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Preface

One of the research tasks which the Resource and Environment Area of
the Institute has addressed is the Models for Environmental Quality Con-
trol and Management. Over the past few years, much attention has been
concentrated on the modeling of the water quality for rivers, lakes and
reservoirs as one of the tools of control and management.

This report has been prepared as a contribution to the modeling problem
of the lake eutrophication process, which comprises nutrients and plankton
prey-preditor elements. The particular concern of this paper is the sta-
bility analysis of the ecological water quality system in comnection with

the effect of the environmental forcing function, as well as the diffusion

effect.
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Abstract

In this paper characteristics of two eutrophication models are
investigated with phase plane analysis of the equilibrium states of
the system, Possible patterns of the system's behaviour and their
relations to ranges of parameters are shown. The results areused
to evaluate the effects of disturbances to the system. Finally, the
effects of diffusion on the system's behaviour are discussed and some

numerical results are presented.

-v—







1. Introduction

Several ecological water quality models for lakes or reservoirs
have been set up over the last few years [1l, 2]. These models are now
recognized as being useful for the prediction and management of water
quality. Most of the work in this field is simulation.

Computer simulation is a powerful tool for such large and complex
systems as those of water quality. However, we have to pay attention
to its limits. With computer simulation, we can only detérmine the
system's behaviour for given initial states and specific values of
parameters in the model. It is clearly impossible to carry out simu-
lations under all possible conditions. We cannot obtain a complete
understanding of a system through simulations alone. On the other
hand, we will have to have a much better understanding of the system's
basic features when the necessity for developing larger and more de-
tailed models increases.

The purpose 6f stability analysis is to understand the system's
behaviour qualitatively. We are concerned with the possible patterns
of behaviour of a system and their relations to'values of parameters
which are included in the system. Although the mathematical theory
of stability has a long history, complete analysis of stability 1is

generally only possible for very simplified systems. Therefore, we




have to simplify the models in order to apply the existing results of
stability theory. The results obtained by the analysis for the

simplified models may hold only for restricted conditions in a real

system. However, the knowledge is important. It provides us with preliminary
information with which to build more practical models or to select

the conditions for simulations with the models and, also to interpret

their simulations results. The knowledge is also important in the

sense that it suggests problems to be investigated in more detail.

In this paper some results of stability analysis for simplified

eutrophication models are presented. The results obtained are

applied to evaluate the effects of environmental variations on the

system's .behaviour.

2. EButrophication Models

Let us consider a constant and completely mixed volume of lake water.
The major limiting nutrients for phytoplankton growth are assumed to be
various forms of nitrogeneous and phosphoric compounds. For the sake
of simplicity these nutrients are represented by inorganic nitrogen
and total phosphorous. The schematic diagram of the nutrient cycles
in the water volume is shown in Fig. 1. We make the following basic
assumptionsi
1) The biodegradation of organic nitrogen into inorganic nitrogen
is a first order reaction.
2) The reproduction rate of phosphorous is proportional to that
of nitrogen.
3) There is no loss of material due to sedimentation.
On these aséumptions the dynamic representation of the system

can be derived from the mass-balance equations:



-KN +D P +D 7 +D P -G_Z +a(Sy -N );
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where the notation 1s defined as follows:

N, : organic nitrogen concentration (mg/liter)

Ni : inorganic nitrogen concentration (mg/liter)

Pn : biomass of phytoplankton measured by its nitrogen concentration
(mg/liter)

Zn ! biomass of zooplankton measured by its nitrogen concentration
(mg/liter)

Ph : phosphorous concentration (mg/liter)

K : rate of degradation of No (1/day)

G_ : growth rate of zooplankton (1/day)

G_ : growth rate of phytoplankton (1/day)

DZ : extinction rate of phytoplankton and zooﬁlankton respectively
(1/day)

Dg : grazing rate of phytoplankton by zooplankton (1/day)

SNO, SNi’ SPh : influent concentration of organic nitrogen, inorganic

nitrogen and phosphorous, respectively (mg/liter)

SPn’ Szn : influent concentration of phyto- and zooplankton,

respectively (mg/liter)




q : the inverse of detention time (1/day)

6 : average ratio of nitrogen and phosphorous in plankton (Py/N).

The phytoplankton growth rate Gp

concentrations Ni and Ph'

phytoplankton concentration Pn'

is a function of the nutrients

The zooplankton growth rate depends on

We assume that the growth rates are

represented by monotone-increasing and saturated functions of the

respective variables;

P 1

Gp( o

P

365 3G

3p, > 0 and 33~
h i

= uG (P
G qu( o N.)
N.)»L as P
1

G (O,Ni) = Gp(Ph

h++w and Ni++w,

,0) =0

> 0 for P, >0 and N.>0.
h i

p is a saturated photosynthesis rate of phytoplankton and it depends

on water temperature (T) and light intensity (T).

