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Preface 

One of the research tasks which the Resource and Environment Area of 

the Institute has addressed is the Models for Environmental Quality Con- 

trol and Management. Over the past few years, much attention has been 

concentrated on the modeling of the water quality for rivers, lakes and 

reservoirs as one of the tools of control and management. 

This report has been prepared as a contribution to the modeling problem 

of the lake eutrophication process, which comprises nutrients and plankton 

prey-preditor elements. The particular concern of this paper is the sta- 

bility analysis of the ecological water quality system in connection with 

the effect of the environmental forcing function, as well as the diffusion 

effect. 





Abstract  

I n  t h i s  paper c h a r a c t e r i s t i c s  of two eut rophicat ion models a r e  

inves t iga ted  with phase p lane ana lys i s  of t h e  equi l ibr ium s t a t e s  of 

t h e  system. Possible pa t te rns  of t h e  system's behaviour and t h e i r  

r e l a t i o n s  t o  ranges of parameters a r e  shown. The r e s u l t s  a reused 

t o  eva lua te  t h e  e f f e c t s  of d is turbances t o  t h e  system.  ina ally, the 

e f f e c t s  of d i f f us ion  on t h e  system's behaviour a r e  discussed and some 

numerical r e s u l t s  a r e  presented.  





1. Introduction 

Several ecological water quality models for lakes or reservoirs 

have been set up over the last few years [l, 21. These models are now 

recognized as being useful for the prediction and management of water 

quality. Most of the work in this field is simulation. 

Computer simulation is a powerful tool for such large and complex 

systems as those of water quality. However, we have to pay attention 

to its limits. With computer simulation, we can only determine the 

system's behaviour for given initial states and specific values of 

parametersin the model. It is clearly impossible to carry out simu- 

lations under all possible conditions. We cannot obtain a complete 

understanding of a system through simulations alone. On the other 

hand, we will have to have a much better understanding of the system's 

basic features when the necessity for developing larger and more de- 

tailed models increases. 

The purpose of stability analysis is to understand the system's 

behaviour qualitatively. We are concerned with the possible patterns 

of behaviour of a system and their relations to values of parameters 

which are included in the system. Although the mathematical theory 

of stability has a long history, complete analysis of stability is 

generally only possible for very simplified systems. Therefore, we 



have t o  s impl i fy  t h e  models i n  order  t o  apply t h e  e x i s t i n g  r e s u l t s  of 

s t a b i l i t y  theory.  The r e s u l t s  obtained by t h e  ana lys is  f o r  t h e  

s imp l i f ied  models may hold only f o r  r e s t r i c t e d  condi t ions i n  a r e a l  

system. However, t h e  knowledge is important. It provides us  with prel iminary 

information wi th  which t o  bu i ld  more p r a c t i c a l  models o r  t o  s e l e c t  

t h e  condi t ions f o r  s imulat ions with t h e  models and, a l s o  t o  i n t e r p r e t  

t h e i r  s imulat ions r e s u l t s .  The knowledge i s  z l s o  important i n  t h e  

sense t h a t  it suggests problems t o  be inves t iga ted  i n  more d e t a i l .  

In  t h i s  paper some r e s u l t s  of s t a b i l i t y  ana lys is  f o r  s imp l i f ied  

eutrophicat ion models a r e  presented. The r e s u l t s  obtained a r e  

appl ied t o  evaluate t h e  e f f e c t s  of environmental v a r i a t i o n s  on t h e  

system's .behaviour . 

2. Eutrophicat ion Models 

Let us consider a constant  and completely mixed volume of lake water.  

The major l i m i t i n g  n u t r i e n t s  f o r  phytoplankton growth a r e  assumed t o  be 

var ious forms of ni t rogeneous and phosphoric compounds. For t h e  sake 

of s imp l i c i t y  t hese  n u t r i e n t s  a r e  represented by inorganic  n i t rogen 

and t o t a l  phosphorous. The schematic diagram of  t h e  n u t r i e n t  cyc les 

i n  t h e  water volume is shown i n  Fig.  1. We make t h e  fol lowing bas ic  

assumptions; 

1 )  The biodegradat ion of organic n i t rogen i n t o  inorganic  n i t rogen 

i s  a f i r s t  order  reac t ion .  

2 )  The reproduct ion r a t e  of  phosphorous i s  propor t ional  t o  t h a t  

o f  n i t rogen.  

3 )  There is no l o s s  of ma te r ia l  due t o  sedimentation. 

On these  assumptions t h e  dynamic representa t ion  of t h e  system 

can be der ived from t h e  mass-balance equat ions: 



where t h e  no ta t ion  i s  def ined a s  fol lows: 

No : organic n i t rogen concentrat ion ( % / l i t e r )  

Ni : inorganic  n i t rogen concentrat ion ( m g l l i t e r )  

Pn : biomass o f  phytoplankton measured by i t s  n i t rogen concentrat ion 

( % / l i t e r )  

Z : biomass of zooplankton measured by i t s  n i t rogen concentrat ion n 

( m g l l i t e r )  

Ph : phosphorous concentrat ion ( % / l i t e r )  

K : r a t e  of degradat ion of  N ( l / day )  
0 

GZ : growth r a t e  of zooplankton ( l / day )  

G : growth r a t e  of phytoplankton ( l /day)  
P 

D D : ex t i nc t i on  r a t e  of phytoplankton and zooplankton respec t i ve l y  
P'  z 

( l l d a y  

D : graz ing r a t e  of phytoplankton by zooplankton ( l / day )  
Q 

SN,, SNiy Sph : i n f l u e n t  concentrat ion of organic n i t rogen,  inorganic  

n i t rogen and phosphorous, respec t ive ly  (mg / l i t e r )  

Spri, SZn : i n f l uen t  concentrat ion of phyto- and zooplankton, 

respec t i ve l y  ( = / l i t e r  ) 



q : t h e  inverse of detent ion t ime ( l / day )  

8 : average r a t i o  of n i t rogen and phosphorous i n  plankton (Ph/N). 

