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ABSTRACT

The purposeof this paper is to describethe main
concepts, ideas and operatingprinciples of hierarchical
control systems. The mathematicaltreatmentis rather
elementary; the emphasisof the paper is on motivation
for using hierarchical control structuresas opposedto
centralizedcontrol. The paper startswith a discussion
of multilayer control hierarchies, i.e. hierarchieswhere
either the functions or the time horizons of the subsequent
layers of control are different. Some attention has been
paid, in this part, to the questionof structural choices
such as designationof control variables and selectionof
the time horizons. Next part of the paper treats decompo-
sition and coordination insteady-statecontrol: direct
coordination, penalty function coordination and price
coordinationare discussed. The focus is on model-reality
differences, that is on finding structuresand operating
principles that would be relatively insensitive to distur-
bances. The last part of the paper gives a brief presenta-
tion of the broad and still developing area of dynamic multi-
level control. rt was possible, within the restrictedspace,
to show the three main structural principles of this kind
of control and to provide for a comparisonof their proper-
ties. A list of selectedreferencesis enclosedwith the
paper.

This paper is, in a sense, a forerunner of the book
"Coordination and Control in Hierarchical Systems," by
W. Findeisen, and co-authors, to appear in 1979 qt J. Wiley,
London, as a volume in the IIASA InternationalSeries. The
results contained in the paper, as well as those in the
above mentionedbook, were obtainedover a rather long re-
searchperiod. A partial support of this work by NSF Grant
GF-37298 to the Institute of Automatic Control of the
Technical University of Warsaw and to the Center for Control
Sciences,University of Minnesota, is gratefully acknowledged.
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1. Introduction

The control of complex systemsmay be structured in the

hierarchicalway for several reasons. Some of them are the

following:

the limited decision making capability of an individual

is extendedby the hierarchy in a firm or organization

subsystems(parts of the complex system) may be far

apart and have limited communicationwith one another;

there is a cost, delay or distortion in transmitting

information;

there exists a local autonomy of decision in the sub-

systemsand their privacy of information (e.g. in the

economical system).

In this paper we intend to presentthe basic principles

and featuresof hierarchical control structures, in a possibly

simple manner. Let us note that from the point of view of

general principles it is, to a certain degreeirrelevant whether

we discussa multilevel arrangementof computerizeddecisions,

or a hierarchy of human decision makers, under the assumption

that human decisionswill be basedon the same rational grounds.

In particular , to both would apply the structural principles

and several features of the coordinationmethods, e.g. the

danger of violating the constraints,consequencesof setting

non-feasibledemands, etc.

It shall be stressedthat the paper is concernedwith the

contpol of systems, which means that the following is essential:

we assumethe system under control to be in operation

and to be influenced by disturbances;
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｣ ｵ ｲ ｲ ｾ ｮ ｴ information about the systembehavior or about

the disturbancesis available and can be used to improve

the control decisions.

These two featuresmake this study differ from studies

of the problems of planning, scheduling, etc., where the only

data we can use to determinea control or a policy come from

an a priori model.
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2. Hierarchical control concepts

A "complex system" will be an arrangementof some elements

(subsystems)interconnectedbetween their outputs and inputs,as

it happensfor example in an industrial plant. If we describe

the interconnectionsby a matrix H we obtain a schemeas in

Figure 1. The matrix H reflects the structureof the system.

Each row in this matrix is associatedwith a single input of a

subsystem. The elementsin the row are zeros except for one

place, where a "1" tells to what single output the given input

is connected.

We are now interestedin control of systemslike Figure 1

by use of some special structures,referred to as "hierarchical".

There are two fundamentaland by now classical ideas in hier-

archical control:

(i) the multilayer concept (Lefkowitz 1965), where the

action of determining control for an object (plant)

is split into algorithms (called "layers") acting at

different time intervals;

(ii) the multilevel concept (Mesarovi6 et al., 1965-1970)

where the goal of control of an interconnected,com-

plex system is divided into local goals and accord-

ingly coordinated.

The multilayep concept is best depicted by Figure 2, where

we envisagethe task of determiningcontrol m as being split

into:

Follow-up Control, causing contpolled vapiables c to be

equal to their desiredvalues cd'
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Optimization, or an algorithm to determineoptimal values

of cd' assuming some fixed parametersB of the plant and/or

environment,

Adaptation, with the aim of setting optimal values of B.

The vector of parametersB may be treatedmore generally

as determining also the structureof the algorithm performed at

the lower layer and may be divided into several parts which would

be adjustedat different time intervals: Thus, we might speak

about having several adaptationlayers.

The most essentialfeature of the structure in Figure 2 is

that the layers interveneat different and increasingtime inter-

vals and that each of them is using some feedbackor environ-

ment information. The latter is shown in the figure by dotted

lines.

The application of structureslike Figure 2 is usually

associatedwith control of industrial processes,e.g. chemical

reactors, furnaces, etc. It is not exclusive of other applica-

tions. For example the same philosophy underlies the casewhere

the higher level of authority prescribescertain goals to be

followed, but does not go into the detailed'decisionsnecessary

to actually follow the goals. Since it is the responsibility

of the higher level to chose the optimal goals - the lower level

may not even know the criterion of optimality.

The philosophy of a system like Figure 2 is clear andalmost

obvious: it is to implement control m, which cannot be strictly

optimal (due to discreteas opposedto continuous interventions

of the higher layers, which are thus unable to follow the strict-

ly optimal continuous time pattern), but may possibly be obtained
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in a cheapermanner. The clue must, therefore, be the tradeoff

between loss of optimality and the computationaland informa-

tional cost of control. A problem of that kind is most sound

technically and also most difficult to formalize in a way per-

mitting effective solutions.

The multilayer concept can also be related to a control

systemwhere the dynamic optimization horizon has been divided,

as illustrated in Figure 3. The following two featuresare now

essential:

each of the layers is consideringa different time

horizon; highest layer has the longest horizon;

the "model" used at each layer or the degree to which

details of the problem are consideredis also different:

the least detailed considerationis done at the top

layer.

Control structuresof the kind presentedin Figure 3 have

been most widely applied in practice, for example in industrial

or other organizations,in production schedulingand control,

etc. These applicationsseem to be rather aheadof formaltheo-

ry, which in this case - as it also was for Figure 2 - fails to

supply explicit methods to design such systems. For example,

we would like to determinehow many layers to form, what horizon

to considerat each layer, how simple the models may be, etc.

Except for some rather academicexamples, these questionscan

be answeredonly on the case by case basis.

The multilevel concept in hierarchicalcontrol systemshas

been derived from decompositionand coordinationmethods devel-

oped for mathematicalprogramming. We should especiallynote
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the difference between:

(a) decompositionapplied to the solution of optimization

problems, where we operatewith mathematicalmodels only and

the goal of decompositionis to save computationaleffort,

(b) multilevel approachto on-line control, where the

following featuresare important:

the system is disturbed and the models are inadequate,

reasonablemeasurementsare available,

no vital constraintscan be violated,

computing time is limited.

The "Mathematical Programming" decompositioncan be applied

directly only as an open-loopcontrol ( as a rule - with model

adaptation) as shown in Figure 4. But here in fact any method

of solving the optimization problem can be used and the results

achievedwill be all the same - all dependingon model accuracy.