Similarily the following restrictions are imposed on

growth rate Gz:

G, = BGZ(PH),

G (0) = 0,
G (P ) *1 as P_rtwo,
Z n
3G, (P,)
5P >0 for P >0

zooplankton

Further we assume that the derivative of E; is bounded so that

3G, (Py)  Gy(P))

S R
n n

for P

> 0.
n=

(10)

(11)

(12)

(13)

(14)



The typical representations of the growth functions which satisfy
the above conditions are known as Monod's formula or as the Michaelis-

Menten law. That is,

Py, N,
G = U( * ) 3 (lS)
p KP+Ph N 4K
and
P .
G, = Blz=5) - (16)
Z n

The parameters Kp, Kn and Kz are called Michaelis' constants.
We assume also that grazing rate depends linearly on zooplankton

concentration;s

Dg =aZ , (17)

where a is a constant parameter. The extinction rates of plankton
are closely related to endogeneous respiration rates, so that Dp and
DZ are parameters which depend on temperature.

The final purpose of the study is to know the qualitative behaviour
of systems (1)-(5) under conditions (6)—(1L) and (17). It is, however,
difficult to discuss fhe model directly because the number of parameters
and variables is too large. From the structure of the model we can
reasonably suppose that the nitrogen'and the phosphorous play similar
roles in the system's dynamics.  Therefore, let us discuss the dynamic
characteristics of the system under the condition that enly one
nutrient is the limiting factor for the growth of phytoplankton.

In other words the concentration of the phosphorous is assumed to be

sufficiently large. Then the representations of the system are

simplified as follows:
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—_— = - + - .

T = Ko=G P q(sNi N )3

dP,
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a2,

a + (Gz—Dz)Zn+Q(SZ _Zn) :

n

The notations are the same as in equation (1)-(5).

satisfy +the conditions:

GP = qu(Ni),
Gp(O) = 0 and GP(Ni)+ 1 as N+,
. >0,

GZ = BGZ(PII) >

GZ(O) =0 and GZ(Pn)+ 1 as P+,

3G, (P,) ) G,(Pp)
3P P
n

0 < for P >0 .
n —

n

And G_ and G
jo] z

A further simplification of Model I is possible when two forms

of nitrogen are integrated into one compartment.
nitrogen concentration by N we have Model II.
Model II

dn

It (Dp+azn-Gp)Pn+(Dz-Gz)Zn+q(SN-N);

dPp
dt

(Gp-Dp-azn)Pn+q(%3f Pn);

dZn
— (Gz-Dz)zn+q(;Zn—zn) .

-6 -

Denoting the total

(22)

(23)

(2k)

(25)

(26)

(27)



The growth rates Gp and Gz satisfy the conditioms (22)-(27)
with N in place of Ni. The parameter values in Model II may be
different from those in Model I; the same notations are used for
simplicity. As mentioned previously, the parametersyu, Dp and Dz
depend on such environmental factors as temperature and intensity
of radiation. However, we will first discuss the system's behaviour
when the envirommental conditions do not vary. Therefore these

parameters will be fixed for the present.

3. Stability of Batch Process

Let us consider stability of Model I and Model II in the case
where there are no inflows and outflows to the system. That is, we
investigate dynamic behaviour of batch process of the predator-prey
system with one limiting substrate. In this case, the systems con-

serve the total amount of nitrogen, since gq=0.
zZ =
N + Pn + 0 Co (a constant), (31)

or _
N +N, 4P +2Z =¢C (32)
) i n n o
If this property is taken into account, stability analysis can be
carried out easily. Without going into detailed calculations, the

results of the analysis will be shown (refer to S. Ikeda and N. Adachi

[31).

3-1 Stability of Model II

It should be noted that the amount of phytoplankton grazed by zoo-

plankton per unit time must be greater than the rate of zooplankton growth:

(aPn - GZ)Zn >0 ,




or

[v

Qa
FEE - (33)

Therefore we assume that inequality (33) holds for every Pn > 0.
This condition is also necessary to ensure that the models are well-posed.
In other words, under this condition every solution of Model I and Model II
remains nonnegative (positive) if its initial values are nonnegative
(positive).

