. , S9}

The subscenes {SB l , •• , , SB26}

(Based upon major changes in the physical composition of
the play, i.e., upon the entrance and exit of characters.)

Set B
All levels of N The characters {c l , C2' ' .• , C21} {Theseus, Hippolyta,

Egeus, et at.}

Set C
(N + 3)-level

(N + 2)-level
(N + I)-level

The commentary

(This is the speech made by Puck at the end of the play.
This speech is addressed directly to the audience and,
therefore, lies outside the action of the play; it is an
apologia for the preceding events.)

The play
The plots {Pb P2 , P3}

PI: The court of Theseus, comprising mainly the prepara
tions for his wedding with Hippolyta and the rehearsal and
performance of the play by Bottom and his friends, and the
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consideration of and resolution by Theseus of the problems
surrounding Hermia and her two suitors.

P2 : The world of the fairies, comprising the quarrel be
tween Oberon and Titania and the trick played by him on
her with its consequences for both Titania and Bottom.

P3 : The world of the lovers, comprising the basic predica
ment of Hermia, Demetrius, and Lysander and the interfer
ence by Oberon and Puck and its consequences.

The subplots {PS1, .•. , PSg}

PS1 : Theseus' role in the life of the four lovers

PS2 The relationship between Theseus and Hippolyta and
their wedding celebrations

PS3 : The rehearsal and performance of the play by Bot
tom and his friends

PS4 : The general world of the fairies: their songs and
powers

PSs: The relationship between Oberon and Titania

PS6 : Oberon's trick on Titania and its consequences for
her and Bottom

PS7 : The basic predicament of the four lovers

PSg: The interference by Oberon and Puck in the lives of
the four lovers and its consequences

The speeches {SP1 , .•. , SP104}

(There are 104 speeches, defined as any words uttered by
any character that import to the audience a development of
the plot of which the audience was previously unaware.)

The binary relations linking the above sets at the various hierarchical
levels are fairly evident by inspection of the sets themselves. For example, if

Y=plots, x = characters,

then it is natural to define Ac Y x X as

(Yi, Xi) E A~character xj enters into plot Yi·

The general hierarchical structure of the play is depicted in Figure 3.6.
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FIGURE 3.6 Connective structure of A Midsummer Night's Dream.

Utilizing obvious relations such as A, incidence matrices may be generated
linking sets at the various levels, q-analysis performed, and a number of
interesting results obtained. Some typical examples are examined in the
following sections.

y = PLOTS (N+ I)-LEVEL, X = CHARACIERS (N+ I)-LEVEL

In Ky(X) all three plots come in as separate components only at connectiv
ity level q = 8. This means that the plots can only be distinguished as
separate entities by an audience following nine characters. Likewise, at
q =6, there are only two components, {PI' P2 } and {P3}. Thus, if the
audience can follow only seven characters, then they see the playas
consisting essentially of only two plots, with PI and P2 (the court of Theseus
and the world of the lovers) confused.

In the conjugate complex Kx(Y), the characters Hermia, Lysander,
Demetrius, and Helena dominate the structure at q = 2. Therefore, an
audience following all three plots as separate entities sees the playas being
about the lovers.

Y = PLOTS (N+ I)-LEVEL, X = SCENES N-LEVEL

In Ky(X) there are three components at q = 5. Thus, an audience following
six scenes can see all three plots as separate entities. Plots P 2 and P3 become
combined at q = 4, giving two components, and consequently the audience
will see these two plots as one when following five scenes. All three plots are
combined at q = 2, i.e., when the audience follow three scenes. This is
different from the analysis of plots and characters above, where plots PI and
P 3 became confused.
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In Kx(Y) the structure is dominated at q = 2 by the scene dealing with
Oberon's trick on Titania and their reconciliation and resolution of the
lovers' dilemma and the scene concerning the culmination of the wedding
celebrations of Theseus and Hippolyta in the performance of the play by
Bottom and his friends.

Y = SUBPLOTS (N -I)-LEVEL, X = SPEECHES N -LEVEL

In Ky(X) the structure is dominated by the subplot PSg at q = 35, followed
by subplots PS3 at q = 26 and PS6 at q = 10. Thus, PSg will be fully
understood by an audience only when they have heard 36 speeches, while
PS3 requires 27 speeches and PS6 only 11 speeches for this understanding.
The q-analysis gives an indication of the complexity of the subplots. The
critical q-value is q = 5, implying that all subplots require a minimum of six
speeches to be fully understood by the audience.

In Kx(Y) have a trivial structure at the critical level q = o. This means
that each speech is concerned with only one subplot, which, by our earlier
definition of a speech, is so.

ALGEBRAIC CONNECTIVITY

Despite the seemingly quantitative description of system connectivity pro
vided by the q-analysis structure vector, it must still be admitted that the
topological analysis presented above is primarily qualitative in spirit. Local
system details are "fuzzed over" to obtain a global description without very
specific information concerning the nature or structure of the subsystems
(simplices). Such an outcome is due mainly to the manner in which we chose
to describe the system by sets and binary relations. In those situations where
much more is known about local system structure, the connectivity issue
may often be more fruitfully examined using tools from algebra rather than
from geometry. An introduction to these ideas will be our goal in the
sections to follow.

Just as in the topological situation, a key ingredient in our algebraic
connectivity development will be a finiteness condition. In the topological
case, the relevant condition was that the two sets X and Y be finite; in the
algebraic case, the conditions will enter through the system state space, since
we shall be concerned now with systems described in internal form by
differential or difference equations. For systems whose dynamics are linear,
it turns out that the relevant finiteness condition is that the state space be
finite-dimensional, while for nonlinear processes we demand a finite state
space since, in general, the state space of a nonlinear system may not even
be a vector space and the notion of dimensionality may be meaningless.
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The principal thrust of the algebraic connectivity results is to provide a
systematic procedure for decomposing a given system into its mathemati
cally irreducible subsystems and to show how these systems are put together
to form the composite process. It should be noted that these mathematical
subsystems, or elementary "building blocks," do not in general correspond
to any natural decomposition that the system may possess as a result of its
physical structure. This is an unfortunate and unavoidable part of the
process of translating reality into computationally efficient mathematical
models. Once we have formulated a satisfactory model of a given situation,
the model should take on a mathematical life of its own, with contact being
made with the physical process again only after the mathematical machinery
has (we hope) done its job. Basically, it's a question of choosing one set of
coordinates convenient for modeling the physics while doing the mathema
tics and computation in another set, more convenient for mathematicians
and machines. If things are set up properly, we should be able to shift back
and forth between the two coordinate sets at will.

LINEAR SYSTEMS

To simplify our exposition, let us begin by considering the linear dynamical
system described in internal form by the differential equation

dx
dt = Fx(t) +Gu(t),

with the system output given by

Y(t) = Hx(t).

Here x, u, and yare n-, m-, and p-dimensional vector functions, respec
tively, with F, G, H being constant matrices of appropriate sizes.

Perhaps the most convenient way to illustrate the algebraic aspects of
linear systems is to form the "transfer function" matrix associated with the
system ~. Denoting the Laplace transform of the vectors x, u, and y by X, it,
and Y, respectively, it is a simple exercise to verify that the relationship
between the transformed input and output is

y(z) = H(zI - F)-lGit(z)

= W(z)it(z),

where z is the transform variable. The matrix W(z) is called the transfer
matrix and is clearly an external description of the dynamical behavior of ~.

Without further comment, we shall assume that W(z) is a proper rational
matrix, i.e., all components of W(z) are irreducible. Study of the internal
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connections linking the input and output channels of I is equivalent to study
of the cyclic structure of W(z), as the following result shows.

Realization Theorem. Every proper rational transfer function matrix W may
be realized as the direct sum of the systems

L = (Fi> Gi, H,),
i

where Gj , Hi are computed as below and F; is a cyclic matrix with characteris
tic polynomial I/Ii' the ith invariant factor of the matrix W.

The proof of this result requires more preliminary background than is
appropriate here; the interested reader may consult the chapter references
for details. The important point of the theorem is to show that the basic
building blocks of the system I are formed by computing the invariant
factors of W. From polynomial algebra, we know that if 1/1 is the least
common denominator of the matrix W, then I/IW is a polynomial matrix, and
the invariant factor algorithm enables us to calculate a representation

I/IW =PLQ mod 1/1,

where det P, det Q are units in the ring K[z]/K[z]l/I, while L is a diagonal
matrix unique up to units in the same ring (here K =arbitrary number field).
As it turns out, the elements I/Ii of the theorem are related to the elements of
Las

i = 1, 2, ... , q

with n = degree of least common denominator of W.
To form the entries of Li' we proceed as follows:

1. For each invariant factor I/Ii of W, choose a cyclic matrix F; such that
the characteristic polynomial XF, = I/Ii (e.g., let F; = companion matrix of I/Ii),
i = 1, 2, ... , q.

2. Let L = (11' '2, ...), Pi = ith column of P, q; = ith row of Q in the above
representation of I/IW. Let Vi' Wi be polynomial vectors such that

XF,(zI - F;)-1 = vj(z)w;(z) mod XF,'

(Such vectors are unique up to units in K[z]/K[z]XF•.)
3. The equations

have a unique solutions H;, G i where ILj =greatest common factor of Ii and
1/1.
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Conclusion The size (dimension) of the blocks (subsystems) that com
prise the total external description of I equals the degrees of the invariant
factors of the matrix W.

Diagrammatically, the situation is as depicted in Figure 3.7.

r-----------------------------------------,
I

Yl

(zI - Fq)-l

urn, I Yp

I I
I I... .J

FIGURE 3.7 General structure of a linear system.

The above canonical (minimal dimension) structure of a linear system is
characterized by the high degree of connectivity between its component
parts. Figure 3.7 should be contrasted with the usual picture of a linear
system given in elementary textbooks (Figure 3.8). Figure 3.8, while appeal
ing from a visual viewpoint, is the result of an arbitrary choice of connec
tions and will seldom be canonical; it may bear no relation at all to the
actual system I giving rise to W. Thus, the "right" way to visualize the
system is Figure 3.7, not Figure 3.8.

To fix the preceding ideas, let us consider a simple numerical example.
Let

1
0-- 0

z+1

W(z) = 0
1

0--
z+2

1
0 0

z+3

We have t{!(z) = (z + 1)(z +2)(z + 3), and the invariant factors of t{!W are

[
1 0 OJ

A= 0 1 O.

o 0 l/J
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FIGURE 3.8 Usual picture of a linear system.

Hence,

[

1 0 O~
L= 0 0 0 ,

000

[

(z+2)(z+3) 1 OJ
P = 2(z + 1) (z + 3) 2 2,

(z + l)(z +2) 1 2

[

1/2(Z +2)(z +3) -1/2(z + l)(z +3)

Q= -1 1

o -1/2

We can take the vectors v(z), w(z) as

[

Z2+ 6Z+ 11

Jw(z)= z+6 .

1

The reader can check that a canonical internal model of the transfer
matrix W(z) is given by

F{~ _!~ J
G = [- ~~~ - ~/2 ~~~], H = [2~ 3~ 2

1

1
].

1/2 -5/2 9/2
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An easy consequence of the realization theorem is that all canonical models
are equivalent up to a change of coordinates x ~ Tx in the state space. This
fact illustrates a point made earlier that behaviorist/cognitive debates are
vacuous at the system-theoretic level.

Example: Societal Dynamics As a more concrete illustration of the use of
transfer matrices, we consider a highly simplified model of the evolution
of societies according to the basic ideas of A. Toynbee. The model we
present is very elementary chiefly because

• It assumes that an entire society may be divided into only two "strata":
a majority, belonging to the lower stratum and a ruling minority.
• It refers explicitly only to the production of goods.

It will become clear that the basic principles involved in construction of
the model may be employed to produce much more realistic versions by
addition of suitable "blocks" and "connections."

The starting point of the model is Figure 3.9, where the block B

z

G
b

+
B

a

~-----------------A'

I

'fl+f2

I
I

I HI f---I-------_4_-------'
: I
I IL ~

FIGURE 3.9 Block diagram of societal structure.

corresponds to the subsystem that supplies a quantity b of goods (e.g.,
agricultural output) under the action a supplied by the workers of the
society. The mechanism relating a to b is repressnted by the block A. The
disturbance input Z allows us to take into account the variation of
produced goods that do not depend upon the work level a.

The decomposition of block A has been done on the assumption that
the majority, belonging to the lower stratum of society, accomplish the
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work a for two different reasons:

1. Because this activity enables it to satisfy its needs
2. Because of moral obligation or physical coercion by the ruling

minority

Aspect (1) is accounted for by the feedback loop G-B-H1 , where H 1

corresponds to the criteria adopted by the given society for resource
distribution. The output n1 is compared with a reference level 1-, which
denotes the needs of this stratum. The value '1' in fact, differs from
society to society and from epoch to epoch. For instance, in some societies
based upon slavery, '1 approaches the limits of pure survival; in present
day consumer-oriented Western society, '1 is much higher than in any
earlier epochs. The difference between "needs" '1 and "availability" h1

forms a component e1 of the global "stimulus" to work e.
Aspect (2) is taken into account by feedback loop G-Hz. In this case, it

is work a and not production b that is "fed back" and compared with the
reference level 'z in order to generate ez. The output hz of block Hz
measures the labor employed for a. As noted, 'z may be fixed by the
moral norms of the society or by physical compulsion, as for instance in
slavery-based societies.

For quantitative analysis of the dynamic behavior of the model, we
must associate to each block a functional relationship connecting the input
with the output. As a first attempt, we shall characterize each block by a
suitable transfer function.

In simple cases, block B may be characterized by means of a pure
delay. Since a first-order transfer function cannot take the initial delay
into account, we shall adopt a second-order transfer function with two
real poles:

For the other blocks, we can adopt the first-order transfer functions.

kg
G(Z) = 1+T

3
Z'

H 1(Z) = 1:~4Z'

( )
_ kH2

Hz Z -l+TsZ

The overall transfer function of the societal model is

G(Z)B(Z)
W(Z) = 1+G(Z)Hz(Z) +G(Z)B(Z)H1(Z)
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Carrying out the algebraic operations to find the numerator and de
nominator of W(Z), it is a simple task to write down a suitable intemal
model of the society. However, identification of the model parameters is a
very hard task. A trial-and-error procedure could be adopted, for exam
ple, if we referred to a given, well-defined production sector and to a
given historical period. Alternately, if sufficient data were available, the
parameter of the linear model could be inferred using modern system
identification techniques. However the analysis is carried out, the above
model would allow us to determine the influence of the various parame
ters on societal behavior and to forecast the effects of parameter variation.

NONLINEAR PROBLEMS

While the algebra of the preceding section proves exceedingly helpful in
studying the fundamental structure of linear dynamical processes, an analog
ous development for general nonlinear systems seems beyond the scope of
such techniques. This is not surprising, since, for example, a nonlinear
system may have a state space that is not even a vector space, implying that
the previous essentially linear algebraic ideas will be of no particular use.

In order to treat a broad class of nonlinear problems, we return to our
metaprinciple of finiteness and argue that since finite dimensionality of the
state space is, in general, meaningless, perhaps assuming a finite state space
would lead to a meaningful approach. Recalling our discussion in Chapter 1
of finite-state descriptions of dynamical systems, we shall use the notion of a
finite semigroup of transformations to replace the finite-dimensional linear
operators (matrices) F, G, and H of the linear theory. The shift to the
finite-state/semigroup setting will enable us to give a decomposition result
(the Krohn-Rhodes theorem) that will accomplish much the same thing for
nonlinear problems that the invariant factor theorem does for linear proces
ses. Unfortunately, a small amount of elementary algebraic material will first
be required.

SEMIGROUPS AND WREATH PRODUCTS

As discussed in Chapter 1, we assume the state space of the process under
study is denoted by Q and that Q contains only a finite number of elements.
Assume that g; is a set of transformations defined on Q, i.e.,

g;: Q~Q,

and let the product of two elements fl and f2 from g; be defined in the usual
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way as

(ftl2): 0- 0,

(ftl2)q == f2(fI(q)·

This definition corresponds to the usual composition of two transformations
and is well known to be associative, i.e.,

qEQ.

Since any system of operations which is both closed and associative forms
a semigroup, we can generate a semigroup from $ by taking all products of
elements in $. We call this the semigroup of $ and is denoted as $*.

The pair of objects (0, $*) forms what is called a transformation semi
group, and, since we are concerned with finite 0, it is a finite transformation
semigroup. (Note: The order of (Q, $*) equals the number of distinct
transformations in $*, which is clearly finite if 0 is.)

Our goal is to make a connection between arbitrary transformations on a
finite state space and certain advantageous coordinatizations of the action of
these transformations. To accomplish this objective, we introduce the idea
of wreath product coordinates.

Suppose that 0 is coordinatized by the Cartesian product

Q==XI XX2X ... xXm

i.e., each q E 0 has a representation q == (xt. X 2 , ••• ,x,,), X; E Xi' i ==
1,2, .. , n. Then we say that the action of $* on 0 is triangularized if each
f E $* may be represented as an n-tuple f == (ft> f2' ... ,fn) E

F I X F2 X ... x Fn , where

f(q) == [(Xl' X2,· .. , x,,) == (f1(X I ), fix l , X2), . .. ,fJxt> X2,· .. , x,,)) == q',

i.e., fk: Xl x X 2X ... Xk - X k • Thus, triangularization means that each coor
dinate of q' is dependent only upon that coordinate and its predecessors.

The second key concept that we need is the idea of kth coordinate
action. The kth coordinate action of (0, .:¥*) == (Xl x X 2X... XX n;
F I X F2 X ••• x Fn ) is the transformation semigroup (Xb Gn, where Gk is
the set of all transformations g on Xk such that

where (at. a2, ... ,ak-l) is an arbitrary but fixed element of Xl x X2X ... X
X k - l and fk E Fk • In other words, the elements of Gk not only map Xk to
itself but also must form part of a triangularization of $*.

If the action of $* on 0 may be triangularized by the coordination
o == Xl XX 2X ... XX n , then 0 is said to be a wreath product of its coordi
nate action, i.e.,

(0, $*) == (Xl' G~)W(X2'G~)W ... W(Xn , G~).
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The set Xl x X2 X ••• X Xn then forms wreath product coordinates for Q,
while the set 0 1 x O 2 X ••• x On forms wreath product coordinates for fF*.

Example Let Q=R2 and take Xl =X2 =R l
. Further, let f:R 2 _R2 be

an upper triangular matrix

f=[f11 f12].
o f22

We take the component transformation fi to be the operator determined
by the leading i x i block of f, followed by projection onto the ith
coordinate.

THE KROHN-RHODES DECOMPOSITION THEOREM

The preceding development has been directed toward describing the under
lying structure of finite semigroups. In finite group theory, such a structural
theorem has been known for many years, the so-called Jordan-Holder
theorem, which asserts that any finite group may be built from a fixed set of
simple groups (the Jordan-Holder factors) and that the building set is
unique (up to isomorphism). The Krohn-Rhodes result provides an
analogue for finite transformation semigroups. A rough statement of the
Krohn-Rhodes theorem is as follows (a more precise statement will be given
in a moment).

Theorem (Krohn-Rhodes). Any finite state space Q may be coordinatized so
that any set of phenomena obseroed on it is triangularized. Furthermore, the
coordinate actions will be either (a) simple permutation groups closely as
sociated with (0, fF*) or (b) one of three possible transformation semigroups,
the largest of which has order three.

As a consequence of this remarkable result, we see that any system with
finite state space may be conveniently coordinatized and that the coordinate
actions will be decomposable into particularly simple form: the permutation
groups mentioned in (a) will be such that they divide the orginal semigroup
(X, fF*) (definitions later), while the semigroups of (b) will be elementary
"flip-flops." Thus, regardless of the complexity of system behavior, it will be
possible to analyze the process by studying simpler objects put together in a
manner specified by the wreath product construction.

In order to give a precise statement of the Krohn-Rhodes result, it is
necessary to introduce the notion of one semigroup dividing another.

Definition 3.4. We say the transformation semigroup (X, S) divides (Y, n
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and write (X, S) I(Y, T) if and only if

1. There exists a subset Y' of Y and a subsernigroup T of T such that Y'
is invariant under the action of T.

2. There exists a map 9: Y' - X(- denotes onto) and an epimorphism
q,: T ~ S such that 9(yt) = 9(y)q,(t) for all y E y', tE T.

Realization of a given system (machine) by component subsystems
(machines) hooked together corresponds to semigroup division. We can now
state the basic problem addressed by the Krohn-Rhodes theorem.

Problem: Let X be the state space on which a finite semigroup f!F* of
transformations acts. Is it possible to find decompositions of (X, 8f*) into
transformation subsemigroups (Xk , Gt), k = 1, ... , n, such that one obtains
the minimal solution of (X,8f) I(X"' G~)W(X"_hG~_l)W ... w(Xl , Gt)? If
so, what is the structure of the component pieces (Xi> GrJ, and what is the
maximal value of n that will satisfy the division condition?

In machine-theoretic language, the corresponding problem is to factor a
finite-state machine into the largest possible number of component
machines, obtaining a so-called prime decomposition of the original
machine. We shall return to this point in some detail in the next chapter, on
system complexity.

The last notions we need before stating the Krohn-Rhodes result are the
ideas of a flip-flop semigroup and a prime group.

Definition 3.5. Let a'i'b and consider the semigroup ({a,b},{Ca,Cb,Id}),
where xCa = a, xCb = b, xld = x for x = a or b. We also write this semigroup
as ({a, b}, U3). The semigroup ({a, b}, U3 ) is called the order-three flip-flop.

Definition 3.6. We say a finite group G is prime if G is simple and
G'i' {Id}. (Recall that a group is simple if it has no nontrivial normal
subgroups, where N is normal in G if and only if Ng = gN for all g E G.)

If S is a semigroup, then Primes (S) ={G: G is prime and GiS}.
Finally, we can state the Krohn-Rhodes theorem.

Prime Decomposition Theorem for Finite Semigroups. Let the finite semi
group (X, 8f*) be given. Then there exists a wreath product decomposition
(Xl' Gt), ... , (x", G~) such that

(X, 8f*) I(X"' G~w ... w(Xl , Gt),
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and for each factor (Xi' OJ) either
oj E Primes (~*) and (Xi' OJ) is a faithful transitive permutation group, or

(Xi' OJ) = ({a, b}, U 3 )·

The proof of this result is much too complicated to be given here. We
note, however, that by comparison with the Jordan-Holder theorem, the
Krohn-Rhodes result implies that finite semigroup theory is equivalent to
finite group theory plus the "flip-flop" operation.

DECOMPOSITION OF ANALYTIC SYSTEMS

If the state space of a given process is not finite, but finite-dimensional, a
decomposition result like the Krohn-Rhodes theorem can still be given,
although the mathematical details are considerably more complex.

To suggest the basic flavor, consider an internal description of a system!
given by the differential equation

i = f(x, u),

where the state space M is an analytic manifold, u E fle R m
, and f is a real

analytic function of x, continuous in u and satisfying a Lipschitz condition in
x uniformly in u.

For each u E fl, we obtain a vector field f(', u) on M and define the Lie
algebra of ! to be the smallest subalgebra of V(M) (the set of analytic
vector fields on M) that contains all such vector fields, using the Lie bracket
operation [".] to form a new vector field from two given fields, i.e.,
[v, w]=(aw/ax)(w)-(aw/ax)(v).

Using the preceding terminology, a finite-dimensional analogue of the
Krohn-Rhodes result is

Krener's Theorem. If the Lie algebra of ! is finite-dimensional, then !
admits a decomposition into the parallel cascade of systems with simple Lie
algebras followed by a cascade of one-dimensional systems.

Several comments about the above result are appropriate:

1. A Lie algebra is simple if it is not abelian (commutative) and if it
contains no nontrivial ideals. Thus, in Krener's theorem, the simple Lie
algebras are the analogues of the simple groups in the Krohn-Rhodes result.
The analogy breaks down, however, between the one-dimensional systems
and the flip-flops (combinatorial semigroups), since flip-flops correspond to
the nongroup part of the finite-state machine: However, we do note that, up
to isomorphism, there are only two one-dimensional systems, those on the
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circle and those on the line. Thus, the "simple" elements of the decomposi
tion are still two in number, corresponding to the combinatorial semigroups
U 3 and D I (see Chapter 4, pp. 109).

