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Preface

Standard setting is one of the most commonly used regulatory
tools to limit detrimental effects of technologies on human

health, safety, and psychological well-being. Standards also
work as a major constraint on technological development,
particularly in the energy field. The trade-offs which have to

be made between economical, engineering, environmental, and
political objectives, the high uncertainty about environmental
effects, and the conflicting interests of groups involved in
standard setting, make the regulatory task exceedingly difficult.

Realizing this difficulty, the volkswagen Foundation spon-
sored a research subtask in IIASA's Energy Program under the name
Procedures for the Establishment of Standards. The objective
of this research are to analyze existing procedures for standard
setting and to develop new techniques to improve the regulatory
decision making process. The research performed under this
project inc¢lude:

i) policy analyses of the institutional aspects of
standard setting and comparisons with other regulatory
tools,

ii) case studies of ongoing or past standard setting
processes (e.g., o0il discharge standards or noise
standards) ;

iii) development of formal methods for standard setting
based on game and decision theory,

iv) applications of these methods to real world standard
setting problems.

The present research memorandum is one in a series of papers
dealing with the development and application of game-theoretic
models for standard setting. It presents an illustrative
application of a model developed at TIASA to the problem of
setting railway noise standards.
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Abstract

This paper describes the application of a multistage game
theoretical model to setting noise standards which is illustrated
by the case of trains. The problem was structured to match the
decision problem which the Environment Agency faced when setting
standards for Shinkansen trains. The model considers three play-
ers: the regulator (environment agency), the producer (railway
corporation), and the impactees (residents along the railway line
who suffer from noise). The game has seven stages characterized
by the actions of the impactees ranging from petitions to legal
litigation. The final stages are the outcomes of a possible law-
suit. The case is either won by the producer or the impactees,
or a compromise is reached. Transition probabilities between
stages are considered parameters of the game. They depend mainly
on the noise level the impactees consider acceptable, the stan-
dard set by the regulator, and the actual level of noise emitted.
Only the regulator and the producer are active players in the
sense that they have a set of choices characterized as standard
levels (regulator) and noise protection measures (producer).

The impactees are modeled as a respornse function. Several so-
lutions according to a hierarchical solution concept of the game
are derived. In particular, conditions are given under which the
regulator or the producer would prefer a compromise solution to
awaiting the outcome of the court case. These conditions can be
expressed directly as functions of noise levels and transition
probabilities, given some simple assumptions about the shape of
the utility functions of the regulator and the producer.







A DYNAMIC MODEL FOR SETTING
RAILWAY NOISE STANDARDS

1. INTRODUCTION

Since the superrapid "bullet train", the Shinkansen, be-
gan operations in Japan in 1964, complaints about train noise
have never ceased. Peak noise levels can reach over 100 dB lead-
ing to substantial disturbances of residential living. Since
the responses of the government and the railway corporation to
these complaints have been slow, citizens began to go through
various forms of protest, including petitions, organizations,
and legal litigation. 1In 1972 the government asked the railway
corporation to take urgent steps against Shinkansen noise. But
it was not until 1975 that noise standards (70-75 dB) were issued
to force the railway corporation to respond to the citizens'
need for quietness. Residents, hbwever, were not content with
these standards and the railway corporation's subsequent attempts
at improving sound protection measures. A legal battle between
residents and the railway corporation is still going on in which
residents ask to reduce Shinkansen noise to a "nondisturbing"”

level.

In a recent paper (see [1]) the decision process of the
Environment Agency and the railway corporation was des-
cribed and analyzed. 1In this analysis the need was recognized
for more formal methodologies to study decision making involving
the conflict between environmental and developmental interests.
The present paper is an attempt at developing such a methodology
based on dynamic game theoretic models. The purpose of such
models is to explore alternative strategies of the conflicting
actors. in environmental standard setting decisions, and to
derive "optimal? strategies depending on the paiameters of the

game and alternative solution concepts.