From relation (31) of nitrogen conservation one variable, e.g.,N,

can be deleted from equations (28)-(31). Then

ap

n _ = .
rrate {qu(CO—Pn—Zn)—Dp—aZn}Pn : (34)
az
—2 - {gG (P )-D )2 (35)
it z''n z"n °

The equilibrium states of system (34) and (35) can be obtained by
equating the right-hand sides of the equations to zeros. Stability of
these equilibrium states can be classified completely since the system
of equations is a two-dimensional one. The stability analysis of the
equilibrium state can be carried out by the perturbation method for
equations (34) and (35). The equations are linearized around the state.
The characteristic equation for the linearized equations determines the
stability of the state. For an example let us consider the case where

the system has a positive equilibrium state (B, C):
G_(C -B-C)-D_~aC = 0
up(o )p
BGZ(B)—DZ =0
>0, C>0 and B+C<Co .
The characteristic equation of the linearized equations around (B,C) is

12 + 0x +8 =0,




where o = qu (CO-B-C)B s
= el + el -B-C
8§ = upBC GZ(B){a qu (co B-C)},
and Eé or Ez are derivatives of 65 or 6; respectively.
From the assumptions on Eé and EZ, o>0 and 6>0. Therefore the point

. . 2
(B,C) is a stable node if 02—h639 and a stable spiral if o“-4&<0.
The results derived by the same procedures are summarized as
follows. Only the three configurations of the equilibrium states are

possible.

Al : Only one equilibrium state (0,0) on the phase plane of (Pn,Zn)
appears and it is stable.
As : The two equilibrium states (0,0) and (A,0) appear and (0,0) is
unstable (saddle point) and (A,0) is stable (node).
A_ : Three equilibrium states (0,0), (4,0) and (B,C) exist and only
(B,C) is stable (node or spiral). (0,0) and (A,0) are unstable
(saddle points), (B<A and B+C<C_).
Model II takes éne of the three patterns depending on the values of the
parameters. In the cases of A1 and AZ, every trajectory on the phase
plane (Pn, Zn),converges to the'unique stable equ?librium state with#
the increase of time. The local analysis of the equilibrium state does
not exclude the existence of stable limit cycles. Therefore, in the
third case, the point (B,C) is a global attractor, or there exists a
stable limit cycle, which surrounds the point. The existence of a limit
cycle is of mathematical interest. However, its possibility is very small
since the point (B,C) is always stable. Therefore, we assume hereafter

that 8,C) is a global attractor. Under this assumption, every trajectory

approaches (B,C) with time increasing, if the initial state is positive.




The phase portraits of trajectories corresponding to the above Al.
A2 and A3 are shown in Fig. 2. In the first pattern (Al) both
phytoplankton and zooplankton extinguish. In the second case (A2)
zooplankton extinguishes, but phytoplankton retains a constant biomass.
In the last case (A3) concentrations of phytoplankton and zooplankton
converge to their respective values as time increases. The regions in
parametric space corresponding to each pattern are illustrated in Fig. 3.
If the maximum growth rate of phytoplankton u is less than the extinction
rate Dp or if the total amount of nitrogen CO is very small only pattern
A is possible. If the maximum growth rate of zooplankton B is less than

1

the extinction rate DZ or if CO is too small, only patterns Al and A2 can
appear. In the case where B>Dz, u>Dp and C0 is greater than a certain

value, pattern A, 1s possible. The typical trajectories of the system

3
which correspond to A3 are shown in Fig. 4. In this example the Monod
type growth functions are used and the equilibrium points are (0,0),
(0.99%, 0) and (0.2k, 0.53) and C_=1.0. As seen in the figure when the
initial point has small values first only Pn increases rapidly and

then Zn follows. This phenomenon occurs because for the standard values

of parameters the second equilibrium point is very close to (CO, 0).

3-2 Stability of Model I

The same approach as to Model II can be applied to Model I
represented by equations (18)—(21). Let us consider trajectories of
the system in a three-dimensional space of (Ni’ Pn, Zn) becau;e one
variable can be deleted from relation (32). The results of the analysis
of the equilibrium states are summarized as follows.

_One of the following cases appears depending upon the values of the

parameters.

- 10 -



B, : (Ni’ P s Zn) = (Co, 0, 0) is the only equilibrium state and it
is stable.

B, : The two equilibrium state exist, (CO, 0, 0) is unstable and (D, A, 0)
is stable, where 0<D, 0<A and D+A<Co.

B, : Three equilibrium states (Co’ 0, 0),(D, A, 0) and (E, B, C) exist

and only (E, B, C) is stable, where O<E, 0<B, 0<C and E+B+C<C_.

In the third case let the characteristic equation of the linearized

equation around (E, B, C) be

3 2
+ + =
A alA + a2A a3 0.
The coefficients a;s a, and a3 can easily be shown to be positive.
Then it is sufficient to show that a1a2—a3>0 in order to prove the

stability of (E, B, C). By some troublesome calculations

_ 9 ) Y -
ala2-a3—pGp(E)B{K +K(Dp+qu(E)B+C(a—BGZ(B))} .