Nevertheless,the study and developmentof decompositionmethods

in programming is highly desirableeven from the point of view

of control. The open-loop structureslike Figure 4 should not

be dismissed, since they offer advantagesof inherent stability

and fast operation. Structuring the optimization algorithm in

Figure 4 as a multi-level one may also be desirableEor the

reasonsof software (computationaleconomy) as well as hardware

(multi-computer arrangement)considerations. Nevertheless,in

the rest of the paper we shall be paying much more attention

to those multilevel structuresof control where feedback infor-

mation from the real system is used to improve controldecisions.

Figure 5 illustrates what we mean.
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It is essentialto see in Figure 5 that we have loaal

deaision units and a aoordinator, whose aim it is to influence

the local decision units in such a way as to achieve the over-

all goal. All these.units will use mathematicalmodels of the

systemselements,but they may also use actual observations.

If we now look at the hierarchical systems in the whole

(compare Figures 2,3 and 5) we see that they have one feature

in common: the deaision making has been divided. Moreover, it

has been divided in a way leading to hierarchicaldependence.

This means, that there exiDt DeVeral deaision units in the

struature, but only a part of them have aaaess to the aontrol

variables of the proaess. The others are at a higher level of

the ｨ ｩ ｾ ｲ ｡ ｲ ｡ ｨ ｹ - they may define the tasks and aoordinate the

lower level units, but they do not override their deaisions.

We should say a few words about why the decision making

should be divided and why we should have a hierarchy, as op-

posed to parallel decision units.

Some of the more general reasonswere mentionedat the

beginning. Let us add, that in industrial control applications

the trend towards hierarchical control can also be associated

with the technology of control computers.

Namely, the advent of microprocessorsmakes control com-

puters so cheap and handy that they may be introduced almost at

every place in the process,where previously the so-called

analog controllers had been used. The information processing

capabilitiesof the microprocessorsare much more than needed

to replace the analog controllers and they may easily be



-8-

assignedan appropriatepart of the higher layer control functions,

e.g. optimization.

All the above speaks for decentralizationbut it does not

say yet why should we have coordination of the decentralized

decision units. The general answer would be that in several

casesthe performanceof a controlled systemwith a purely de-

centralizedcontrol structuremay be unsatisfactory,if its

internal interconnectionsare intensive.

Some of the other reasonsfor using hierarchical rather

than centralizedstructuresof control are:

the desire to increasethe overall system reliability

("robustness": will the system survive if one of the

control units breaks down),

the possibility that the system as a whole will be

less sensitive to disturbanceinputs, if the local

units can be made to respond faster and more adequately

than a more remote central decision unit.

The tasks of the theory of hierarchical control systems

may be twofold: we may be interestedin the design of such

systemsfor industrial or organizationalapplications,or we

may want to know how an existing hierarchical control system

behaves.

example.

The second case applies to economic systems, for

The focus of the two casesdiffers very much, as do,

the permissiblesimplifications and assumptionsthat can bemade

in the investigation.

For example, in relation to the multilevel systemof Figure

5, if we want to design such a system, we would have to deal

with questionslike:
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what kind of coordination instrumentsshould the

coordinatorbe allowed to use and how will his decisions

enter into the local decision processes?

how much feedback information should be made available

to the coordinatorand to the local decision units?

what procedures (algorithms) shall be used at each level,

respectively, in determining the coordinatingdecisions

and the control decisions (control actions) to be applied

to the real system?

how will the whole of the structureperform when distur-

bancesappear?

what will be the impact of distortion of information

transmittedbetween the levels? etc. etc.

In an existing system ｳ ｯ ｭ ｾ of the above questiortswere

answered,when the systemwas designedand put into operation.

However, we are often interestedin modifying and improving an

existing system, and the same systemdesign problems will come

up again.
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3. Multilayer systems

3.1 Temporal multilayer hierarchy

Let us discuss the two principal varieties of multilayer

systems in some more detail, starting with the temporal multi-

layer hierarchy.

One of the most essentialfeaturesof a dynamic optimiza-

tion problem is that, for the control or decision to be taken
(

and applied at the current time t, we consider the future be-

havior of the system. We deal with the optimization horizon.

As mentioned (see Fig.3), the optimization horizon can be divi-

ded, which results in a specific hierarchical system.

Let us exemplify the operationof such a hierarchy by refer-

ence to control of a water supply systemwith retentionreservoirs.

The top layer would determine, at time zero, the optimal state

trajectory of water resourceup to a final time, e.g. equal one

year. This would be a long horizon planning and the model sim-

plification mentionedbefore could consist in dropping the

medium-sizeand small reservoirs,or lumping them into a single

equivalentcapacity. The model would be low-order, having only

a few state variables (the larger water retentions). We cansee

on this example why it is necessaryto consider the future when

the presentdecision is being made and we deal with a dynamical

system: the amount of water which we have in the retention at

any time t may be used right away, or left for the next week,

or left for the next month, etc., etc. Note that the outflow

rate which we command today will have an influence on the reten-

tion stateat any future t.
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It might be good to note the difference between control of

a dynamic system and control ｯ ｾ a stat.ic time-varying system.

In the latter .casepothingis being accumulatedor stored and

the presentcontrol decision does not influence the future. An.. .

example might be the situation when we consider supplying water

to a user who has a time-varying demand, but no storagefacility

of any kind.

The long horizon solution does supply the state trajectory

for the whole year, thereforealso for the first month, but this

solution is not detailed enough: the statesof medium size and

small reservoirsare not specified. The intermediatelayerwould

now be acting, computing - at time zero - the more detailedstate

trajectory for the month.

From this trajectory we could derive the optimization prob-

lem for the first day of systemoperation. Here, in the lowest

layer, an all-detailedmodel must be considered,since we have

to specify for each individual reservoir what is to be done, for

example what should be the actual outflow rate. We consider

each reservoir in detail, but we have here the advantageof con-

sidering a short horizon.

Let us now describe this hierarchy more formally.

Assume the water systemproblem was

maximize
t f 1 1 . 1 1 ..

JfO(X (t),m (t),z (t))dt,

to

and the system is describedby stateequation

·1 1 1 1 1x (t) = f (x (t) ,m (t) ,z (t)) •
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1In those expressionsx stands for the vector of state

variables, m1 for vector of manipulatedvariables (control va-

riables),z1 for vector of disturbances(the exogenousinputs).

The state x 1 (to) is given and x
1
(t f ) is free or specified as

the required water reserveat t = t f .

Let us divide this problem between three layers.

(i) Top layer (long horizon)

with

maximize
t f 3 3 3 3J fO(x (t),m (t),z (t»dt

to

·3 3 3 3 3 3 3x (t) = f (x (t),m (t),z (t»,x (to) given, x (t f ) free or

specified like in the above.

3 3'
Here, x is the simplified (aggregated)statevector, m

is simplified control vector, z3 is simplified or equivalent

disturbance.

Solution to long-horizon problem determines,among other

... 3 ( ') . .things, state x t f 1.e., the state to be obtalnedat time t f
(this could be one month in the water systemexample). This

state is a target condition for the problem consideredat the

layer next down the hierarchy.