The phytoplankton growth r a t e  G is a funct ion of t h e  nu t r i en ts  
P 

concentrat ions Ni and Ph. The zooplankton growth r a t e  depends on 

phytoplankton concentrat ion P . We assume t h a t  t h e  growth r a t e s  a r e  
n 

represented by monotone-increasing and sa tu ra ted  funct ions of t h e  

respec t ive  va r iab les ;  

- 
G ( P  , N . ) + l  as P *- and N i * ~ ,  
P h l  h 

- - 
a G~ - a G ~  > 0 and - 

aNi  > 0 f o r  Ph>O and Ni>O.  
aph 

p i s  a sa tu ra ted  photosynthesis r a t e  of  phytoplankton and it depends 

on water temperature (T) and l i g h t  i n t e n s i t y  (I). 

Sim i la r i l y  t h e  fol lowing r e s t r i c t i o n s  a r e  imposed on zooplankton 

growth r a t e  GZ: 

G, = l3%(pn), 

aZ,( P, 
> 0 f o r  P > 0. 

a 'n n 

Further w e  assume t h a t  t h e  de r i va t i ve  of i s  bounded s o  t h a t  

- 
aEZ(pn) G,(P,) 

< f o r  Pn 2 0. 
a 'n 'n 



The t y p i c a l  representa t ions  of t h e  growth funct ions which s a t i s f y  

t h e  above condi t ions a r e  known a s  Monod's formula o r  a s  t h e  Michaelis- 

Menten law. That i s ,  

and 

The parameters K Kn and K a r e  ca l l ed  Michael is '  constants .  
P ' z 

We assume a l s o  t h a t  graz ing r a t e  depends l i n e a r l y  on zooplankton 

concentrat  ion ; 

where a is  a constant  parameter. The ex t i nc t i on  r a t e s  of plankton 

Are c lose l y  r e l a t e d  t o  endogeneous r e s p i r a t i o n  r a t e s ,  s o  t h a t  D and 
P 

D a r e  parameters which depend on temperature. 
z  

The f i n a l  purpose of t h e  study is  t o  know t h e  q u a l i t a t i v e  behaviour 

of systems (1 ) - (5 )  under condi t ions (6)-(14) and (17) .  It is ,  however, 

d i f f i c u l t  t o  d iscuss t h e  model d i r e c t l y  because t h e  number o f  parameters 

and va r i ab les  is  t o o  la rge .  From t h e  s t r u c t u r e  of  t h e  model we can 

reasonably suppose t h a t  t h e  n i t rogen and t h e  phosphorous p lay s i m i l a r  

r o l e s  i n  t h e  system's dynamics.' Therefore,  l e t  us d iscuss  t h e  dynamic 

c h a r a c t e r i s t i c s  of  t h e  system under t h e  condi t ion t h a t  only one 

n u t r i e n t  i s  t h e  l i m i t i n g  f a c t o r  f o r  t h e  growth of phytoplankton. 

I n  o ther  words t h e  concentrat ion of t h e  phosphorous is  assumed t o  be  

s u f f i c i e n t l y  l a r g e .  Then t h e  representa t ions  o f  t h e  system a r e  

s imp l i f ied  as fol lows: 



Model I 

a0 - = - KN,+(D +ctzn)pn+(~ -G ) Z  +q(S - N o ) ;  d t  P z z n  No 

The notat ions are  t he  same as i n  equation (1 )-( 5 ) .  And G and Gz 
P 

sa t i s f y  the  condit ions : 

- 
~ ~ ( 0 )  = 0 and ( N . ) - +  1 as N i 4 - ,  

P 1 - 
a G ~  

0 < - , f o r  Ni 2 0 , 
aNi  

- 
~ ~ ( 0 )  = 0 and FZ(pn)+ 1 as  P 

n 
- 

aFz(pn) Gz(Pn) 
0 < < fo r  P > 0 . 

a 'n 'n 
n - 

A fu r the r  s impl i f i ca t ion of Model I is possib le when two forms 

of ni trogen are  integrated in to  one compartment. Denoting t he  t o t a l  

nitrogen concentration by N we have Model 11. 

Model I1 



The growth rates G and G sa t i s f y  the conditions (22)--(27) 
P z 

with N in place of N.. The parameter values in Model I1 may be 
1 

different from those in Model I; the same notations are u.sed for 

simplicity. As mentioned previously, the parametersp, D and DZ 
P 

depend on such environmental factors as temperature and intensity 

of radiation. However, we will first discuss the system's behaviour 

when the environmental conditions do not vary. Therefore these 

parameters will be fixed for the present. 

3. Stability of Batch Process 

Let us consider stability of Model I and Model 11 in the case 

where there are no inflows and outflows to the system. That is, we 

investigate dynamic behaviour of batch process of the predator-prey 

system with one limiting substrate. In this case, the systems con- 

serve the total amount of nitrogen, since q=O. 