2. In a certain sense, the above theorem is the best that one can hope for
in the way of a decomposition result for finite-dimensional systems. The
reason is that a finite-:dimensional system ~ is indecomposable if and only if
the Lie algebra of ~ is one-dimensional or simple. Notice that this theorem
gives necessary and sufficient conditions for the decomposition of any
finite-dimensional analytic system.

As an example of the foregoing results, consider the bilinear system ~

described by the matrix equation

where

3

X= LU;Bix,
i=l

X(O) = I, (~)

We take the state space to be M = SL(2, R), the group of real 2 x 2 matrices
of determinant 1 and the input space n =R 3.

After some algebra, the devoted reader will find that ~ admits the
nontrivial parallel cascade decomposition

Xl = uIBIXI,

X2 = (XI)-I(U2B2+ U3B 3)XIX 2,

where
X=XIX2 ·

Among other things, this example illustrates the point that for nonlinear
systems the "right" state space is usually not Rn. Much current work in
algebraic system theory is devoted to various aspects of this question.

NOTES AND REFERENCES

An interesting exploitation of the ofl-diagonal elements in the interconnection matrix for
system decomposition is given in the paper:

Steward, D. V., "Partitioning and Tearing System of Equations," SIAM J. Num. Anal., 2
(1965), 345-365.

This paper is a readable version of the "tearing" method developed by G. Kron to study
electrical networks. A summary of this work is the book:

Happ, H., The Theory of Network Diakopfics, Academic, New York, 1970.
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York, 1969.
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A more recent account, complete with extensive examples in biology, psychology, and physics,
is:

Rhodes, J., "Applications of Automata Theory and Algebra via the Mathematical Theory of
Complexity," Lecture Notes, Math Dept., University of California, Berkeley, 1971.

DECOMPOSmON OF ANALYTIC SYSTEMS

The original reference is:

Krener, A., "A Decomposition Theory for Differentiable Systems," SIAM J. Control Optim.,
15 (1977),813-829.



4 Complexity

Twinkle, twinkle, little star,
How I wonder where you are!
"1.73 seconds of arc from where I seem to be,"
Replied the star, "because ds 2 =' -[l/2(M/Y)]
1 dr 2 -r2 d8 2 -[l/2(N/y)] dr."
"Oh," said Arthur, "now I see."
RALPH BARTON, Twinkle, Twinkle, Little Star

All depends, then, on finding out these easier problems, and on
solving them by means of devices as perfect as possible and of
concepts capable of generalization.
D. HILBERT

Certainly one of the most overworked words in the systems analysis lexicon
is the adjective "complex." One encounters phrases such as "complex
system," "degree of complexity," "complex problem," ad infinitum upon
perusal of the technical (and expository) systems literature, but very little to
indicate what the author really has in kind when using the terminology.
Extrapolating from the context in which such vague phrases appear, it seems
clear that on a philosophical level, complexity involves notions of nonintui
tive system behavior, patterns of connection among subsystems such that
prediction of system behavior is difficult without substantial analysis or
computation, decision-making structures that make the effects of individual
choices difficult to evaluate, and so on. Unfortunately, like the concept of
time, everyone seems to understand complexity until it is necessary to define
it. In short, we can't really define what we mean by a complex system, but
we know one when we see it.

True as the preceding remarks may be, they don't provide much help in
trying to characterize relative types and degrees of system complexity
mathematically. Consequently, our modest goals in this chapter will be to
indicate some of the basic components that must be present in any
mathematical theory of complexity, to provide a few measures of complexity
arising in different contexts, and to show, by example, how the ideas of
complexity can be applied to the study of certain questions arising in applied
systems analysis, particularly in the realm of social decision making. Imper
fect as this development may be, a theory of system complexity is, in the
words of von Neumann, "a prerequisite to the understanding of learning and
evolutionary processes." Consequently, the system theorist must attempt to
remove the complexity concept from the folklore of systems analysis and
bring it into the realm of developed theory. The goal of this chapter is to
provide background material for such an attempt.

97
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The initial sections of this chapter treat the many ingredients that must
enter into any reasonable mathematical theory of complexity. Considera
tions such as hierarchical structure, widely varying time scales, and interac
tion levels are discussed. Following these introductory sections, we make use
of the algebraic results of the preceding chapter and show how one theory of
complexity can be based upon the theory of finite-state machines. In
addition, for those systems described by sets/relations or potential (entropy)
functions, we shall discuss alternative approaches to the complexity question
in the later sections of the chapter. The overall picture that emerges is that
complexity is quite a "complex" business and that there is unlikely to be any
uniformly satisfactory mathematical theory. However, if we lower our sights
and agree to consider specific models and ask specific questions, then the
results of this chapter indicate that something useful and nontrivial can be
said.

Since the notion of what constitutes a "complex" system seems so difficult
to pin down, one might suspect that there are actually several facets to the
complexity issue and that different types of system complexity manifest
themselves, depending upon the problem, the analyst, the questions being
investigated, and so forth. In this section we wish to outline a few of the
more obvious types of complexity and to give some indication of how they
arise in the analysis of large-scale systems.

STATIC COMPLEXITY

Probably the first thought that comes to mind when considering the question
of complexity is that a system is complex if its component pieces (subsys
tems) are put together in an intricate, difficult-to-understand fashion. Such a
situation would be a typical example of static complexity. Here, we are
concerned only with the structure of the system communication channels
and the interaction pattern of its component parts, neglecting any dynamical
or computational considerations. However, even a measure of a system's
static complexity is not a fine enough classification, as several different
aspects of connective structure must be accounted for. Among these aspects,
we may include

• Hierarchical structure
• Connective pattern
• Variety of components
• Strength of interactions

Let us explore these points in more detail.
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HIERARCHY

By some accounts, the single most overriding consideration in assessing a
system's complexity is its hierarchical organization. Presumably, this feeling
is generated by the observation that a high degree of complexity implies
high rates of information processing by different decision makers and,
conversely, the necessity of hierarchical structure to accommodate the
processing of data and execution of decisions. Assuming the validity of this
proposition, it follows that the number of hierarchical levels in a given
system represents a rough measure of its complexity.

As an illustration of the "hierarchy principle," we consider Simon's classic
watchmaker problem. Two watchmakers, Chronos and Tempus, manufac
ture the same precision timepieces in quite different fashions. Each watch
consists of 1,000 pieces, and Tempus constructs his sequentially, so that if
one is partly assembled and he is interrupted, it immediately falls apart and
he must begin again from scratch. On the other hand, Chronos divides the
construction into subassemblies of 10 pieces each such that 10 of the
subassemblies forms a larger subassembly and a collection of 10 of the
larger subassemblies constitutes the watch. Thus, when Chronos is inter
rupted, he loses only the subassembly on which he is currently working.

Assuming that the probability of an interruption is p, it is easy to see that
the probability that Tempus completes a watch is (1- p)l.OOO. On the other
hand, Chronos has to complete a total of 110 subassemblies, and the
probability that he will not be interrupted while completing anyone of these
is (1- p)lO. Some fairly straightforward computations with p =0.01 show
that it will take Tempus, on the average, about 20,000 times as long to
complete a watch as Chronos.

As noted, this elementary example illustrates the basic point that hierar
chical structure allows the effect of errors in local decision making to be
overcome in overall systems behavior. Since noise, time-lags, and misunder
standings are part of all large-scale processes, it is no surprise that hierarchi
cal organization has naturally evolved as a structure within which large
systems may be controlled. Of course, hierarchy may appear in many forms,
and what is necessary is to find a decomposition of the system that accounts
for its intrinsic complexity. We shall pursue this point later.

CONNECfIVE PATTERNS

Another vital aspect of the complexity question involves the manner in
which the component subsystems of a process are connected. As we have
seen in the last chapter, the connectivity structure of a system determines
the data paths within a structure and restricts the influence that one part of a
system may have upon another. These are clearly system properties affecting
any intuitive concept of complexity.
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Using the topologically based q-analysis idea from Chapter 3, we shall
later develop a complexity measure that involves the various q-chains of the
system and their mutual interrelations. Such a measure will emphasize the
geometric, or dimensional, aspect of connectivity.

In another direction, we shall also explore connectivity and complexity
from an algebraic viewpoint, taking an internal description of a system as
our starting point. For instance, if we have a system described by the linear
differential equation

x =Fx, x(O) = c, (4.1)

where F is an n x n matrix, the zero/nonzero pattern of F (its connectivity
structure) will surely influence our feeling about how complex the process is.
Incidentally, this trivial example illustrates the important point that high
dimensionality and high complexity may have little correlation. The system
dimension n may be very large, but if F has a particularly simple structure,
e.g., diagonal or sparse, we may conclude that Equation (4.1) represents a
system of very low complexity, in that its behavior is very easy to predict
and to understand. The complexity of a process like Equation (4.1) will have
to be studied by a careful examination of how the subsystems interact (Le.,
by the connectivity pattern) and not by the dimension of the overall process.

VARIETY

The semiphilosophical "law of requisite variety," which, in rough terms,
asserts that variety in a system's output can be modified only by sufficient
variety in its input seems also to be a statement about system complexity.
While this principle is of only modest interest when we think of a system as
an object that accepts and emits only sequences of numbers, a more catholic
view, in which inputs and outputs are general nonnumerical quantities,
enhances the scientific interest of the variety law. Identifying complexity
with a system's ability to exhibit many different modes of input-{mtput
behavior establishes a link between variety and one facet of system com
plexity. One might term this control complexity, since it is a measure of the
system's ability to transform variety in its input to variety in the output
response.

To illustrate the above idea, we consider the problem of controlling a
system I that is subject to external disturbances. Assume that the controller
C has three types of control at his disposal, a, (3, and 'Y, while there are
three types of disturbances 1, 2, and 3 that may be encountered. The
behavior of the system falls into one of three categories, a, b, or c,
depending upon the combination of disturbance and control that occurs.
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Assume that the possibilities are as depicted in the following matrix:

Control

ex {3
""

Disturbance 1 b a c

Type 2 a c b
3 c b a

For this simple problem, the control set {ex, {3, ",,} and the disturbance set
{1, 2, 3} each have variety 3, and the table shows that it is always possible for
the controller to direct the system to any desired behavior, regardless of the
external disturbance. A further basic result from cybernetic theory states
that

total variety disturbance variety
>------,-----:--..:....

in behavior - control variety

The point of this result is that if we always desire the system to exhibit a
given mode of behavior in the face of external perturbations, only increased
variety in the controlling actions can force down variety in the behavior.
This is a rephrasing of Ashby's Law of Requisite Variety: only variety can
destroy variety. This thesis is the cybernetic analogue of the Second Law of
Thermodynamics and is closely related to the theory of information a la
Shannon.

The implications of the above results for studies of complexity are quite
clear if we think of complexity as manifesting itself in different behavioral
modes of a system. We shall return to these points below.

INTERACTION LEVELS

A final point in the assessment of static complexity is the relative strength of
the interactions among various system components and hierarchical levels.
In a number of cases, small interaction levels, while theoretically increasing
complexity by their presence, may be negligible from a practical point of
view, and the practical complexity of the system is much less.

For instance, the three-dimensional system

x 1(0) = 1,

x2 (O) = 1,

x3 (O) = 1,

could logically be assigned complexity 1, since each Jordan block of the
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coefficient matrix is of size 1. The closely related system

Xl =Xb

X2 = X2,

with e a parameter, would be assigned complexity 2, since the coefficient
matrix

F=[~ ~ ~],
o e 1

has its largest Jordan block of size 2 for any e 1= O. However, the solution

X3 = e' + ere',

would indicate that for sufficiently small e the second system behavior is
arbitrarily close to the first. Thus, it is reasonable to assign the same
practical complexity to both processes upon suitable restriction of e (de
pending upon the application).

CONCLUSION

The preceding remarks support the statement that a system is never univer
sally complex. It may be complex in some respects but not in others, or it
may be complex only if used in a certain way. In short, static complexity is a
multipronged concept that must be approached from several directions,
keeping in mind the objectives of the analysis and the goals of the process.

DYNAMIC COMPLEXITY

Turning now from connective structure and static considerations, let us
consider some complexity issues that arise in connection with a system's
dynamical motion or behavior.

RANDOMNESS VERSUS DETERMINISM AND COMPLEXITY

As we have noted, one of the principal intuitive guidelines for considering a
process to be complex is that its motion be, in some way, difficult to explain
or predict or, equivalently, that the output be a nonsimple (difficult to
compute?) function of the input. In general, we can expect that the static
considerations just discussed will surely influence the dynamical behavior of
a process and, consequently, its dynamic complexity. However, the reverse
is not true. A system may be structurally simple, i.e., have a low static
complexity, yet its dynamic behavior may be very complex.
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o

FIGURE 4.1 A dynamically complex process.

As an example of a dynamically complex process, consider the process
depicted in Figure 4.1. Here the rule for generating the sequence of points
a, b, c, . .. is to use the legs of the inscribed triangle together with the
diagonal of the unit square as "reflecting" barriers, choosing an arbitrary
starting point. A typical sequence of abscissa interactions is shown in
Figure 4.1.

In the example shown, it can be proved that by associating any point to
the left of the midpoint of the base of the triangle with "0" and any point to
the right with "1," the sequence of points generated by the above deter
ministic procedure will be mathematically indistinguishable from a Bernoulli
process with parameter p =! (other values of p can be obtained by using a
line other than the diagonal of the square).

The preceding result is of enormous philosophical as well as system
theoretic interest since, if we imagine the sequence of O's and 1's as
representing the output of the process, there is no mathematical way to
determine whether the internal mechanism transforming the inputs (initial
state) into the output (0-1 sequence) is the above deterministic rule or is the
Observed behavior of a stochastic process. One or the other may be
preferred on physical, psychological, or prejudicial grounds, but, short of
looking inside the black box, no amount of mathematical manipulations and
operations on the input-output sequence will enable one to determine
whether or not the basic mechanism is stochastic. Philosophically, examples
of the foregoing type cast serious doubt upon the claims of certain extrem
ists that stochastic elements represent essential features of physical proces
ses. What can be asserted, of course, is that probability and statistics are
convenient tools to use in analyzing situations in which a degree of uncer
tainty is present. However, there is no mathematical reason to believe that
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the mechanism generating the uncertainty is inherently random; it could
equally well be some deterministic process of the above type.

From the viewpoint of dynamic complexity, the process of Figure 4.1 is
exceedingly complex, since the observed output is totally random. Thus,
given a sequence of past outputs, we have no mathematical procedure that
would be better than flipping a fair coin to predict the next output. Clearly,
if we interpret dynamic complexity as the ability to predict system behavior,
the preceding process is very complex.

TIME SCALES

Another aspect of dynamic complexity that must be considered is the
question of different time scales for various parts of the process. One often
enounters situations in which some components of a process are changing
quite rapidly, while others are fluctuating at a much slower rate. A typical
example occurs in the regulation of a water reservoir network where daily
(or even hourly) decisions must be made for the release of water from an
individual dam, while the overall network input-output flow is decided on a
monthly or quaterly basis. Obviously, the fluctuations at the local level are
much greater than for the overall network.

Some changes of time scale are reminiscent of the problem we encounter
in numerical analysis when we wish to integrate a "stiff" system of differen
tial equations or deal with an ill-conditioned problem. A simple version of
ill-conditioning is represented by the linear system

x-25x =0

x (0) = 1, x(O) = -5.

Theoretically, this problem has the solution

x(t) = e-s,.

However, if we attempt to determine the solution to this problem numeri
cally, the complementary solution

x(t) = eSt

enters the calculation with a small multiplier c. Thus, what we actually
compute is

x*(t) = e-St + us'.

For sufficiently small t (or,,), there is no problem; however, if the rounding
off error is too great (large c) or if we want the solution over too great an
interval (large t), the true solution is totally dominated by the spurious
solution x(t).
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In other cases, the problem may not come from numerical considerations
but may be inherent in the theoretical solution itself. For instance, the
"stiff" system

X1(0) = 0,

xiO) = 1,

has the solution

xit) = -2/1l[e- lo
, - e'],

xz(t) = e- lO
'.

Thus, the first component of the process is changing an order of magnitude
faster than the second, and any attempt to compute the trajectory of the
system numerically demands that we use an integration step small enough to
accurately track the "fastest" component.

The phenomenon of "stiffness" in the system (mechanical engineering
terminology) clearly influences the dynamic complexity, since accurate pre
diction now requires a substantial investment in data-processing resources.

CONCLUSION

The examples just given serve to further underscore the point made earlier
that high system dimensionality (either of the state space or number of
components) does not necessarily imply high complexity, and vice versa. In
general, the two concepts have very little to do with each other, and a naive
pronouncement that a system is complex just because it has many compo
nents fails to hold up under even superficial analysis. The moral is that total
system complexity is much too sophisticated a notion to be describable by
such simple-minded approaches as dimensionality.

COMPUTAnONAL COMPLEXITY

Up to now, we have given a fairly broad, intuitive description of some of the
more important facets of complexity. However, there are different complex
ity theories that are valid for well-defined systems, and these theories are
not always naturally related or even compatible with each other.

One such complexity theory involves the construction ofTuring machines and
their algorithms for generating computable functions. The structure and size
of these algorithms form the basis for what has come to be termed
"computational complexity," especially in the computer science literature.
Unfortunately, the intuitive notions of complexity given above do not have
much appeal in the Turing machine context since, in principle, a Turing
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machine can do virtually everything (as it is assumed to have infinite
memory and infinite time): it has infinite complexity!

The situation is somewhat more interesting when we consider only al
gorithms, independent of machines. For computing a given set of functions,
we could distinguish among the algorithms by their computational complex
ity. To determine a complexity level for an algorithm, we must specify all
possible computations or algorithms and then show how many steps a given
algorithm requires to compute a particular function.

Several mathematical approaches to the problem of computational com
plexity have been offered, and a number of them are cited in the chapter
references. However, the notion of computational complexity is, in general,
much too restrictive for system-theoretic work, so we shall have little
occasion to make use of the existing results in what follows. The only
theoretical point to note for future reference is that in any complexity
measure, whenever we "combine" computations, the complexity of the
overall computation is bounded by the complexity of the component compu
tations. We shall see the system-theoretic version of this principle in the
next section.

AXIOMS OF SYSTEM COMPLEXITY

Before proceeding to define system complexity by mathematical formulae, it
is necessary to list some basic properties that any such measure must satisfy
if it is to agree with the main intuitive complexity concepts outlined above.
As usual in axiomatic approaches, there may be a lack of uniform agreement
on the axioms themselves; however, once the axioms are settled, the
mathematics can then proceed to give us concrete measures and insights into
the complexity problem.

Since the principal system aspects that any complexity measure must
address are hierarchy, connectivity, and dynamic behavior, the complexity
axioms we present have been constructed to account for these components
of system structure. If 6(I) represents any real-valued complexity measure
defined on a system I, then we have

Axioms of Complexity

1. Hierarchy If I o is a subsystem of I, then

6(Io):5 6(I),

Le., a subsystem can be no more complex than the system as a whole.
2. Parallel Composition If I = I 1 EB I 2 EB ... EB Ik> i.e., I is the parallel

composition of the systems {I;}, then

6(I) = max 6(IJ.
lSis:k
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3. Serial Composition If I =Ii @I 2 @... @Ik> i.e., I is the serial com
position of the systems {IJ, then

4. Feedback Composition If there is a feedback operation 8 from a
system I 2 to Ii' then

(note that Axiom 3 is just a special case of Axiom 4, when there is no
feedback loop.)

5. Normalization With respect to the particular mathematical descrip
tion of a given class of systems, there exists a distinguished subset of systems
Ef for which

8(I) = 0 for all IE Ef.

In a moment we shall see how these axioms suffice to generate meaningful
complexity measures for systems defined in various ways; in fact, in some
cases the axioms of complexity uniquely characterize a complexity measure.
But first, a few comments on the axioms are in order.

To begin with, we note that the intuitive notions surrounding complexity
are taken into account by appeal to more or less standard decomposition
results and the axioms. Since any system can be decomposed into a series
parallel or cascade (hierarchical) combination of subsystems (possibly with
feedback), Axioms 2-4 account for the connective structure of such a
decomposition. Hierarchical aspects are covered by Axiom 1, while dynami
cal considerations are addressed in Axiom 5. Thus, the axioms of complexity
seem reasonable, at least to the extent that no major aspect of complexity is
omitted.

The second point to observe is that in at least one important situation
(finite-state processes), these axioms are the smallest set for which a unique
complexity measure results. Thus, appealing to Occam's razor, we further
justify the above axioms.

Finally, we mention that the axioms are particularly convenient for
various algebraic approaches to the analysis and measurement of complex
ity. In the next chapter, we shall study some differential-topological aspects
of systems, including catastrophe theory and will consider certain questions
in the topology of forms. A theory of complexity for topological forms is
also of considerable scientific interest; unfortunately, it is not yet clear how
to generate the topology of a form by algebraic tools. Thus, either such a
procedure must be devised or a new measure of topological complexity must
be introduced. It may be necessary to modify the preceding axioms in order
to carry out such a program successfully.
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COMPLEXITY OF FINITE-STATE MACHINES

From a system-theoretic viewpoint, the most advanced theory of system
complexity is for those processes modeled as finite-state machines. We recall
from Chapter 3 that any finite-state machine M generates a finite transfor
mation semigroup (Q, 81'*), where Q =the state space of M and 81'* = the
semigroup of all transformations on Q. We first define complexity in
algebraic terms using the wreath product, then relate the definition to
machines and the axioms of complexity.

Definition 4.1. Let (X, S) be a (right-mapping) semigroup. Then the group
complexity #a(X, S) is defined to be the smallest integer n such that

S I(Ym Cn)w(Xm Gn)w . .. w(Y1, C1)W(X1, G1)w(YO, Co)

where G h •.. , Gn are finite simple groups, Co,.," Cn are finite com
binatorial semigroups (flip-flops) and "w" denotes the wreath product
operation.

Thus, the group complexity of the semigroup (X, S) is the minimal
number of alternations of blocks of simple groups and blocks of combinator
ial semigroups needed to obtain (X, S). It is important to note that by
making use of decomposition results, we could define complexity in terms of
phase space decomposition. For instance,

#O<X, S) = min #dT: T is a series-parallel or cascade
decomposition of S}

Since combinatorial semigroups represent machines that do no computa
tion, the basic complexity element is the simple group, which carries out
elementary arithmetic operations, such as addition and multiplication. The
question now arises as to what the significance of the Krohn-Rhodes theory
is. Basically, it tells us to what extent we can decompose a machine into
components that are primitive and irreducible and that the solution depends
upon the structure of the components and the length of computation.
Hence, complexity does not depend only upon the length of the computa
tion chain, but also upon the degree of complication of each component in
the chain. Thus, complexity takes account of not only the total number of
computations in a chain (the computational aspect) but also the inherent
complexity of the submachines hooked together through the wreath product
(the structural aspect). Heuristically, the computational part can be rep
resented by the amount of "looping" in a computer program that computes
the action of g;* on Q.

Given the definition of group complexity for finite-state machines, we
inquire as to its relationship to the earlier axioms of complexity. We answer
this by the following result.
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Theorem 4.1. Let fJ: M:§' - N, the nonnegative integers, where M:§' is the set
of all finite-state machines and N is the nonnegative integers. Assume fJ
satisfies the axioms of complexity, with the normalization condition (Axiom
5) being

fJ( U 3 ) = 0, fJ(D l ) = 0,

where U3 is the three-state flip-flop of Chapter 3 and D l IS the delay-1
machine. Then

fJ(f) = #aCr)
for all f EM:§'. (Note: r is the semigroup of the machine f.)

The proof of this basic complexity result may be found in the references
cited at the end of the chapter.

Remarks

1. Theorem 4.1 shows that the group complexity function #G is essen
tially the unique integer-valued function satisfying the complexity axioms
under the given normalization. Any other function #G' satisfying the Ax
ioms is such that #G'(f)~#GCf) for all fEM:§,.