(ii) Intermediatelayer (medium horizon)

I
tf 2 2 2 2

maximize fO(x (t),m (t),z (t»dt

to
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with

·2 2 2 2 2 2 2x (t) = f (x (t) ,m (t) ,z (t)), X (to) given, x (t f ) given

""3 .
by x (tfl .

The final state requirementcannot be introduceddirectly

becausevector x 2 has a lower dimension than x3
, according to

the principle of increasingthe number of details in the model

as we step down the hierarchy. We must introduce a function y2

and require

Function y2 is related to model simplifications (aggregation

of stateas we go upwards) and should be determinedtogetherwith

those simplifications.

Solution to the lntermediatelayer problem determinesamong

other things the value of ｾ Ｒ Ｈ ｸ ｦ Ｇ Ｉ ｩ Ｎ ･ Ｎ Ｌ the state to beobtained

at t = tf' (this could be one day in the water systemexample).

(iii) The lowest layer (short horizon)

J
t f 1 1 1 1

maximize fO(x (t),m (t),z (t))dt

to

with

-1 1 1 1 1 1
x (t) = f (x (t),m (t),z (t)),x (to)

by y 1 (x1 (t
f
')) = ｾＲ (tf') •

1
given, x·(tf '} ｧ ｩ ｾ ･ ｮ

We drop explanationof the details of this problem since

they are similar to those of previous problems.
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Note only that the functions f6(·) used here are the

same as in the original problem (this means "full" model), but

the time horizon is considerablyshorter. The lowest layer

"1solution determinesthe control actions m to be taken in the

real system.

Consult Fig. 6 for a sketch of the three layers and their

linkages.

Pleasenote that if no model simplifications were used the

multilayer structurewould make little sense. If we used the

full model at the top layer, we wOl.,lld have determinedthe trajec-

ｾ Ｑ . A1
tory x and the control act10nsm right there, and moreovernot

only for the interval (to,tt') but for the whole horizon (to,tf ).

The lower layers would only repeatthe same calculations.

Let us now introduce feedback, trying to use the actualsys-

tern operation to improve control. One of the ｰ ｯ ｳ Ｄ ｩ ｢ ｩ ｬ ｩ ｴ ｩ ･ ｳ ｷ ｯ ｾ ｬ ､

be to use the really ｯ ｢ ｴ ｡ ｩ ｾ ･ ､ x
1
(ti') as the initial condition

for the intermediatelayer problem. This means that at time t' ,
f

(one day in the example) we ｲ ･ ｾ ｳ ｯ ｬ ｶ ･ the intermediatelayerprob-

lem (ii) using as initial condition:

After the secondday, i.e., at t = 2ti' we would use

and so on.
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This way of using feedback is often referred to as "repeti-

tive optimization", becausethe computational ｾ ｯ ｰ ･ ｮ Ｍ ｬ ｯ ｯ ｰ Ｉ solu-

tion will be repeatedmany times in courseof the control system

operation.

The same feedback principle could be used to link feedback

information up to the higher layers, with a ､･｣ｲ･｡ｾ･､ repetition

rate. We shall refer to this concept of feedbackwhen dealing

with dynamic coordination in multilevel systems.

Considerwhat would be obtained if we used no feedback in

form of really achievedstates. The systemwould be a mUltilayer

structurebut its performancemight be unnecessarilydeteriorated.

Note that without any updating the casewould correspondto cal-

culation of the targets for all days of the year being done at

time zero, thus dependingentirely on the accuracyof the model

and prediction of environmentbehavior. The prediction itself

calls for repetition of the optimization calculationat appro-

priate intervals. Dropping the feedbackwould be a waste of

available information.

Needlessto say that feedbackwould be redundantin the

casewhere the model used at lowest layer would exactly describe

the reality, inclusive of all disturbances- but this is not

likely to happen.

An example of existing multilayer hierarchy is shown iri

Fig. 7, basedon a state-of-the-artreport on integratedcontrol

in steel industries (IIASA CP-76-13). We can see there how the

time horizon gets shorterwhen we step down from long-range

corporateplanning to processcontrol. It is also obvious that

the problems consideredat the top do not encompassthe details.
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On the contrary, at the bottom level each piece of steel must

receive individual consideration,becausethe final action (mani-

pulation) must be specified here.

It is a proper time now to ask the question if the top

level model can really be an aggregatedone and how aggregated

it can be. A qualitative answer is as follows: the details

of the presentstate have little influence on the distantfuture,

and also: the prediction of details for distant future makes

no sense,becauseit cannot be reliable. Quantitative answers

are possibleonly for specific cases.

The multilayer hierarchy of Fig.3,6 or 7 made use of dif-

ferent optimization horizons; it may be appropriateto say a

few words about the choice of horizon in a control problem.

Roughly speaking,we may distinguish two kinds of dynamic

optimization problems:

(i) problems where the time horizon is implied by the problem

itself,

(ii) problems where the choice has to be made by the problem

solver.

Examples of the first variety are: a ship's cruise from

harbor A to B, spaceshipflight to the moon, one batch in an

oxygen steel making converter.

Examples of the second kind could be: operationof an

electric power system, a continuousproduction process,oper-

ation of a shipping company, operationof steel making shop.

For the problems of the second kind it is necessaryto

choose an optimization horizon. We are going to show, in a

rather qualitative way, how this choice dependsupon two
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principal factors: dynamics of the system and characteristics

of the disturbance.

Assume we have first chosena fairly long time horizon t f

and formulated a problem

Itfmaximize Q = fO(x(t) ,m(t) ,z(t»dt

to

for a systemdescribedby

ｾ Ｈ ｴ Ｉ = f(x(t),m(t),z(t»

with x(t
O

) known andx(tf ) free.

Becauseof the disturbancez this is a stochasticoptimi-

zation problem and we should speak about maximizing expected

value of Q, for example. Let us drop this accuratebut rarely

feasible approachand assumethat we convert the problem into

a deterministic one by taking 2, a predictedvalue of z, as if

it was a known input. Assume we have got the solution: state
A A

trajectory x and control m for the interval (to,tf ).

Fig. 8 shows what is expectedto result in terms of a
....

predicted z and of the solution x. There seem to be two cru-

cial points here. First, a predictedzwill start from the

actually known value z(tO) and always end up in a shapewhich

is either constantor periodic. This is becausewhen the "cor-

relation time" elapsesthe initial value z(tO) has no influence

on the estimatedvalue of the disturbanceand what we get as z

must be the mean value or a function with periodic properties.

Secondly, if (to,tf ) is large enough (say one year for an

industrial plant) we expect that in a period far from t = to
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the initial state x(t
O

) has no influence any more on the optimal

values x(t). If we are still long before t = t f , the final

conditions have no influence either.

Thus what we expect is that the calculated at t = to opti-
A

mal trajectory x will exhibit a quasi-steadystate interval

A
(t 1,t2) where x dependsonly on z. But since z is going to be

either constantor periodic, ｾ will also do so (a more thorough

discussionof it can be found elsewhere (Findeisen 1974).

The above has been a qualitative consideration,but it

allows us to explain why practically we would be allowed to con-

sider only (t
o
,t1) as the optimization horizon for our problem.