From conditions (27) and (33) a>86;(B), therefore ala2-a3>0. Then
Hurwitz's criterion ensures that (E, B, C) is a stable equilibrium state.
It is to be noted that-condition (27) is sufficient for (E, B, C) to be
stable. This is not the case for Model II. The region of parameter
values corresponding to the each pattern is given by exactly the

same figure as Fig. 3, where Al,.A2 and A3 are replaced by Bl’ B2 and

B3 respectively. The above results are interesting. The trajectories
of the system are considered in a three-dimensional space of (Ni’ Pn’
Zn). However, if they are projected on (Pn, Zn) plane the configurations
of the equilibrium states are the same as those of Model II. Therefore,
as far as the behavior of (Pn, Zn)is - concerned they are supposed to

have patterns similar to those of Model II. This fact gives us a

reasonable possibility to understand the characteristics of the system

- 11 -




through investigations of Model II.

L, Stability of Process with Constant Flow Rate

Let us discuss the case when the nitrogeneous nutrients flow into
the system at a constant rate. Model II will be used to examine
possible patterns of the behaviour of the system. In other words we

are concerned with stability of Model IT on the assumption that

SN = a constant
g = a constant
S, = 8 = 0.
P, Zn

In this case the conservation of total nitrogen does not hold.

However, from equations (28)-(30),

a(N+Pp+Z,)
B e e I (36)
5o that every trajectory of system (28)-(30) approaches the plane
+ =
N+P+Z = S (37)

as time increases, and the plane is an invariant manifold of the system.
Therefore, we can understand the qualitative behaviour of Model II by
restricting the investigations on the two-dimensional plane (37).

The study of the equilibrium points on the plane shows that results simi-

lar to those in the preceding batch process hold. Omne of the following

patterns appears, depending upon the values of the parameters:

c, : (s

1 0, 0) is only equilibrium state and it is stable,

N’

C2 : Two equilibrium states (SN, 0, 0) and (D, A, O) appear ,

(8., 0, 0) is unstable and (D, A, 0) is stable (D+A=sN):

N’

- 12 -



c3 : Three equilibrium states (SN, 0, 0), (D, A, 0) and (E, B, C)

exist and only (E, B, C) is stable, where E+B+C=S..

In this way, we can say that the possible patterns of behaviour of the
system with constant nutrient inflow do not change compared with those
of the batch process. The regions in the parametric space of (q, SN),
corresponding to the above three patterns, are illustrated in Fig. 5.
The two cases are possible according to the ratio of (B-Dz) and (u—Dp).
In both cases, the increase of flow rate changes the system's dynamic
patterns from C3 to C2 and then to Cl' In other words, by increasing
the flow rate, first zooplankton and then phytoplankton is washed out.
Conversely, if the influent concentration of nutrients increases, the
system's dynamic pattern goes from C1 to C2 and to C3. From the figure,
it is also seen that if the flow rate is larger than a certain value,

phytoplankton and zooplankton can never coexist. This is also true when

the influent concentration is smaller than a certain value.

Recently Aponin and Bazykin demonstrated an interesting result [U4].
They investigated behaviour of a prey-predator system under the conditions
of continuous'cultivation. They found out that & fourth pattern exists
in addition to the above three patterns. That is, they showed the
existence of a stablé limit cycle for a certain region in the parametric
space of (a, SN). The result is derived from their assumptions on the
model. They assumed that the reproduction of the predator and the
consumption of the prey by the predator are inhibited by the substrate
concentration. Since the inhibitation effects are not incorporated in

Model I and Model II the fourth pattern does not appear in our analysis.



5. Effects of Parameter Variations

The possible patterns of the system's behaviour have been examined
in the preceding two sections, both for a batch process and for a process
with a-constant rate of nutrient inflow. As seen in the discussions, the
motion of the system is determined by the configurations of the equilibrium
states. The patterns of the equilibrium states depend on the values
of parameters which are included in the system's model. In this section,
let us apply the results to evaluate the effects of external disturbances
on the system's motion.

Consider a general mathematical model of a dynamical system:

%%-= f(x, =) , | (38)

where x=(xl, Xyseees xn) is an n-dimensional vector and f=(fl, f2,
e fn) is a vector function which depends on a scalar parameter m,

and f is assumed to be continuously differentiable with respect to x

and 7. For 2 given value of 7 an equilibrium point x=x*(nw) satisfies

equation

f(x*(w),m) = 0. (39)

Then the variation of x*(w) because of a small change of © is determined

from the linear algebraic equation :

n

z 3fi axj*_ afi
J=1 ij Y R T (40)
ox* _ __13f
or om F am (40)

where F is an nxn matrix such that its element fij is

-1k -



and F is supposed to be nonsingular.
Therefore, the effects of a small change in parameter values on the location
of the equlibrium state can be evaluated from (40), if the variational

matrix F and 3f/3m are known.