2. The delay-1 machine is also, along with the flip-flop U 3 , a combinator
ial semigroup. Its action is

where {a", a,,-h ... ,al} is any input string.
3. fJ(f) = 0 if and only if f is a series-parallel combination of the machines

U 3 and D t •

4. To see that machines of every level of complexity exist, consider the
machine (circuit) C = (U, Y, Q, A, 5) with

U ={a, b, c}

Y ={O, 1},

Q ={1, 2, ... , n},

A(i, a) = i + 1 mod n, i = 1,2, ... , n

A(l, b) = 2,

A(2, b) = 1,

A(x,b)=x, X1'1,2,

A(l, c) = 2,

A(y, c) = y, y l' 1,

5(q, d) = q mod 2, q E Q, dE U.
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Using the preceding results, plus some additional algebraic facts from
semigroup theory, it can be verified that the above machine has complexity

8(C)=n-l

for every initial state q E Q.
5. The normalization of U 3 and D 1 is set up so that these machines form

the simplest (least complex) objects in the theory. This is reasonable since
neither type of machines does any computation and their actions are
completely predictable. Since everyone understands them, they cannot pos
sibly be complex.

This property is reminiscent of information theory when selecting events
that have information content zero. The machines U 3 and D 1 generate
regular patterns; they do not yield any surprises. Therefore, their behavior
does not produce information. Consequently, if we were able to detect
subsystems that behave like flip-flops, we could erase these subsystems
without changing the structural complexity associated with other subsystems,
nevertheless decreasing the computational complexity in terms of length of
computation.

In summary, the complexity of a machine f equals the minimal number of
times nonarithmetic and arithmetic operations must be alternated (in series)
to yield f, when, by convention, only the arithmetic operations are counted.

EVOLUTION COMPLEXITY AND EVOLVING STRUCTURES

As a somewhat speculative, but highly suggestive, example of the use of
complexity, we consider some aspects of evolving organisms. The basic
thesis is the evolution principle:

An evolving organism transforms itself in such a manner that it maximizes the
contact with the complete environment subject to reasonable control and under
standing of the contacted environment.

To expand upon the evolution principle, we remark that "contact with the
environment" means the memory space needed to simulate the behavior of
the organism on a computer or, equivalently, the number of flip-flops
required to build a machine to simulate the organism's behavior. The
complete environment means all forms of contact, both physical and mental.

By "reasonable control and understanding of the contacted environment,"
we mean that the complexity of the interaction between the organism and
the environment is relatively high or is approximately equal numerically to
the value of the present contact. It can be argued that increased control
implies increased complexity, and, since complexity is deeply related to
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understanding (complexity is equivalent to the minimal number of coordi
nates needed to understand a process), an organism operating at a high
complexity in interaction with its environment implies high understanding
and ability to act.

Intuitively, one can justify the evolution principle by considering the
principal reasons for an organism's failure to survive. First of all, something
may happen that the organism doesn't know about and it kills him. For
instance, an antiscience English professor walks into an area of high radioac
tivity, or a baby eats some ant poison. In these cases, some element is
suddenly introduced into the environment and this element kills the organ
ism. In short, the contact is too limited, and the organism dies as a result.

At the other extreme, the contact may be very high but the complexity is
too low and "things get out of hand." For example, two psychoanalysts
develop a new theory of madness requiring them to spend many hours
alone with previously violent individuals. One of the psychoanalysts
is nearly strangled to death but lives and recovers, while the other becomes
very remorseful after this violent incident and apparent setback to the theory
and eventually commits suicide. In this case, the contact with the environ
ment is high but the complexity, control, and understanding of the situation
is too low, resulting in death. Or, a flower may bend toward the sun and, in
doing so, become visible from the footpath and be picked by a passing
schoolgirl. The contact with the sunlight was increased but the control to
avoid being picked after being seen was nonexistent.

Thus, if an organism can increase contact and increase control, under
standing, and complexity by nearly the same amount, it will be in all ways
better off. The evolution principle formalizes this heuristic argument.

To make the above discussion more precise, we let E. be the finite-state
machine representing the environment at time t, while 0, represents the
organism. ~ will be the machine denoting the result of 0, interacting with
E,. (Recall that the result R of an interaction between two machines is, by
definition, equal to the state-output machine

R = (U, range 8, range 8, A, j),

where range 8 is some set of representations for the stable loops of the
interaction and j: range S-+ range 8 is the identity map.) Further, we let
C, == #(R,) be the number of states of R, and c, == 8(R,) + 1, the complexity
function of ~ plus one. Hence, C, is the contact number at time t, while c,
is the basic complexity number.

Now, we let h: N+ x N+ -+ R 1 be a map from the cross product of the
positive integers to the reals, with the property that if a, b, c E N+, a < c,
b < c, then h(a, b) < h(c, c). We call h a culture function. The significance of
the culture function is that it contains the strategy that the organism will
follow as it grows. But we must be more specific.
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Intuitively, the purpose of the organism is to keep c, close to C, and then
to maximize the two nearly equal quantities. But, how should the organism
change its strategy if C, becomes substantially larger than c,? Should it
immediately attempt to lower C, to C

"
or should it attempt to bring them

both to a midway point, or should it do nothing? The culture function h is
what determines the local strategy when C, - c, is large.

For instance, in a society like Great Britain where a (relatively) large
premium is placed upon social propriety, emotional control, duty, and the
like, but where there is, opposing this, a strong force for personal advance
ment, we might have a culture function like

hE(a, b) = a 3 _e a
-

b
•

Here the negative term represents a severe penalty for C, - C, being too
large, while the a 3 term represents some attempt to maximize contact C,. In
short, hE represents a repressed but productive culture.

Alternatively, we could consider a culture like the American, which
sacrifies all other considerations to economic advancement. It encourages
inventiveness and enterprise, while discouraging activities not directly re
lated to economic productivity (e.g., art, music, scholarly endeavor). We
might represent this by the culture function

hA(a, b) = a 2+b2-(a - b)2 = 2ab.

Here contact (e.g., enterprise) and understanding (e.g., inventiveness) are
rewarded, while contact minus understanding (i.e., uncontrolled activity) is
penalized to the same degree. Consequently, hA represents a bland, imma
ture, but productive culture.

Finally, consider the French society. Here the culture suggests that one
should enjoy oneself, manipulate the environment for one's own pleasure,
and so on. This could be represented by

hF(a, b) = b.

There is no penalty for a large contact minus understanding. The function hF

indicates that one should always increase control and understanding. The
culture represented by hF is a society full of love, sex, talk, and personal
striving, idealizing beauty and intellectualism, but rather unproductive.

In summary, the idea behind the British culture function hE is that there is
a cultural force to control oneself, then advance onward; symbolically, first
-~, then i . The American function hA suggests "don't rock the boat."
The French function is "don't worry: live; wine, women, and song, and
since this takes money, sexual attractiveness, and so on-manipulate.

The contact function C" complexity function c" and culture function h
may be used together to suggest a generalized "Hamiltonian of life," which
governs evolving organisms. Such a formulation is very close in spirit to
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Thom's program for studying morphogenesis, which we shall consider in the
next chapter. The reader may find more details of this Hamiltonian formula
tion in the works cited at the chapter's end.

CHOICE PROCESSES AND COMPLEXITY

At the level of individual or social choice problems, complexity is related to
the ability or inability of human decision makers to make decisions in a
consistent or rational manner. In this connection, complexity exhibits a type
of uncertainty that cannot be properly treated in terms of probabilities.

One clear sign of complexity entering into decision making is an inability
to prove the existence of a function representing preferences for choices.
The social choice problem is similar to the problem faced by a chess player
when searching for a "satisfactory" strategy to the extent that the decision
maker is involved in a problem of combinatorial dimension. To search for all
game-theoretic alternatives goes far beyond the computational capabilities
of human beings or computers.

In view of the preceding comments, we are led to conclude that it is
necessary to depart from hypotheses involving optimizing behavior since
such an approach to decision making does not come to grips with nontrivial
choice problems in complicated situations. However, it is not necessary to
sacrifice rationality when we abandon optimality since even "limited ration
ality" may turn out to be a satisfactory decision basis when complexity
prevents necessary computations from being carried out.

Example of a Decision or Search Rule An individual, as a member of
society (or voter), is faced with a "large" market of public goods and is
required to choose among different kinds of commodities or services
(nuclear energy, missiles, health care, and so on) offered to him for sale by
different government agencies at different prices (i.e., tax rates). In order
to receive a tax rate quotation (or possibly some other relevant informa
tion) from any given agency, the voter must incur some (not necessarily
monetary) cost constituting his marginal search cost. The voter's problem
is this: Given a certain bundle of public goods that satisfies his aspirations,
search for those tax rates such that his final taxes (plus total search costs)
will be kept as low as possible.

The above problem can be formalized as follows. Let ti denote the tax
rate quotation of agency i. Let t = (t1' ... , t,.) be the tax structure and
suppose ~ E [0, 1] =1. Denote by 1" the n-dimensional cartesian product
of I, and define a probability density F on 1" representing the voter's
initial belief about what tax rates the agencies are likely to quote. The
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order of quotations presented to the voter is considered to be irrelevant;
thus, for simplicity, it is assumed that F is symmetric, i.e., if p is a
permutation of (1,2, ... , n) and if t P = (Cp(l)' ... , Cp(nj), then F(t) = F(t P

).

The setup of this problem enables us to construct a decision rule that
tells the voter, for each i, whether to stop searching after receiving i
quotations or whether to continue searching on the basis of the i quota
tions he has received. A decision rule is assumed to be a mapping from a
set of observations into a set of actions. In this problem, for each i let the
set of actions be A ={"accept", "reject"}, and the set of observations be
q = t. Then a decision rule is a sequence of functions D =
(Dh •.. , D n - 1), where D i : q --+ A. If (t1, . .. , 4)E q, then D i (t1, ... , 4)
records the voter's decision to either accept the tax rates that have been
quoted to him and choose (by vote) the given bundle of public goods
presented to him, or to continue searching and reject the tax rates
t h · .• , ti •

Now for this kind of problem it is perfectly legitimate to ask what the
voter's optimal decision rule is. This question could be answered by the
machinery provided in statistical decision theory for finding optimal
solutions for search problems. Instead, here we are interested in the basic
ill-structuredness of the problem given by the complexity of the decision
rule. Thus we proceed to associate with every decision rule D a (compu
ter) program to that computes D. This permits us to define the complexity
of the program by the amount of "looping" between subprograms (com
putational complexity). Hence, a sequential machine is used as a
metaphor for determining complexity of sequential decision rules. This
can be further illustrated by elaborating on the problem above by using
the sequential machine framework.

Let U = set of observable tax rates = finite subset of [0, 1]. Let Y =
{"stop," continue to i + 1, i = 1, 2, ... , n}. Then the machine to is defined
inductively on the length m of the input sequence by

or

Di(tt> ... ,t".) if to(t1"'" t".-1) = "continue to i + I".

Thecomputational length and the structural complexity of subsystems that
are needed for compute to reflect a measure of complexity for to
(equivalently for the decision rule D). Obviously, an optimal rule is one
that is generally more complex and more expensive; it may also very well
be beyond the computational power and sophistication of the voter.
Hence the voter facing an ill-structured problem wants to make it well
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structured by seeking a decision rule that matches his computational
ability and sophistication.

DESIGN VERSUS CONTROL COMPLEXITY

In a previous section, we considered the complexity functions ct, referring to
the complexity of interaction between an organism and its environment, and
e" referring to the contact between organism and environment. These
notions are closely related to the two basic types of decision-making
complexity, which we refer to as design and control complexity.

Design complexity is the level of complexity of a transformation semi
group when full use is made of the system potential. Control complexity is the
specific complexity number that results from computations that keep the
system under complete control. A qualitatively stable decision rule would be
one for which these two numbers coincide. However, in most practical
situations the design complexity will exceed the control complexity. In a
certain sense, the concepts are naturally associated to programs of "optimi
zation" and problems of "satisficing," respectively. Thus, design complexity
pertains to that decision rule that is best in some appropriate sense and, in
general, involves some optimality principle. However, the optimal decision
cannot be realized given the limited computational resources of the decision
maker (control complexity).

We could redefine our evolution complexity relation to be the difference
between the design and control complexity. The smaller the difference, the
more stable (balanced) the system tends to be. (This notion is closely allied
to the concept of resilience of a system as understood by ecologists.)

To illustrate the principles involved, consider a typical "tragedy-of-the
commons" situation. A certain finite area of land is given, as is a set of
herdsmen. Each herdsman will try to keep as many cattle as possible and
will assume that this is equivalent to maximizing his profit. Suppose the
marginal utility of adding one more animal to the commons is +1 for every
herdman; however, the social utility contributed to him is negative (a
fraction of -1) due to effects of overgrazing or, more generally, the
depletion of resources.

The tragedy consists in the incompatibility of individual rationality and
social necessity or, in our terms, in the discrepancy between design and
control complexity. A breakdown (catastrophe) cannot be avoided unless
there are significant changes in the "level of understanding" (due to learn
ing, adaptation, or control) or in the design, by reducing or eliminating
external effects. Examples of this type are particularly prevalent in the
ecological sphere and, as noted before, are highly suggestive of the elusive
resilience concept, which we shall reconsider in the next chapter.
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A PROGRAM FOR PRACTICAL APPLICATIONS OF
COMPLEXITY

The main steps to take in a more practical application of complexity would
be the following:

1. Try to find a reasonable analogy between a natural system and an
artificial (mathematical) system in finite-state terms.

2. Compute various "reasonable" transformation semigroups for a given
system (using, perhaps, functional equations or relations), taking into ac
count its past history and different possible designs.

3. Compute the design complexities of the semigroups.
4. Compute the "rational" level of contact function associated to the

"natural" semigroup of transformations.
5. Compute the control complexity of this "natural" contact function.
6. Compute those contact functions and complexities that yield stable

configurations for particular designs.

The achievement of stable configurations doesn't necessarily mean that
the semigroup of transformations for the design is identical with that for the
control; it would be sufficient if both had the same relative increase through
all finite states.

POLYHEDRAL DYNAMICS AND COMPLEXITY

Our exposition thus far of complexity measures for systems describable as
finite-state machines is not meant to suggest that alternative measures have
not been proposed. As we have continually emphasized, the appropriate
mathematics in any given situation depends almost exclusively upon the way
in which the problem is mathematically formulated. A complexity measure
developed with finite-state descriptions in mind may be of no particular use
if an alternative characterization of the process is employed. In this section,
we consider complexity when the algebraic-topologic description of the
process as a simplicial complex is used.

Since the basic algebraic objects of the polyhedral dynamics description
are the simplices, we formulate our complexity function in terms of the
dimension of the simplices and the interconnection between them. We stress
that the following definition of complexity embraces only the static, struc
tural complexity of the relation represented by the complex. Dynamic
considerations are probable best considered in the light of the finite-state
results.



117

For the polyhedral complexity, we adopt the following version of the
axioms of complexity presented earlier:

A. A system consisting of a single simplex has complexity 1.
B. A subsystem (subcomplex) has complexity no greater than that of the

entire complex.
C. The combination of two complexes to form a new complex results in a

level of complexity no greater than the sum of the complexities of the
component complexes.

Note that Axioms A-C implicitly assume that the system under considera
tion is connected at the zero-level, i.e., the structure vector 0 has 0 0 = 1. If
this is not the case, then we compute the complexity function for the
disconnected complexes, then use the maximum of these numbers to repres
ent the complexity of the system. Such a procedure is equivalent to consid
eration of the entire system as a parallel combination of its disconnected (at
zero-level) components.

A measure that satisfies the preceding axioms and is readily computable
from the structure vector 0 is

where N = dimension of the complex K and Q i is the ith component of the
q-analysis structure vector O. The factor 2/(N + l)(N +2) is introduced
purely as a normalization to satisfy Axiom A.

To illustrate the use of the complexity measure t/J, consider again the
predator-prey example of Chapter 3. The predator relation, ApRD, has the
structure vector

o

OPRD = (1 1 2 3 2 1),

while the prey relation, ApRy, gives
o

OPRy=(l 3 3 4 2 1).

Thus,
t/J(PRD) =¥, t/J(PRY) =~,

indicating that the prey relation is somewhat more "complex" than the
predator relation.

ALGEBRAIC SYSTEM THEORY AND COMPLEXITY

While the finite-state machine definition of complexity may be extended to
the case of finite-dimensional linear systems via some"unnatural" algebraic
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identification of the semigroup of the linear system, it is somewhat more
natural to follow another path. The reason is that the semigroup "realiza
tion" of a finite-state linear system is seldom minimal (i.e., canonical). This
is not surprising, since the objective of the Krohn-Rhodes theory is to give
existence theorems for series-parallel realizations, which are almost always
nonminimal. Mathematically, the most elegant way to proceed is via module
theory, which, as noted earlier, always leads to minimal realizations. How
ever, the mathematics is a bit beyond the scope of this book, so we shall
content ourselves with a complexity discussion at the level of polynomials
and linear algebra.

As general motivation for our complexity function, we recall Figure 3.7,
depicting the general structure of a linear system, and the discussion of the
Realization Theorem of Chapter 3. We saw that any linear dynamical system
I was composed as a direct sum of subsystems Ii, where Ii was charac
terized by the ith nontrivial factor of the matrix

t/lwW(z),

where W(z) = transfer matrix of I and t/lw = characteristic polynomial of I.
The components Ii represent the irreducible building blocks of I and, as a
result, we focus our complexity measure on them.

Since the invariant factors of t/lwW(z) essentially characterize the struc
ture of I, keeping in mind the axioms of complexity, as a measure of system
complexity we propose

q

~(I) = L (n -deg t/li + 1) log (n -deg t/li + 1),
i~l

where n = dim I, and t/li = the ith nontrivial invariant factor of t/lwW(z). It is
relatively easy to verify that the measure ~ satisfies the earlier axioms, with
the normalization that the complexity of a cyclic system (F = cyclic) is zero.

It is no accident that the complexity measure ~ bears a strong resemblance
to the measure of information content in a string of symbols, since the
axioms of complexity are very closely related to the "natural" axioms
required of an entropy measure. We shall return to this point later.

An additional point to observe about the measure ~ is that while the
emphasis is upon system structure (the t/I;) in defining complexity, dimen
sionality of the state space also plays a role. Roughly speaking, given two
systems with similar cyclic structure, the higher-dimensional system will be
more complex. This is an intuitively satisfying aspect of the measure ~.

As an illustration of the above measure, we consider two systems de
scribed by the transfer matrices

W1(z)=diag (~1'~2'~3)'z+ z+ z+



[

1 1
-+z ZZ

WZ(z) = 0

1 1
-+z ZZ

o !l
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It is readily computed that the matrix I/Jw
I
WI(z) has the single invariant

factor

I/J~ = (z + 1)(z + 2)(z + 3).

Hence,

On the other hand, the matrix 1/Jw
2
Wz(z) has the invariant factors

I/Ji = z,

Thus, the complexity of I z is

2

~(Iz) = L (n - deg I/Ji + 1) log (n -deg I/Ji + 1)
i=l

= (3-1-1) log (3-1 + 1)+ (3-2+ 1) log (3-2+ 1)

= 3 log 3+ 2 log 2.

As expected, the nontrivial cyclic structure of I 2 makes it much more
complex than II'

NONLINEAR, FINITE-DIMENSIONAL PROCESSES

The measurement of complexity for a system governed by the nonlinear
differential equation

x= !(x, u)

is a considerably more difficult problem, principally since there are no
convenient, succinct algebraic representations, such as W(z), to characterize
the input-output structure of the system. Two approaches suggest them
selves.

First, we could approximate the finite-dimensional state space of the
process by some discrete state space in a manner analogous to that em
ployed in numerical processes. For instance, the state space R n could be
discretized by truncating the coordinate directions as

i = 1,2, ... , n,



120

and then discretizing the finite hyperblock by some grid. We then define the
finite-state dynamics as that induced by the original continuous system.
Having approximated the original problem, we may then employ the finite
state complexity results given earlier. We note, however, that it is by no
means a trivial task to establish the validity of the discretization process. In
one way or another, we must be able to establish the invariance of structure
under subdivision and show that the discrete problem converges (in some
sense) to the original as the discretization becomes finer and finer.

A second approach is to make use of the decomposition results given in
Chapter 3. If the dynamics {(x, u) are analytic in x and continuous in u,
Krener's theorem gives an analogue to the Krohn-Rhodes theorem. Unfor
tunately, an analogous complexity theory has not yet been developed for
such problems, but there appears to be no major obstacle in extending the
finite-state results to the finite-dimensional setting.

COMPLEXITY AND INFORMATION THEORY

We have already noted some strong connectil)ns between classical informa
tion theory a la Shannon-Wiener and the concept of system complexity. In
fact, some early attempts in biology at quantifying complexity defined it
categorically as the number of distinguishable units comprising an organism.
Such an approach clearly invites comparison with the information content
present in a string of symbols. However, information theory is not really a
satisfactory basis upon which to formulate a theory of complexity. We have
seen that a system is a holistic object, not the mere aggregate of its parts.
Furthermore, the system variables do not act separately, but in conjunction
with others to form complex effects. Separate primary variables may not be
important, but rather their combination, which correspond to these effects.
Information theory, by itself, cannot identify these combinations. Like all
statistical theories, it disregards the fact that the relative positions of the
elements in a structure may matter. In other words, the numerical frequen
cies of different elements in a system is not sufficient to explain the
phenomena. Information is needed about the manner in which the elements
are related.

One interesting approach toward remedying the above deficiency is to
appeal to the notion of "similar phenomena." Specifically, one postulates that
the original system variables Xl' x2 , ••• ,x,. having independent dimensions
are replaced by PI' P2 , •• • ,Pk made dimensionless by suitable combination
of the x;. The number of such dimensionless variables is determined by the
theorem that a dimensionally homogeneous equation

F= (Xl> x2 ,· •• , x,.) =0
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can be expressed in tenns of the P variables fanned with the oX; such that

rSm,

with r =rank of the dimensional matrix of the " original variables and
m = the number of fundamental dimensions, such as mass and length, in the
physical system.

Since virtually all laws of physical theory are dimensionally invariant, the
dimensionless products Pi can be interpreted as similarity criteria. Thus, we
are able to reduce considerably the number of system variables that must be
taken into account. At the same time, the usual infonnation-theoretic
problem of nonstationarity is also alleviated, since any increments leading to
nonstationarity are likely to be much smaller at the macroscopic level (the P
variables) than at the microsystem level (the x variables).

The focus of attention will now be on the fundamental relationships
governing system behavior, not on the particular models representing the
process. Thus, we want to characterize complexity in tenns of the invariant
properties of the system structure. Since it is important to be able to locate
the various sets of system configurations, we introduce a dimensionally
invariant discriminant function

y= a1P1 +...+ akPk,

where the weighting coefficients are detennined such that the t-statistic or
F-ratio between various groups (subsystems) is maximized. Thus, we wish to
maximize the ratio of the between-group variance to the within-group
variance

where d' = (db d2 , ••• , dk) is the vector of mean differences on the k(="
r) dimensionally invariant functions Pi' C is the within-group covariance
matrix, and "1 and "2 are observations in the two groups.

Let YU; be the value of the mth dimensionally invariant discriminant
function evaluated for element k of group I. The a posteriori probability that
k belongs to group I, when it is actually in group m, (the case k",) is given by

p , _ p... exp (~'<,J
1 1e", - r '

L Pi exp (¥I:'';J
;=1

where the superscript m' denotes the particular discriminant function that
leads to maximization of the true probabilities of group membership, r is the
total number of groups, and p... is the a priori probability that k is in group
m.
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We propose to define system complexity in terms of information content,
i.e., as a measure of the average uncertainty of an element's location.
Specifically, the complexity of group m is defined as

where
r

Ok". = - L P::k". 10g2 P::k".,
i=l

with n". = the number of elements in group m.
We also measure the redundancy of the ith group as

H
R i =l---'-.

10g2 r
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5 Stability, Catastrophes, and
Resilience

Either the well was very deep, or she fell very slowly, for she had
plenty of time as she went down to look about her, and to wonder
what was going to happen next.
LEWIS CARROli-, Alice in Wonderland

Universal Form and Harmony were born of Cosmic Will, and
thence was Night born, and thence the billowy ocean of Space; and
from the billowy ocean of space was born Time-the year ordaining
days and nights, the ruler of every movement.
Rigveda, X, 190

You boil it in sawdust: you salt it in glue:
You condense it with locusts and tape:
Still keeping one principal object in view
To preserve its symmetrical shape.
LEWIS CARROLL, The Hunting of the Snark

The most thoroughly cultivated qualitative aspect of large systems histori
cally has been their behavior under various types of external perturbations.
Classically, the perturbations have been assumed to occur in the system's
initial state or in the system's external input, while more recent investiga
tions have focused upon disturbances in the system structure itself. In either
event, we are interested in knowing whether the behavior of the system will
be substantially altered by unwanted, unknown, or unplanned changes in
operating conditions. When stated in such vague terms, there is little
possibility of saying anything definite (or interesting) about the behavior of
the process; we need to formulate precise questions within a suitable
mathematical framework if progress is to be made.