Note that if we decide to use this short horizon we must formu-

late our problem as one with given final state:

}
t 1maximize Q = fO(x(t) ,met) ,z(t))dt

t o

for a system describedby. -
x(t) = f(x(t),m(t),z(t))

A .

with x(tO) known and x(t1) given as x(t 1) from Fig. 8.

o '"The next clue is that the solutlon x got from this problem

A

and the control m are correct only for a short portion of (t
o
,t1)

due to the fact that real z will not follow the prediction z.
Thus we have to repeat the solution after some interval 0 much

shorter than (t1-tO
)' using the new initial values z (to+o) and

x(to+o). The horizon should now reach to t
1

+0. We have a

floating horizon or shifted horizon control scheme.



-19-

It is relatively easy to verify our reasoningby a linear-

quadratic problem study, by simulation or by just imagining how

some real systemsoperate.

If we want a conclusion to be statedvery briefly we can

say: "the optimization horizon is long enough if it permits to

take a proper control decision at t = to".

3.2 Functional multilayer hierarchy. Stabilization and opti-

mization layers

The Introduction has explained very briefly (see Fig.2)

what we intend to achieve by a functional mUltilayer hierarchy:

a reduction in the frequency and hence in the effort of making

control decisions.

Let us discuss the division of control between the first

two layers: stabilization(directcontrol, follow-up control)

and optimization, see Fig.2.

Assume that for a dynamic systemdescribedby

x(t) = f(x(t),m(t),z(t))

we have made a choice as to what variablesof the plant should

become the controlled variables, see Fig.9. We do it by setting

up some functions h(·), relating c(t) to the values of x(t) ,m(t)

at the same time instant

c(t) = h(x(t),m(t)) •

We will assumethat c are directly measured (observed).

•Functions h(·) would be identities c = x if we chose the

statevector itself as controlled variables - but this choice

may be neither possiblenor desired and a more general form

expressedby function h(·) is appropriate.
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The direct control layer (Fig. 9) will have the task of

providing a follow-up of the controlled variables c with respect

to their set-points (desiredvalues) cd:

DIRECT CONTROL LAYER: provide for c = cd

The optimization layer has to impose cd which would maxi-

mize the performanceindex of the controlled system ("plant" in

the industrial context):

OPTIMIZATION LAYER: determinecd such as to maximize Q .

Note that Q has to be performanceassignedto the operation

of the controlled system itself, for example the chemicalreac-

tor's yield, with no considerationyet of the controllers or

control structure. In other words Q is performancemeasure

which we should know from the "user" of the system.

The question is how to choose the controlled variablesc,

that is how to structure the functions h(·). It is all too

easy to say that the choice should be such as to bring no de-

terioration of the control result achieved in the two-layer

system as compared to a direct optimization. It should be

Q = max Q
m

where the number on the left is plant performanceachievedwith

the two-layer systemof Fig.9 and the number on the right is

the maximumachievableperformanceof the plant itself, since it

involves directly the manipulatedinputs that are available.
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In order to get some more constructiveindications let us

require that a setting of cd should uniquely determineboth

state x and control m which will result in the systemof Fig.9

when a cd is imposed. Since we are interestedin getting optimal

values x,m let us demand the following property:

ｾ ｾ

c = c =>x = x, m = m
d

A trivial solution and a wrong choice of controlled varia-

bles could be c ｾ m.
"-

Imposing m = m on the plant would certain-

ly do the job. It is a poor choice, however, becausethe state

x that results from an applied m dependsalso on the initial

condition x(tO) - the optimizer which sets cd would have to

know x(tO).

A trivial ｾ ｸ ｡ ｭ ｰ ｬ ･ explains the pitfall. Assume we made a

two-layer system to control a liquid tank using two flow con-

trollers as in Fig. 10. We delegateto the optimizer the task

of determining the optimal flows, F1d and F2d. The optimizer

would have no idea of what level x will be establishedin the

tank, unless it memorized x(tO) and all the past actions. We

can see it better while thinking of a steady-state: if theopti-

mizer would impose correct steady-stateoptimal values
/'..,

F1d = F2d = Fd , it still would not determine the steady level x

which will result in the tank.

Let us therefore require that the choice of c should free

the optimizer from the necessityto know the initial condition:

c (t) = cd (t) = > x (t) = ; (t) ,m (t) = m(t) ,vt ::: t 1 > to

and the implications shall hold for any x(tO).
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An example of what we aim at may be best given by consid-

ering that we want a steady-statex(t) = x = const to be ob-

tained in the system, while the system is subjectedto a con-

stant, although unknown disturbancez(t) = z. In that case also

m and c = cd will not be time-varying. The state equationsof

the plant reduce to

(i)j = 1, ... ,dim xf.(x,m,z) = 0,
J

due to the fact that ｾ Ｈ ｴ Ｉ = 0, and if we add the equation.which

is set up by our choice of the controlled variables

i = 1, ... ,dim c (ii)

we have a set of equations (i) and (ii) for which we desire that

x,m as the dependentvariables be uniquely determinedby c. But

we also want (i) and (ii) to be a non-contradictoryset of

equations; their number should not exceed the number of depen-

dent variablesx,m and thus we arrive at the requirementthat

dim c = dim m: the number of controlled variables should be

equal to the number of manipulatedinputs. Then,from the impli-

cit function theorem, it is sufficient for the uniquenessof x,m

that f.,h. are continuouslydifferentiable, and
J 1

at. af.
-----2 -----2
aXk amk

det r!0
ah. ah.

1 1--
aXk amk

\ve leave it to the reader to verify that the systemof

Figure 10 does not comply with the above demand.
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We should warn the readerof a possiblemisinterpretation

of our argument. We have shown the conditions under which

steady-statex,m resulting in the control systemwill be single-

valued functions of c, but these functions may still contain z

as a parameter. In other words, we did not say that a certain

value of c will ･ ｮ ｦ ｯ ｲ ｣ ｾ the value of x,m in the plant, irre-

spectivcly of the disturbance. If, for example, we are inter-..
ested in enforcing the value of state, we could choose c = x.

But note that this may be not entirely feasible if we have too

few manipulatedinputs (remember that dim c = dim m) .

The structureof Figure 9 can of course also be thought of

as operatingwhen the plant state x is time-varying. Then we

should write, insteadof (i) and (ii):

x.(t) = f.((t),m(t),z(t»,
J J

h. (x(t) ,m(t» = c. (t),
1 1

j = 1"", dim x

j = 1, .•. , dim c

(ia)

(iia)

The value of stateat time t, that is x(t), will still de-

pend upon the enforcedc(t) = cd(t), but the dependenceinvolves
,

also x(t). This means that in order to obtain a certain state

x(t) we must take into account the initial statex(to )' distur-

bance input over the interval [to,tJ, z[t ,tJ' and appropriate-
o

ly shape the control decision cd[to,tJ.