(a constant), 

If this property is taken into account, stability analysis can be 

carried out easily. Without going into detailed calculations, the 

results of the analysis will be shown (refer to S. Ikeda and N. Adachi 

[31). 

3-1 Stability of Model I1 

It should be noted that the amount of phytoplankton grazed by zoo- 

plankton per unit time must be greater than the rate of zooplankton growth: 



Therefore we assume t h a t  inequa l i t y  (33)  holds f o r  every P > 0 .  n - 

This condi t ion is  a l s o  necessary t o  ensure t h a t  t h e  models a r e  well-posed. 

I n  o the r  words, under t h i s  condit ion every so lu t i on  of  Model I and Model I1 

remains nonnegative ( p o s i t i v e )  i f  i t s  i n i t i a l  va lues a r e  nonnegative 

( p o s i t i v e ) .  

From r e l a t i o n  (31)  of n i t rogen conservat ion one var iab le,e.g. ,N,  

can be de le ted  from equat ions (28)- (31) .  Then 

dP 
n - -  

d t  
- { ( C  -P -z 1-Dp-uznlPn ; 

p o n n  

The equi l ibr ium s t a t e s  of system (34)  and (35)  can be obtained by 

equat ing t h e  right-hand s i d e s  of t h e  equat ions t o  zeros. S t a b i l i t y  of 

t hese  equi l ibr ium s t a t e s  can be c l a s s i f i e d  completely s ince  t h e  system 

of equat ions i s  a two-dimensional one. The s t a b i l i t y  ana lys i s  of t h e  

equi l ibr ium s t a t e  can be c a r r i e d  out  by t h e  per tu rba t ion  method f o r  

equat ions (34)  and (35 ) .  The equat ions a r e  l i n e a r i z e d  around t h e  s t a t e .  

The c h a r a c t e r i s t i c  equat ion f o r  t h e  l i nea r i zed  equat ions determines t h e  

s t a b i l i t y  o f  t h e  s t a t e .  For an example l e t  us  consider t h e  casewhere 

t h e  system has a p o s i t i v e  equi l ibr ium s t a t e  ( B ,  C )  : 

B%(B)-D= = o 

B > O ,  C > O  and B+C<Co . 

The c h a r a c t e r i s t i c  equat ion of t h e  l i nea r i zed  equat ions around (B,c) i s  



where 

- - 
and G 9  o r  G: a r e  de r i va t i ves  of G 01. G respec t i ve l y .  

P P Z 

From t h e  assumptions on g and CZ, o>O and 6>0. Therefore t h e  po in t  
P 

( B , c )  i s  a s t a b l e  node i f  ~ ~ - 4 6 ~  and a s t a b l e  s p i r a l  i f  02-46<0. 

The r e s u l t s  der ived by t h e  same procedures are summarized as 

fo l lows.  Only t h e  t h r e e  conf igurat ions of t h e  equ i l ib r ium s t a t e s  a r e  

poss ib le .  

$ : Only one equi l ibr ium state (0,O) on t h e  phase p lane of (PnyZn)  

appears and it i s  s t a b l e .  

A2 : The two equi l ibr ium s t a t e s  ( 0 ~ 0 )  and ( A , o )  appear and ( 0 ~ 0 )  i s  

uns tab le  (sadd le  p o i n t )  and ( A , O )  i s  s t a b l e  (node) .  

A3 : Three equi l ibr ium s t a t e s  ( 0 , 0 ) ,  ( A , o )  and (B ,c )  exist  and only 

( B , c )  i s  s t a b l e  (node o r  spiral) .  (0 ,0 )  and ( A , o )  a r e  uns tab le  

(sadd le  po in t s )  , (B<A and B+C<Co).  

Model I1 takes one of the  th ree  pa t te rns  depending on the  va lues of t he  

parameters. I n  the  cases of A and A every t r a j e c t o r y  on the  phase 
1 2 ' 

plane (Pn, Z ) .converges t o  the  unique s t a b l e  equi l ibr ium s t a t e  w i t h ;  
n 

the  increase of t ime. The l o c a l  ana l ys i s  of the  equi l ibr ium s t a t e  does 

n o t  exclude the  ex is tence  of s t a b l e  l i m i t  cyc les.  Therefore,  i n  t he  

t h i r d  case,  t h e  po in t  (B,C) i s  a g loba l  a t t r a c t o r ,  o r  t h e r e  e x i s t s  a 

s t a b l e  l i m i t  cyc le ,  which surrounds the  po in t .  The ex is tence  of a l i m i t  

cyc le  i s  of mathematical i n t e r e s t .  However, i t s  p o s s i b i l i t y  i s  very small 

s i nce  the  po in t  (B,C) i s  always s tab le .  Therefore,  we assume h e r e a f t e r  

thatQ3,C) i s  a g loba l  a t t r a c t o r .  Under t h i s  assumption, every t r a j ecbo ry  

approaches (B,C) wi th  t i m e  i nc reas ing ,  i f  the  i n i t i a l  s t a t e  i s  pos i t i ve .  



The phase p o r t r a i t s  of t r a j e c t o r i e s  corresponding t o  t h e  above A1. 

A and A a r e  shown i n  F ig .  2. I n  t h e  f i r s t  p a t t e r n  (A l )  both 
2 3 

phytoplankton and zooplankton ext inguish.  I n  t h e  second case ( A ~  ) 

zooplankton ex t ingu ishes ,  bu t  phytoplankton r e t a i n s  a cons tan t  biomass. 