The aim of the current chapter is to survey some of the major stability
ideas that occupy system theorists and to indicate how various stability
notions arise in practical applications. Since the subject is so vast, we
deliberately deemphasize some of the more classical concepts and concen
trate attention upon more modern notions such as resilience, catastrophes,
and pulse processes, referring the reader to the literature for all but the most
basic classical results.

Since we have continually emphasized that a system problem may have
many different, nonequivalent mathematical formulations, stability questions
must also be formulated in corresponding terms. Thus, our presentation will
follow many paths, depending upon the particular description of the prob
lem. Justification for such a seemingly haphazard approach will be found in
the examples that illustrate both application of the theory and the impor
tance of mathematical flexibility in problem formulation.

126
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EXTERNAL DESCRIPTIONS

For stability considerations, it is most natural to consider the external
description of a system in the feedback form

e1 =u l -He2> (5.1)

e2 =u2 +Gel , (5.2)

where the quantities e l , e2> ul , and U 2 belong to some extended function
space X and where the operators Hand G map X into itself.

We can interpret (5.1) and (5.2) as representing the feedback connection

+

with the operator G being the subsystem in the forward path, H represent
ing the feedback subsystem, and the quantities Ul> U 2 and el' e2 being the
inputs and errors, respectively. The outputs of the system may be considered
to be the quantities Gel and He2 •

In analyzing Equations (5.1) and (5.2), there are two basic types of
questions to be answered, given Ul> U 2 and some set U ~·X:

• Does (5.1)-(5.2) have a unique solution in X for e1 and e2 in X?
• If (5.1)-(5.2) has any solutions in X for el, e2 in X, do these solutions

actually belong to the space U?

The first question is that of existence and uniqueness, while the second
might be termed the stability problem. Generally speaking, different analytic
approaches are used to study these problems, principally techniques from
functional analysis.

As an important example of the stability problem, consider the case when
X = U =L,,[O, 00], the essentially bounded functions on the half-line. This is
the so-called "bounded-input/bounded-output" stability problem, which is
of obvious practical interest. Later, we shall present results on this question
in terms of properties of the (possibly nonlinear) operators G and H.

INTERNAL DESCRIPTIONS

The most common mathematical description of a dynamical process is a
differential equation of the type

i = f(x, t), x(O) = c, (5.3)
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which we have earlier termed an internal description. The classical results of
Lyapunov, Poincare, and others have all been based upon such a descrip
tion, with the dynamics [(', .) assuming different forms.

Historically, the first systematic investigation of the stability properties of
(5.3) was by Lyapunov, who considered the question: If the origin is an
equilibrium point of (5.3), i.e., [(0, t) = for all t, and if the system is
perturbed by a "small" amount away from the origin (c f:. 0), does the
future trajectory of the process remain "close" to the origin for all future
time? Geometrically, this situation is depicted in Figure 5.1. The basic idea

..............
....................................

____---x (t)

• t

.......
................................................

FIGURE 5.1 Lyapunov stability.

is that if the solution starts within a small distance of the origin, it should
remain within the slightly larger "tube" indicated by the dotted lines.

A somewhat stronger stability notion would demand that the solution
x(t)~ 0 as t~ 00, i.e., that the system ultimately return to the equilibrium
point. This is the concept of asymptotic stability (according to Lyapunov). It
is of importance to note that Lyapunov and asymptotic stability are indepen
dent concepts, as it is easy to construct examples where one fails and the
other holds and vice versa (e.g., the system r =[g(6, t)/g(6, t)]r, 8=0, where
g(6, t) = (sin2 6/[sin4 6 +(1- t sin26)2] +[1/(1 + t2

)] is asymptotically stable
but becomes unbounded as the initial state 60 = 6(0)~ ±'7T-but why?).

As an aside, we observe that the above standard stability issues center
upon a local neighborhood of an equilibrium point, assumed to be known in
advance. Later we shall see that the stability results center upon properties
of [ in this local neighborhood. Thus, from a practical viewpoint we must
calculate all equilibria of [ before any of the traditional results may be
employed. Such a preliminary calculation mayor may not represent a
problem, depending upon the structure of [. Here we tacitly assume that the
equilibria of [ are only fixed points. In general, they may be far more
complicated objects-limit cycles, vague attractors, and the like.
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Associated with each stable equilibrium point is a surrounding open
region called its domain of attraction. Roughly speaking, the stable equilib
rium point acts as a sort of "magnet" to attract any initial state within its
domain of attraction (see Figure 2.14).

A substantial part of modern stability theory centers upon how the
boundaries and attractor points change as various parts of the system
dynamics are changed. In addition, it is of considerable practical importance
to be able to describe the boundary of a given equilibrium mathematically.
We shall look into some aspects of these questions in later sections.

STRUCTURAL STABILITY

A feature that characterizes the classical stability notions is that they pertain
to one specific system and the behavior of its trajectory in the neighborhood
of an equilibrium point (attractor or repellor). An entirely different ap
proach is to ask about the behavior of a family of trajectories generated by
considering all systems "nearby" the nominal system (5.3). In rough terms,
(5.3) would be called structurally stable if the topological character of the
trajectories of all nearby systems are the same as that of (5.3).

An elementary example of the structural stability idea, the damped
harmonic oscillator, has already been considered in Chapter 2. Mathemati
cally, difficulties arise in making the notion of a "nearby system" precise, as
well as in characterizing what we mean by a trajectory being equivalent, or
topologically similar, to another trajectory.

Bifurcation theory, and its currently fashionable variant catastrophe
theory, is also close in spirit to the structural stability concept. In bifurcation
analysis, we generally assume that the system dynamics depend upon some
parameters-Le., f= f(x, t, a), where a is a vector of parameters-and ask
about the character of equilibria as the parameters change. For instance, the
system

;. = r(a - r2
),

9=1,

with xi+x~=r2, 9 =tan-1 X2/Xl, has only the equilibrium r=O for a<O.
This equilibrium corresponds to a stable focus (see Figure 5.2). However,
for a > 0 the e9..uilibrium r = 0 becomes an unstable focus and a new
equilibrium r = ,ja emerges. This new equilibrium is a stable limit cycle, with
radius growing as Ja. The point a = 0 represents what is termed a Hopf
bifurcation point (note the appearance of the center from a stable focus as
the parameter a passes through the critical value a = 0).

Catastrophe theory addresses the question of when a change in the system
parameters causes a given point in phase space to shift from the domain of
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a<O a=O a>O

FIGURE 5.2 Hopf bifurcation point.

attraction of a given equilibrium to that of another. The simplest case is one
in which all system equilibria are fixed points derivable from a potential
function, the so-called "elementary" theory. More complicated equilibria,
like periodic orbits or Lorenz attractors, require analysis beyond the scope
of this volume. The "catastrophes" occur for those parameter values that
cause the system to shift from one attractor region to another. We
shall examine these issues in more depth in a later section, which will also
make some of the connections between catastrophe theory, bifurcation
analysis, and structural stability more precise.

CONNECTIVE STABILITY AND RESILIENCE

An interesting hybrid stability concept, joining the classical Lyapunov ideas
with the combinatorial-topological approach to be described below, is the
notion of connective stability. Here we are concerned with the question of
whether an equilibrium of a given system remains stable (in the Lyapunov
sense) irrespective of the binary connection pattern between system states.
In other words, we begin with the system (5.3) as before and then define an
interconnection matrix E == [e;j] such that

e.. == {1, if variable Xj influences ~i'

Ij 0, otherwise, i, j == 1,2, ... , n.

The equilibrium x == 0 is then connectively stable if it is Lyapunov stable for
all possible interconnection matrices E.

Connective stability is of considerable practical interest, since in many
processes the presence or absence of a given connection is not always clear
because of equipment malfunctioning, model uncertainty, stochastic distur
bances, and the like. Such situations are particularly prevalent in models in
areas such as economics, biology, and energy. In particular, we shall give a
detailed analysis of an ecological problem in a later section, after presenta
tion of the main theoretical results in connective stability.
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An aspect of stability that has received considerable attention, especially
in ecological circles, is the notion of resilience. On an intuitive level, there
seems to be a general consensus that resilience is some measure of a
system's ability to absorb external disturbances without dramatic consequen
ces for either its transient or steady-state behavior. On the surface, this
sounds very much akin to structural stability and, indeed, there is substantial
overlap between the two. However, as actually envisioned by practitioners,
the concept of resilience is somewhat broader, since a satisfactory resilience
measure must somehow combine perturbations to the actual dynamics with
disturbances to the trajectory of a fixed process. Unfortunately, the theory is
still in its formative stages and only provisional definitions and results are
available. A sketch of some of the more interesting ideas will be given
below.

GRAPHS AND PULSE PROCESSES

We have already seen that many interesting systems are profitably modeled
by graphs or, more generally, by simplicial complexes. Such representations
of complex processes are particularly convenient when the precise numerical
relationships between system components required for an internal descrip
tion are not available. The question arises as to how stability considerations
fit into such a framework.

To fix ideas, consider a process described by a signed directed graph G.
Here {u1 , U2' ••• , UN} are the vertices and we assume that each arc of G has
either a plus or minus sign attached to it, indicating a positive or negative
connection between the vertices of the arc. A simple example of such a
signed digraph for electrical energy demand is given in Figure 5.3. For

:I-

Energy
price

Number
offactories

+

Environmental
quality

+

Number
of jobs

FIGURE 5.3 Signed digraph for electrical energy demand.
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example, population increase results in increasing energy use, hence the arc
from population to energy use has a plus attached to it. On the other hand,
increasing energy use tends to reduce environmental quality, resulting in a
minus on the appropriate arc, and so on. Similar graphs have been useful in
analyzing a variety of problems in urban transport, naval manpower systems,
health care delivery, air pollution, and coastal recreation facilities.

In passing, we note that cycles in a signed digraph correspond to feedback
loops; deviation-amplifying cycles are positive feedback loops, while
deviation-counteracting cycles correspond to negative feedback loops. For
example, the cycle

Energy
price

+

Environmental
quality

Population

is deviation-counteracting since increased price reduces use, which increases
environmental quality, resulting in increased population, which then uses
more energy, thereby reducing the price. In general, we note the rule:

A cycle is deviation-amplifying if and only if it has an even number of
minus signs; otherwise, it is deviation-counteracting.

While the signed digraph is a powerful tool for analyzing many problems,
it contains a number of simplifications, the most important being that some
effects of variables on others are stronger than other effects. In other words,
we need not only a plus or minus on each arc, but also some indication of
the numerical strength of the relationship. Thus, we arrive at the notion of a
weighted digraph, a special case of the weighted relation introduced in the
study of simplicial complexes. An even more general concept is to think of
each vertex in the graph as having a numerical level and of the strength of
connection between two vertices u; and Uj as being a function f(u;, Uj).
Allowing each vertex to have a time-dependent value leads to the concept of
a pulse process in G.

Denote the value of vertex u; at time t as vj(t), i = 1, 2, ... , N; t =

0,1, .... Assume that the value v,(t+ 1) depends upon vi(t) and upon the
vertices adjacent to u;. Thus, if Uj is adjacent to u; and if p;(t) represents the
change in Uj at time t, then the effect of this change on u; at time t +1 will be
assumed to be ±p;(t), depending upon the sign of the arc joining u; and Uj.

More generally, for a weighted digraph we have the rule
N

vi(t + 1) = vi(t) + L f(Uj, u;)p;(t),
;=1

(5.4)
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where !(U;, u;) denotes the weight of the connection between vertices U; and
uj • A pulse process on a digraph G is defined by the rule (5.4), together with
the vector of initial vertex values v(O) and the vector p(O) of outside pulses
on each vertex at time O. Of particular importance are the so-called simple
pulse processes for which p(O) has only one nonzero entry.

While there are many fascinating questions surrounding pulse processes,
our considerations in this chapter focus primarily upon stability of both the
values and the pulses as the system's history unfolds. More specifically, we
say that a vertex u; is value stable if the sequence {!vj(t)I: t = 0, 1, } is
bounded. Similarly, uj is pulse stable if the sequence {Ig(t)!: t = 0, 1, } is
bounded. The weighted digraph is pulse (value) stable if each vertex is. The
reader will note the strong similarity in spirit between these stability
concepts and the bounded-input/bounded-output stability discussed above
for systems given in external form, although the two system descriptions are
fundamentally quite different. Before leaving the graph-theoretic issue of
pulse and value stability, we should point out that the simple graph

+

shows that pulse stability does not imply value stability, although the converse
is true (why?).

INPUT-OUTPUT STABILITY

Returning now for a more detailed examination of some questions posed
above, we consider the external system description discussed in the
section on external descriptions (p. 127). We shall have to use a bit of
mathematical terminology to describe our results here. For the reader
unversed in Banach and Hilbert spaces, it suffices to consider the space X
below to be R". Our initial concern is to obtain conditions on the operators
G and H that ensure that bounded system inputs yield bounded outputs.
The basic results in this area fall into two categories: small-gain-type
theorems and passivity conditions. These two approaches are just about the
only general methods that have proved successful to date for tackling
problems of nonlinear feedback stability.

To illustrate the kind of results to be expected, we present the following
theorem.
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Small-Gain Theorem. Let G and H map the extension X of a Banach space
X over [0,00] into itself. Let x.r( .) denote the truncation of a function x EX to
[0, T]. Then the feedback system

(5.5)
e2 = u2 + Gel'

is stable if there exist constants k l , k2, m l , and m2 such that

II(Gxhll s k1 1IxTII+ ml,

II(Hx)TII s k2 11xTII+m2

with k l k2< 1. Here 11·1I denotes the nonn in X.

The physical interpretation of this small-gain result is very simple: if G
and H correspond to stable subsystems, then if either G or H is sufficiently
small with respect to the stability margin of the other system, then the
overall feedback system will also be stable. EssentiallY, the theorem pro
vides an explicit quantitative bound in place of the qualitative phrase
"sufficiently small." Specifically, the overall system is stable if the product of
the subsystem gains is less than one. In classical feedback terminology, this
corresponds to a positive "return difference."

The practical advantage of the small-gain theorem is that the criterion is
easy to apply, since the gains k l and k 2 can usually be estimated quite easily.
Also, if the condition k 1k2 < 1 is not satisfied, we can usually determine
what sort of "compensation" should be applied in order to make it hold. We
should further note that the type of stability that the small-gain theorem
ensures depends upon the particular Banach space X. Thus, if X = L 2[0, 00],
for example, then satisfaction of the conditions of the theorem guarantees
Lz-stability. In particular, we capture the bounded-input/bounded-output
situation by taking X = Lc,,[O, 00].

The simplest example of the small-gain theorem is that in which G and H
are both linear time-invariant operators, i.e.,

(Gxh = iTg(T-s)x(s) ds,

(Hxh = iTh(T-s)x(s) ds,

in which case it is easy to see that with X = continuous functions on [0, T],
the conditions of the theorem will be satisfied if
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We note, in passing, that when G is a linear time-invariant operator and
H is memoryless, the small-gain theorem leads to the circle criterion of
Popov.

By restricting the space X to be a Hilbert space, i.e., a Banach space in
which the norm II·" is derived from an inner product, we can obtain a
different stability result.

Passivity Theorem. Let X be a real Hilbert space on [0, 00] with inner product
(., .). Then the system (5.5) is stable if there exist constants k, m1 , m2, m3, S,
and e such that

«(Gxh, (GX)T):5 k(XT, xT )+ ml>

(XT, (Gxh)~S(XT' xT )+ m2,

(xT, (Hxh)~e«(Hx)T' (Hxh) + m3,

and
S+e>O.

In electrical circuit terminology, the physical meaning of the passivity
theory is that U 1 and e1 are voltage functions, G is an admittance operator,
U2 and e2 are current functions, and H is an impedance operator. Then the
above inequalities mean that G has a conductance level of at least S, H has
a conductance level of at least e, and the system is stable if the effective
conductance levels of G and H add up to a positive number.

Before moving on to other types of stability results, we note that both the
small-gain and passivity theorems provide only sufficient conditions for
stability of a nonlinear feedback system. Many workers have studied
methods for obtaining instability criteria, as well as multiplier methods to
extend the main ideas sketched above. Since most of these results are too
technical for an introductory book of this sort, we shall not elaborate upon
them other than to mention their existence and to provide references for the
interested analyst.

INTERNAL MODELS AND STABILITY

Historically, the mathematical, as contrasted with the metaphysical, discus
sion of stability began with systems of differential equations and addressed
the issue of whether a given equilibrium point of the system was stable with
respect to perturbations of the initial conditions. Various problems as
sociated with classical mechanics and the stability of planetary orbits (the
famous "three-body" problem) gave rise to a number of questions that were
finally formalized by the work of Lyapunov, Poincare, and others around the
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turn of the century. Since the main issue in Lyapunov-type stability is
whether a system will return to a given equilibrium after an arbitrarily long
time following an initial disturbance, we present the two most basic results
in this direction, referring to the references for the myriad extensions,
generalizations, and refinements.

Let us first consider the linear case, when the internal system model is
described by the set of differential equations

i =Fx, x(O) = xo( 1= 0). (5.6)

Here F is an n x n constant matrix, and it is assumed that the characteristic
polynomial of F is known as

l/!F(Z) = aoz n+ a1z
n

-
1 + ... + an-lZ + an'

We shall be concerned about the asymptotic stability of the equilibrium
point x = O.

Since the solution of Equation (5.6) is

x(t) = eFtxo,

it is evident that an arbitrary nonzero initial disturbance X o will be returned
to the origin as t~oo if and only if the characteristic roots of F all have
negative real parts. As these roots are precisely those of lbF(z), we are
concerned with the problem of deciding whether the roots of F lie in the
left-half plane on the basis of the properties of the coefficients of l/!F(Z).

Such a criterion, developed in the late 1800s by the British mathemati
cians Routh and Hurwicz, is described in the following theorem.

Routh-Hurwicz Theorem. The polynomial ~(z) has all of its roots with
negative real parts if and only if

1. All a i > 0, i = 0, 1, ... , n
2. The n x n array

a 1 ao 0 0 0 0

a3 a2 a 1 ao 0 0

as a4 a3 a2 0 0

A=

0 0 0 0 a n - 1 an-2
0 0 0 0 0 an

has only positive leading minors.

As a result of the Routh-Hurwicz result, it is a relatively straightforward
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algebraic task to check the stability of the origin for a linear system if the
characteristic polynomial of F is known. For example, the damped harmonic
oscillator, described by the second-order system

x+bi+cx =0,

x(O) =c1 , i(O) = Cz,

can easily be seen to generate the array

A = [~ ~J.
Thus, applying the Rough-Hurwicz result, we see that the initial disturbance
will "die out" if and only if

1. b>O, c>O
2. bc>O,

i.e., if and only if the "damping" coefficient b performs a positive damping
effect (generates friction).

Unfortunately, the requirement that t/lF(Z) be known is a serious obstacle
in many cases, especially when the order of the system n is large. It would
be preferable in such cases to have a test for stability that could be applied
directly to the elements of F itself. Such a procedure was developed by
Lyapunov and is based upon the simple physical notion that the equilibrium
point of a system is asymptotically stable if all trajectories of the process
beginning sufficiently close to the equilibrium point move so as to minimize
a suitably defined "energy" function with the local minimal energy position
being at the equilibrium point itself.

We first consider application of the preceding idea to the general non
linear equation

i = f(x), x(O) =xo (5.7)

and then specialize to the linear case where f(x) = Fx. We make the
assumption that f(O) = 0 and that the function f is continuous in a neighbor
hood of the origin.

The mathematical features of an energy function are embodied in the
following definition.

Definition 5.1. A function V(x) is called a Lyapunov (energy) function for
the system (5.7) if

1 V(O)=O
2. V(x) > 0 for all x f 0 in a neighborhood of the origin
3. dV(x)/dt<O along trajectories of (5.7)
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The basic result of Lyapunov is the celebrated Lyapunov Stability
Theorem:

Lyapunov Stability Theorem. The equilibrium x =0 of the system (5.7) is
asymptotically stable if and only if there exists a Lyapunov function V(x) for
the system.

To apply the above result to the linear system (5.6), we choose the
candidate Lyapunov function

V(x) = (x, Px),

where P is an (as yet) unknown symmetric matrix. In order that V(x) be a
Lyapunov function for the system, we must have

~~=(i,Px)+(X,PX)

=(x, (F'P+ PF)x) < O.

This implies that the equation

F'P+PF=-C

is solvable for any matrix c> O.
Furthermore, conditions (1) and (2) imply that P must be positive definite.

Hence, we have the result that the origin is asymptotically stable for (5.6) if
and only if the equation

F'P+PF=-C

has a solution P> 0 for every C> O.
It should not be assumed, however, that the quadratic form chosen for

V(x) is the only possibility for a Lyapunov function for the linear system
(5.6). To illustrate this point, consider the economic problem of modeling n
interrelated markets of n commodities (or services) that are supplied from
the same or related industries. If x(t) denotes the vector of commodity
prices at time t, a classical model for the situation is

i(t) = Ax(t),

where A = [~J is an n x n constant matrix. When all commodities are gross
substitutes, A is a Metzler matrix, i.e., aij satisfies

a..{<O,
I] 2:0,

i=j

if j.

The question of whether or not prices are stable in such a situation was
addressed in 1945 by Metzler with the following classic result: "The Metzler
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system X =Ax is stable if and only if the leading minors of A satisfy the
condition

all a 12 alk

al2 an a2 k

~Dkdct >0

for all k=1,2, ... ,n."
The proof of the above result is a consequence of choosing the Lyapunov

function
n

Vex) = L d j lXii,
i=l

with d j > 0, constants to be specified. Suitable choice of the dj , together with
the Metzlerian property of A shows that Vex) is indeed a Lyapunov
function for the system. Hence, by the Lyapunov stability theorem, the
origin is an asymptotically stable equilibrium point of the system.

A class of nonlinear problems to which the Lyapunov stability theorem is
especially easy to apply are those in which the nonlinear terms are assumed
to Jje "small" perturbations of a dominant linear part. It is reasonable to
suppose, for example, that if the system dynamics are

x= Fx+ hex), x(O)=xo, (5.8)

with F a stability matrix (i.e., it has all its characteristic roots in the left-half
plane), then the equilibrium x = 0 will be asymptotically stable if the initial
disturbance Xo and the nonlinear perturbation hex) are not too large. The
mathematical formalization of this intuitively clear result is the following
theorem.

Poincare-Lyapunov Theorem. Let the system (5.8) satisfy the following
conditions:

1. F is a stability matrix
2. h(·) is a continuous function of x such that h(O) = 0 and Ilh(x)"I"xll~O

as Ilxll~O

3. Ilxoll« 1.

Then the equilibrium x =0 is asymptotically stable.

One of the difficulties with using the preceding result is condition (3)-the
requirement that the initial disturbance be "sufficiently small." How small

I)
if
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depends, in general, on the strength of the nonlinearity h and the magnitude
of the real part of the characteristic root of F nearest the imaginary axis.

In an attempt to eliminate condition (3) and obtain a sufficient condition
for global stability, we must strengthen our hypotheses about the system
dynamics. The Russian mathematician Krasovskii provided such a result as
follows:

Krasovskii's Theorem. The equilibrium solution x = 0 of the nonlinear sys
tem x = f(x) is asymptotically stable in the large if there exists a constant € > 0
such that the matrix J(x)+J'(x) has characteristic values less than -e for all
x, where J(x) is the Jacobian matrix of the function f, i.e.,

The proof of Krasovskii's theorem is an easy corollary of the Lyapunov
stability theorem using the Lyapunov function V(x) = (x, (J(x) +J'(x»x).