If we want to enforce the value of statex(t) in spite of

the disturbancesand without dependenceon the initial state, we

must investigatethe [allow-up controllability: is it possible,

using the input m, to causestate x to follow a desired trajec-
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Assume the follow-up has been achieved, that isx(t) = xd(t),

x(t) = xd(t), ｾ ｴ Ｎ Then the stateequationsgive

j = 1, ... ,dim x (iii)

We should note the meaning of (iii). Disturbancez is

varying in time and its value z(t) is random. If (iii) has to

hold we have to adjust m(t) so as to offset the influence of

z(t). This must of course require certain propertiesof the

functions f. (.) and we also expect to have enough manipulated
J

inputs. The requirementswill be met if the set of equations

(iii) will define m(t) as single-valuedfunctions of z(t). The

conditions for this. are that f. (.) are continuouslydifferen-
J

tiable and moreover that,

rank

This implies dim m ｾ dim x. We should note that the actual

value m(t), as required by the disturbancez(t), should never

lie on the boundary of the constraintset of manipulatedinputs.

Physically it means that we must always have the possibility

to adjust m(t) up or down in order to offset the influence of

the random disturbance. The actual value of this required re-

serve or margin dependson the range of possibledisturbances.

Any control practitioner knows this as an obvious.thing.

Remember that we have set a requirementrelated to con-

trollability, that is to the propertiesof the plant itself.
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Controllability does not say how to generatecontrol m such that

x = xd ' it tells only that this control exists. If we decide

to build a feedback control system as shown in Fig. 9 we have

to choose the controlled variables c in an appropriateway.

For the dynamic follow-up to be enforced by the conditionc = cd'
A

the choice would have to be c = x, that is the statevariables

themselves (as opposedto c = h(x,m) which was all. right for

steady-stateuniquenessof x) .

The choice of controlled variableshas been till now dis-

cussedfrom the point of view of the "uniqueness" ｰ ｲ ｯ ｰ ｾ ｲ ｴ ｹ Ｚ how

to choose c in such a way that when c = cd will be enforced,

some well-defined values x,m will result in the plant. We have

done this for the plant describedby ordinary differential equa-

tions. An extensionof this considerationto distributed·para-

meter plants with lumped manipulatedinputs is possible.

We turn now to the more spectacularaspectof choosing the

controlled variables: can we choose them in a way permitting to

reduce or to entirely avoid the on-line optimization effort, that

is to eliminate the optimization layer in Fig. 9, leaving only

the follow-up control?

To make the argument easier let us consider steady-state

optimization.

For a plant

f.(x,m,z)= 0,
J

we are given the task

j = 1, ... , dim x

maximize Q = fO(x,m,z)
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subject to inequality constraints

g.(x,m)<b.,
1 - 1

1 = 1, .••

". " " ,...Assume the solution is (x,m). At point (x,m) some of the

inequality constraintsbecome equalities (active constraints),

and other inequalitiesare irrelevant.

systemof equations:

/\ A

Thus at (x,m) we have a

;. "f. (x,m,z) = 0,
J

" ,.,g.(x,m) =b.,
1 1

j = 1, ... ,dim x

1 = 1, ... , k < dim m .

If it happensthat k = dim m then the rule is simple:

choose the controlled variables as follows:

h.(.) = g.(.),
1 1

i = ＱＬＮｾＮＬ dim m ,

b.
1

This simply says that you put the controllers "on guard"

that the plant variables (x,m) are kept to the appropriatebor-

der lines of the constraintset.

Note two things:

(i) we have assumedgi (x,m) and not gi(x,m,z), i.e., the dis-

turbancedid not affect boundariesof the constraint ｳ ･ ｴ ｾ

(ii) we have assumedk = dim m ( the number of active constraints

equal to the number of controls), and we also failed to

. ..... "consider that even in such a case the Solutl0n (x,m) may

lie in different "corners" of the constraint set for dif-

ferent z.
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Even under these assumptions,however, the casemakessense

in many practical applications, since solutions to constrained

optimization problems tend to lie on the boundaries.

For example, the yield of a continuous-flowstirred-tank

chemical reactor would increasewith the volume contained in the

tank. This volume is obviously constrainedby tank capacity,

therefore, the control systemdesign would result in implement-

ing a level controller and in setting the desired value of the

level at the full capacity. The level controller would perform

all the current control, by adjusting inflow or outflow to keep

the level. No on-line optimization is necessary.

We have mentionedalready in the Introduction that the

approachwe have taken by letting the "direct controller" make

current control decisionsand providing for an upper level to

set a rule or goal to which the direct control has to keep, has, . .

more than only industrial applications. It is also clear that

a rule or goal does not have to be changedas often as the cur-

rent decisionsand hence a two-layer structuremakes sense.

. .... "If the solutlon (x,m) fails to lie on the boundary of the

constraintset, or the number of active constraintsk < dim m,

we may

way as

z.

still look to structure the functions h. (.)
1

to make the optimal value cd independentof

in such a

disturbances

The way to consider this may be as follows. We have solu-

"''' ,.. '"tions m = m(z) and x = x(z). Put them into the functions hj (.)

for j = k + 1, •.. , dim m:

'" ,.h.(x,m)
)

1\ "= h j (x(z) ,m(z»), j = k + 1, ••. , dim m
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By an appropriatechoice of h j (.) we may succeedin getting

ah.
-----2az = 0, j=k+1,...

in the envisagedrange of disturbancesz.

We turn now to a more elaborateexample of building-up a

two-layer system.

3.3 Example of two-layer control

Consider a stirred-tankcontinuous-flowreactor presented

in Fig. 11. Some material B inflows at rate FB and has temper-

ature TB, material A inflows with FA and TA, mixing and reaction

A + B takes place in the vessel, resulting in a concentration

CA' Heat input H is neededfor temperatureT to be obtained in

the reactor. Outflow FD carries the mixture of A and B out of

the vessel. We want to provide a controi structure that would
,

optimize the operationof this reactor, having FA and H as

manipulatedinputs. Let us do it in some orderly steps.

(i) Describe the plant

There will be three statevariables and stateequations:

C = f (0)
A 2

T = f (.)
3

We drop the detailed structureof the functions ｦ Ｒ Ｈ ｾ Ｉ Ｇ

f 3 (') becauseit is not important for the example.
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(ii) Formulate optimization problem

Assume we want to maximize production less the,costof

heating:

maximize , ,

where IjJ ('I') expressesthe cost of reaching temperatureT.

There will be inequalLty ｣ ｯ ｮ ｾ ｴ ｲ ｡ ｩ ｮ ｴ ｳ

T < T
m

and we also have to consider the state equationsand initial

and final conditions.

If there are reasonsto assumethat the optimal' operation

of the reactor is steady-state,x = const, then' the' plant equa-

tions reduce to

f 1 (.) = FA + FB -FO = 0

f (.) = 0
2

f (.) = 0
3

and the optimization goai would be

(iii)Solve optimization problem

Assume the optimization problem has been solved and the

results are (the problem has, really been solved for a full

example):
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/\

W = W
M

ｾＮ

if z£Z1' CA = ｾＱＨｺＩ < CAm otherwise

,'.
T = 4'2(z) < Tm

,',

FA = ｾＳＨｺＩ

/,

H = c/l 4 (z)

T otherwisem

where z stands for disturbancevector (FB,FD,TA,TB) and Z1 is a

certain set in z-space, that is a certain range of disturbance

values.