I n  t h e  last  case  ( A  ) concentrat ions of phytoplankton and zooplankton 3 

converge t o  t h e i r  respective values as time increases. The regions i n  

parametr ic  space corresponding t o  each p a t t e r n  a r e  i l l u s t r a t e d  i n  F ig .  3. 

If t h e  maximum growth r a t e  o f  phytoplankton p i s  l e s s  than  t h e  ex t i nc t i on  

r a t e  D o r  i f  t h e  t o t a l  amount o f  n i t rogen Co i s  very s m a l l  only p a t t e r n  
P 

A i s  poss ib le .  If t h e  maximum growth r a t e  o f  zooplankton B i s  l e s s  t han  
1 

t h e  e x t i n c t i o n  r a t e  D o r  if C i s  t o o  small, only p a t t e r n s  A and A can 
z 0 1 2 

appear. I n  t h e  case  where B>D p>D and Co i s  g r e a t e r  t han  a c e r t a i n  
z '  P 

value,  p a t t e r n  A i s  poss ib le .  The t y p i c a l  t r a j e c t o r i e s  of  t h e  system 
3 

which correspond t o  A a r e  shown i n  F ig .  4.  I n  t h i s  example t h e  Monod 3 

t ype  growth func t ions  a r e  used and t h e  equi l ibr ium po in t s  a r e  ( 0 , 0 ) ,  

(0.994, 0 )  and (0.24, 0.53) and C o = l . O .  A s  seen i n  t h e  f i g u r e  when t h e  

i n i t i a l  po in t  has smal l  va lues  f i r s t  only P inc reases  r a p i d l y  and n 

t hen  Z fo l lows. This phenomenon occurs because f o r  t h e  s tandard  va lues n 

of  parameters t h e  second equi l ibr ium po in t  i s  very c l o s e  t o  (co ,  0 ) .  

3-2 S t a b i l i t y  o f  Model I 

The same approach as  t o  Model I1 can be appl ied t o  Model I 

represented  by equat ions (18)-(21).  Let  us cons ider  t r a j e c t o r i e s  of 

t h e  system i n  a three-dimensional  space of ( N  Z ) because one 
i ' 'n' n 

v a r i a b l e  can be d e l e t e d  from r e l a t i o n  ( 3 2 ) .  The r e s u l t s  of t h e  ana l ys i s  

o f  t h e  equ i l ib r ium s t a t e s  a r e  summarized a s  fo l lows.  

One of t h e  fo l lowing cases appears depending upon the values of the 

parameters.  



B1 
: ( N ~ ,  Pn, Z ) = (Co, 0, 0) is the only equilibrium state and it 

n 

is stable. 

B2 : The two equilibrium state exist, (Co, 0, 0) is unstable and (D, A, 0) 

is stable, where O<D, O<A and D+A<C . 
0 

B3 : Three equilibrium states (C 0, 0) ,(D, A, 0) and (E, B, C) exist 
0 ' 

and only (E, B, C) is stable, where OcE, OcB, OZC and E+B+CcCo. 

In the third case let the characteristic equation of the linearized 

equation around (E, B, C) be 

The coefficients a a and a can eas i l y  be shown to be positive. 
1' 2 3 

Then it is sufficient to show that a a -a >O in order to prove the 
1 2  3 

stability of (E,  B, c). By some troublesome calculations 

From conditions (27) and (33) ~>BE~(B), therefore a a -a >Om Then 
1 2  3 

Hurwitz's criterion ensures that (E, B, C) is a stable equilibrium state. 

It is to be noted that condition (27) is sufficient for (E, B, C) to be 

stable. This is not the case for Model 11. The region of parameter 

values corresponding to the each pattern i s  given by exact ly the 

same figure as Fig. 3, where A1, A and A are replaced by B1, B2 and 
2 3 

B respectively. The above results are interesting. The trajectories 
3 

of the system are considered in a three-dimensional space of (N i, pn, 

z,). However, if they are projected on (P Z ) plane the configurations 
n' n 

of the equilibrium states are the same as those of Model 11. Therefore, 

as far as the behavior of (P,, Zn)is concerned they are supposed to 

have Patterns s imi lar  t o  those of Model 11. This f ac t  gives us a  

reasonable possibility to understand the characteristics of the system 



through inves t iga t ions  of Model 11. 

4. S t a b i l i t y  of Process wi th  Constant Flow Rate 

Let us d iscuss  t h e  case when t h e  ni t rogeneous nu t r ien ts  f low i n t o  

t h e  system a t  a constant r a t e .  Model I1 w i l l  be used t o  examine 

poss ib le  pa t te rns  of t h e  behaviour of t h e  system. I n  o ther  words we 

a r e  concerned with s t a b i l i t y  of Model I1 on t h e  assumption t h a t  

SN = a constant 

q = a constant 

I n  t h i s  case t h e  conservat ion of t o t a l  n i t rogen does not hold. 

However, from equat ions (28)-( 30) , 

sc "Uliat w e n -  t r a j e c t o r y  of sys-tern (28)-(30) approaches the P$&R@ 

a s  t ime increases ,  and t h e  plane i s  an i nva r ian t  manifold of  t h e  system. 