5.1 Effect of Temperature and Light Intensity

In the preceding analysis of the stability of the system water
temperature and intensity of solar radiation (I) are fixed. 1In reality,
however, the stable_equilibrium point moves according to variations of
T and I. Consequently if T and I vary continuously and slowly,Pn and
Zn are expected to follow the continuous movement of the unique stable
state. We consider the system when there is no inflow and outflow, and
use Model II since the behavioural patterns of both models are supposed
to be similar. We assume that the maximum growth ratepvof‘phytoplankton
depends on T and I and that the extinction rates Dp and DZ depend on T.
The other parameters are assumed to be independent of T and I. Various
practical functions are proposed for the growth and death rates of

plankton [2]. Here we make the following general assumptions on u, Dp

and D :
Z
3D aD
VA
%%>O, aT—p>O anda—T—>O ’ (L1)
and
Mo for I < Topt
% pt
(42)
W .6 for I > Topt
o1 pt.

Topt is an optimal light intensity for photosynthesis. Concerning

the biological implications of the assumptions see €.8. Di-Toro et. al.[5].

- 15 -




Denoting the right

f. respectively,

2

and

hand sides of equations (34) and (35) by f

1

afq ou _ BDP

oT (ST'GP' FTRATE
3t 3D,

5T - T 3T Zn  °

8f]  du _

5T~ 3T p'n

3t

7 - 9

and

The variational matrix F has been used in the analysis of the stability

of the equibrium states. Therefore the procedures mentioned can

be applied.

Concerning

The results derived are the following:

2A
aT

JA

91

>0

<0

.>O

<0

if

if

if

if

3 J—

ST (uGP—Dp) >0,
a—(u-(}--D)<O
T P°p ?
I < Iopt ,

I > Iopt .

equilibrium state (B, C),

>0

>0

<0

and

B,

3L

if I < Topt ,

if I > Iopt

- 16 -
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As shown in Fig. U4 trajectories of (Pn’ Zn) have an interesting
feature for the standard ranges of parameters in the model, when the
relative position between the stable equilibrium state and the initial
state (Pg, Zz) is one such that B>P§ and C>Z§, Pn increases rapidly.
In other words, if the external disturbances are given to the system
so that (B, C) moves to (B+AB, C+AC):(AB>0 and AC>0) rapid growth of
phytoplankton will be observed. From (45) and (46) such a situation is
possible when temperature and light intensity change discontinuously
so that

T+ T+ AT (AT>0)
I~>TI+ AT if I<Iopt
I - AT if I>Topt.
After the changes of T and I (Pn, Zn) moves toward the new equilibrium

state (B', C') as shown in Fig. 6.

5.2 Nutrient Enrichment and Variation of Flow Rate
Let us apply the procedures of sensitivity analysis to the equilibrium
state of Model II with a constant rate of influent nutrients-. Restricting

the analysis on the plane Pn+Zn+N=S as in Section U4 the following results

N

are obtained:

—g%>o, g—B—=o'andgg > 0, (47)
N N N

A 3B ac

5 0, 3->0 and T 0 (L48)

From (L47) and (48) we can know the movements of the equilibrium states

N
state (E, B, C). When g increases phytoplankton increases but zooplankton

when S, or 4 change continuously. Suppose that the system is ata steady

decreases. The further increase of q extinguishes the equilibrium state

- 17 -



(E, B, C), (see Fig. 7) Fig. 8 shows a similar movement of the
equilibrium states when the influent nutrients decrease.

Let us consider now the case when the concentration of influent
nutrients increases suddenly. The increase of the concentration brings
about the change of the state (B, C) to (B, C+AC) AC>0 (Fig. 9).

As 4 result, the growth of phytoplankton will be observed. The
analogous behaviour of the system will be observed when the c0ncéntra—
tions of phytoplankton and =oplankton decrease suddenly due to dilution
of the system. Although the state of the system changes from (B, C) to
(B-AB, C-AC), (AB, AC>0) by dilution the location of the stable
equilibrium point is not affected. Consequently (Pn, Zn) moves toward

the equilibrium state as shown in Fig. 10.

6. Effect of Diffusion on Stability

In the preceding sections, we have discussed the stability of
equilibrium states and possible patterns of plankton behaviour in a
completely mixed volume of lake water. On the other hand spatial distribu-
tion of plankton population plays, in some cases, an important role in
plankton bloom mecthanism due to the formation of plankton patchiness in the
lake water. Therefore, let us examine effects of the diffusion process on
the stability of the system. As a preliminary gnalysis'of the d%ffusion
process, let us use Model II with diffusion terms but with no flows.