As an illustration of application of the Lyapunov stability theorem, let us
consider an RLC electrical circuit with parametric excitation. The dynamics of
such a process are described by the equation

x+ai+b(t)x =0,

where a> 0, b(t) = bo(l + f(t», bo~ 0, and f(t) is a bounded function. Here x
is the voltage across the resistor, a the resistance and b(t) is the time
varying capacitance. The above equation is equivalent to the system

x2 = -b(t)x I - ax2

and we are interested in studying the stability of the equilibrium Xl = X 2 =O.
Consider the energy function

1( aXI)2 (a2 )xi
V(x l , x 2) =2 x 2 +T + "4+ bo 2"'

It is easily verified that

1. V(Xb x 2) ~ 0
2. V(x l , X2) =0 if and only if Xl =X 2 = 0
3. dV/dt =(-a/2)x~- (b - bO)X I X2 -(ab/2)xi

Thus, the origin will be asymptotically stable if dV/dt < 0 in some neighbor
hood of the origin. However, this will indeed be the case if for some a >0,
we have

e 2 bof(t? - a 2(l + ef(t»:5 -a <0,

which will certainly be satisfied if e is small enough.
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Thus, for sufficiently small 8, we can conclude asymptotic stability of the
origin. This result can be interpreted in the following way. There are two
opposing forces at work in the problem: a parametric excitation propor
tional to 8 and a load, the damping force ax. Satisfying the above inequality
amounts to choosing the resistance a large enough for the load to absorb all
the energy provided by the excitation. In this case, the origin is stable. If the
load is not large enough, we may expect the energy balance of the system to
increase and the origin to become unstable.

While there are many more fascinating aspects to the stability problem as
outlined above, we can but scratch the surface in a monograph of -this size.
Thus, we urge the interested reader to consult the chapter references for
many more details, while we move on to a discussion of some recent stability
concepts that appear to be particularly well suited to systems analysis studies.

CONNECTIVE STABILITY

In practical problems it is often difficult to specify the system interconnec
tions with total certainty since it is frequently the case that the presence or
absence of a direct connection between one subsystem and another cannot
be measured or can be measured only with low precision. One approach to
the study of such situations is to assume that the connections are random
variables, subject to some known distribution functions. Statistical
methodology may then be employed to answer various probabalistic ques
tions about the system's dynamical behavior. Here we wish to employ an
alternative approach, using no ad hoc statistical arguments, to study stability
characteristics of systems whose interconnections are not precisely known.
As noted in an introductory section, this approach is called "connective"
stability.

Consider a dynamical process whose internal description is

x= A(x, t)x, x(O) =xo, (5.9)

where x is the system state vector, A is a continuous matrix function of its
arguments for all t ~ 0, and all x ERn. To study the connective aspects of the
situation, we write the elements of A as

aij(x, t) = - 8ijl/i;{X, t) +eijl/Jij(X, t),

where 5ij is the Kronecker delta symbol (i.e., 5ij = 1 if i = j, 0 otherwise) and
the I/Jb I/Jij are continuous functions of their arguments. The elements eij are
the components of the system connection matrix E and satisfy

e.. = {l' if variable xj influences Xi'
I' 0, otherwise

The concept of connective stability is then given in Definition 5.2.
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Definition 5.2. The equilibrium state x = 0 of (5.9) is connectively asymp
totically stable in the large if and only if it is asymptotically stable in the large
for all interconnection matrices E.

To obtain practical tests for connective stability, we impose additional
conditions on the functions t/Ji and t/Jij' Assume that there exist constants
ai > 0, aij 2:: 0 such that

1. t/Ji(X, t):Sai
2. It/Jij(x,t)xj!:Saij!xjl, i,j=1,2, ... ,n

holds for all x E R" and all t 2:: O.
Further, define the matrix A =[~j] as

i, j = 1, 2, ... , n.

Then we have the following basic result.

Connective Stability Theorem. The equilibrium state x =°of (5.9) is connec
tively asymptotically stable in the large if and only if the matrix A satisfies the
condition

all a 12 a l
a21 a22 a2

(-l)k det >0, k = 1, 2, ... , n.

akl ak2 akk

Remarks

1. The condition on the principal minors of A is referred to as the
Sevestyanov-Kotelyanskii condition in the stability theory literature.
Economists will recognize the matrix A as a Hicks matrix.

2. If the bounds on t/Ji and t/Jij do not hold for all x E R", but only in some
region MeR", then we must localize the above result to M.

To study the size of the region of connective stability, define the set of
numbers {dJ such that

!aiil-djl L di la;j\2::e>O.
i=j

Also, let the number {uJ be such that

M:::>{xeR": Ixil< U;, i = 1, 2, ... , n},

Le., the U; define a hypercube in R" contained in M.
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In terms of the above quantities, it can be shown that the region

{XeRn: it di Ixil<mindiU;}

is a region of connective asymptotic stability for the system (5.9).
Thus, in rough terms, we see that obtaining the largest region of connec

tive stability is equivalent to finding numbers di satisfying the above inequal
ity such that the smallest ~ is as large as possible.

As an indication of the use of the connective stability theorem, we
consider the following model of a four-species predator-prey problem. The
dynamical equations are

Xl = alx l + blx lX2- D l (Xl) +D 3(X 3),

X2= a2x2+ b2x2Xl - D 2(x 2)+ D4(X4),

X3= a3x3+ b3x3X4- D 3(X3)+ D1(X l ),

X4= a4x4 + b4x4X3- D4(X4)+ Dix3),

where the variable xi(t) represents the population of the ith species, Di(Xi) is
the dispersal rate for the ith species, and the a's and b's are constants. It is
physically reasonable to assume that the functional forms for the D i ( .) are

Di(x;) = XJi(X;),

which we shall assume for the remainder of our analysis. Our goal will be to
determine conditions on the constants ajo bi and the functions [;(x;) that
ensure connective stability of the origin.

Under the structural assumption on Di(x;), the system dynamics assume
the form (5.9), with

A(x, t) =

[

al + blX~ - fl(X l)

fl (Xl)

o

o
a2 + b2x l - fix 2)

o
fix2)

f3(X 3)

o
a3 + b3x4- fix 3)

o

o ][ix4)

a4 + b4X~ - fix4)

Thus, the interconnection matrix for the problem is

I
II
II
,[
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while the functions I/Ii and I/Iij are

1/11 = -(al + blX2- fl (Xl»,

1/13 = -(a3 + b3x4- f3(X3»,

1/113 = f3(X3),

1/131 = fl (Xl),

1/12 = -(a2 + b2x l - fi x 2»,

1/14 = -(a4+ b4X3- f4(X 4»,

1/124 =Ux4),

1/142 = MX2),

all other I/Iij = O.
To apply the theorem, we must first find constants ai> a ij 2: 0 such that

a l + blX2 - fl(X l) S -al < 0,

a2+b2xl-fix2)s-a2<0,

a3 + b3X4 - f3(X3) S -a3 < 0,

a4 + b4X3 - fix4) S -a4 < 0,

Ifl (xI)1 S a 3 1>

Ifix3)1 San,

Ifix2)lsa42,

IUx4)1 S a24'

The Hicks conditions of the connective stability theorem will then be
satisfied if and only if

1. al>O,
2. ala2>0,
3. ala 3> ana31'
4. ala2a3a4 +ana3la24a42 > ala3a24a42 + a2a4ana31'

Thus, conditions (l)-{4) define a region in the (Xl' X2, X3' X4) state space for
which the origin is asymptotically stable for all perturbing t (i.e., for all
dispersal rates) and all ll;, bj • Further results and extensions of the above
analysis can be found in the papers cited in the chapter references.

HOPF BIFURCATIONS

The connective stability results provide criteria that system parameters must
satisfy if the equilibrium at the origin is to be asymptotically stable for all
interconnections between various subsystems. However, when one of the
system parameters varies to a critical level so that the basic theorem no
longer applies, it is natural to inquire as to what type of transformation of
the origin such a parameter change represents. Basically, we are concerned
with those critical values of the sytem parameters at which the equilibrium
point changes its qualitative character (e.g., attractor~ center, attractor~
repellor).
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In the simplest possible version of such a "bifurcation" problem, only one
parameter is allowed to vary. We have already seen an example of this type
of problem above where we briefly considered the concept of structural
stability. The principal result for such classes of problems was given by Hopf
in the 1940s, following up on earlier work of Andronov and Poincare. We
shall consider the two-dimensional case, where the system dynamics are

Xl = fl(xl> X2, IL), xl(O) = x~

x2 = fz(Xl> x2, ILL xiO) = x~ .

The n -dimensional case is slightly more complicated, but the main results
remain basically unchanged.

The main result telling us about the changes in system stability behavior
as IL varies is the Hopf bifurcation theorem.

Hopf Bifurcation Theorem (in R 2). Assume that the functions fl and f2 are
at least four times differentiable in each argument and that fl(O, 0, IL) =
f2(O, 0, IL) = 0 for all real IL. Further, assume that the matrix

[

a
fl

afll
J(f) = aXl aX2

af2 af2
aX l aX2 (Xl' X2) =(0, 0)

has two distinct, complex conjugate characteristic values A.(IL) and A(IL) such
that for IL > 0, Re A.(IL) > O. Also, assume

d~ [Re (A. (IL))]IIL =0 >0.

Then:

1. There is a twice -differentiable function IL: (-e, e) -+ R such that the
initial point (x~, 0, IL(X~)) is on a closed orbit of period 21T/1A.(1L)! with radius
growing as .JP., for x~ 1= 0, IL(O) = O.

2. There is a neighborhood U of (0,0,0) in R 3 such that any closed orbit in
U is one of the above.

3. Furthermore, if 0 is an attractor when IL =0, then IL(X~)> 0 for all x~ 1= 0
and the orbits are attracting.

Remark A closed orbit in R 2 is any point x* such that x(t)=x(t+T)=
x* for some T> O. In particular, equilibrium points are closed orbits.

The Hopf theorem shows that the system trajectories may change charac
ter as IL departs from 0 and that the type of change depends upon the real
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part of the characteristic value of the system Jacobian matrix J(I) at the
origin. Conclusion (1) simply states that an equilibrium at the o!:igin will
"bifurcate" into a closed orbit of a certain size proportional to .J IL. If the
origin was an attracting fixed point when IL = 0, then conclusion (2) states
that in a sufficiently small neighborhood of the origin (in Xl - X 2 -IL space),
the closed orbit that arises out of the fixed point will itself be attracting.

In short, the Hopf bifurcation theorem is concerned with the birth of
closed orbits from fixed-point equilibria and the resultant dynamical be
havior as the parameter IL passes through the critical value IL = O. For the
planar system considered here, the closed orbits can only represent periodic
solutions to the system under study. In higher dimensions, the situation is far
more complex.

Example: Lienard's Equation A well-known nonlinear differential system
that often occurs in simple models of oscillatory phenomena, such as
population dynamics or electrical circuits, is the simple Lienard-type
equation

X2 = -Xl + ILX2 - x~.

We study this equation as the parameter IL varies from negative to
positive values.

We easily verify that the origin Xl = X 2 = 0 is an equilibrium point of the
system for all IL. Furthermore,

at Xl = X2 = O. The characteristic values of J are

~[1L±~1L2_4].

Consider values of IL such that 11L1<2. In this case A(IL) 1'0. Further, for
-2< IL <0, Re A(IL) < 0, for IL = 0, Re A(IL) = 0, and for 0 < IL < 2,
Re A(IL) > O. Also,

d~ ReA(IL)IJL=o=~>O.

Thus, all conditions for the Hopf bifurcation theorem apply and we conclude
that there is a one-parameter family of closed orbits in a neighborhood of
the origin.
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To find out whether these orbits are stable and if they occur for IL > 0, we
must employ techniques beyond the scope of this book since the origin is not
an attracting fixed point; hence, conclusion (c) of the theorem does not
apply. As it turns out, however, for this equation, the periodic orbits are
indeed attracting and bifurcation does take place for IL > 0.

We note that a minor extension of this example also covers the general
Van der Pol equation

it + f(u, IL)U + g(u) = 0,

through the change of variable Xl = U, X2 = U+f( u, IL). Here we convert the
Van der Pol equation to the general Lienard equation

Xl = X2 - f(x, IL)

X2 = -g(x 1),

which can also be handled by the Hopf theorem. Hence, we can conclude
that the Van der Pol equation also has stable oscillations for IL >°arising
from the bifurcation of a fixed point at the origin.

STRUCTURALLY STABLE DYNAMICS

A vital part of the analysis of a differential equation model of a dynamical
process is the decision as to whether small perturbations of the system
dynamics can result in qualitatively different behaviors. We have already
noted this problem as that of structural stability. In this section, we wish to
present some elementary results characterizing structurally stable systems.
Since all mathematical models of physical phenomena contain simplifica
tions, errors, and other departures from reality, the importance of structural
stability as a cornerstone for effective modeling cannot be overemphasized.

We consider the two dynamical processes

Xl =F1(X1, X2),

x2 =F2(X1, X2),

Xl = 01(X1, X2),

X2 = 02(Xl , X2),

(I)

(II)

defined in the disc D: xi +x~:s 1. Further, we assume that the vectors
(Fl , F2 ) and (0 1 , O 2 ) are not tangent to the boundary of D and that they
always point to the interior of D. The original definition of structural
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stability of the system (I) was given by Pontryagin and Andronov in the
following form:

Definition 5.3. The differential equation (I) is said to be structurally stable
if there is a 5> 0 such that whenever the differential equation (II) is such
that

\
a(F;-GJ\ < 5,

aXj

at all points in D, then there is a homeomorphism (1-1, onto, continuous)
h: D - D, which maps trajectories of (I) onto trajectories of (II) and
preserves the orientation of these trajectories.

In other words, (I) is structurally stable when, for (I) and (II) close
enough, the trajectories of (I) can be continuously deformed onto those of
(II), preserving the direction of the flow.

To give practical conditions for testing the structural stability of a given
equation, we need a few other notions.

Definition 5.4. A singularity of the differential equation (I) is a point
(xf, xn such that F](xf, x!) = F2(xf, xn = O. The singularity is called hyper
bolic if the characteristic values of the matrix

r
aF] aF]~
ax] aX2J=
aF2 aF2

ax] aX2 (xf, xn

have nonzero real part. A hyperbolic singularity may be a sink, saddle point,
or source, depending upon whether J has 2, 1, or 0 characteristic roots with
negative real part.

In the neighborhood of a hyperbolic singularity, the system trajectories
can look like one of the following:

Sink Saddle point Source

Finally, consider a closed orbit 'Y of the differential equation (I). Through
a point p on 'Y we pass a small line segment u transversal to the trajectory
along the orbit (see Figure 5.4.). Following trajectories of (I) through points
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FIGURE 5.4 The Poincare map.

x on (T, we get the Poincare map 7T

defined for all x E (T sufficiently close to p.
Analogous to the definition of a hyperbolic singularity, we have the notion

of a hyperbolic closed orbit.

Definition 5.5. The closed orbit')' is said to be hyperbolic if Id7T/dxl,,~p-f 1.

Note that when Id7T/dxl,,~p< 1, then ')' is a stable limit cycle and the
trajectories spiral toward ')'. If Id7T/dxl,,~p> 1, then')' is an unstable limit
cycle, and if Id7T/dxl,,=p = 1, all trajectories near')' are closed.

With the foregoing definitions in hand, we can finally state the basic result
of Andronov and Pontryagin.

Structural Stability Theorem (in the disc). The differential equation (I) is
structurally stable if and only if

1. The singularities of (I) are hyperbolic.
2. The closed orbits of (1) are hyperbolic.
3. No trajectory of (I) connects saddle points.

Note that condition (1) implies that there are only a finite number of
singularities, while (2) and (3) together imply there are only a finite number
of closed orbits.

In Figure 5.5 we show that phase portrait of two differential systems, one
that is structurally stable and one that is not. However, we emphasize that it
is never possible to guarantee that a differential equation is structurally
stable just by looking at its phase portrait. For example, assume that the
origin is one of the singularities of a structurally stable system (I), while the
system (II) obtained by multiplying both components of (1) by (xi + x~) has
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A B

FIGURE 5.5 A, Structurally stable system; B, structurally unstable system.

exactly the same phase portrait but fails to be structurally stable since at the
origin the singularity of (II) is not hyperbolic (both characteristic roots are
zero).

Example: Classical Lotka-Volterra System The prototypical model for a
deterministic one-predator/one-prey system with continuous growth is the
Lotka-Volterra system

dHdt = H(t)[a - aP(t)],

dP
dt = P(t)[-b + t3H(t)],

where H(t) and P(t) are the populations of prey and predators, respec
tively, while the parameters a and b relate to the birth and death rates of
Hand P. The parameters a and t3 account for the interaction between
species. For obvious physical reasons, we confine our attention to the
region H ~ 0, P ~ 0, and all parameters are positive. (We recapture the
setting of the structural stability theorem by suitably scaling Hand P to
lie within that part of the unit disc in the first quadrant.)

The physically interesting system equilibrium point is

H* = b/t3, P* = a/a.

Evaluating the Jacobian matrix

_ [a-ap
J - t3P

-aH ]
-b+t3H

at (H*, P*), we find that the characteristic values of J at the singularity
are the purely imaginary numbers

A. = ±i(ab)l/2.
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Thus, the singularity is not hyperbolic. Consequently, the classical Lotka
Volterra model is not structurally stable, as condition (1) of the theorem is
violated.

In some intuitive discussions of structural stability, one sees the statement
that "a system is structurally stable if all nearby systems exhibit the same
qualitative behavior." The preceding example shows that once we make the
notions of "nearby," "same," "qualitative," and "behavior" precise, the
concept takes on a slightly different look, since all trajectories of the system
are closed orbits, with the equilibrium point (H*, p*) being topologically a
center. Furthermore, any nearby system arising out of a change in the
system parameters a, b, a, (3 will exhibit exactly the same sort of behavior.
Thus, on intuitive grounds we may be led to conclude that the system is
structurally stable. It is geometrically clear, however, that the trajectories of
nearby systems cannot be continuously mapped onto each other; hence, the
system is not structurally stable according to Definition 5.3, and this is borne
out, of course, in the fact that the system singularities are not all hyperbolic.
The moral is that intuitive notions and precise definitions do not always mix,
and when doing mathematics we must stick to the definitions. The above
case suggests that a different definition of structural stability may be in
order.

For a time it was hoped that structural stability would be a property
shared by almost all differential systems (that is, that the structurally stable
systems would form an open, dense set in the set of all systems). This, in
fact, is the case in dimension one or two. However, Smale and Williams
have shown that the reverse is true in higher dimensions, so there is no
general assurance that unstable systems can be arbitrarily closely approxi
mated by structurally stable ones if the phase space is of dimension n 2: 3.
Fortunately though, there do exist broad classes of n-dimensional systems
for which structural stability can be established. The simplest and best
known are Morse-Smale differential systems which exhibit only a finite
number of singularities and closed orbits. Others, like the Anosov systems,
have a very complicated geometrical structure due to the fact that they
possess infinitely many closed orbits. An account of these systems will be
given in a later section.

CATASTROPHE THEORY

A facet of the structural stability-bifurcation theory circle of questions that
has attracted much recent attention and publicity is "catastrophe" theory.
Basically, the theory may be interpreted as a partial answer to the question:
In a k -parameter family of functions, which local types do we typically
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meet? The same mathematical machinery also addresses the converse ques
tion: Given a function, what does a family that contains it look like, close to
the given function?

The importance of the above questions for practical model building
follows from the fundamental assumption underlying the use of elementary
catastrophe theory, namely, that the system under investigation is goal
oriented, even if the analyst is not aware of precisely what the goal may be.
In short, the system is governed by gradient-type dynamics and is attempting
to minimize (locally) some cost function. If the decision maker has k control
parameters aI, a2, ... , ak> at his disposal, the system outputs will assume
those steady-state values xi, xt ... ,x~ such that some function

is locally minimized. By analogy with classical mechanics, the function t is
termed a potential (or energy) function for the system. In general, the
steady-state values xt will depend upon the choice of the parameters a,
hence

i = 1, 2, ... , n,

and the idea of "catastrophe" enters when we consider a discontinuous
change in the values of xt as a result of a smooth change in the controls a.

Clearly, there are infinitely many systems of the above type (one for each
function f). However, many of these become the same if we make a change
of coordinates in the space of input and output variables a and x. The easiest
way to weed out insignificant changes is to concentrate on those properties
of energy functions that are topological only (actually, we allow only
smooth, i.e., infinitely differentiable, functions t and smooth coordinate
changes). The basic theorem of catastrophe theory, that of Thom, then
enables us to classify all smooth potential functions topologically. As we
shall see, the most remarkable feature of this theorem is that the classifica
tion depends only upon the number of control variables k (assuming that it
is finite).

The importance of Thom's theorem for applications is that, in general, we
do not know the relevant function t; we only assume that the system
dynamics are governed by such a potential. Then, the theorem justifies our
consideration of one of a small, finite number of "canonical" potentials as
models for the process, safe in the knowledge that the "true" function t,
whatever it may be, differs from the canonical model only by coordinate
changes. In addition, the theorem guarantees structural stability of the
canonical model. Hence, the true model must exhibit the same topological
character as the canonical model. Before giving a statement and discussion
of Thom's result, let us examine a simple special case.

Consider the family of functions in R 2 depending upon a single parameter
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a E R, given by
f(x l , X 2 ; a) = xi - aX l - x~.

The critical points of f are located at x!(a), x!(a) and are defined by the
equations

af
-= 3xi-a =0,
aX l

af
-=-2x2 =0.
aX2

Thus, the manifold of critical points, Mf , lies in the plane X2 = 0 along the
curve 3xi - a =0 in the (Xl' a)-plane in R 3

• We examine the critical points
of xi - aXl for various values of a.

As depicted in Figure 5.6, there are two critical points of xi-axl for
a> 0: a parabolic-type maximum where Xl is negative and a parabolic-type

a>O a=O a<O

FIGURE 5.6 Behavior of x 3 -ax for various a values.

minimum at some point i >0. As a decreases, these two critical points
merge into a single degenerate cubic critical point when a = 0, and there
after there are no critical points of Xl

3
- aXl for a < O.

The projection of Mr into the a space

l/J: M f ~ R k

(x*(a), a)~ a

is called the catastrophe map of the family f(x; a). For most values of a, Mf
provides a local covering of the control space R k

, perhaps with several
sheets. However, where l/J is singular, the number of sheets can change
abruptly. That is, there is a coalescence or bifurcation of critical points of f
at some value a = a. Such a singular point is called a catastrophe point of
family f(x; a).

In the above example, it is clear that f(xl> x2 ; a) = xi - aXl - x~ has a
catastrophe point at a = O. It is important to note that any small perturba
tion of f yields a new function family !(Xl> x2 ; a) which must necessarily
have a catastrophe point somewhere near a = 0, and near the catastrophe
M j has the same qualitative nature in its covering of the a -axis as does Mf
near a = O. This situation, the "fold" catastrophe, is depicted in Figure 5.7.
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FIGURE 5.7 The fold catastrophe.

We are now ready to state the main theorem of catastrophe theory as
discovered by Thorn and clarified and elaborated by E. Zeeman:

Thom-Zeeman Theorem. For each k:5 5 and n ~ 1 there is an open, dense
set of COO-potential functions fJi such that

1. Mr is a differentiable k-manifold smoothly embedded in Rn+k.
2. Each singularity of the catastrophe map I{I: Mf - R k is locally equival

ent to one of a finite number of standard types called elementary catastrophes.
The number of types is

k 1 II 2 3 4 5 ~6

No. of types 1 I2 5 7 11 00

3. The map I{I is structurally stable at each point of M f with regard to small
perturbations of f in fJi. Further, there exists a canonical form for f(x; a) near
each point (x*, a) E Mf as given in Table 5.1.