Therefore, we can understand t h e  q u a l i t a t i v e  behaviour of Model I1 by 

r e s t r i c t i n g  t h e  i nves t i ga t i ons  on t h e  two-dimensional p lane (37 ) .  

The study o f  t h e  equi l ibr ium po in ts  on t h e  p lane shows t h a t  r e s u l t s  simi- 

l a r  t o  those i n  the preceding batch process hold.  One of the fol lowing 

pa t te rns  appears, depending upon the values of the parameters: 

C, : (sN, 0,  0 )  i s  only equi l ibr ium s t a t e  and it i s  s tab le :  

C2 : !Two equi l ibr ium s t a t e s  ( sN ,  0 ,  0 )  and ( D ,  A ,  0 )  appear , 

(SN, 0 ,  0 )  is  unstab le  and ( D ,  A ,  0)  i s  s t a b l e  ( D + A = s ~ ) :  



3 
: Three equi l ibr ium s t a t e s  ( s ~ ,  0,  01, (D, A ,  0 )  and (E .  B, C )  

e x i s t  and only ( E ,  B, C )  i s  s t a b l e ,  where E+B+C=S N ' 

In  t h i s  way, we can say t h a t  the possib le pa t te rns  of behaviour of the  

system with constant nu t r ien t  inf low do not change compared with those 

of the batch process. The regions i n  the parametric space of ( q ,  S ) ,  
N 

corresponding t o  the above th ree  pa t te rns ,  a r e  i l l u s t r a t e d  i n  Fig.  5.  

The two cases a r e  possib le according t o  the r a t i o  of ( 6 - D Z )  and (u-D ) .  
P 

In both cases,  t h e  increase of flow r a t e  changes the  system's dynamic 

pa t te rns  from C t o  C 2  and then t o  C I n  other  words, by increasing 3 1 ' 

the f low r a t e ,  f i r s t  zooplankton and then phytoplankton i s  washed out .  

Conversely, i f  the in f luent  concentrat ion of nu t r i en ts  increases,  the 

system's dynamic pa t te rn  goes from C t o  C and t o  C From the f i gu re ,  
1 2 3 ' 

i t  i s  a l s o  seen t h a t  i f  the flow r a t e  i s  la rger  than a c e r t a i n  va lue,  

phytoplankton and zooplankton can never coex is t .  This i s  a l s o  t r u e  when 

the  i n f l uen t  concentrat ion i s  smal ler  than a c e r t a i n  value. 

Recently Aponin and Bazykin demonstrated an i n t e r e s t i n g  r e s u l t  [4]. 

They inves t iga ted  behaviour of a prey-predator system under t h e  condi t ions 

of  continuous cu l t i va t i on .  They found out  t h a t  a fou r th  p a t t e r n  e x i s t s  

i n  addi t ion t o  t h e  above t h r e e  pa t te rns .  That i s ,  they showed t h e  

ex is tence of a s t a b l e  l i m i t  cycle f o r  a c e r t a i n  region i n  t h e  parametr ic 

space of ( q ,  SN). The r e s u l t  i s .de r i ved  from t h e i r  assumptions on t h e  

model. They assumed t h a t  t h e  reproduct ion of t h e  predator and t h e  

consumption of t h e  prey by t h e  predator  a r e  i nh ib i t ed  by t h e  subs t ra te  

concentrat ion.  Since the  i n h i b i t a t i o n  e f f e c t s  a r e  not incorporated i n  

Model I and Model I1 t h e  four th  pa t te rn  does not appear i n  our  a.nalysis. 



5. Ef fec t s  of Parameter Var ia t ions 

The poss ib le  p a t t e r n s  of t he  system's behaviour have been examined 

i n  t he  preceding two sec t i ons ,  both f o r  a batch process and f o r  a process 

wi th  a cons tan t  r a t e  of n u t r i e n t  inf low. A s  seen i n  t he  d iscuss ions ,  t he  

motion of t he  system i s  determined by the  con f igura t ions  of t h e  equi l ibr ium 

s t a t e s .  The p a t t e r n s  of t he  equi l ibr ium s t a t e s  depend on the  va lues 

of parameters which a r e  included i n  the  system's model. I n  t h i s  sec t i on ,  

le t  us apply  t he  r e s u l t s  t o  eva lua te  the  e f f e c t s  of ex te rna l  d is turbances 

on the  system's motion. 

Consider a genera l  mathematical model o f  a dynamical system: 

wherex= (x  1, x ,. . . , x ) i s  an n-dimensional vec to r  and f= ( f  
n 1, f29 

..., f ) i s  a vec tor  funct ion which depends on a s c a l a r  parameter r ,  
n 

and f is assumed t o  be  cont inuously d i f f e r e n t i a b l e  wi th  respec t  t o  x 

s ~ d  a. For z given va lae  z f  n an zqui l ibr ium po in t  x=x*(n) s a t i s f i e s  

equat ion 

Then t h e  v a r i a t i o n  of x*(a)  because of a s m a l l  change of n is determined 

from t h e  l i n e a r  a lgebra ic  equat ion : 

where F is an nxn mat r i x  such t h a t  i ts  element f i j  is 



and F is supposed to be nonsingular. 

Therefore, the effects of a small change in parameter values on the location 

of the equlibrium state can be evaluated from (40)-  if the variational 

matrix F and af/a~r are known. 