Essentially three groups are involved in typical environment-
development conflicts: the regulator, the producer (developer),
and the impactee (sufferer of pollution). 1In the case of train
noise these groups are an environmental agency (regulator), a
railway corporation (producer), and the residents along the line
(impactees). Neglecting institutional arrangements, the regqula-
tor and the producer are considered single rational players for
the purposes of the model. The decisions of the residents are
considered (possibly probabilistic) reactions to the decision
of the regulator and the producer. Thus the impactee is not
modeled as a rational player but rather as a response function.
The conflict situation between regulator, producer, and residents
is formalized as a multistage two-person game, where a stage is
characterized by the action of the residents or a judgment by

a court.

2. THE MODEL

Two-person dynamic or multistage games in extensive form
(see [2] or [3]) are regarded that are similar to stochastic
games. At each stage a component game of peffect information is
played that is completely specified by a state. The plavers'
choices do not control only the payoffs but also the transition
probabilities governing the component game to be played at
the next stage. It is assumed that the regulator and the pro-

ducer have the same estimates of the transition probabilities.

The states of the game are a subset of
{(i,L)|i=1,...,7: n<L<a} ,

where i indicates the last action or measure of the residents or
the court. L denotes an upper bound for the admitted noise level,
n the maximum value of noise produced by the train without special
sound protection measures, n > o the minimum value of noise under
which the train can be run under economic considerations, and
(1,L) is the first state after construction of the railway line.
Hence (1,L) = (1,nm). State (2,L) indicates that a petition has
taken place. (3,L) states that the population affected by noise



has built up an organization for negotiations with government
in order to arrive at a low noise standard. If the negotiations

fail the residents can start a lawsuit. This is indicated by

(4,L). (4,L) can be followed by states of type (5,L), (6,L), or
(7,L). (5,L) stands for a permanent compromise between all par-
ties with upper bound L for noise. (6,L) indicates that the law-

suit was decided in a neutral or positive way for the railway
corporation and the government, and (7,L) that the lawsuit was
decided in favor of the residents. (5,L), (6,L), and (7,L) are
final or absorbing states. See élso Figure 1. For each class of
states the component game and the transition probability are spec-

ified separately.

~
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Figure 1. States of the game and transition prdbabili—
ties (pi).



The model assumes that the costs and benefits of restricting
or increasing noise levels from the train can be expressed as
utility functions on noise levels. The utility function of the

railway corporation is given as

uP : [EIH] + R r
as long as there is no effective action by the residents. 1In
general, this function will be strictly increasing. In fact,

there exists evidence that within reasonable values of n and n
(e.g. 60 and 100 dB, respectively) this function may be linear
(see [1]). Thus in some cases it may be possible to express

u., as
P

neglecting a scaling factor.

The utility function of the regulator is also assumed to

be defined directly on noise levels:

U.R : [IllH] - R .

up is to reflect a compromise between the economic importance of

the train and the noise pollution effects on residents along the

line. In the model u_, is assumed to be unimodal with a peak at

R
+ -
n <L <n. The following argument supports the assumption
that ug is unimodal.. Assuming that up balances environmental
and developmental interests, a crude approximation of un could

be given by
uR=qu+uI ’

where W > o is an importance weight factor which indicates the
relative weight of economic considerations, and u; is the im-
pactee's utility function. From survey data. [4,5] one can infer
that the strength of complaints to noise ({(an indicator of uI)

is approximately quadraticélly related to noise level. Thus



neglecting scaling factors
U =-(n - %+ £ .

Substituting uI and U, 1n u, gives

u, = W(n +e) - (n - E)2 + £,

N ES

which is unimodal with a maximum at L' + n.

In case of the first state (1,L)

(1,n) the component
game is specified as follows. First the regulator chooses his
measure mReMR(],H), where MR(1,H) denotes the set of measures

available to him. Knowing m_ the producer chooses m EMP(1,H}mR)

R P

where MP(1,H,mR) is the set of measures available to him. MR

and MP are specified by

M(1,m): = {1]ln < 1 <7} ,

i
—
o]

A
-

A
=
o)

MP(_l,H,l):

where 1 denotes the highest level of noise the regulator allows,
and n the value of noise generated by operating the railway.
The residents' choices are not specified because they are formal-
ized by a response function resulting in special transition proba-
bilities.