We assume uniform concentrations in vertical sections of a closed water

volume. Using Monod type growth functions:

pT n K +N’ “n

+ (D, - B=————) 2 - | (49)

- 14 -



2P

9P
n . (

3t - D2 2
X

H Kn+N - DPT - azn) Pn 5 (50)

2
3%, A P
st - D3 2+(8Rm——--D ) Z o, (51)

ax p

D_ and D, are diffusion coefficients and notations of other

where Dl’ 5 3

parameters are the same as these of the batch process.
For simplicity of the mathematical expression, let us introduce the

following vector notations:

l, f2’ f3)

1’ D2, D3)

where f f2 and f_ are the biological interaction terms in the right

1° 3

hand sides of equations (L49)-(51), respectively.

Then, the system (49)-(51) can be written in the form

2
é—-u =D 2—-—u + f(u) . (52)

9t 3x2

The initial and boundary conditions are

u (o, x) =u(x), 0<x<L (53)
and

oy (t,0) = w(t,L) =0, t>0 (5h)

ox ? 9x ? ? -

This boundary condition means that there is no flow across the boundary
of the concerned water volume, and the problem of solving equationms
(52)-(54) is called the Neuman problem.

In connection with stabiiity analysis of the above Neuman problem
we are concerned with spatially homogeneous equilibrium states of system

(52)-(54), which satisfies the equation:
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f(u) = 0. (55)

Hence the equilibrium states are identical with those of the batch process
discussed in Section 3. 1In the following let us examine the stability of
the equilibrium state only in the case of equal diffusion coefficients

and show a simple simulation example.

. 6.1 Stability Analysis of Model II with Equal Diffusion Coefficients

Let us define total nitrogen C(t,x)
C(t,x) = N(t,x) + P (t,x) + Z (t,x) (56)

Then the system (49)-(51) can be written

2 2
2 3 P 3 Z
3C 3 N n n
= =D, —5+D +D . (57)
9t 1 8x2 2 8x2 3 3x2
Further assume that
D1 = D2 = D3 =d (58)
then 5
ac _ .3°C
ol d“g (59)
3x

This equation means that total nitrogen approaches a spatially

homogeneous constant distribution as t + «; C(t,x) = C
) Lo

Therefore, we confine the stability analysis of the-diffusiomrr effect

e}

to the Model II within behaviour of the system on the manifold of

N(t,x) + P (t,x) + z (t,x) = C (60)

o

Making use of relation (60) to system of (49)-(51), we can reduce the
number of equations from three to two in the same way as in equations

(34) and (35):

- 20 -



aPn BPn Co—Pn—Zn
-/ =4 —= (y ————=— - -aZ )P (61)
at ax2 K +C -P -7, pT n n
n o n'n
57 agzn P_
5t - @ + (B35~ Dgp) 2, (62)
9x mp n
or
n %
U - 528, TR (63)
st 2
98X
where

W= (2,2, T = (F.5,)

3

and ?i and f2 are the biological interaction terms in the right hand

sides of (61) and (62).

. o
Suppose that the equation (55) has equilibrium solution w° = (N°,

(o]
n

P°, z°) such that N°>0, P°>0 and Z >0,
n n n

W+ +2%=c . (64)
n n e}

o o
Then, we can obtain the linearized equations of (63) around Eo=(Pn,Zn):

d ' .
— vVv=D—Fv+ Av ; (65)
ot ax2

v (0,x) = vo(x), 0<x<L; (66)

9 =9 y =
% ¥ (t,0) = Y (t,L) =0, t>0

, (67)
where A is the linearized coefficient matrix with respect to v and v is

. X -0 . - _ —o ,
a small perturbation about the point u, i.e., u =u + v. For the

above defined problem, the solution of (65)-(67) can be expressed by

means of an eigenfunction expansion [6] as

-]

L
w(tyx) = [ ] 2 cos (ox) cos (oy) expla - a2al)ty v (v)ay,  (68)
0 w0

where o = mr/L and I is a unit matrix.




It is easily seen that the solution is stable, if for each nonnegative
integer m, the eigenvalues of matrix A - Gidl have negative real parts
Clearly matrix A - Oidl has nonnegative real parts because the corres-
ponding equilibriumstate of the batch process in Section 3 is stable,
i.e., the eigenvalues of A have negative real parts. Hence, we can
conclude that the diffusion term does not have any effect on stability
of the equilibrium state, as long as the system has equal diffusion
coéfficiénts. However, it must be noted that there is a case where

the diffusion process becomes unstable, driven by unequal diffusion

coefficients, even if the associated batch process is stable [7, 8].

6.2 Simulation Example of Plankton Patchiness

In order to examine our analysis in the case of a diffusion process,
let us show a simple simulation example which deals with the behaviour
of the nutrient—plankton concentrations in one dimension. Assume that
a uniform initial spatial patternof nutrients exists in the whole
domain - 0% x<L and put a small plankton population in the middle of

the domain:

N(0,x) = 1.0, O < x < 4o

{A

0.1 19 <x <21
P (0,x) = Z (0,x) [
n n

0.0 ©

|A

x <19 and 21 < x < ko

The simulation is then carried out from t=0 to t=226.6 (days), where

the diffusion coefficient is Dl = D2 = D3 5.0 (m2/sec) and numerical

values of other parameters are the same as those used in Fig. 4 [Ref.3].
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Figures 11-A - 11-F illustrate the progress of typical spatial
patterns.