5.1 E f fec t  of Temperature and Light I n t e n s i t y  

I n  t h e  preceding sna lys i s  of t h e  s t a b i l i t y  of t h e  systerq water 

temperature and i n t e n s i t y  of s o l a r  rad ia t i on  ( I )  a r e  f i xed .  I n  r e a l i t y ,  

however, t h e  s t a b l e  equi l ibr ium point  moves according t o  v a r i a t i o n s  of 

T and I. Consequently i f  T and I vary continuously and slowly,P and 
n 

Z a r e  expected t o  fol low t h e  continuous movement of t h e  unique s t a b l e  
n 

s t a t e .  We consider t h e  system when t h e r e  i s  no inf low and outf low, and 

use  Model I1 s ince  t h e  behavioural  pa t te rns  of both models a r e  supposed 

t o  be s im i l a r .  We assume t h a t  t h e  maximum growth r a t e  ,J of phytoplankton 

depends on T and I and t h a t  t h e  ex t inc t ion  r a t e s  D and D depend on T. 
P z 

The o ther  parameters a r e  assumed t o  be independent of T and I. Various 

p r a c t i c a l  funct ions a r e  proposed f o r  t h e  growth and death ra.tps nf' 

plankton 121. Here we make t h e  fol lowing genera l  assumptions on p, D 
P 

and DZ:  

0 aT aDp > 0 and - 
. a~ > o  , 

and 

* > o  a I f o r  I < I o p t  , 

o f o r  I    opt. a I 

I op t  i s  an optimal l i g h t  i n t e n s i t y  f o r  photosynthesis.  Concerning 

t h e  b io log i ca l  impl icat ions of t h e  assumptions See e.g.  Di-Toro et, a1, [5 ] ,  



Denoting t h e  r i g h t  hand s ides  of equat ions (34)  and (35 )  by f l  and 

f  respec t ive ly ,  
2 

and 

The v a r i a t i o n a l  matr ix  F has been used i n  t h e  ana lys is  of t h e  s t a b i l i t y  

of t he  equibrium s t a t e s .  Therefore t h e  procedures mentioned can 

be appl ied.  The r e s u l t s  der ived are  t h e  fol lowing: 

a A 
- >  0 i f  I < I op t  , a I 

< 0 i f  I > Iop t  . 

Concerning equi l ibr ium s t a t e  ( B ,  c ) ,  

a B a B  
- > O  and - = O  , a T a I 

a c 
- >  0 a I i f  I < I op t  , 

< 0 i f  I > Iopt  . 



As shown i n  Fig.  4 t r a j e c t o r i e s  of ( P  Z ) have an i n t e r e s t i n g  
n '  n 

fea tu re  f o r  t he  standard ranges of parameters i n  t h e  model, when t h e  

r e l a t i v e  pos i t ion  between t h e  s tab le  equi l ibr ium s t a t e  and t h e  i n i t i a l  

0 s t a t e  (Pn, z:) i s  one such t h a t  B>P' and C>Z' P increases  rap id ly .  
n n' n 

I n  other  words, i f  t h e  ex te rna l  disturbances a r e  given t o  t h e  system 

so  t h a t  ( B ,  C )  moves t o  (B+AB, C+AC).(AB>O and A C > O )  rap id  growth of 

phytoplankton w i l l  be observed. From (45) and (46)  such a s i t u a t i o n  i s  

poss ib le  when temperature and l i g h t  i n t e n s i t y  change discont inuously 

so  t h a t  

Af ter  t he  changes of T and I (pn, Z ) moves toward t h e  new equi l ibr ium 
n 

s t a t e  ( B ' ,  c ' )  as shown i n  Fig.  6. 

5.2 Nutrient Enrichment and Variat ion of Flow Rate 

Let us  apply t h e  procedures of s e n s i t i v i t y  ana lys i s  t o  t h e  equi l ibr ium 

s t a t e  of Model I1 with a constant r a t e  of i n f l uen t  nut r ients .  Res t r i c t i ng  

t h e  ana lys is  on t h e  plane P +Z +N=S a s  i n  Sect ion 4 t h e  fol lowing r e s u l t s  n n  N 

a r e  obtained: 

a A- - a B > o  , - -  - 0 and - ac > 0,  
a S ~  a S ~  a S ~  

From (47) and (48) we can know t h e  movements of t h e  equi l ibr ium s t a t e s  

when S o r  9 change continuously. Suppose t h a t  t h e  system i s  a t a  steady 
N 

s t a t e  (E,  B y  c ) .  When q increases,phytoplankton increases but  zooplankton 

decreases. The f u r t h e r  inc rease of q ext inguishes t h e  equi l ibr ium s t a t e  



( E ,  B, C )  , ( s e e  Fig. 7 )  Fig. 8 shows a s im i la r  movement of t he  

equi l ibr ium s t a t e s  when t h e  i n f l uen t  nut r ients  decrease. 

Let us consider now t h e  case when t h e  concentrat ion of i n f l uen t  

nutr ients increases suddenly. The increase of t h e  concentrat ion br ings  

about t h e  change of t h e  s t a t e  ( B ,  C )  t o  (B ,  C+AC)  AC>O ( ~ i g .  9 ) .  

A s  a r e s u l t ,  t he  growth of phytoplankton w i l l  be observed. The 

analogous behaviour of t h e  system w i l l  be observed when t h e  concentra- 

t i o n s  of  phytoplankton and moplankton decrease suddenly due t o  d i l u t i o n  

of t h e  system. Although t h e  s t a t e  of t h e  system changes from ( B ,  C) t o  

(B-AB, C - A C ) ,  (AB, A C > O )  by d i l u t i o n  t h e  l oca t i on  of t h e  s t a b l e  

equi l ibr ium point  i s  not  a f fec ted .  Consequently ( P  Z ) moves toward 
n' n 

t h e  equi l ibr ium s t a t e  a s  shown i n  Fig. 10. 