A substantial property of the model is the aSsumption of a

threshold nIe[E,H], so that a noise level below n_ is not con-

I
sidered a relevant disturbance of the residents.

Given state (1,n) only states (1,n) and (2,n) can succeed.
Regulator and producer believe the transition probabilities to
be

_ _ 1 if n < ng
P((jln)|1ln’lln) = . ’
1—p2 if n > n;

and




P((2,n)|1,n,1,n) =1 - P((1,n)|1,n,1,n)

where Py, > O represents the experts' subjective probability that

the residents will choose a petition if n > n The utilities

I*
are given by

uj(],ﬁ,l,n) = uj(n) (J = R,P; n<n<1) .
The state (2,n) can either remain or be replaced by (3,n) denot-
ing the formation of an organization. We assume the follcwing
transition probabilities:

1 if n < ng

P((2,n)|2,n,1,n)

1—p3 if n > ng

and

P((3IH)|ZIHIlIn) 1 - P((2IH)|2IHIlIn) 4

where Py > O. The idea is that n < n_ is generated either by the

I
regulator (1 < n.) or by the producer (a < ny < 1) giving in to the

residents’ demands. The payoffs are specified by

Uj(z,ﬁ,l,n): = uj(n) (J = R,P; n<n <1l) .

In case of a formation of an organization (3,n) residents
will begin negotiations aimed at forcing the regulator to give
in and set an acceptable standard. Let the measure sets of the

regulator and the producer be given byv

M (3,m): = {l|ln <1 <n} ,

Mp(3,n,1): = {nn < n <1}



Then

o 1 if 1 < ng
P((3,n)|3,n,1,n)

1-Pu if 1 > nI

P((4,n)|3,n,1,n)

1 -P((3,n)|3,n,1,n) ,
where p, > O and (4,n) denotes the start of a lawsuit. Let
uj(3,8,1,0) =uyn)(3 =R?P; n<ngl)

Three outcomes of a lawsuit are considered. There is a
compromise (5,L) suspending the lawsuit, or a judgment in favor
of regulator and producer (6,L), or a judgment in favor of the
residents (7,L). Let

Ma(4,7) = {lln <1l <hlv{@M|n<lcA<n

M, (4,7,1) = M (4,8,1,0) = {n|n < n

IA

1} v {(n,N[n <n<

<N<n, n<1} .
(1,A) indicates that the regulator fixes a bound 1 for the noise
at the current stage and at the same time makes a permanent com-
mitment for a fixed bound A in later stages. A could be inter-
preted as a quality standard to be effective permanently after
a fixed period of time has passed. For simplicity we assume that
A becomes effective immediately. Analogously n in (n,N) denotes
the actual noise level at the current stage, while N denotes a
commitment made by the producer to regard this limit from now
on. Let

Mo = {(,Amp) | (1,M)eMp(4,n), A < np,mpeMy(4,n,1)]

P

v {(mR; n,N)|mR€MR(u,H), (n,N)eMP(H,u,mR),N < nI}

be called the set of compromise pairs of choices. MC contains




just the pairs (mR,mP) of measures guaranteeing to the residents

that from now on no noise level greater than n. will occur. Then

I
we assume

1 if (mR,mP)EMC and I = min (A,N)

- _ where A: = + ® or N: = + » in
P((S’L)IL"n’mR’mP) - case it is not defined !