Fig. 11-A - 11-D: The phytoplankton Pn grows around the initial distribu-
tion and forms a patch. This patch propagates to the boundary but is
depressed in its middle part with the predation by zooplankton Zn'

The nutrient N decreases first in the middle part in contrast with the
phytoplankton increase, but restores its concentration gradually as the
plankton wave moves to the boundary.

Fig. 11-E and 11-F: The zooplankton Zn also grows rapidly with a certain
time lag and forms a wave which also moves to the boundary. Finally, the
distribution of N, Pn and Zn approaches the uniform equilibrium state
of (0.22 , 0.24, 0.53) which is a stable equilibrium solution of the
system (49)-(51). It is interesting to note that the plankton patehiness
is observed during a rather long period along the initially perturbed
region, depending on the degree of diffusion and spatial length, although

it finally fades away to the uniform equilibrium.

T. Conclusions

The dynamic characteristics of two simplified eutrophication models
are discussed with stability analysis of equilibrium states. The two
models have the same patterns of configurations of the equilibrium points,
which can determine the global motion of the system. The relations between
these patterns and the ranges of parameters values are illustrated both
for a batch process and for a process with continuous cultivation. It ig
also shown that the results obtained are applicable to analysis of the
diffusion process with the same system structure as the batch eutrophication
model. The results are useful for evaluating the system's response to

environmental variations.
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Although it seems to be difficult to apply the analytical method
of stability analysis, which is used in this paper to, larger and more
complex systems, we could conclude that careful examination of configura-
tions of equilibrium points determine the system's global behaviour at least
to some extent. Therefore, analysis of equilibrium points is useful for
the determination of qualitative characteristics of various mathematical
models. From this point of view, practical algorithms are te be developed

to compute equilibrium points of complex models and to evaluate their sta-

bility [9].

-24~



SHTOXD INIATYINAN FHL J0 WYUOVIA DIILVWIHOS T "9Id4

NOILIHOX3
4O HlvVsa _ | _
kg . NOLNV14002
NOILVHIdSIH ;
SNOHOHJSOHJ . ONIZVHD
32{ NOLIMNNVIJOLAHd | NOIL3IYOX3
INIIHINN | MO HLY3a

| IN3IHINN | NOILYYHI4SIY
N-DINVOHON! N-2INVOHO

NOILISOdNOD3Q

-25-



n n
CO
A 4
‘ —t— Pn Pn
(0,0) Co Cq
A A
1 | Z, 2
Zy
(B,C)
A 4
Pa P
CO

FIG. 2 PHASE TRAJECTORIES OF BATCH PROCESS

-26-



S8¥00dd HOLV¥E FHL 40 NMELILVd HOVI ¥Od FOVAS OINITWYEYd NI NOIDTH

d
?aﬁ_\nv 0°L (L%/n)

o
—

€

"DId

||||||||| SN _L___1 n»

Y G TR . C— — — G f— — — — —

-27-



IT TIAOW 40 SHIYOLOALVHIL TYOIdAL h "DId

Nd
0l 80 90 %0 20 0

+ 0

o
(o8]

"0 <

-390

-80



JLVd MOTA INVYILSNOD HLIM SSED0OHUd

dHL 40 NYILLVd HOVH d0d HOVdS DIVLIWYEVYA NI NOIDIAA ¢ °“DId

AHQD -t > 12g - g)

-29-



-0€~-

FIG.

6

EFFECT g DISCONTINUOUS CHANGES OF TEMPERATURE AND LIGHT INTENSITY



n
SN
(B,C)
X
—¢ * —% — P
(0,0) (A.0) Sy
FIGc. 7 MOVEMENT OF EQUILIBRIUM STATES FOR INCREASE -
7 OF FLOW RATE

F——% —t % P
FIG. 8 MOVEMENT OF EQUILIBRIUM STATES FOR DECREASE OF

INFLUENT NUTRIENT CONCENTRATION

-31-



NOILNTIA 40 ILOdAAAd OT °“DOIdA
(0 >.,0 9> ,49)

S (0°0)

HSVHIYONI SNOANILINODSIA 40 LOIALH 6 °“DIA

S S {(0°0)