Remarks

1. Here C""-equivalence of two maps means that if

I{I: M-N, I{I': M'- N',
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TABLE 5.1 Canonical Forms for {(x; a)

k n Canonical Form for f(x; cr) Name

xi+crx , Fold

2
4 xi

CuspXI+cr,2+cr2x,

3
xi xi xi

SwallowtailS+cr, "3+cr2 2+ cr,x ,

4
x1 xi xi xi

Butterfly-+cr -+cr -+cr -+cr x
6 4 4 ' 3 22 '

3 2 xi+x~+cr,x,x2-cr,x,-cr2x2 Hyperbolic umbilic

3 2 xi - 3x,x~ +cr,(xi + x~) - cr 1x, - cr2x2 Elliptic umbilic

4 2 xix2+ xi + cr,x i + cr4X~ - cr,x , -cr2x2 Parabolic umbilic

5 xi + cr,xi + cr2xi+ cr,xi +cr4xi +crSx , Wigwam

5 2 xix2- x~+ cr,X~ + cr2X~ Second elliptic

+cr,xi+ cr4x2+crSx 1
umbilic

5 2 xix2+ x~ + cr lX~ + cr2X~ Second hyperbolic

+cr,xi + cr4X2+ crsx, umbilic

5 2 1±(xi + xi +cr,x lX~+ cr2X~ Symbolic umbilic

+ cr,x ,x2+ cr4x2+ crSx 1 )

then 1/1 and 1/1' are equivalent if there exist diffeomorphisms (1-1, onto, C~) h
and k such that

k-1l/l'h = 1/1.

2. Roughly speaking, structural stability of 1/1 at each point of Mr means
that given a point of Mr, there is some neighborhood of { in ~ such that
each function in the neighborhood has a catastrophe map that is equivalent
to I/Ir.

3. The infinite number of nonequivalent catastrophe maps for k ~ 6 may
be eliminated by a weaker notion of equivalence. However, the finite,
C~-classification for small k is most important in practice and is mathemati
cally the most appropriate setting for the problem.
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SOME CATASTROPHE-THEORETIC EXAMPLES

To illustrate the wide range of potential applications of the preceding
theorem, we present several examples in this section, from both the physical
and the social sciences.

URBAN PROPERTY PRICES

An increasingly evident problem in many urban areas is the rapid increase in
property prices, particularly for residential housing. Here we discuss a
simplified model of this process, using catastrophe theory to help model the
observed discontinuities of the property price cycle.

Let r represent the real rate of change of housing prices in a particular
urban market. In the first approximation, we assume that there are two
types of buyers who are interested in this sort of property and that the
combined level of their activities in the property market dictates r. Call these
buyers consumers and speculators. The former are interested in a wide range
of attributes of the housing bundle and their demand is strongly price
elastic, especially in volatile or cyclical markets. Speculators, on the other
hand, are overwhelmingly concerned with short-term (and often highly
leveraged) capital gains. Since the two groups have fundamentally different
objectives, time horizons, and price elasticities, they may reasonably be
thought of as disjoint sets of investors. If Dc represents the demand for
property by consumers and D. the demand by speculators, then the global
behavior of property prices may in this simple case be as depicted in Figure
5.8.

Increasing either Dc or D. tends to increase r, but the key to catastrophic
rises and falls lies with the speculators: changes in Dc for constant D. cause
only smooth changes in r. Suppose the process starts at 0 in the Dc-D.
space. There are then two possibilities for passage through the cusp region
and back to 0, the paths OPQRO and OPQSO. The first corresponds to a
spurt of speculative demand causing, after a short lag, a jump in prices from
P to Q, followed by a profit-taking sell-off by speculators with only
moderate increase in consumer demand, triggering a collapse of prices at R.
This sort of process is characteristic of the high-frequency components of r
and is quite typical in speculative markets. The demand by consumers for
market intervention is related to both the magnitude of r and the amplitude
of these relatively short-term "boom-and-bust" cycles. Slowing the fre
quency of the OPQRO cycle may be an appropriate response under such
conditions, if it allows Dc to build up sufficiently at Q to drive the return
path around the cusp through S. Rapid and distressing falls in price are thus
avoided. This observation illustrates, if crudely, the fast-time/slow-time
behavior divergence that is characteristic of dynamic catastrophe-theoretic
models.
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FIGURE 5.8 Catastrophe manifold for urban property prices.

Governments interested in orderliness and stability in housing markets
low and viscous r-usually regulate Dc and D s by tightening or loosening
the supply of money-that is, by raising or lowering interest rates. We now
show how the butterfly catastrophe, a generalization of the cusp, enables us
to upgrade the urban property price example by including time dependence
as well as interest rate changes in the catastrophe manifold. It will be seen
that inclusion of these important factors generates the possibility of a third
mode of stable behavior for r, a type of "compromise" rate of change of
prices.

For the butterfly (k = 4, n = 1), the canonical form for the potential is
given by

where a E R 4
, x E R. The associated catastrophe surface M IS the four

dimensional surface given by

a{ 5 3 2 + 0-=x +a1x +a2x +a3x a4= .ax
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The surface Me R 5
, and the bifurcation set (3 e R 4

• We draw two
dimensional sections of (3 to show how it generalizes the cusp. When the
butterfly factor a 1 > 0, the x 4 term swamps the x 6 term and we obtain the
cusp. The effect of the bias factor a2 is merely to bias the position of the
cusp. When the butterfly factor al <0, then the x 4 term conflicts with the x 6

term and causes the cusp to divide into three cusps enclosing a pocket. This
pocket represents the emergence of a compromise behavior midway be
tween the two extremes represented by the upper and lower surfaces of the
cusp.

To employ the butterfly catastrophe in the urban property price setting,
we let the bias factor represent the interest rate i, while the butterfly factor
is the negative of time, -to Thus, normalizing the nominal interest rate at
i = 0, we have the picture given in Figure 5.9.

cq---7"'-'I'--------"r- --.,..e-----'I''--~--~--I'-"'-.,.__---

FIGURE 5.9 Two-dimensional sections of the butterfly catastrophe.

Figure 5.10 shows that an increase in speculative demand coupled with a
sufficiently high consumer demand will lead to a control space trajectory
intersecting the interior pocket of intermediate r, rather than resulting in a
dramatic jump to the upper or lower surfaces of ~. As the previous
diagrams showed, manipulation of the interest rate i influences both the size
and position of this pocket of intermediate behavior, thereby theoretically
preventing catastrophic jumps or drops in property price rates-but at a
price in secular inflation.

LAKE POLLUTION

A problem that often arises is to explain (model) the severe fluctuations
during short time periods in phytoplankton biomass in small eutrophic lakes.
Here we exhibit a dynamical model of this process utilizing the cusp
catastrophe, since several characteristics of observed phytoplankton
dynamics suggest the appropriateness of a catastrophe-theoretic model.

We consider the total biomass of all algal species in the lake as the system
output variable x. In most lakes, and particularly in those in which blue
green algae are dominant, phosphate is the limiting nutrient. Thus, the
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FIGURE 5.10 The butterfly catastrophe.

soluble phosphate concentration will be modeled as one of the control
variables, a i • As a surrogate measure of light and temperature in the lake,
we consider one of the phytoplankton genera, Anabaena. Observations
show that algal die-offs are preceded by an accumulation of Anabaena on
the surface, which is caused by the tendency of that algae to form gas
vacuoles and float when exposed to low light intensities. Furthermore,
fluctuations in soluble phosphate concentration appear to be inversely
correlated with phytoplankton concentration. Thus, we choose our second
control variable az to be Anabaena concentration.

The equation for the change in phosphate concentration is based upon the
fact that algae incorporate phosphate at a rate proportional to the concent
ration of algae during the bloom. When die-off occurs, phosphate is precipi
tated to the bottom of the pond in the algal cells and is not released until
after the bloom-die-off sequence is completed. Thus, the soluble phosphate
concentration will exponentially tend to the equilibrium level measured in
the pond.

To formulate the equation governing Anabaena concentration, we note



160

that Anabaena growth rate will be controlled only by the number of
Anabaena cells present, while the decrease in intrinsic growth rate will also
be controlled by the concentration of other algae because of competition for
nutrient.

Finally, the equation for the total algal concentration follows from the
logistic-type model discussed at greater length in the next section.

Putting the preceding remarks together, and using the canonical cusp
equation for the output variable x, we obtain the following system of
equations to model the process.

i: = -(C1x3-c2ax+c3a2),

a1 = -c4x (a - ao)

where Cj,"" C6 are rate constants and ao is the equilibrium phosphate
level.

Using some experimental data obtained on a catfish pond in Alabama
(USA), the above equations were numerically integrated to simulate the
eutrophication cycle. The constants used were

C1= 3.10 (/Lg Chl/ml)-2(time)-1,

C3 = 0.05 (time)-l,

Cs = 1.35 (/Lg P/ml)-l(time)-t,

C2= 0.60 (/Lg P/ml)-l(time)-l,

C4 = 1.00 (/Lg Chl/ml)-1(timet 1,

C6 = 1.95 (/Lg Chl/mW 1(time)-t,

ao=O.

The initial values were Xo = 0.02, a~ = 1.28, a~ = 0.11.
The results of the experiment are given in Figures 5.11-5.13. The

agreement between the data and the above model is fairly good for
Anabaena and algal concentration except for the large dip in the fifth time
period. This dip corresponds to an increase in average wind velocity (accord
ing to the data source) and could be the result of increased vertical or
horizontal mixing, thereby removing algal cells from the top layer of the
pond at the measuring station. Thus, the simulation provides a deterministic
envelope within which such stochastic processes as weather can influence the
algal bloom~ie-off cycle.

The agreement for soluble phosphate concentration is less exact; the
discrepancy between the model and data may have several possible sources.
For instance, the measurement of phosphate concentration may have failed
to detect dissolved fertilizers because of their location in time and space, as
measurements were taken only every 1-3 days and at a single location in the
pond. Alternatively, the model may be incorrect and in need of reformula
tion. Only further experimentation that monitors phosphate concentration
more closely will determine the overall validity of the model.
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FIGURE 5.11 Trajectories of control and state variables plotted against data: total
algae (l/I). (Source of data: Parks et a!., 1975.)
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THE CUSP CATASTROPHE AND THE LOGISTIC EQUATION

A criticism often leveled at the use of catastrophe theory to model physical
phenomena is that no physical consideration is given to the use of the
standard (canonical) equation to describe the output equation. Here we wish
to show that for many growth processes in which the classical logistic
equation makes sense, the canonical cusp catastrophe is a logical choice for
modeling the process.

The logistic equation, which is widely used in population biology to model
population increase (or decrease) in an environment with an upper limit on
carrying capacity, has the form

X=(a-dx)x,

where a is the intrinsic rate of growth (without the limited carrying capacity)
and d is the contribution of one population unit to the decrease in intrinsic
growth rate due to density effects. Clearly, when ax = dx 2

, the population
stops growing.

One of the assumptions of the logistic model is that the decrement in
intrinsic growth rate for each member of population added is linear in x.
Although experimental evidence seems to confirm this relationship for many
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species and environments, certain combinations of species and environments
may exist in which density effects are more important and in which the
decrement in intrinsic growth rate may be proportional to the square of the
population. For instance, in the lake pollution problem just discussed,
nutrient influx from external sources is minimal, which increases competition
for available nutrient even when the available nutrient is at a high level. In
addition, Anabaena is known to secrete a substance toxic to other algae that
would rapidly limit phytoplankton growth at higher densities.

Modification of the logistic equation to fit the above situation results in
the new equation

x= (a - dx 2 )x.

Adding the effect of removal of species from the environment by death, we
have

x=(a-dx2 )x-b,

x=-(x 3 +ax+b),

(upon setting d equal to unity). Thus, a simple, logical extension of the
logistic model leads immediately to the canonical equation for the cusp
catastrophe.

PULSE AND VALUE STABILITY

In the section on graphs and pulse processes (p. 131), we introduced the
concept of pulse stability for a weighted digraph. Now we wish to take up
the problem of determining algebraic tests for pulse and value stability, as
well as consider certain questions relating stability of the graph to its
topological structure.

The central idea in the development of stability tests for graphs is the
concept of the characteristic values of a weighted digraph. To make this
more precise, we define the adjacency matrix A of a graph G as follows

i, j = 1,2, ... , n,

where u1, UZ, .•• , u" are the vertices of G and f(', .) is the weight function.
The characteristic values of G are then defined to be the characteristic
values of A.

The connection between the value of each vertex at time t, viet), the
change in value Pi(t), and the adjacency matrix of G is given in the next
result.

Pulse Process Theorem. In a simple pulse process starting at vertex 14;, we
have
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and
Vj(t) = Vj(O)+[I + A + A 2 + .. .+ A'lj,

where A is the adjacency matrix of the digraph and [·lj denotes the (i, j) entry
of the corresponding matrix.

As an illustration of this result, consider the simple digraph

U 2

+ +

u, + U 4

U 3

Here the adjacency matrix A is

A~[
1 -1

-]0 0
0 0
0 0

Assume that a simple pulse process starts at vertex u, at time t = 0, with
v;(O) =0, i = 1, 2, 3,4. A simple calculation shows that

A'{
0 0

~l
0 0
0 0

1 -1

I+A+A'~[;
1 -1

-n1 0
0 1
1 -1

Since the pulse process begins at vertex U1, we have pi2) given by the (1,3)
entry of A 2, i.e., pi2) =0. Similarly, vl (2) = VI(O)+[I + A +A2

]1.1 =0+ 1 =
1. These results are clearly in agreement with the pulse process theorem.

Our main objective is to relate the concepts of pulse and value stability to
the adjacency matrix A. No general necessary and sufficient condition seems
to be known at present. However, if we assume that the digraph G has
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distinct characteristic values (a generic condition), then we can state the pulse
stability theorem:

Pulse Stability Theorem. Suppose G is a weighted digraph with distinct
characteristic values. Then G is pulse-stable under all simple pulse processes if
and only if every characteristic value of G has a magnitude of, at most, unity.

As a result of the above theorem, we see that to test for pulse stability, we
need only calculate the characteristic root of A of largest magnitude. H it
lies outside the unit circle, then G is not pulse-stable; otherwise, G is
pulse-stable.

Value stability is determined by making use of the pulse stability result
just cited. The precise test is given by the following theorem:

Value Stability Theorem. The weighted digraph G is value-stable under all
simple pulse processes if and only if G is pulse-stable under all simple pulse
processes and unity (1) is not a characteristic value of G.

Thus, we see that value and pulse stability are both determined by
examination of the characteristic roots of the graph G, i.e., the roots of the
adjacency matrix A.

Example: Control of Insect Pests Consider the problem of controlling insect
pests in a cultivated field by spraying insecticides. We let PI denote a crop
plant that is limited because of crowding, HI a pest herbivore that eats PI'
W a specialized insect that kills only HI, G a generalized predatory
insect that eats both HI and Hz (another herbivore), Pz another plant, and
I the insecticide. A signed digraph representing this situation is shown in
Figure 5.14.

FIGURE 5.14 Signed digraph for insect control.
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Note that the sign on arc (Xi' Xj) represents the effect of a change in Xi

on the rate of change in Xj'

The adjacency matrix A for the digraph (Figure 5.14) is

PI HI W G H2 P2 I

PI -1 1 0 0 0 0 0

HI -1 0 1 1 0 0 0

W 0 -1 0 0 0 0 0

A= G 0 -1 0 0 -1 0 0

H2 0 0 0 1 0 -1 0

P2 0 0 0 0 1 -1 0

I 0 -1 -1 -1 0 0 0

The characteristic roots of A are

{-0.119± 1.85i, -0.335 ± 1.03i, -0.762, -0.328, O}.

Thus, the largest root has magnitude greater than 1 and, as a result of the
pulse stability theorem, the graph of Figure 5.14 is not pulse- or value
stable. Such a result could have been predicted from inspection of Figure
5.14 since there are many deviation-amplifying cycles, e.g., G - H 2 

P2 -H2 -G.

If a given digraph is not pulse-stable, it is of obvious interest to know
what kind of structural changes would be stabilizing. In other words, we
would like to be able to classify stable graphs according to their structural
characteristics, since we could then determine stabilizing strategies by mak
ing those structural changes that would transform the given graph into a
stable structure. Unfortunately, no general results of this type yet exist.
However, certain specific classes of digraphs often appearing in practice
have been studied and useful results obtained. We refer the reader to the
chapter references for more details.

RESILIENCE OF DYNAMICAL PROCESSES

The problem of responsiveness of a system to perturbations in its state or
parameters has already been alluded to a number of times in earlier
sections. In rough terms, the "resilience" of a dynamical process is a
measure of how capable the system is of absorbing disturbances without
changing its basic behavior. Clearly, there is far too much vagueness in the
foregoing "nondefinition," and in the following sections we shall attempt to
formulate the resilience concept in a consistent mathematical fashion. We
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should note at the outset, however, that there is by no means universal
agreement among practitioners on exactly what a resilience measure should
consist of. While there are many points of contact between resilience and
the notions of structural stability, bifurcation theory, catastrophe theory,
connective stability, and the other concepts discussed earlier, no one of
these topics seems to capture the entire essence of the resilience idea, at
least as it is understood by workers in ecology, where the concept, or at least
the terminology, seems to have arisen. Thus, our treatment will necessarily
be a tentative and somewhat personal mathematical assessment of how the
resilience ideas can be formulated mathematically and thereby brought into
the domain of objective, rather than philosophical, systems analysis.

As with the other stability concepts of this chapter, a specific mathemati
cal formulation of system resilience is dependent upon the type of
mathematical formulation used to describe the system. Since the work done
thus far on resilience has all been based on systems described by ordinary
differential equations, we shall also focus on this area. Other system descrip
tions in terms of graphs, input-output relations, and so on, while intuitively
having their own resilience notions, have not been sufficiently studied to
justify their inclusion here. In fact, as will be seen below, study of the
resilience concept is still at the definitional level, even for a differential
equation model, and no real mathematical results are yet available. It is to
be hoped, however, that the "right" definitions will quickly yield useful,
applicable theorems.

We begin with a system I described by the set of differential equations

i = [(x, a)+ g(t), x(O) =xo, (I)

and assume that the origin is an equilibrium point when no outside distur
bances are acting, i.e., [(0, a) = 0 for all a when g(t) == O. Here a is a vector
of system parameters. In the context of the foregoing setup, the principal
ingredient of the resilience idea is to ask either (a) under what conditions the
disturbance function g(t) can cause the system state x(t) to leave the domain
of attraction D of the origin or (b) what variation in the parameters a will
result in a modification of the boundary of D, aD, such that the system state
shifts to the domain of an attractor other than the origin.

A naive approach to the first problem would be to measure the resilience
of the system by the nearest approach of x(t) to aD during the time history
of the process (assuming g(t) == 0, a = a* for all t ~ 0). The objections to
such an approach are primarily practical, rather than mathematical: namely,
the minimal distance of x(t) from aD is a rather poor indicator of how
severe a perturbation I can absorb with leaving D. The reason is that the
disturbance necessary to push I out of D depends not only upon the
magnitude of the disturbance but also upon its direction. In geometrical
terms, we might imagine the situation depicted in Figure 5.15. Here the
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FIGURE 5.15 Potential well for I.

region D can be thought of as a potential "well" (as is the basis for the
Lyapunov theory). In Figure 5.15A, D is a shallow well, and, consequently,
even if x(t) always remains far from aD, it is relatively easy to move the
system beyond aD. On the other hand, if D has the shape depicted in Figure
5.15B, then even if x(t) is always near aD, a substantial disturbance is
needed to push I over the edge into the domain of attraction of another
equilibrium.

The above considerations indicate that resilience is not an intrinsic prop
erty of I, but that it depends upon I and the class of admissible perturba
tions. As a trivial illustration of this point, we note that if the minimal
distance of x(t) from aD is a and Ilg(t)1I < a for all t, then I will "absorb" all
possible disturbances, i.e" I is infinitely resilient to disturbances from this
class. On the other hand, if the maximal distance of x(t) from aD is 13 and if
Ilg(l)ll> 13 for all t, then the same system I is unable to absorb any
perturbation, i.e., I is totally nonresilient with respect to the given class of
perturbations. Thus, without at least an implicit agreement on the class of
admissible disturbances, the resilience concept is a rather empty one.

Since we have seen that both the magnitude and direction of the disturb
ing force g(t) must be taken into account when formulating a resilience
measure, let us consider the following approach to the problem. At each
time t, we construct the direction vector from x(t) to the point on aD that is
nearest to x(t) (see Figure 5.16). The vector v(t) is constructed from the
known vector x(t), (obtained perhaps through numerical integration) and
the vector d(t) (which is known since we assume aD has been calculated).
Thus, v(t) = d(t) - x(t). H we now assume that g(t) is a "pulse" disturbance
at time t-i.e., g(t) = 1L5(t-s), where IL is a vector indicating the magnitude
and direction of the pulse-we may attempt to determine whether or not the
pulse will drive the system beyond aD by comparing the vectors IL and v(t).
As noted, the question will be decided by whether or not IL is of sufficient
magnitude and acting in the right direction to move x(t) beyond aD. (Here
we may neglect the free dynamics f(x) since we have assumed that g(t) is a
single "delta-function" input.)
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aD

FIGURE 5.16 State-space behavior of I.

If we introduce the magnitude function m as

m(t) = 11p,11-llv(t)11 ,
and the direction function 8 as

(p" v(t))
cos 8(t) =11p,llllv(t)11 '

where ( ,) denotes vector inner product and 11·\1 is the euclidean norm, then
we see that the resilience of I at time t can be semiquantitatively charac
terized as follows:

Low resilience: when m(t) ~ 0 and cos 8(t):= 1
High resilience: when m(t) < 0 or cos 8(t) < O.

In other words, I is resilient with respect to the pulse disturbance p, at time
t if the magnitude of p, is too small or if p, pushes x(t) away from aD.
Conversely, if p, is of higher magnitude than v(t) and drives x(t) towards
aD, then we are justified in saying that I is of low resilience.

The considerations just discussed provide a basis for a systematic
mathematical approach to the resilience question as it relates to external
perturbations of the state x(t). Continuously acting disturbances or a combi
nation of pulses can easily be accommodated within the foregoing setup
through routine mathematical adjustments similar to those employed in
probability theory when passing from discrete to continuous or mixed
distribution functions. In such cases, of course, we will also have to account
for the free dynamics f(x) in assessing the resilience of I to a given class of
disturbance.

RESILIENCE AND CATASTROPHES

Direct external influence on the state is one way in which a system may shift
its position from the domain of one attractor to that of another. The
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FIGURE 5.17 Domains of attraction of the origin.

preceding section examined this point in some detail. Now we consider the
second way in which the system may move to another attractor region:
changes in the dynamics themselves by variation of the system parameter
vector a.

Consider the situation shown in Figure 5.17. Here we see that when the
parameter vector a = at, the initial state Xo lies within the region bounded
by aDt and the system tends to the origin. H the vector a shifts to a = a2 ,

then the same initial state Xo now lies outside the region bounded by aD2

and the ultimate fate of the system is to end up at x =x!, an equilibrium far
removed from O. It is easy to imagine a situation where Xo is very near aDt ,

in which case even a slight change in the vector a may deform aDt enough
to cause Xo to lie within the attractor region of a different equilibrium.

As we have observed in an earlier section, the situation just described
lies at the basis of (elementary) catastrophe theory a la Thorn-Zeeman,
wherein we explicitly recognize that the equilibria (in this case xf
and the origin), as well as their respective attractor boundaries
(aD!> aD2 ) , depend (smoothly) upon the parameter vector a. Thus, an
intimate connection exists between the catastrophe map X described in the
section on catastrophe theory and the concept of system resilience, since, in
an intuitive sense, the closer the initial parameter setting a is to a singularity
of 1/1, the less resilient the system is (to changes in a).

Keeping in mind the above considerations, we may formulate a measure
of resilience by considering the magnitude and direction of change in the
vector a needed to drive a through a singularity of X (see Figure 5.18 for
the cusp). Since the arguments are much the same as those given in the last
section, we shall omit them for brevity, noting that, as before, the resilience
concept is fairly vacuous unless we first agree upon the class of admissible
changes in a. In Figure 5.18, for any a, we construct the vector v from a to
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FIGURE 5.18 Singularity curves for the cusp catastrophe.

the nearest singularity of X and compare v with the allowable changes in a
in order to measure the resilience of I for the given a, relative to the
admissible perturbations.

Example: Stock Market As a simple illustration of the above argument,
consider an elementary stock market model in which the output (state)
variable is the rate of change of some market index (e.g., the Dow-Jones
averages), while the input variables a l and a z represent the excess
demand for stock by fundamentalists and the fraction of speculative
money in the market (chartists), respectively. The details behind such a
model are given in the paper cited in the chapter notes. Modeling the
situation using the cusp catastrophe yields the picture shown in Figure
5.19.