0 else

P((6,L) [4,n,mp,my)

Pe if L ng and (mR,mP)¢MC
0 else

P((7,L)|4,n,m

_ P if L ng and (mR,mP)fi;MC
RImP)

0 else

nI < nR < n holds for the maximal noise level nR decreed

by a court judgment in favor of the producer, and Pg * Py need

where n <
not equal 1. Hence

0 if (mR,mP)EMC

P( (LI'IH) |urHrlemP) = { ’
1—p6—p7 if (mR,mP);ZMC

The payoffs are specified by

Uj(ﬂ,'ﬁ,mR.n) = uj(ﬂ,ff.mR,n,N) = uj (n) (j = R,P; n <n < 1)

State (5,L) means that either the regulator has agreed to take
L < n_ as the maximal level of noise, or that the producer has

Let the

I
bound himself to noise levels not larger than L < n,.
sets of measures be given by

Mp(5,L): = {1]|n ¢

A
=
IA

L} ,

M (5,L,1): {n|n < 1} .

A
3
IA



Then
P((5,L)|5,L,1,n) = 1
The payoffs are specified by
Uj(S,L,l,n) = uj(n)(j =R,P; n<n<1l) .

State 6,nR) indicates a judgment unfavorable to the residents.
Let

Mp(6,np) = {1fn < 1 < np}
Mp(6,np,1) = {njn <n <1} .
Then
P((6,nR)|6,nR,l,n) = 1 and uj(G,nR,l,n) = uj(n)(j = R,P)

State (7,nI) denotes a judgment unfavorable to regulator

and producer. Let

Mp (7,n) {1|n <

A
s

A

=]
—

My (7,n,1) = {n|n <

A
o]
I A
[
——
.

II

Then
P((7,nI)|7,nI,l,n) =1 .

In the case of a lost lawsuit the producer's and the regulator's
utilities change. This is because such a judgment would have
much wider reaching consequences than a voluntary agreement to a
standard. PFirst of all, implementation time, rules of operation,
etc. prescribed in a judgment would mean substantial restriction
of freedom to the railway corporation. Secondly, the sentence
would most likely be applied throughout the railway network.
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Thus the model assumes that

Up(7lnII1In) = u‘O(n) + CP [4

I

where Cp < O 1is a fixed penalty as a result of the sentence.
Also, the requlator stands to lose both in prestige and in lost
flexibility if the court should decide in favor of the impactees.

Again this loss is expressed in his utility function.
Up(7yny,1,n) = up(n) + cqp

+ . :
In the case of L 3> n; 1t appears not unreasonable to assume that

+, .
cj(j = P,R) is a negative multiple M of uj(L ) = uj(nI), l.e.

P + -— » . =
cj— mj[uj(L) uj(nI)] ' (3 P,R) .

A play ™ of the game is given by an infinite sequence
(s1,m;, m;; sz,mg,mg; ...) of states and measures. We define
the utility of a play 7 by the discounted infinite sum of the

stage utilities

[22]

i-1, i i i .
gj(n): =Z P Lj(s ,mR,mP) (j = R,P) ,

i=1

where 0 < p < 1 is a discount factor.

The game is now completely described except for the definition
of strategies and the solution concept. For simplification we
admit only stationary strategies where the choices depend only on

the last state and the last measures of the other players.

Definition: A strategy o_ of the regulator is a map

R

OR : S > [E'H] ’
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such that
OR(S)EMR(S) (ses) '

where S denotes the set of states.

A strategy o, of the producer is a map

P

Op : {(s,l)lseS,leMR(s)} + [n,n] ,
such that

oP(s,l)eMP(s,l) .

The sets of strategies are denoted by ZR and ZP.

For each strategy pair (GR,OP) a play 7 = (s1,l1,n1; s2,12,
nz; ...) is realized. Since the strategies are stationary, two components
(sl,ll,nl) and (sr,lr,nr) are equal as soon as s* = s*. By the

definition of the transition probabilities at most seven states
can occur with probability greater than zero and only one will
be repeated infinitely often. From this it follows that the
set H(oR,oP) of possibly realized plays 7 is finite or denumer-

able. The probability P(ﬂlcR,o ) for meil(oy,0,) is given as an

P 1)1 i
r

infinite product of the terms P (s ,nl) defined above.

The payoff of player je{R,P} is supposed to be his expected utility
of the plays:

V;(0gi0p) = 2 gj(w)P(n\oR,dP)

el (0p,0p)

The strategies are to be determined according to the following

solution concept.