6 .  Ef fec t  of Di f fusion on S t a b i l i t y  

I n  t h e  preceding sec t i ons ,  we have discussed t h e  s t a b i l i t y  of 

equi l ibr ium s t a t e s  and poss ib le  pa t te rns  of plankton behaviour i n  a 

completely mixed volume of l ake  water.  On t h e  o ther  hand s p a t i a l  d i s t r i bu -  

t i o n  of plankton populat ion p lays ,  i n  some cases ,  an important r o l e  i n  

plankton bloom mechanism due t o  t h e  formation of plankton Patchiness i n  the 

l ake  water. Therefore, l e t  u s  examine e f f e c t s  of the  d i f f us ion  process on 

t h e  s t a b i l i t y  o f  t h e  system. A s  a prel iminary ana lys i s  of t h e  d i f fus ion  

process,  l e t  us  use Model I1 with d i f f us ion  terms but  wi th  no f lows. 

We assume uniform concentrat ions i n  v e r t i c a l  sec t ions  of a closed water 

volume. Using Monod type growth funct ions:  



where D D and D a r e  d i f f us ion  c o e f f i c i e n t s  and no ta t ions  of  o the r  
1, 2 3 

parameters a r e  t h e  same a s  those  of t h e  batch process.  

For s imp l i c i t y  of t h e  mathematical express ion,  l e t  us in t roduce t h e  

fol lowing vec to r  no ta t i ons  : 

u = (N, Pn, Zn) 

f ( u )  = ( f l y  f 2 ,  f3 )  

F = (Dl ,  D2, D3) 

where f  f 2  and f a r e  t h e  b io log i ca l  i n t e r a c t i o n  terms i n  t h e  r i g h t  
1 , 3 

hand s ides  of  equat ions (49) - (51) ,  r espec t i ve l y .  

Then, t h e  system (49)- (  51) can be wr i t t en  i n  t h e  form 

The i n i t i a l  and boundary condi t ions a r e  

and 

This boundary condi t ion means t h a t  t h e r e  i s  no f low across  t h e  boundary 

of t h e  concerned water volume, and t h e  problem of so lv ing equat ions 

(52)- (54)  i s  c a l l e d  t he  Neuman problem. 

I n  connection wi th  s t a b i l i t y  ana l ys i s  o f  t h e  above Neuman problem 

we a r e  concerned wi th  s p a t i a l l y  homogeneous equi l ibr ium s t a t e s  of  system 

(52) - (54) ,  which s a t i s f i e s  t h e  equat ion:  



Hence the  equi l ibr ium s t a t e s  a r e  i d e n t i c a l  wi th those of t h e  batch process 

discussed i n  Sect ion 3. In  t h e  fol lowing l e t  us  examine t h e  s t a b i l i t y  of 

t h e  equi l ibr ium s t a t e  only i n  t h e  case of equal d i f f us ion  coe f f i c i en ts  

and show a simple simulat ion example. 

6.1 S t a b i l i t y  Analysis of Model I1 with Equal Dif fusion Coef f i c ien ts  

Let us  de f ine  t o t a l  n i t rogen ~ ( t , x )  

Then t h e  system (49)-(51) can be  wr i t t en  

Further assume t h a t  

then 
a c - -  a2c - d- 
at ax 2 

This equat ion means t h a t  t o t a l  n i t rogen approaches a s p a t i a l l y  

homogeneous constant  d i s t r i b u t i o n  as t -t -; C(t  ,x )  = Co . 
t- 

Therefore, we conf ine t h e  s t a b i l i t y  ana lys i s  of t h e  d i f fus ion '  e f f e c t  

t o  t h e  Model I1 with in behaviour of  t h e  system on t h e  manifold of 

Making use of r e l a t i o n  (60) t o  system of (49) - (51) ,  we can reduce t h e  

number of equat ions from t h r e e  t o  two i n  t h e  same way as i n  equat ions 

(34)  and (35) :  



where 

and f and f are the  b io logical  in terac t ion  terms i n  t he  r i gh t  hand 
1 2 

s ides of (61) and (62) .  

Suppose t ha t  the  equation (55) has equil ibrium solut ion uO = (NO, 

P:, z:) such t ha t  NO>O, P ~ > O  and z:>o, 

0 0 
Then, we can obtain t he  l inear ized equations of (63) around 7 = ( p n , z n )  : 

where A i s  t he  l inear ized coef f ic ient  matrix with respect t o  v and v is 

a - a 
a small perturbat ion about the  point u , i . e . ,  u = u + v. For t he  

above defined problem, t he  solut ion of (65)-(67) can be expressed by 

means of an eigenfunction expansion [ 6 ]  as 

L rn 

2 
v ( t , x )  = [ I  1 2 cos (ox) cos (cry) e x p ( ~  - amdl ) t )  vo(y)dy, (68) 

0 m=O 

where a = ma/L and I is  a un i t  matrix. 
m 



It i s  e a s i l y  seen t h a t  t he  s o l u t i o n  i s  s t a b l e ,  i f  f o r  each nonnegat ive 