-32~



SNOILVTINAOd NOIMNVId 40 SNIILLVA TVILYAS 40 SSEUD0EA

(E°€T = 3 pue 979 = 3) :y

1T °OId

JONVYLSIa
or »X 0¢ . 0C 0l 0

- fc/l . v _ \\‘“ —

/’ /nlmMP \H\ \\\
/w.cm— =) E— \
9°06lL =1
ﬁ,.o

; y £'EEl =1 X \
7/ / \

/ / \ /

/ / \ \

/ / / \
/ / \ \
/ / \ \
/7 7/ \ N
/ / M \
7/ / N .
9°06l = u\\\ \\\ /// ///
\\\ \\\\ //III- IIIIII' ﬁ
e = e - — A . . e S S we——t |
(Aep) g€l =1 0l
(NOL)INY1d002Z) Z
(NOLINVIdOLAHd) d ——~———~
(NID0YLIN) N -

(I/N - bw= SNOILYHYLNIINOD) Z'd'N

-33-



JINVLSIO |

(9792 =

3 pue 0°0Z = 3) 3¢

(NOLYNV1400Z) Z |
(NOL)NVYTJOLAHd) d
: (NIDOYLINVN' ——

- e . ——

60

ot

SNOILYYLINIINOD) Z‘d’N

(I/N - b

-34-



Al e

t:

34.6 (day)

=40.0

't

40

——— N (NITROGEN)
——————— P (PHYTOPLANKTON)
'Z (ZOOPLANKTON)
x*

20

1.0

+ o
Ll
o

(I/N - fw= SNOILYYINIINOD) Z°d’N

-35-

* DISTANCE

3.6 and t = 40.0)

(t =




(0"00T = 3 pPuUu® 9°99 = 3) :d

JONVLSIA |

*X 0t 0l

!
(NOLYNY1d00Z) Z \ y
(NOLMNYTdOLAHd) d x
(NIDOMLINV N —— \. \ H

0°0Z=1 \

- \ _;s;z Y / /

——

s .
- —_ \\ /lVI
99z = a

-

G0

SNOILYYLNIONOI) Z'd'N

(I/N - b

_36_



(9°06T = 3 PU®B £ €E€T = 3)

JINVLSIA £eL=1
L /// // L 1
AT
/ \
/ / /o
(NOLMNVY1d002) Z v O\ \\ !
(NOLIJINVIdOLAHd)Id ——————— \ m.m(ua '
(NI9OYLIN)N ——~ — \ \_
\ ]
\ !
// \\
£EL=1

\\/z
€€l 2\ / |

\

Joon gy =

o W—

SN

G0

01

(I/N - bw= SNOILYYLNIINOD) Z'd N

-37-



(9°9Z2 = 3) 4,
FONVISIO |
o X c.m . c.N ‘ c.F .
w.wNNuwn/
-~ MI/!IIWV.I«.U\.“.’I.’II|...li||.lll!ll|llllu \H\\\ll\ S

(NOLYNY1d00Z) Z |
(NOLMNV1dOLAHd) d .
(NIDOYLIN) N

(Aep) 9°922 =1

T

i
o

0l

(I/N - bw= SNOILVHLINIINOD) Z d’N

_38_



References

1)

8)

Middlebrooks, E.J., D.H. Falkenborg and T.E. Maloney (Ed.), (197k4):
Modeling the Eutrophication Process, Ann Arbor Science Publishers
Inc. Ann Arbor, Michigan, USA.

Jorgensen, S.E. (1977): Butrophication Models, report presented at
the IFIP Working Conference on Modelling and Simulation of Land,
Air and Water Resources Systems, Ghent, Belgium, August, 1977.
Ikeda, S. and Adachi, N. (1976): Dynamics of the Nitrogen Cycle in
a Lake and its Stability, Ecological Modelling, 2, 213-23h4.

Aponin, Yu.M. and Bazykin, A.D. (1977): Model of Eutrophication in
Predator-Prey Systems, RM-77-16, IIASA, Laxenburg, Austria.
Di-Toro, D.M., 0'Conner, D.J. and Thomann, R.V., (1977): A Dynamic
Model of the Phytoplankton Population in the Sacramento-San Joaquin
Delta, Advances in Chemistry Series, 106, Am. Chem. Soc. 131-180.
Castin, R.G. and Holland, C.J. (1977): Stability Properties of
Solutions to Systems of Reaction-Diffusion Equations, SIAM J. Appl.

Math., 33, 353-36L.

Ohkubo, A (1975): Ecology and Diffusion Process, Tsukiji-Shokan Pub.,

or (1974): Diffusion induced instability in model ecosystems,

Chesapeake Bay Institute, Jhons Hopkins Univ. Technical Report No. 86.

Dubois, M. (1977): On Temporal and Spatial Structure in Model Systems

and Application to Ecological Patchness, New Trends in Systems Analysis

ed. by A. Bensoussan & J.L. Lions, Springer, (Th45-755).
Grimm, H.R. Ed. : Analysis and Computation of Equilibria and Regions

of Stability, CP-75-8, IIASA, Laxenburg, Austria.

-39-