Definition: A hierarchical sclution is a pair (TR,TP) of a

strategy TREZR and a map Tp ! ZR > ZP such that
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VP(O (OR)) = max V. (o ,GP)

P''R
oPeEP

R’ 'p

VR(TR,TP(TR)) = max VR(G

GREZR

R Tp(OR))

3. THE GAME-THEORETIC SOLUTION

In order to keep the analytical part as small as possible
we shall only discuss heuristic ecuations which, however, can
be justified as soon as one establishes the analytical framework
in full detail. At least part of it can be found in [7]. _
Because of the definiton of the component game payoffs and the
transition probabilities, the measures (1,A) and'(l}pI),'or
(n,N) and (n,nI), respectively, have the same effect in the case

of A < n respectively. This also holds in the case of 1 and

II
(1,n) or n and (n,n). Hence, without loss of generality, we can
reduce the measure sets MP(Q,H,mR) and MR (H,ﬁ) to
Mg (4) : =‘{(1,A)|nI <A<n,n<1lc< A} ,
MP(u,l,A): =-{(n,N)|nI'§ N < n,n <N,n <1} .

Since then only the states (1,n), (2,n), (3,n), (4,n), (5,n7),
(6,nR), (7,nI) can occur, the states are completely fixed by their
first component. We therefore drop the second component in all the

terms.

For the rest of the paper 1let ry( =1,...,7) denote sub-
games of the original game such that b ist the first state.
Hence F1 is the original game. Fb(b' 5,6,7) has only the state
b. Fb(b =1,2,3,4) covers states b, b + 1,...,7. Though in

principle one has to distinguish the strategies for different

il

Fb we denote by abuse of notation the reduction of ojezj to Fb

by Oj' Let Vj b denote the payoff function for player j in game

4
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T Without the simple proof we state that

1
Uy 7(0pi0p) = qm5 (uy(0p(7,05(1) + cy)

J
= -
Vj,b(OR'OP) = T uj(GP(b,OR(b))) (b = 5,6)
for j = R,P. Now let (op,0p)(i): = (UR(i),oP(i,oR(i))(i =1,...,7).

Then
Vj,u(OR’OP) = uj(OP(ﬂ,OR(“)))

+0 P(5]4, (0,,0,) (3))V 5(og,0p)

+

e P(6l“'(OR'UP)(”))Vj,s(OR'OP)

+ 0 P(7|”'(OR'°P)(“))Vj,7(OR'OP) ,

]
where b {4,1,7) denotes the first component of oP(u,l,A). By

backward iteration

+p P(b|b’(GR’GP)(b))Vj,b(OR’OP)

+

Three situations are conceivable:

(1) The regulator can enforce his maximum utility;

(2) If requlator and producer have won the lawsuit,
the regulator has to offer 1 > Lt in order to keep the
producer from compromising;

(3) If regulator and producer have won the lawsuit, not even

the offer 1 = n, can keep the producer from compromising.
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Though the calculation of the hierarchical solution for three situ-
ations is not difficult for any given set of values of the param-
eters, the derivation of the hierarchical solution as a function

of the parameters would require a lot of space. Therefore we con-
sider only the first and the third situations. The two classes

of parameters given, however, do not in general exhaust the set

of all the parameter values possible.

At first we establish a pair of strategies yielding the

maximum utility to the regulator.

e + '
Definition: Let L > nI. The vector of real numbers

+ . .
L ,nI,nR,p,p6,p7) satisfies the compromise condition of
player j (C,j) if .

1 + . +
uj(n )y > {t1 - p)uj(L ) + PgP uj(mln(L ,nR))

I
1—0(1'P6‘p7)

+ p7£Wuj(nI) + cj]}

holds.

As can be seen by the formulae above, (C,j) indicates that

a compromise is more advantaqgeous to player j.