(iv) Examine the solution a,nd choosecontrol structure

Let us make a wrong step and chooseas controlled variables

the flows FA' H. We. would ｴ ｨ ｾ ｮ Ｚ fail to get a uniquely deter-

mined ｳ ｴ ･ ｡ ､ ｹ ｾ ｳ ｴ ｡ ｴ ･ volume W in the tank (a check on determinant

condition would show it) and also the optimizer which sets the

desired FAd' Hd would have to know disturbancevector z and

functions ｾ Ｓ Ｈ ﾷ Ｉ Ｇ ｾ Ｔ Ｈ ﾷ Ｉ Ｎ Note that this would involve an accurate

knowledge of the state equationsof the plant.

Inspectionof optimization solution reveals volume W as a

first-choice candidateto become controlled variable. The opti-

mal W is W under all circumstances,no on-line optimizationwillm .

be required, and no knowledge of plant stateequations.

The second choice (we shall have two controlled variables

since we have two manipulatedinputs) could be either concen-

tration C
A

or temperatureT.

Let us consult Fig.12 for a discussion. We have displayed

there the feasible set in (W,CA) plane and shown where the opti-

mal solution lies in the two cases, that is when z£Z1 (point 1)
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and in the other case (point 2) 0 Note that solution is in a

corner of the constraintset, but unfortunately not in the same

corner for all z. Consider that you may:

take CA as a controlled variable and ask the optimizer

to watch disturbancesz and perform the following

CAd = ｾＱ (z) otherwise

whereby a knowledge of the function ｾ Ｑ (0) is required,

or take CA as a controlled variable when z£Z1 and then

set CAd = CAm' whereby for ztz1 you would switch to T as

controlled variable with a setting Td = Tmo In this case

the second-layercontrol would consist in performing the

switching, that is, in detecting if z£Zl. This may be

easier to do than to know the function ｾ Ｑ (0) which was

required in the first alternative.

3.4 The relevanceof steady-stateoptimization

Steady-stateoptimization, foliowing the structureof Fig.9

is a quite common practice. It might be worthwhile to consider

when it is really appropriate. If we exclude the caseswhere

the exact solution for the optimal state is x= const, we may

think of the remaining casesin the following way.

Let (a) ｩ ｾ Fig. 13 be the optimal trajectory of a plant

over optimization horizon (to,t1).

Assume we control the plant by a two-layer system, have x

as controlled variables, and choose to changedesiredvalue xd

at intervals T, being a small fraction of (to,t1) 0 Then (b) is
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the plot of xd(t). Note we have thus decided to be non-optimal

becausex
d

should be shaped like (a), and not be a step-wise

changing function. Note also that the step values of xd would

have to be calculatedfrom a dynamic (although discrete) opti-

mization probiem.

Now let us look at the way in which the real x will follow

the step-wisechanging xd in the direct control 'system, compare

Figure 9. In case (c), Fig.13, x almost immediately follows xd .

In case (d) the dynamics are apparentlyslow and the following

of xd cannot be assumed.

It is only in case (c) of Fig. 13 that we may be allowed to

assumethat state x ,is ppactically constant over periods T, thus

•permitting to set x = 0 into the state equationsand calculate

the step value of ,xd from a steady-stateoptimization problem.

The question is when will case (c) occur. By no means are

we free to choose the interval T at will. We must relate it to

the optimization horizon (to,t1). Interval T would be a suitable

fraction of this (1/10 or 1/50 for example). And here is the

qualitative answer to the main question: if (to,t1) has resulted

from slow disturbancesacting on a fast system, case (c) may

take place, that is we may be allowed to calculate a step ofx
d

under steady-stateassumption.

The importanceof the possibility to replace the original

dynamic optimization problem by an almost equivalentstatic op-

timization done in the two-layer system cannot be overemphasized.

The reason is of computationalnature: dynamic problems need

much more effort to solve and for many life-size control tasks,
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for example for a chemical plant, may be practically unsolvable,

in the time being available. On the other hand, the operation

of many plants is close to steady-stateand the optimization of

set-pointsdone by static optimization is quite close to the

desired result.

We devote in this paper a considerablespace to steady-state

on-line optimization structures. It is the more justified that

the proceduresfor static optimization are principally different

from those suitable for dynamic control, if feedback from the

processis being used.

3.5 RAmapks on adaptation layep

Let us come back to Fig.2. We have presentedthere an "adap-

ti.Jtion layer" and assignedto it ,the task of readjustingsome para-

meters P, which influence the setting of the value of cd. Assume

this setting is done by means of a fixed function k(·):

c = k(8,z)
d'

where z standsfor the disturbanceacting on the plant. We assume

at this point, that it is measuredand thus it can enter the

functionk(·) .

We may of course assumeexistenceof the strictly optimal

value of cd' referred to as ｾ ､ Ｈ ｺ Ｉ Ｎ With 2d (z) we would get a

top value of performancedenotedby Q(Bd(z)). It represents

the full plant possibilities.

Optimal values of 8 in the optimizer's algorithm could be

found by solving the problem

minimize
8

Ellcd(z) - k(6,z)11
·z
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We drop discussionof this formulation becausewe should

rather assumethat the optimizer has only a restricted informa-

tion about z, denoted z* (it could for example be samplesof z

taken at some intervals). This leads to Cd = kCB,z*) and the

parameteradjustmentproblem should now be

minimize
B

E * [Q(cdCz) )-Q(k(B,z*))]z,Z

which means that the choice of B should aim at minimizing the

loss of performancewith respect to full plant possibilities.

An indirect and not equivalentway, but which may be easier to

perform would be

minimize
B

E * I ICd' (z) - k ( B, z*) I Iz,Z

Note that we would not be able to get B = B such that

EI \. I I would be zero, since the basis for k(B,·) is z* and not

z. It means that, with the best possibleparameters,the con-

trol is inferior to a fully optimal one, the reasonbeing the

restricted information.

Our formulations till now apply to adjusting parametersB

once, and Keeping them constantthereafterfor some period of

time (it is over this period that the expectationsEI I· I I should

be taken).

In some practical adaptive systemswe try to obtain the

values of parametersof the plant,and thus also the values of B,

by some kind of on-line identification procedure. We may refer

to it as "on-line parameterestimation". A limit casemay beof

interestwhere we would assumethat B are estimatedcontinuously.

Let us considerwhat this limit casecould supply.
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A

Note that for each z, an optimal value a(z) maximizing the

performanceexists and means a perfect control. We must assume,
A

however, that we do not have B(z) but an estimatedvalue of it,

B(z). With B(z) our optimizing control would be

c = ｫｕｾＨｺＩ ,z*)
d

where we assumed,realistically, that not all z is directly

measuredand only z* is available as current information.

The application of this control gives a loss of optimality

which amounts to

"
z ,Ez* [Q (cd (z) ) -Q (k (e(z) , z * ) ) ]

This value could be discussedwith respect to the quality

of estimating13, insufficiency of disturbanceinformation z*,

etc. In other words, it measuresthe overall efficiency of

adaptation.
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4. Decompositionand coordination in steady-statecontrol

In this section we shall consider the multilevel control

structuresshown by Fig.5 in some more detail. One of the points

of this and of the next section will be to indicate thepractical

difference between steady-stateand dynamic control structures.

4.1 Steady-statemultilevel control and direct coordination

Let us first describe the complex systemof Fig. 1 more

carefully.