Now assume that the units have been selected so that the above model
is the canonical cusp catastrophe discussed above (pp. 151-155)-that is,
the bifurcation set in the input space C is such that

az = 5.67ai/3
,

or
27ai-4a~=O.

These equations are obtained from the canonical cusp potential

by the fact that along the cusp lines we must have

cPf
ax2 =0.

Using these equations, we can eliminate x and obtain the stated result.
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FIGURE 5.19 Cusp model of a stock market.

Assume that the initial parameter vector a is such that the fundamen
talist excess demand is 0.1 and the fraction of speculative money in the
market is 0.58, Le., a = (0.1, 0.58). The point nearest to a on the
bifurcation curve is

b(a) = (0.3, 0.44).

Thus, the vector v(a) is

v(a) = (0.2, -0.133).

Since v(a) represents the change in a needed to cross the bifurcation
curve, we see that the stock market described by the parameter vector a is
nearly twice as resilient to changes in at, fundamentalist demand, as to
changes in a2, speculative action.

The preceding catastrophe-theoretic interpretation and analysis of resili
ence is, of course, restricted to those situations in which the hypotheses
underlying elementary catastrophe theory are satisfied:

• The system dynamics f(·) are smooth, i.e., c= functions of x and a and
of gradient type.
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• The number of components in the parameter vector a is no greater than
five .

• The system equlibria are only fixed points: I has no limit cycles,
Lorenz attractors, or more exotic types of steady-state behavior. In other
words, only "elementary" catastrophes can occur.

If any (or all) of the above conditions are violated, it may still be possible
to analyze resilience employing structural stability concepts other than
catastrophe theory. We shall now briefly examine some possibilities.

MORSE-SMALE SYSTEMS AND RESILIENCE

For systems of dimension ::52, we have already discussed the problem of
structural stability (pp. 147-151). From the past few sections, it is clear that
some of the basic ideas underlying the idea of resilience are closely allied to
structurally stable systems, since a critical ingredient in assessing resilience is
determining whether the dynamics remain "essentially unchanged" under
the influence of disturbances to the process. Structural stability of vector
fields is one way to analyze this question, since the original system and its
perturbed version can be thought of as qualitatively the same if they have
similar phase portraits. In this section, we will make the idea of structural
stability for vector fields more precise, as well as examine a large class of
systems arising in practice whose dynamics are structurally stable. These are
the so-called Morse-Smale systems, and the results we present provide a
partial generalization of the structural stability theorem, given for the disc in
the section on structural stability to the case of n-dimensional systems.

We begin with M, an n-dimensional C=-manifold (M is a topological
space that in a neighborhood U of each point m looks like Rn). Thus, we
can perform differential calculus in a consistent manner on M (see Figure
5.20), with the coordinate map a: M_Rn being Coo. Simple examples of
manifolds are Rn, spheres, tori, and open subsets of Rn.

FIGURE 5.20 The manifold M and a local neighborhood of a point m.
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A CI-vector field (or differential equation) on M is an assignmnent of a
tangent vector v(x) to each point x EM, such that the vectors v(x) vary
smoothly (in a C I way).

The concept of "similar phase portraits" for two vector fields v and w is
captured by the following definition.

Definition 5.6. Two vector fields v and ware topologically conjugate if
there is a 1-1, onto, continuous map h taking directed solution curves of v
onto directed solution curves of w.

Thus, if v and w are topologically conjugate, they will have the same
number of equilibrium points, the same number of periodic orbits, and the
same general qualitative behavior.

We now explain "nearby" vector fields by putting a topology on the space
V(M), the CI-vector fields on M. We say that v and ware close if they are
pointwise close and so are their first derivatives. Precise definitions are a bit
unwieldy, so we shall refer the reader to the chapter references for details.
The idea of nearness of vector fields allows us to define structural stability.

Definition 5.7. A vector field v E V(M) is structurally stable if there is a
neighborhood N(v) in V(M) such that each WE N(v) is topologically conju
gate to v.

The main problem in structural stability is to find necessary and sufficient
conditions for a vector field to be structurally stable.

Examples

1. Simple harmonic oscillator We have already seen (intuitively) that
this elementary system described by the dynamics

x=-x

has a phase portrait consisting of concentric circles in the (x, x) phase
plane. This vector field is not structurally stable, since any vector field
topologically conjugate to v has only periodic orbits, and we can always
tilt the arrows of v (see Figure 5.4) slightly toward the origin to obtain a
nearby vector field with a nonperiodic orbit.

2. Van der Pol equation Here the vector field v is defined by the
equations

XI =X2

X2 = -e(xi-l)x2 - XI' e>O.
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FIGURE 5.21 Phase portrait for simple harmonic oscillator.

The system has one periodic orbit, and every orbit outside it moves
toward it and every orbit inside spirals out toward the periodic orbit (see
Figure 5.22). Thus, this equation is structurally stable for all e > O.

Periodic
orbit

FIGURE 5.22 Phase portrait for the Van der Pol equation.

The most important class of structurally stable vector fields, the Morse
Smale systems, are characterized by the following conditions:

• v(x) has finitely many equilibrium points, i.e., points x such that
v(x) = 0 and each such point is hyperbolic.

• v(x) has finitely many periodic orbits and each such orbit is hyperbolic.
• The stable and unstable manifolds of equilibrium points and periodic

orbits meet transversely when they intersect (this means no tangency is
allowed between stable and unstable manifolds).
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• The nonwandering points of I are just the equilibrium points, together
with the points on the periodic orbits. (Note: A point x E M is nonwandering
if for each open neighborhood U of x and each T> 0, there exists at> T
such that x(t) E U if x(O) E U. In other words, any solution curve of I that
starts in U eventually returns to U infinitely often.)

In the section on structural stability, we gave necessary and sufficient
conditions for structural stability in the case M = two-dimensional disc. In
actual fact, the following stronger result is true: if dim M = 2, then the
structurally stable systems on M coincide with the Morse-Smale systems. If
dim M> 2, then there may be other structurally stable vector fields on M, in
addition to the Morse-Smale systems.

The idea of resilience as considered in this book is clearly related to the
structural stability ideas just given. However, there are some notable differ
ences that it is of some value to list:

1. Structural stability is concerned with the entire phase portrait of the
system; resilience is usually involved only with positive time asymptotic
behavior.

2. Perturbations in resilience analysis generally do not involve varying the
vector field v over a whole neighborhood in V(M). We generally assume
that a submanifold P of V(M) is given such that IE P and the only
variations in I will also belong to P. We might think of P as described by a
finite set of parameters contained in I, and we change (perturb) I by
varying these perturbations.

3. While structural stability is too strong a concept for resilience, because
of (1) and (2), the related concept of fl-stability, wherein we impose
topological conjugacy only on the nonwandering points of I, is too weak.
The reason is that fl-stability implies nothing about structural changes in the
boundary of the domain of attraction of the nonwandering points.

The foregoing considerations suggest the following provisional definition
of a resilient system I.

Definition 5.8. Assume that the continuous-time system I is described by
the differential equation x= f(x) and that P is a submanifold of C1 vector
field on M such that f E P. Then I is called resilient if

1. There is a neighborhood U of f in the C1-topology such that all
systems I' defined by vector fields f' E un P have the same number (finite)
of attractors.

2. For each attractor Ai of I and each nearby system I', we have a finite
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set ai(I') of attractors of I' and the maps

and

I'~ U Hi(I')

are continuous with the C1-topology on unp and with the Hausdorff
metric on Ai and Hi. Here Hi = closure of the attractor region for Ai.

The foregoing definition of resilience is constructed so that an attractor of
I can "split" into several nearby attractors in I' and not destroy the
resilience of the system. This is reasonable since such a splitting should not
change the asymptotic behavior of the system in any essential way.

Example The system

8>0, (5.10)

would be resilient in the above sense to variations of IL about IL = 0, even
though the stable fixed point for IL <°splits into one unstable and two
stable points at IL = 0. The main issue to note is that the two attracting
points are still close together.

Resilience of a system, as just defined, is a qualitative property: I is or is
not resilient with respect to perturbations within the submanifold P. If we
look for a numerical expression attempting to measure the degree of
resilience of I, several possibilities suggest themselves, depending upon the
particular situation. Let us examine some of the possibilities:

Minimal Resilience Here we are concerned about the range of perturba
tions within the manifold P that do not induce qualitative changes in the
behavior of I. Basically, this is the concept of resilience discussed in earlier
sections.

One mathematical formalization of minimal resilience is to assume that
we are given a metric d(·, .) defined on the "parameter manifold" P and let

Sp = {I' E P: I' is not resilient by Definition 5.8}.

Then we define minimal resilience of I by

Thus, Rmin(I) is the distance from the system I to the nearest (in the sense
of d) non-resilient system I' in P.
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Speed Resilience A measure of resilience more in line with standard
sensitivity analysis is to consider the "speed" with which the boundaries of
the attractor regions change when I is perturbed to I' within P. Clearly, a
very sensitive dependence of basin boundaries does not correspond to an
intuitive sense of resilience, even if the system I is structurally stable, Le.,
more than just resilient.

A measure of speed resilience is provided by

where Ph is a ball of radius h in P about I, Ai and Bi as above.
Note that RspeeiI) may be 0 even if I is resilient if the location of

attractors or basins depends non-differentiably on the parameters. For
example, the system (5.10) is resilient but has RspeeiI) =o.

Volume Resilience The size of the region in state space corresponding to a
"desired" attractor region can also be used as a resilience measure since a
large reduction in the size of a particular basin is almost as catastrophic as its
complete disappearance. One measure of volume sensitivity resilience is

R" = lim -hI sup Iv(B) - v(B')I,
h~O l:'EPk

where B is the desired basin, B' the corresponding basin for I', and v (.) a
function measuring volume.

We note that volume resilience should be viewed with caution since in
high-dimensional models (n > 2), the basins will often have a complicated
structure and may contain a large volume while the boundary could still be
close to each point in the basin.

As a concluding remark, we see that in relation to catastrophe theory,
resilience presents a twofold extension: attractors much more complicated
than fixed points are taken into account, and we concern ourselves explicitly
with the properties of the domains of attraction. We now turn our attention
to various means of inducing or enhancing stable or resilient behavior in
system dynamics.

AN ECOLOGICAL EXAMPLE OF RESILIENCE:
THE BUDWORM PROBLEM

All of the preceding notions concerning resilience and dynamical processes
cannot possibly be appreciated in the abstract. The joy, as always, is in the
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details, and for these we turn to an important ecological system, the spruce
budworm. The budworm is an insect pest that periodically destroys vast
areas of forest in northeastern North America. From a system-theoretic
viewpoint, the dynamics of the budworm outbreaks are interesting because
they exhibit the rapid fluctuations and multiple time-scales characteristic of
catastrophe theory models. In this section, we show how the cusp catas
trophe can be used to characterize some of the resilience aspects of the
budworm ecosystem.

The dynamics of budworm growth and die-off can be expressed by the
following third-order system

dB _ (1- B(a3 + E
2
)) _ a 4 B

2

dt -atB a2SE2 a sS 2+B2 '

where B(t) is the budworm density, S(t) is the amount of forest foliage
available, and E(t) is a variable characterizing the "energy reserve" in the
forest, i.e., the condition of health of the leaves and branches in the forest.
The parameters at to alO represent various birth and death constants, rate
of removal of budworm by predation, and so on. The general question to be
asked about the foregoing model is: what combination of parameter values
cause low-equilibrium budworm densities to shift rapidly to high equilibrium
levels, or, conversely, what parameter values enable one to move high
budworm levels back to low equilibrium levels?

To answer the above question, we examine the equilibrium levels of B, S,
and E. Call these quantities ii, S, E. After a moderate amount of algebraic
manipulation of the above equations, we find that the equilibrium budworm
level ii satisfies the cubic equation

-at (a3 +E 2)B3+ yata2E3ii2

- [y2ata sE 2(a3 +E 2)+ ya 2a 4 E3]ii

where we have set y = as/a? In order to bring this equation into standard
form for the cubic, we must eliminate the quadratic term. This is accom
plished through the change of dependent variable
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giving the new cubic equation in y

y3+ ay +b=0,

where

{ -(17h3ala~E9 -3 [y2a\aSE2(a3+E2)+-ya2a4E3] 3 -S1
(a3 + E 2f + -ya2E 3(a3+ E 2 ) -y a\aPSE

b =..;....~.:-;~-------~""::-~...:...._------...;.
al(a3 +E 2

)

Since the equilibrium level of budworm ii is related to the variable y
through the elementary transformation above, we see that the canonical
cusp geometry, which governs the behavior of y as a function of a and b,
also governs B and enables us to synthesize the entire equilibrium behavior
of B into one picture, Figure 5.23. The cusp geometry tells us that no
discontinuities in B can occur if a 2: 0, Le., if

3[-yalas(a3E2f+a2a4E(a3 + E2
)]_ 5-yala~E42:O.

For example, if the forest energy reserve is low (E = 0), then we see that no
budworm outbreaks will occur since the above expression will always be
nonnegative. On the other hand, for high values of E (E = 1), realistic
ranges of the various parameters indicate that no combination of values can
ensure against possible budworm outbreaks. However, this does not mean
that outbreaks necessarily will occur, since the value of the variable b also

a

Region ofB
remission

b

Budworm
manifold

FIGURE 5.23 Budworm manifold.

Parameter
space
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plays a role in determining whether or not the critical branch of the cusp
curve has been crossed.

What is important about the above example is that it enables us to see
that it is the combination of system parameters given by a and b that count
insofar as the budworm discontinuities are concerned. It seems unlikely that
any amount of physical insight and intuition into the budworm process
would enable one to conjecture that it is just this combination of parameters
and no other that provides the relevant information, but it is so. In addition,
once the parameters a and b have been obtained, the well-studied cusp
geometry tells us that the critical branches in (a - b)-space, where discon
tinuities can occur, satisfy the equation

Thus, we have a definite algebraic expression involving all the system
parameters, albeit in a highly complicated way, which gives us a complete
picture of the entire equilibrium behavior of budworm as a function of the
system parameters.

The moral of the above story is that physically meaningful variables and
mathematically convenient variables are usually two quite different objects
and the successful analysis of a given situation quite often hinges on being
able to find an appropriate transformation from one to the other. In the
above situation, it was fortunate that Ii already satisfied a cubic equation, so
that only the trivial transformation from Ii to y was needed to obtain the
convenient mathematical form. More generally, a somewhat more complex
transformation would be needed. This is one of the challenges inherent in
successful use of catastrophe theory for the analysis of system problems.

STABILITY, CONTROL, AND FEEDBACK DECISIONS

Interesting as the above stability considerations are, they relegate the
analyst to the role of a passive observer-no provision is made for the
modification of undesirable system behavior by application of external
inputs, or controls, chosen by the decision maker. Conceptually, allowance
for externally chosen controls in the system model shifts the role of the
analyst from that of a passive observer to that of an active "intervention
ist." Philosophically and psychologically, this is a quantum leap forward to a
substantially different view of the system, as already noted in Chapter 1. In
the following sections we wish to show that the provision for regulation also
represents a major methodological discontinuity in our approach to the
analysis of the system and naturally leads to one of the keystone ideas of
modern system theory-the concept of feedback.
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To introduce the main idea of stability via feedback control, consider the
state variable description of I:

i(t) = f(x(t), u(t)), x(O) =c, (I)

where, as usual, x is a vector function representing the state of I, and where
the control u(t) is a vector function at the disposal of the decision maker. In
general, physical, social, or resource constraints will be such that the
admissible control functions u(t) must lie in some set of functions U; thus,
u E U. If we now assume that the uncontrolled system (i.e., when u(t) == 0)
has an undesirable behavior, the question arises of whether the system
trajectory x(t) can be improved (in some sense) by application of controlling
inputs from U. Clearly, this question must be made more precise if it is to be
attacked mathematically.

The most classical way to approach the above control question is to ask
whether I can be stabilized by application of controls from U. In general,
we assume that the equilibria of the uncontrolled system are not asymptoti
cally stable in the Lyapunov sense and we attempt to stabilize the system
using the control function u(t). The simple scalar linear example

i = fx + u(t), x(O) = c,

with f> 0 shows that, in general, it is not possible to stabilize using controls
of the form u(t) since the representation

x(t) = cefl +ref(l-S)u(s) ds

shows that no bounded function u(t) can be found to "cancel out" the effect
of the growing exponential ce ft for all possible values of c, the initial
disturbance.

A control law of the form u = u(t) is called "open-loop" in the control
literature, since the decision (control) is not a function of the current state of
the process x(t), but only of the current time t. One of the basic precepts of
modern (post-1950) control theory has been that control is a function of
state-that is, the control law u should possess the structure

u(t) = u(x(t), t).

Such laws are called feedback control laws, since the state of the system is
observed and then "fed back" to the decision maker, who then makes his
decision based upon the system's behavior as characterized by the state x(t).
The two conceptually different views are characterized in Figure 5.24.

To see the profound mathematical difference feedback control can make,
consider again the scalar linear problem discussed a moment ago. We saw
that no bounded open-loop control law could make the origin asymptotically
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(Open loop)

(Closed loop)

FIGURE 5.24 Open-loop versus closed-loop control.

stable if f> O. Now consider the simple linear feedback law

u(x, t) = kx(t),

where k is a constant such that k > f. Using this law, the closed-loop
dynamics are

j; = (f - k)x(t), x(O) = c,

and we see that the origin is asymptotically stable for all initial perturbations
c. As shall be noted in a moment, this result is a special case of one of the
foundational results of linear system theory, the pole-shifting theorem.

At this point it may be appropriate to inquire into the physical difference
between open- and closed-loop control laws. While we shall be more precise
in a moment, here the two types of laws may be contrasted by noting that
the open-loop laws attempt to force the system externally into a different
behavioral mode without changing the relationship between the system
states in the uncontrolled mode, i.e., without modifying the connections
between the state variables. On the other hand, closed-loop, or feedback,
laws change the behavior of the system by actually changing the dynamics
f(., '), itself. Thus, the feedback law rearranges the connections between the
state variables and, as a consequence, changes the system trajectory x(t) by
actually changing the topology of ~.

LYAPUNOV STABILITY AND POLE-SHIFTING

The simple example of the last section shows that for scalar linear systems, it
is possible to alter the characteristic value (and, hence, the stability proper
ties) of the system arbitrarily by employment of a linear feedback control
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law. Now let us inquire into the possibility of extending this result to
multidimensional systems.

Assume that the system is described by the set of linear differential
equations

i =Fx+Gu, x(O) = c,

where x is an n-dimensional state vector, u an m-dimensional control
vector, and F and G are constant matrices of sizes n x nand n x m,
respectively. Utilization of the feedback control law

u(t) = - Kx(t),

where K is a constant m x n matrix, clearly generates the closed-loop system
dynamics

i = (F-GK)x, x(O) = c,

and our problem is reduced to consideration of the following question:
Given F and G, can we always find a constant matrix K such that F - GK
has its characteristic values located at prespecified points in the complex
plane? Remarkably enough, the answer to this question is yes under very
modest assumptions about the matrices F and G. The next result details the
whole story.

Pole-Shifting Theorem. Assume that the pair of matrices (F, G) is com
pletely reachable, i.e., the n x nm matrix

C(6 = [G IFG I ... 1 Fn-IG]

is of rank n. Then, given an arbitrary set of complex numbers A =
{AI, A2 , ••• , An}, it is always possible to find a constant matrix K such that the
characteristic values of F - GK coincide with the set A.

Remarks

1. The reachability condition on (F, G) is a generic property. Thus,
"almost all" linear systems satisfy this hypothesis.

2. If the set A is symmetric, i.e., A E A implies AE A, then the entries of K
may be taken to be real. In general, K must be complex.

3. The name "pole shifting" comes from the engineering literature, where
the characteristic roots of F are often interpreted as the "poles" of the
rational transfer function matrix for the system I. The theorem states that if
I is reachable, then these poles may be arbitrarily altered by linear feed
back.

The practical importance of the pole-shifting theorem cannot be overem
phasized, since it implies considerable flexibility in the design of any system.
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The designer need not worry about designing certain stability characteristics
into the system, as any unstable behavior manifested by the system may be
arbitrarily changed by application of an appropriate feedback control law.

Example: Equilibrium in Group Interaction Let us consider a formal model
of social interaction developed by G. Romans and treated mathematically
by R. Simon. The system contains four variables:

1. The intensity of interaction (or communication) among members of a
group, T(t)

2. The amount of friendliness (or group identification) among group
members, I(t)

3. The total amount of activity carried on by a member of the group,
W(t)

4. The amount of activity imposed on the group by its external environ
ment (the amount required for its survival), P(t)

For purposes of this example, we shall assume that the variables I, W,
and T represent the deviation of interaction. friendliness, and so on, from
some desired, or ideal, level (I = W = T =0) and that the system has been
disturbed from the ideal level by some perturbation. Our problem will be
to see if it is possible to stabilize the interaction process by manipulation
of the external environment P.

By translating Romans' verbal postulates about the interrelations of the
above variables, a plausible mathematical model of the interaction process
is provided by the following differential equations

dI
dt = b(T-{3I),

dW
-=cI(I-yW)+ciP- W),
dt

and the algebraic relation

The parameters aI' a2 , c h c2 , y, {3, and b represent various interaction
strengths and proportionality constants. The first equation may be roughly
interpreted as saying that friendliness will increase or decrease as the
amount of interaction is disproportionately large or small relative to the
existing level of friendliness. Similar interpretations can be given to the
other equations.

A small amount of algebraic manipulation of the above model soon
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reduces it to the standard form

x=Fx+Gu,

where

G= (~J,

x=(~), u=P.

For the sake of definiteness, let us assume that

c I 'Y+ c2<b(a l -{3)

so that the characteristic roots of F are unstable. We ask whether we can
find a linear feedback based upon measurement of friendliness and group
activity that will move the roots to the left half-plane; in other words, we
seek a law

P(t) = -(kIf+ k 2 W)

to stabilize 1. This question is clearly a weak version of the pole-shifting
problem, with the set A being any collection of numbers in the left
half-plane.

To study the question posed above, we must first check the reachability
of 1. It is easily checked that the reachability matrix <6f is

which has rank 2 if and only if

ba2c2'f O.

The pole-shifting theorem guarantees that if ba2c2'f 0, then there is no
mathematical obstacle to finding a feedback law P that will stabilize the
system to any desired degree. If 1 is already stable, we can use the law P
to enhance the stability by moving the roots of F farther into the left
half-plane.

The main deficiency of the pole-shifting theorem is that, as it stands, it
applies only to linear systems. However, its applicability can be substantially
extended by appeal to the Poincare-Lyapunov stability theorem (p. 139).
There we saw that if the system was described by

x = Fx + h(x), x(O) = c,

where llell sufficiently small and Ilh(x)II/llxll- 0 as Ilxll- 0, then the system's
asymptotic stability is determined by its linear part, Le., by F. Thus, if we
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add a control term to the above system, obtaining

x= Fx+ h(x)+ Gu, x(O) = c,

the conclusions of the pole-shifting theorem may be employed to move the
roots of F to desired locations, thereby ensuring the stability of the system.
Furthermore, the condition on IlcII, which depends upon the root of F of the
largest real part, can be considerably weakened by "shifting" this largest
root far into the left half-plane. The connections between this result and
some of the resilience notions considered earlier are evident.

BIFURCATION CONTROL

Now let us consider the problem of arranging suitable feedback control so
that the nonlinear system

x= f(x, u, a), x(O) = c

has no bifurcation points for any values of the parameter vector a. In other
words, we wish to choose a control

u(t) = u(x(t)),

so that the closed-loop dynamic

i = f(x, u(x), a)

has no bifurcation points for any value of a. For the sake of definiteness in
what follows, let us assume that f(O, 0, a) = °for all a.

In general, the above problem is unsolved, and we must content ourselves
with some sufficient conditions for such a "bifurcation-free" control law.
These conditions will be seen to be an almost trivial consequence of the
following version of the global implicit function theorem.