Theorem: Let ¢€ZR and WEZP be defined by

$(i): = L7 = 1,2,3), 6(5): = ¢(N: = np,

I

o(6): min (L+,nR)

(nI,nI) if .Y > n; and (C,R) holds
¢ (4): ={

(L+,L+) if L+ < n; or (C,R) is violated

¥(i,1): 1(i = 1,2,3,5,6,7) ,

(1,4) .

Y(4,1,A):
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Then (¢,Y¥) yields the maximal utility to the regulator:

VR(¢,‘£’) = sup VR(GR,OP)

ZRXZP

In order to avoid a lengthy and not instructive proof we
only give the idea of the proof. First let 1t £ np. Because
of the definition of Uy (1, ymp,my) the inequality Ug (i, Mg, My ) <
up (L ) holds for all p0551ble states i and measures mR and my.
Hence VR(OR{OP) <'T_5 up (L ) for each (GR,OP)EZ X ZP' But
Ve (6,4) ’+T:B ug (Lh) because of ¢(1) = LT and P(1]1, (¢,¥) (1)) = 1.
Now let L' > n;. Obviously vR,j(oR'oP) < VR’j(¢,W)(J =5,6,7).
Then (GR,OP) with (ogs0p) (1) = (¢,¥) (i) (i = 5,6,7) maximizes
VR,H(OR’GP) if (OR,OP)(Q) = (¢,Y) (4) under consideration of the
compromise condition (C,R). Hence VR,M(GR'GP) < VR'u(¢,W).
The final step of the backward iteration yields Vp(op,0p) <
VR(¢,W) fo; each pair (OR'UP)€2R~X ZP.

If ¥ is an optimal response to ¢ , i.e. VP(¢,4) = sup VP
z:P
(¢,0P), it is not important to derive a hierarchical solution

since the regulator can enforce his maximum payoff.

Definition: The payoff vector (VR(OR,OP), VP(oR,oP» is
Pareto-optimal if there is no other strategy pair (cﬁ,céeZszp)
such that V.(oR,o ) £V, (oR,o )(j = R,P) and that at least

one 1nequa11ty is strlct.

Theorem: Let (¢,W)EZRXEP be defined as in the preceding
theorem. Then Y is an optimal response to ¢, i.e. VP(¢,W) >
> VP(¢,0P)(oPeZP), and V ($p,¥) >V (OR,O )(0 R’ UPEZP) if
one of the following condltlons holds

(i) L+ < N

(i1) L' > n_ and (C,R);

(i1i) L' > n_ and not only (C,R) but also (C,P) is
violated.

In these cases (VR(¢,W),VP(¢,W)) is a Pareto-optimal payoff

vector.
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Sketched proof: Case (i): Because of ¢(1) = L+ 1
_ _ 1 +
P(1|1,(¢,0P)(1)) = 1. Hence VP(¢,GP) =15 uP(OP(1,L ))

+. + . . .
where OP(1,L ) £ L 1is maximized by Y. In order to obtain

n

I A

a greater payoff VP(OR,OP) for one stage at least L' has to

be replaced by n > L . But then the regulator's payoff is
+

(L).

smaller because of u.,(n) < u

R( R
Case (ii): P(5]|u4, (¢,05) (4)) = 1 because of ¢(4) = (nI

By backward iteration evaluating VP i(¢,OP)(i =5,4,3,2,1)
I

,nI).

one immediately sees that Y wmaximizes VP(¢,.). The proof of
the Pareto-optimality relies on the fact that only strategies

On with OR(i) = ¢(i)(1i =1,...,5) give maximal payoff to the

regulator. The verification of this fact requires a lengthy

and uninstructive discussion which we therefore onit.