Denote for the subsystemi : x, the statevector, m. mani-
1 1

pulated input, z. disturbance,u. input from other subsystems,
1 1

y. output connectedto other subsystems. The subsystemstate
1

equationwill then be

X (t) .I. ex (t ),m, ] U'[t t] z'[t t]) (1)i = 'l'i[to,t] i 0 l[t o,t, 1 0' , 1 0'

For the use of this section we assume (1) to be in the

particular form of ordinary differential equation

•x.(t) = f.(x.(t), m.(t), u.(t), z.(t))
1 1 1 1 1 1

(1 I )

The output y. will be related to (x.,m.,u.,z,) by output
11111

equation

y.(t) = g.(x.(t),m.(t),u.(t),z.(t))
1 1 1 1 1 1

(2 )

Now assumethat the first-layer or direct controls are

added to the subsystemsuch that the following is enforced (see

the previous Section for this idea)

c. (t) = h. (x, (t) , m. (t) , u. (t)) = cdl' (t)
11111

(3 )



Assume we are in steady-state,x. (t)=O,Vt, and the functions
1

h. (.) have been chosen properly so as to ensureuniquenessof the
1

state xsi and manipulatedoutput mi(t) in responseto the imposed

c i (t) and ui(t), with zi(t) as a parameter. Then (1 1
) becomes

f.(x .,m.(t),u.(t),z.(t)) = a (4)
1 Sl 1 1 1

and (4) along with (3) provides for x .,m. (t) to be functions
Sl 1

of c. (t). Therefore (2) becomesthe following input-output
1

dependrmce:

/. (L)
1

I". (f:. (L) , lJ. (I ) , z . (t) )
1..l 1 1

( 5)

Eqn. (5) is a relation between the instantaneousvalues.

We have obtained it by assuming the system to be in steady-state,

x(t) = x = const. In the. steady-statethe system ceasesto be
s

il dynilm i Col one, becuusc' there. is no change in ｡ ｣ ｣ ｵ ｭ ｵ ｬ ｡ ｴ ｾ ｯ ｮ ｳ Ｎ

We can consider the state to be time-varying; then (5) can

be true only under the assumptionthat the actual state x is

always enforced, that is, it follows the desired state trajec-

tory xdi . As mentioned in Section 2.2 this is possible if the

subsystemcomplies with the follow-up controllability condition

and if h i (') is chosen for example such that c i ｾ xi'

In the general case of ｴ ｩ ｭ ･ Ｍ ｶ ｡ ｾ ｹ ｩ ｮ ｧ state we would have to

put into (2) the formula (1) for xi(t), which makes yet) depen-

dent upon initial state xi(t O) and upon the inputs over interval

[to,t], that is upon mi[to,t] ,ui[tO,t],zi[to,t]. The Existence

of an appropriateequation {3) allows to eliminate mi[to,t] in

favor of ci[to,t] and thus we become; insteadof (5)



-38-

(5' )

The input-output relation in the ｦ ｯ ｾ ｭ (5') is not very

convenient for notational reasons. We may tacitly assumethe

initial state to be known, or we can treat xi(t O) as part of the

disturbancez .. If we, additionally, use notation y.,c.,u.,z.
1 1 1 1 1

to expresstime functions (as opposedto their values y. (t), etc.),
1

then (5') bec6mes

y. = F.(c.,u.,z.)
1 1 1 1 1

(5")

The important difference with respect to (5) is that (5")

denotesa mapping between time functions (describesa dynamical

system).

When the subsystemis in steady state,(5) will hold. Its

practical meaning is that "the dynamics of the subsystemare

suppressed"and that is why we have a static input-output rela-

tion. We usually write (5) in abbreviatedform, dropping the

argument t and sometimesalso the disturbanceinput:

y.=F.(c.,u.), ie::1,N
1 111

(6)

Note that the form of (6)' is similar to (5") and the nota-

tion does not indicate whether we describea static or a dynamic

system. This is rather convenient for considerationsof general

nature, but may also be misleadingas the difference tends to

be overlooked.

Right below weare going to speak,about steady-stateand we

consider y. ,c. ,u. to stand for y. (t) ,c. (t) ,u. (t).
111 111
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The interconnectionsin the system are describedby

u. = H.y,
1 1

so that u = Hy (7 )

where H. i p part of matrix H.
1

We assumea IIresource constraintll is imposed on the system

as a whole

N
ｾｲＮＨ｣ＮＬｵＮＩ < rLJ 1 110

1

(8 )

and also that some local constraintsrestricting (ci,ui ) may

exist

( c . , u .) €. CU., i E 1,N
111

(9 )

We further assumethat a local performanceindex (local

objec-cive function)' is associatedwith the subsystem

Q.(c.,u.),
111

( 10)

whereby a global systemperformanceis also defined and it is

( 11 )

The function ｾ is assumedto be strictly order-preserving.

Note that (10) and (11) may result from two practical cases.

It might be that there were some local decision makers already

in existenceand we decided to set up an overall Q to provide

for some harmony in their actions. But it also might be that we

had overall Q first and we then decided to distribute thedecision

making among the lower level units.
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We are now ready to define the goal of the coordination

level: it has to ensure that the overall constraintswould be

preservedand the overall performancewould be extremized.

Coordinationwill be done by influencing decision making

in the local units (and not by overriding control decisions

already made) .

We start with presentingcoordinationby direct method.

The simplest way to presentdirect coordination(also called

primal or parametriccoordination) is to assumethat the coordi-

nator would prescribethe outputs Yi' demandingan equality

y. = Yd ,. If a resourceconstraint (8) is present, coordinator
1 1

would also allocate a value r di to each local problem.

A local decision problem would become

maximize Q.(c.,u.)
1 1 l'

subject to

F. (c. ,u.) = Y
d1

'
111

(c . ,u.) £ CD.
111

r. (c. ,u.) < r
d1

.
1 11-

When this problem is solved, results depend upon (yd,rdi ). Note

they depend on the whole Yd' not on Ydi only, since we had
A

U i = Hiy d . We denote the results as ci(Yd,rdi ) and
ｾ 6 ｾ

Qi (ci(Yd,rdi),HiYd)= Qi(yd,rdi )

The coordination instruments (yd,rd ) have to be adjusted

to an optimum by solving the problem
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A '"
maximize Q = w(Q1 (Yd,rd1 ) ,···,QN(yd,rdN»

(Yd,rd )

sUbject to

< r
o

The main difficulty of the method lies in the fact that a

local problem may have no solution for some (Yd,rd ) becauseof

its inequality ｾ ｯ ｮ ｳ ｴ ｲ ｡ ｩ ｮ ｴ ｳ (an output value may be not achiev-

able and the allocatedresourcesinadequate). Therefore the

Vulucs (yd,r
d

) set by the coordinatormust be such as to keep

ｕ ｉ Ｈ ｾ lOCul ｰ ｲ ｯ ｢ ｬ Ｈ ｾ ｭ ｳ ｦ ｃ ｩ Ｑ ｳ ｪ ｢ ｬ Ｈ ｾ Ｌ (yd,rd ) I YR, where YR is the

feasible set.

The set YR cannot be easily determined, becauseit implic-

itly dependson local constraints.