2 
i n t e g e r  m, t he  e igenva lues  of mat r i x  A - a d 1  have nega t i ve  r e a l  p a r t s  

m 
2 

Clea r l y  mat r i x  A - a d I  has  nonnegative r e a l  p a r t s  because t he  cor res -  
m 

ponding e q u i l i b r i u m s t a t e  of t h e  ba tch  p rocess  i n  Sec t ion  3 is  s t a b l e ,  

i . e . ,  t h e  e igenva lues  of A have nega t i ve  r e a l  p a r t s .  Hence, we can 

conclude t h a t  t he  d i f f u s i o n  term does no t  have any e f f e c t  on s t a b i l i t y  

of t h e  equ i l i b r ium s t a t e ,  a s  long a s  t he  system has  equal  d i f f u s i o n  

co&fS. ic i int t i .  However, i t  must be noted t h a t  t h e r e  is a case  where 

t h e  d i f f u s i o n  p rocess  becomes uns tab le ,  d r i ven  by unequal d i f f u s i o n  

c o e f f i c i e n t s ,  even i f  t he  assoc ia ted  ba tch  process is  s t a b l e  [7, 81 . 

6 . 2  Simulat ion Example of Plankton Patchiness 

I n  o rder  t o  examine our a n a l y s i s  i n  t h e  case  of a d i f f u s i o n  p rocess ,  

l e t  us  show a s imple  s imu la t ion  example which d e a l s  w i th  t h e  behaviour 

of t h e  nu t r ien t -p lank ton  concen t ra t ions  i n  one dimension. Assume t h a t  

a uniform i n i t i a l  s p a t i a l  p a t t e r n o f  n u t r i e n t s  e x i s t s  i n  t h e  whole 

domain.  O G x < L  - - and pu t  a smal l  p lankton popu la t ion  i n  t he  middle of 

t h e  domain: 

The s imu la t ion  i s  t hen  ca r r i ed  out  from t = O  t o  t=226.6 (days ) ,  where 

t h e  d i f fus ion  c o e f f i c i e n t  i s  D = D = D 2 
1 2 3  

= 5.0 (m / see)  and numerical 

values of other '  parameters a r e  t h e  same a s  those  used i n  F ig .  4 [Ref .3] .  



Figures l l - A  - 11-3' i l l u s t r a t e  t h e  progress of t y p i c a l  s p a t i a l  

pa t te rns .  

Fig. l l - A  - l l - D :  The phytoplankton P grows around t h e  i n i t i a l  d i s t r i bu -  n 

t i o n  and forms a patch. This patch propagates t o  t h e  boundary bu t  i s  

depressed i n  i t s  middle p a r t  wi th  t h e  predat ion by zooplankton Z . 
n 

The n u t r i e n t  N decreases f i r s t  i n  t h e  middle p a r t  i n  con t ras t  wi th  t h e  

phytoplankton inc rease,  bu t  res to res  i t s  concentrat ion gradual ly  a s  the 

plankton wave moves t o  t h e  boundary. 

Fig. l l -E and l l -F:  The zooplankton Zn a l s o  grows rap id ly  wi th  a c e r t a i n  

t ime l a g  and forms a wave which a l s o  moves t o  t h e  boundary. F ina l l y ,  t h e  

d i s t r i b u t i o n  of N ,  P and Z approaches t h e  uniform equi l ibr ium s t a t e  
n n 

of (0.22 , 0.24, 0.53) which is  a s t a b l e  equi l ibr ium so lu t i on  of t h e  

system (49)- (51) .  It i s  i n t e r e s t i n g  t o  note t h a t  t h e  plankton p a t d i n e s s  

i s  observed dur ing a r a t h e r  long per iod along t h e  i n i t i a l l y  per turbed 

reg ion,  depending on t h e  degree of d i f f us ion  and s p a t i a l  l eng th ,  although 

it f i n a l l y  fades away t o  t h e  uniform equi l ibr ium. 

7. Conclusions 

The dynamic c h a r a c t e r i s t i c s  of two s imp l i f i ed  eu t roph ica t ion  models 

a r e  discussed wi th  s t a b i l i t y  ana lys is  o f  equi l ibr ium s t a t e s .  The two 

models have t h e  same pa t te rns  of conf igurat ions of t h e  equ i l ib r ium po in t s ,  

which can determine t h e  g loba l  motion of t h e  system. The r e l a t i o n s  between 

these  pa t te rns  and t h e  ranges of parameters values a r e  i l l u s t r a t e d  both 

f o r  a batch process and f o r  a process wi th  continuous c u l t i v a t i o n .  It is 

a l s o  shown t h a t  t h e  r e s u l t s  obtained a r e  appl icable t o  ana l ys i s  of t h e  

d i f f us ion  process wi th  t he  same system s t r u c t u r e  a s  t h e  batch eu t roph ica t ion  

model. The r e s u l t s  a r e  use fu l  f o r  evaluat ing the system's response t o  

environmental va r i a t i ons .  



Although it seems to be difficult to apply the analytical method 

of stability analysis, which is used in this paper to,larger and more 

complex systems, we could conclude that careful examination of configura- 

# 
tions of equilibrium points determine the system s global behaviour at least 

to some extent. Therefore, analysis of equilibrium points is useful for 

the determination of qualitative characteristics of various mathematical 

models. From this point of view, practical algorithms are to be developed 

to compute equilibrium points of complex models and to evaluate their sta- 

bility [ 9 ] .  
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