Global Implicit Function Theorem. Let

f: En xEm xE" ----;>En

be a continuously differentiable map. Then there exists a unique continuously
differentiable map

g: En xEm xE" ----;>En

such that g(y, u, a) = x for all x, y E En, U E Em, a E E", satisfying f(x, u, a) =
y, provided that

1. det [af!ax] l'°at each (x, u, a) E En X Em X E",
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and

2. for each U E Em, a E E k
,

Ilf(x, u, a) II~ 00 as Ilxll~ 00

Basically, the implicit function theorem tells us sufficient conditions under
which the equation

f(x, u, a) = y

has a unique solution for (x, u, a, y) in the entire region En X Em X E k X En :
If the Jacobian matrix of f does not become singular in the region of interest
and if f satisfies the growth condition (2), then f is globally invertible.

To apply the global implicit function theorem to the problem of bifurca
tion control, we simply observe that, by assumption, f has an equilibrium
point at the origin. Furthermore, if we find a control law u(x) so that [afjax]
is nonsingular in the entire (x, u, a) region and f(x, u(x), a) satisfies the
growth condition (2) for all a, then we can conclude that there are no
equilibria other than the origin and, consequently, no bifurcation points. In
short, such a control law u(x) ensures that no perturbations in a will result
in the equilibrium at the origin bifurcating into a qualitatively distinct type
of system behavior. The foregoing analysis, simple as it is, may very well lie
at the heart of the successful use of linearization techniques for control system
design.

A more difficult problem is to design controllers that do not allow the
characteristic roots of the linearized system to cross the imaginary axis. For
the canonical catastrophe models, the problem is easily resolved, however,
since the behavior of these models is well understood. For instance, the
canonical cusp model is

Consequently, a negative feedback law for the control variable az results in

az = -(Klx +K o),

with K b K z constants. Such a feedback law has the effect of changing
al~ al - K l , and by choosing K l so that al > 0 we can ensure that no
discontinuous "jumps" from one attractor region to another will occur. For
noncanonical models, however, where physical variables are employed
rather than canonical coordinates, the control parameters are often non
linear functions of the physical variables, and in such cases a feedback law
on x has the effect of changing more than one control parameter in the
canonical model. In these situations, the design of bifurcation-free control
laws is more complicated, although we clearly have a well-defined
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methodology to employ. Reference to more work along these lines can be
found in the chapter notes.

CONTROLLED RESILIENCE

In earlier sections, we have characterized the resilience of a dynamical
process in several different ways. However, all of the various definitions
required a resilient system to "persist" in its original behavior when sub
jected ro disturbances of varied sorts. Since stability is our leitmotiv, let us
now examine the question of global asymptotic stability (in the Lyapunov
sense) for a system in which we allow for uncertainties in the dynamics, in
the system parameters, and, possibly, in the control actions themselves. As a
further novel twist, we shall not follow conventional probabalistic lines and
assume that some statistical properties of the uncertainties are given a priori:
rather, we assume nothing about the uncertainties other than that they are
bounded. Our goal will be to develop a feedback control law that guarantees
global asymptotic stability for any disturbance in the system, i.e., for any
bounded uncertainty. Clearly, if we regard global asymptotic stability as the
behavioral trait that must be preserved in the face of external disturbances,
then a system governed by the above type of feedback law would indeed be
resilient! An approach to resilience along these lines is another manifesta
tion of the remark made earlier that it may not be necessary to design
stability into a system at the beginning, as whatever stability properties we
want can usually be arranged by employment of suitable feedback loops.

Since the problem just posed requires a fair amount of technical detail for
satisfactory resolution in the general case, we shall examine only the linear
version here, relegating the nonlinear case to the references. Fortunately,
the same basic results carryover to the nonlinear situation, but with
considerably more mathematical preliminaries. So, let us consider the sys
tem described by the linear dynamics

X=Ax +Bu+Cv, x(O) = c,

where u is an rn-dimensional control vector, v is an i-dimensional vector of
disturbances, and A, B, and C are constant matrices' of appropriate size.
Furthermore, we assume that A is a stability matrix and that the elements of
A and B, as well as the disturbances may be known only in the sense that
we possess upper and lower bounds for their values. As noted, our problem
is to determine a feedback control law u = u(x) such that the system is
globally asymptotically stable for all bounded disturbances v and all admis
sible matrices A and B.

Under reasonable but technically complicated assumptions about the
uncertainties in A, B, and disturbances v, it can be shown that the ith
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component of a stabilizing nonlinear feedback law is given by

xrf-N;,

xENi ,

where P is the solution of the matrix Lyapunov equation

PA+A'P+Q=O, Q > 0, arbitrary,

bi is the ith column of the matrix B, Pi(X) is a function that depends upon
the bounds of the uncertainties in A, B and the disturbance v, (., .) denotes
the usual inner product, and sgn [.] is the signum function. The set N; is
defined as

N i ={x ERn: (b;, Px) =O}.

Thus, using the feedback law u(x), the linear system can be shown to be
asymptotically stable for all bounded uncertainties in the matrices A, B, and
bounded disturbance v. The details of this result, together with the necessary
information to calculate the multiplier functions p.(x) can be found in the
papers cited in the chapter references.

Example: Stabilization of a Macroeconomy To illustrate use of the above
stability result, we examine the problem of stabilizing an economy with
unknown, and possibly unknowable, characteristics. We shall postulate a
very simple model to indicate the basic approach, although there appears
to be no difficulty in extending the model by incorporating more state
variables or more controls.

Let y(t) and y(t) represent the actual and target "aggregate" demand
levels at time t. They are assumed to be evaluated at some constant price.
In order to allow for an upward trend of target demand level y(t), while
imposing a growth limit upon it, we postulate the simple form

y~>O, a<O.

For determination of aggregate demand y(t), we assume the dynamic
relation

dy
dt = ay(t) + k..u(t) + rgg(t) + ry ,

y(O) = Yo.
Here

u(t) = index of the "tightness" of the money market (related to a control
term)

g(t) = index of government fiscal policy
k.. = "policy" multiplier for the monetary policy index, k.. > 0
rg = policy multiplier for the fiscal policy index, rg > 0
ry = forcing term (external)
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The multiplier rg and the external forcing term rv may depend, in an
unknown fashion, upon u(t) and y(t) - y(t).

It should be noted that the term rv - ay= may represent any stimulating
or depressing force acting on the aggregate demand rate. We assume only
that this term has known bounds, Le.,

To reflect delay in the response between government monetary policy
and lending operations of commercial banks, we postulate that the aggre
gate demand responds to an exponentially "smoothed" monetary policy
index u(t), rather than to the current monetary policy indicator, m(t). We
allow the smoothing coefficient r~ to be an unknown function of u(t) and
y(t) - Y(t), supposing only that its bounds are known. Thus,

Thus, we have the equation for u(t)

du
dt = r~(m(t)- u(t)),

'Y~>O.

u(O) = uo.

Fiscal controls appear in the form of tax provisions and rates as well as
in decisions about government spending. Uncertainty in the effects of
fiscal controls comes from the policy multiplier rg , which depends in some
unknown way upon u(t) and y(t) - y(t). Again, we assume only that
bounds for rg are given. Hence,

Turning to control capabilities, we assume the following:

The fiscal control g(t) is bounded, for each t, between g- and g+, where
g-<O<g+.

The monetary control m(t) is bounded between m-lu(t)1 and
m+ lu(t)l, m-<O< m+.

Thus, what constrains the actions of the monetary authority is the rate of
expansion or contraction relative to the accumulated actions of the past.

Finally, we postulate two "resource" constraints:

1. Adequacy of fiscal capability

max {Ir~ - ay=l, Ir; - ay=I}< r; min {Ig-I, g+}

2. Adequacy of monetary capability

r+ - r-
~2 _~<min{lm-l,m+}

r~
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In (1), where the bounds on the "noise" ry - ayoo are compared with the
bounds on fiscal capability, only the weakest policy multiplier r; is
relevant; the value of r; is of no consequence. In (2), what is important is
the range of sudden changes in the lag-in-effect, (r:/r~)-l, compared
with the range of monetary control flexibility,

Under the conditions (1) and (2), the stability results cited earlier can be
employed to show that there exist policy rules, i.e., fiscal and monetary
controls g(t) and m(t), that depend upon the observed state (u(t) and
y(t) - y(t)) of the economy, such that the origin is uniformly asymptotically
stable regardless of the initial state (/.Lo, Yo- Yo) and uncertainties rg , ry, r....
In particular,

lim u(t) = 0,,---+OC
lim (y(t) - y(t)) = O.
1_00

The structure of the stabilizing feedback policy is depicted in Figure 5.25.

(Inflationary pressure)
y-y

g=g
m=m-Iul

(Ease of money u
market)

-k
y-y=~u

cp

FIGURE 5.25 Stabilizing feedback law for macroeconomy (el'- = ~(r: + r:)).

We also observe that the control law prescribed by Figure 5.25 is robust
in the sense that only the mean uncertainty c....' not any of the bounds,
need to be known in order to implement the feedback. Of course, a check of
control capabilities requires knowledge of the uncertainty bounds, but
these may be conservative.
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Before concluding this example, it is worthwhile to note that if, as is
done above, one can characterize monetary control as control with
uncertain lag and fiscal control as control with uncertain effectiveness,
then fiscal control is more fundamental in the sense that it can be shown
that stability can be achieved depending only upon adequacy of fiscal
capability. For instance, the control law

m=O,

m=O,

g = g if

g = g+ if

y(t) - y(t) > 0,

y(t)-y(t)<O,

will suffice to ensure stability if fiscal resources are adequate. On the other
hand, given the assured stabilizability of the economy, monetary neutral
ism is justified or not depending on adequacy of monetary capability
that is, depending on the predictability of the delay in effect of monetary
control relative to the flexibility available to the monetary authority in
pursuing expansive or contractive policies.

OBSERVATIONS

The feedback control laws discussed in the preceding sections all rely upon
complete knowledge of the system state for their implementation. In many,
if not most, large systems, such complete information is not available, and
various means must be employed to estimate the state. Since a detailed
treatment of this problem would take us beyond the scope of this short
monograph, we only note here that many of the techniques developed in
optimal estimation theory over the past 20 years or so can be used to
advantage for such state estimation. We note, in particular, the Kalman filter
and Luenberger observers in this regard. References to the details of these
and other techniques are found in the chapter notes.

NOTES AND REFERENCES

Historically, it appears that the first mathematical study of system stability was stimulated by
the work in celestial mechanics in the seventeenth century. The problem of stabilizing a
mechanical system via feedback control dates back at least as far as the work by Maxwell on
governors for the Watt stearn engine. For some of the original papers, see the collections:

Bellman, R., and R. Kalaba, eds., Mathematical Trends in Control Theory, Dover, New York,
1964.

Aggarwal, J., and M. Vidyasagar, eds., Nonlinear Systems: Stability Analysis, Dowden, Hutch
inson and Ross, Stroudsburg, Pennsylvania, 1977.

EXTERNAL DESCRIPTIONS

The basic results for nonlinear feedback systems of the external (input-Qutput) type were
presented in the works by Sandberg and Zames cited below, which ushered in the use of
functional-analytic tools to study system stability properties.
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Sandberg, 1. W., "On the L 2-Boundedness of Solutions of Nonlinear Functional Equations,"
Bell Syst. Tech. J., 43 (1964), 1581-1599.

Zames, G., "On the Input/Output Stability of Time-Varying Nonlinear Feedback Systems-I,
II," IEEE Trans. Autom. Control, AC-ll (1966), 228-238, 465-476.

INTERNAL DESCRIPTIONS

The classical theory of Lyapunov stability is covered in detail in the books:

Hahn, W., Stability of Motion, Springer, New York, 1967.
Lasalle, J., and S. Lefschetz, Stability by Lyapunov's Direct Method with Applications,

Academic, New York, 1961.

For a concise summary of the main points, see

Casti, J., Dynamical Systems and Their Applications: Linear Theory, Academic, New York,
1977, Chapter 7.

Arnol'd, V., Ordinary Differential Equations, MIT Press, Cambridge, 1973.

STRUCTIJRAL STABILITY

One of the best introductory works on qualitative stability is the text:

Hirsch, M., and S. Smale, Differential Equations, Dynamical Systems and Linear Algebra,
Academic, New York, 1974.

CONNECTIVE STABIUTI AND RESILIENCE

The concept of connective stability has been extensively studied by D. Siljak in many different
contexts. A representative survey of much of this work may be found in the papers:

Siljak, D., "Stability of Large-Scale Systems under Structural Perturbations," IEEE Trans. Syst.
Man Cybern., SMC-2 (1972), 657--663.

Siljak, D., "Connective Stability of Competitive Equilibrium," Automatica 11 (1975), 389
400.

The concept of connective stability appears to have arisen initially in connection with certain
questions in equilibrium economics. See:

Quirk, J., and R. Saposnik, Introduction to General Equilibrium Theory and Welfare Economics,
McGraw-Hili, New York, 1968.

Arrow, K., and F. Hahn, General Competitive Analysis, Holden-Day, San Francisco, 1971.
Newman, P. "Some Notes on Stability Conditions," Rev. Econ. Stud. 72 (1959), 1-9.

GRAPHS AND PULSE PROCESSES

Pulse processes in graphs and the stability concepts associated with them are treated in:

Roberts, F. Discrete Mathematical Models, Prentice-Hall, Englewood Cliffs, New Jersey, 1976.
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For interesting applications to energy problems, see:

Roberts, F., and T. Brown, "Signed Digraphs and the Energy Crisis," Am. Math. Monthly, 82
(1975), 577-594.

Roberts, F., "Building and Analyzing an Energy Demand Signed Digraph," Environ. Planning,
5 (1973), 199-221.

INPUT-OUTPUT STABILITY

The small-gain theorem and the passivity theorem are treated in the paper:

Zames, G., and P. Falb, "Stability Conditions for Systems with Monotone and Slope-Restricted
Nonlinearities," SIAM J. Appl. Math., 6 (1968), 89-108.

Under some circumstances the two theorems are equivalent. For conditions see:

Anderson, B. D.O., "The Small-Gain Theorem, the Passivity Theorem and their Equival
ence," J. Franklin Inst., 293 (1972),105-115.

INTERNAL MODELS AND STABILITY

A magnificent exposition of the Lyapunov theory, together with numerous applications and
further extensions, is the classic paper:

Kalman, R., and J. Bertram, "Control System Analysis and Design via the Second Method of
Lyapunov-I, II," J. Basic Eng. Trans. ASME, 82 (1960), 371-393, 394-400.

See also the book:

Bellman, R. Stability Theory of Differential Equations, McGraw-Hili, New York, 1953,

as well as the works cited under Internal Descriptions, above.

CONNECTIVE STABILITY

See the papers by Siljak cited under Connective Stability and Resilience for details of the proofs
of the connective stability results.

The ecosystem example is taken from:

Casti, J. "Connectivity and Stability in Ecological and Energy Systems," WP-75-150, Interna
tional Institute for Applied Systems Analysis, Laxenburg, Austria, November 1975.

HOPF BIFURCATION

An outstanding summary of the current state of knowledge regarding the Hopf bifurcations,
including a translation of Hopf's original paper, is:

Marsden, J., and M. McCracken, The Hopf Bifurcation and its Applications, Springer, New
York, 1976.
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STRUCI1.JRALLY STABLE DYNAMICS

An introduction to notions of structural stability is given in the article:

Peixoto, M. "Generic Properties of Ordinary Differential Equations," in Studies in Ordinary
Differential Equations, J. Hale, ed., Mathematical Association of America, Washington, D.C.,
1977.

The initial work in the subject is:

Andronov, A., and L. Pontryagin, "Systemes Grossier," Dok. Acad. Nauk SSSR, 14 (1937),
247-251.

A good summary of the recent work is contained in the volume:

Peixoto, M. ed. Dynamical Systems, Academic, New York, 1973.

CATASTROPHE THEORY

The already classic work on catastrophe theory is the book:

Thorn, R., Structural Stability and Morphogenesis, Addision-Wesley, Reading, Massachusetts,
1975.

A fascinating collection of recent reprints on applied catastrophe theory is:

Zeeman, E. C., Catastrophe Theory: Selected Papers 1972-77, Addison-Wesley, Reading,
Massachusetts, 1977.

See also the book:

Poston, T., and I. Stewart, Catastrophe Theory and Its Applications, Pitman, London, 1978.

A recent expository article for the mathematically inclined is:

Golubitsky, M. "An Introduction to Catastrophe Theory and its Applications," SIAM Rev., 20
(1978), 352-387.

For some adverse views on the topic, see:

Sussman, H., and R. Zahler, "Catastrophe Theory As Applied to the Social and Biological
Sciences: A Critique," Synthese 37 (1978),117-216.

SOME CATASTROPHE-THEORETIC EXAMPLES

The urban property price example is taken from:

Casti, J., and H. Swain, "Catastrophe Theory and Urban Processes," International Institute for
Applied Systems Analysis, Laxenberg, Austria RM-75-14, April 1975 (also in Proceedings of
the IFIP Conference on Optimization, Nice, France, 1975).
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The lake pollution example is from:

Duckstein, L., J. Casti, and J. Kempf, "A Model of Phytoplankton Dieoff in Small Eutrophic
Ponds Using Catastrophe Theory," J. Water Resour. Res. (in press).

Data are taken from:

Parks, R. W., et al., Phytoplankton and Water Ouality in a Fertilized Fishpond, Circular 224,
Agricultural Experiment Station, Auburn University, Auburn, Alabama, 1975.

PULSE AND VALUE STABILITY

For additional details on pulse processes and stability, see

Roberts, F., Discrete Mathematical Models, Prentice-Hall, Englewood Cliffs, New Jersey, 1976.

RESILIENCE OF DYNAMICS PROCESSES

A qualitative discussion of resilience from the ecological point of view is:

Holling, C. S. "Resilience and Stability of Ecological Systems, "Ann. Rev. Bco!. Syst., 4,
(1973),1-23.

RESILIENCE AND CATASTROPHES

The stock market problem is adapted from:

Zeeman, E. C. "On the Unstable Behavior of Stock Exchanges," J. Math. Beon., 1 (1974),
39-49.

MORSE-SMALE SYSTEMS AND RESILIENCE

An introductory discussion of Morse-Smale systems and gradient dynamics is given in:

Hirsch, M., and S. Smale, Differential Equations, Dynamical Systems and Linear Algebra,
Academic, New York, 1974.

See also:

Walters, P., "An Outline of Structural Stability Theory," in Analysis and Computation of
Equilibria and Regions of Stability, H. Griimm, ed., CP-75-8, International Institute for
Applied Systems Analysis, Laxenburg, Austria, 1975.

Griimm, H., "Definitions of Resilience," RR-76-5, International Institute for Applied Systems
Analysis, Laxenburg, Austria, 1976.

AN ECOLOGICAL EXAMPLE OF RESILIENCE: THE BUDWORM PROBLEM

The budworm model is taken from

Ludwig, D., D. Jones, and C. Holling, "Oualitative Analysis of Insect Outbreak Systems: The
Spruce Budworm and the Forest," J. Anim. Bco!., 47 (1978), 315-332.
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STABILITY, CONTROL, AND FEEDBACK DECISIONS; LYAPUNOV STABILITY AND POLE

SHIFTING

More details on feedback control and stability are given in:

Casti, J., Dynamical Systems and Their Applications, Academic, New York, 1977.

For a proof of the pole-shifting result see the above book, as well as the original result:

Wonham, W. M., "On Pole Assignment in Multi-input Controllable Linear Systems," IEEE
Trans. Autom. Control, AC-12 (1967), 660-665.

The example on group interaction is taken from:

Simon, H. "The Construction of Social Science Models," in Mathematics and Psychology, G.
Miller, ed., Wiley, New York, 1964.

BIFURCATION CONTROL

More details on the linkup between traditional control theory and qualitative stability is given
in the paper:

Mehra, R. "Catastrophe Theory, Nonlinear System Identification and Bifurcation Control,"
Joint Automatic Control Conference, San Francisco, June 1977.

CONTROLLED RESILIENCE

The analytic results and economic example are taken from:

Leitmann, G., "Guaranteed Asymptotic Stability for Some Linear Systems with Bounded
Uncertainties," J. Dynam. Syst. Meas. Control (in press).

Leitmann, G., and H. Wan, "Macroeconomic Stabilization Policy for an Uncertain Dynamic
Economy," in New Trends in Dynamic System Theory and Economics, Springer, Vienna,
1977.

Gutman, S., and G. Leitmann, "Stabilizing Feedback Control for Dynamical Systems with
Bounded Uncertainty," Proceedings of the IEEE Conference on Decision and Control, F1orida,
1976.

OBSERVATIONS

The question of determining the "best" estimate of the system state from observed data has
been approached from many different viewpoints, depending upon the assumptions made
concerning the data. A representative sample of the work for linear systems is:

Luenberger, D. "Observing the State of a Linear System," IEEE Trans. Mil. Electron., MIL-8
(1964), 74-80.

Luenberger, D. "Observers for Multivariable Systems," IEEE Trans. Autom. Control. AC-ll
(1966),190-197,

Kalman, R., and R. Bucy, "New Results in Linear Prediction and Filtering," J. Basic Eng.,
Trans. ASME, 93D (1961), 95-100.
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In the context of stabilization, an important related question is the number of components of
the state that must be measured in order to generate a stabilizing feedback control law. This is
the question of "minimal control fields," which is studied in the papers:

Casti, J., and A. Letov, "Minimal Control Fields," J. Math. Anal. Appl., 43 (1973), 15-25.
Casti, J., "Minimal Control Fields and Pole-Shifting by Linear Feedback," Appl. Math. Compo

2 (1976), 19-28.
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Matrix, adjacency, 37, 163

Hicks, 142
incidence, 17, 37
interconnection, 130, 141
Metzler, 138
rational, 82
transfer function, 83, 85, 118

Morse-Smala systems, 173, 175

Negentropy, 13
Nile delta, 24
Node, 47
Nonwandering point, 176

Optimization, 31
criterion, 30

Parametric excitation, 140
Passivity theorem, 135
Pattern, 20, 39

connective, 99
graded, 20

p-chain, 62
p-cycle, 63
Permutation group, 90
Pharmacokinetics, 28
p-Hole, 66
Poincare-Lyapunov theorem, 139, 186
Poincare map, 149
Pole-shifting theorem, 184
Polyhedral dynamics, 116
Potential function, 12, 152
Predator-prey, antisymmetric, 48

problems, 143
relations, 3, 70
system, 20



Prime decomposition, 91
Prime group, 91
Pulse process, 132, 133
Pulse process theorem, 163
Pulse stability theorem, 165

q -Analysis, 59
q-Connection, 39
q-Connectivity, 39, 58, 59

Reachability, 184
Realization, 8

finite-dimensional, 26
Realization problem, 26
Realization theorem, 83
Reductionist, 32, 33
Relation(s), binary, 17,37

conjugate, 18
Resilience, 49, 52, 115, 131

and catastrophes, 169
controlled, 189
of dynamical processes, 166
minimal, 177
speed, 178
volume, 178

Routh-Hurwicz criterion, 136, 137

Search rule, 113
Semigroup, combinatorial, 108, 109

division, 90
"flip-flop", 91
of transformations, 88, 89

Sets, 17
Set cover, 74
Set partition, 75
Sevastyanov-Kotelyanskii condition,

142
Shakespearean drama, 76
Similar phenomena, 120
Simplices, 18
Simplicial complex, 18, 37, 58
Singularity, 148
Hyperbolic, 149
Small-gain theorem, 134
Stability, asymptotic, 128

bounded-input/bounded-output,
127,134

203

classical, 45
connective, 130, 141
input-output, 133
Lyapunov, 128, 136
pulse, 133, 163
structural, 46, 129, 147-148
value, 133, 163

Stochastic effects, 30
Stock market, 171
Structural stability theorem, 149
Structure vector, 59, 72-73
Subsystem, 41
System, canonical, 84, 86

complex, 40, 41, 97
hierarchical, 74
indecomposable, 93
linear, 82, 118
"stiff," 105
structure, 84

System description, entropy, 14
external, 8, 127
finite-state, 10
input-output, 25, 57
internal, 6, 10, 25, 127-129

Theory of types, 75
Thorn-Zeeman theorem, 154
Tragedy of the commons, 115
Triangular action, 89
Torsion, 74
Torsion subgroup, 66, 67
Turing machine, 105

Urban property prices, 156

Value stability theorem, 165
Van der Pol equation, 41, 147, 174

175
Variety, 100
Vector field, 174

structurally stable, 174
Vertices, 18

Watchmaker problem, 99
Wreath product, 88-90
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