Case (iii): Given ¢ the assessment ¥(i,l): =1 (i = 5,6,7)
belongs to an optimal response for all values of the param-
eters. Because of ¢ (U4) = (L+,L+) and L.V > n. a strategy op
maximizing VP,H(¢") takes either the value oP(u,L+,L+) =

= (nI,n ) or the value (L+,L+). Since (C,P) is violated the

second issessment yvields a larger utility. Hence Y maximizes
Vp,u(¢")' Then obviously ¥ maximizes VP’i(¢,.)(i = 3,2,1).
The Pareto-optimality of (VR(¢,W), VP(¢,W)) can again be veri-
fied by changing some values of (¢,¥) (i) proving that they

reduce the regulator's payoff.
If (C,P) holds and (C,R) is violated the strategy ¥ is generally
not én optimal response of @. The situation can arise where the
regulator by reduction of his own payoff can force the maximizing
producer to a no-compromise strateqgy. In order to keep the
analytical part small we only treat a special case where this

situation cannot arise.

Definition: The vector (E,nI,nR,H,p,pG,p7) satisfies the

strict compromise condition (SC) if

n) > !

{1-0)uP(H) + pepup(ng) +

+ p7p[uP(nI) + cP]}
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holds.

(SC) can be interpreted by the way that the utmost offer and
threat of the regulator cannot match the value of a compro-
mise for the producer.

Theorem: Let (SC) hold. A hierarchical solution (TR,TP) is

given by TR = ¢ and TP(OR) = yeZP for each oReZR where
Y(lrl): =1 (i = 11213151617) r
y(4,1,0): = (min(l,n;),n;)

Sketched proof: Because of (SC) the second component of

UP(U,UR(U)) equals n; for any optimal response o, of any OREZR.

P
By backward iteration one immediately sees that Yy is an optimal
response of each GREZR, i.e. vV (o,.0,) < VP(oR,Y). VR,S("Y)

P''R°P
is maximized by ¢ and, more generally, V Y)Y (1= 4,3,2,1)

R,il
as one can see by backward iteration.

Remark: In case of L' > n, and (SC) but violated (C,R) the
regulator generally does not obtain the possible maximum pay-

off

Vp(0:¥) 3 V(4.v)

Part of the results can be given in a more illustrative way. 1In
the case of ng < L < np let
c. = -~ my(u. h) —u.(n)) (G =r,pP) .
J J 3 11

m. is assumed to be a constant positive factor. It specifies
the weight of the severe consequences of a judgment for noise
reduction which has to be considered for all other later noise-
producing activities. A short calculation yields that (C,j) is

equivalent to

mip;p > 1 - p(1 = pg) (3 = R,P)
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The second theorem implies that in the case of np < Lt < Dgp
and me7D >1 - p(1 - p6) the requlator prefers the compromise:
+ i
¢(4) = (n;,np). In case of n; < L < np and mjp7o <1 -ell Py
(j = R,P), however, the lawsuit will result in a judgment: (¢,¥) (4) =

+ _+ + _+
= (L ,L; L ,L).

An elementray calculation shows that the expected duration
1

§EIE;. Given d, condition (C,j) is equi-

d of the lawsuit is d =

valent to

The following example illustrates the relevance of the results.
Let d = U4 years, p = 0.9 and Mp = m, = 10. Then (C,j)(j = R,P)
is approximately given by p; > 0.03. Hence a lawsuit should
only be filed and pursued to final judgment if the probability
for a judgment in favor of the residents in one year is not
greater than three percent. TIf py = 0.03 then the probability

of such a judgment being pronounced at all is dp7 = 0.12.

4. CONCLUSIONS

A main element of the model is the consideration of the
impactees' reactions in standard setting. Under certain assumptions
the model could identify the important areas in.the'decision pro-
cess of the regulator and the producer. In particular the decision
about offering and accepting or rejecting a comprémise turned out
to be of crucial importance. This decision could be determined
as a function of the model parameters in which the subjective
probabilities of the outcome of the court proceedings can play a

major role.

Model limitations include the "short-sightedness" of the im-
pactees' response which only covers present standards and noise
levels. Consequently the strategies of the regulator and the pro-
ducer do not include commitments for later time periods, e.g. in

the form of quality standards. The model results indicate, how-
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ever, that such extensions are feasible, although at a substantial-
ly greater effort. For example, strategies could be in the form
of long-term noise reduction plans instead of short-term standards,
and impactees' responses would take into account the nature of

these plans.
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