Moreover, the boundariesof set YR may be affected by the

disturbances,since theseboundariesare related to local con-

straints and to the element equations. This has the implica-

tion that the "coordinator" would have to keep his decisions

(yd,rd ) in a "safe" region of YR, where "safe" would relate to

the worst caseof system uncertainties. Apart from the diffi-

culty to define the safe region we of course realize that the

worst case approachmay give the result that the "safe region"

is very small or even empty.

Before trying to find a remedy to this situation we shall

ｾ ｡ ｫ ･ some additional remark on the direct method of coordina-

tion; namely, this method may entirely fail to be applicable if

the number and role of local controls are inadequate.
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We note that by prescribing the outputs we also preset the

inputs and hence in the local subsystemequationwe have only

c. as a free variable:
1

F. (c. ,H . Yd ' z .) =
111 1

Strictly speakingwe should consider the interconnected

system in the whole, where we have

F(c,u,z) = Y

and with y = Yd' u ｾ Hy this gives

F(c,HYd'z) = Yd

The above equality is to be enforced. ?his means that c must be

available such that a certain systemof equations,which we de-

note as

K(c,z) = Y
d

could be satisfied by adjusting c (the control decision) for

any Yd , z in their range envisaged.

The questionwould be: do we have an adequatenumber of

control variablesc., j = 1, ..• , dim c and are they appropriate-
J

ly placed in the system equations?

Let us clarify the implications by an example. Remember

the chemical reactor of Fig. 11. The output vector y would in

this case be (FO,CA,T) since the outflow from the reactor is
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characterizedby flow rate (Po)' composition (uniquely expressed

by CA) and temperature(T). We have only two manipulatedvari-

ables FA' H and hence two controlled variables, say Wand CA.

Therefore, dim c = 2 while dim y = 3. We should be unable to

prescribean arbitrary value for the output vector. Indeed, the

steady-stateequation y = K(c,z) of the reactor inclusive of

direct controls would be in scalar notation

where z1 stands for the flow rate demanded (imposed) by the

receiving end of the pipe, and z for the whole vector of dis-

turbances. By choosing WO' CAd we would be able to steer the

output CA and T, but not PO. Note that our control influence

on the output T is rather complicatedand the actual T depends

also on disturbances. Neverthelesswe can influence it by ad-

justing Wd ' which meansthat we have "adequatec" for the purpose.

The question of local controls is vital for the direct me-

thad. We should, however, consider that in practical caseswhere

this hierarchical structurewould be applied, the number of 10-

cal controls will always exceed the number of outputs which are

being prescribed.Otherwise we might doubt if it makes senseto

apply the ｳ ｴ ｾ ｵ ｣ ｴ ｵ ｲ ･ Ｚ

sions directly.

the coordinator CQuld make all the c. deci-
1
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Let us now come back to the problem posed by the ignorance

of the feasible set at the coordination level. A solution is

subject of the next subsection.

4.2 Penalty functions in direct coordination

We can propose an iterative procedureto be used at the co-

ordination level such that the feasible set YR would not have to

be known. The main idea is to use penalty functions in the local

problems while imposing there the coordinator1sdemands. If we

use penalty function for the matching of the output, the local

problem will get the form:

maximi ze Q ｾ = Q, (c, , u.) - K. (y, -Yd' )
-1 -1 1 1 1 1 1

with the sUbstitutions

y, = F. (c. , u, )
1 111

and subject to constraints

(c . , u .) E: CD,
111

r. (c. , u.) < r
d1

,
111

As can be seen we used penalty function to enforce the condi-

tion y.= Yd'. The resourceconstraint could also be dealt with by
1 1

a penalty term, if necessary. Also the substitutionu i = HiY
d

may be, if ｮ ･ ･ ､ ･ ､ ｾ replacedby. penalty term. Interaction input

u i would then become a free decision variable in the local prob-

lem.
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The result of using penalty formulation is that solution to

the local problem would exist even for a non-feasibleYdi' The

demand on the output would simply not be met.

We must now establisha mechanismto let the coordinator

know that he is demanding something impossible. We let his

optimization become:

maximize ｾ ｛ Ｖ Ｌ (Yd,rd ,)-K,(9,-yd ,» , ... , (6N(Yd,rdN)-KN(9N-YdN»]
Yd,rd

where the clue is that we introduce local performancesless the

penalty terms. Hence, the coordination iterations will try to

adjust Yd so as to reduce the values of penalty terms, whereby

"the local problems do the same on their part, by influencing Yi'

It can be shown, under relatively unrestrictiveconditions

that when the iterations reach their limit where penalty terms

vanish, the values Yd obtained there are both feasible and

strictly optimal.

Moreover, gradient procedurescan be used at the coordina-

tion level, while in the pure form of direct method the subsystem
A

results Qi(yd,rdi ) are, in general, non-differentiable.

4.3 A mechanisticsystemor a human decision making hierarchy:

The readerof the previous text may get confusedas to what

do our considerationsreally apply. Let us clarify it as

follows:

(i) In the first place, we can obviously think of coordination

used in off-line, model-basedsolving of a set of local

problems. This would be "decompositionand coordination

in mathematicalprogramming" and it is quite appropriate

there to discuss, for example, whether gradient procedures

can be used or not.
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Should we apply the solution of optimization problem, that

"is the finally obtained control values c. to a real system,
ｾ

feasibility of the result with respectto the real system

(differing from the models) must be considered. The problem

of "generatingfeasible controls" will arise. From the con-

trol point of view we would have an open-loop structure.

(ii) In the secondplace, we can consider the coordination level

as acting on local decision makers who control the real sys-

tern elementsand try to comply with the coordinator'sdemands.

Here we may not even know what is the local decision making

process. Let us look at this situation by assuming that the

coordinatorworks by iteration; at each step of the itera-

tive procedurethe local decision makers "do their best"

with respect to the real system inputs. Would we know the

algorithm which the local decision maker is using, a dis-

cussion of time-behaviorof the system from one coordina-

tion step to another could be done. Let us only state

that this behavior may be unstabledue to many separate

decision makers acting on the same system. If the system

is stable and a steady-stateis achieved, the coordinator

may make his next step, trying to improve the value of his

performancefunction (whether in the penalty form or with-

out it). Note that in the casewhere no penalty terms are

used the direct coordination can in principle be achieved

in one step: the coordinatorsets values (Yd,rd ) which

should optimize the system according to his best knowledge

(i.e. according to the model of the system) and then the
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local decision makers do their job by achieving Yi= Ydi

and complying with the resourcesconstraint. .It is in

t_his case, however, that ydi should be feasible for the

real system, otherwise the expectationsof the coordinator

may not become reality.

If the coordinator'sdemandsare feasible for the real sys-

tem (for instancebecausehe knows exactly the constraints,

or he ｾ ｡ ｳ decided to move in the "safe region" only), then

the iterations of the direct method have the property that

the demandsare feasible in every step of the iterative

procedure. Hence, the direct method is sometimesreferred

to as "feasible method". As opposed to it, the direct-

penalty coordination is using non-feasibledemands in

course of the iterations. When the local decision maker is

trying to comply with a non-feasibledemand, his output may

violate the constraintsrelated to the input of another sub-

system.

(iii)We can also consider a mechanisticdecision making hierarchy

of control, where we. implement certain formal algorithms

of decision making at the local level, ｾ ｳ well as ｾ ｴ the

coordination level. It could be an open-loop control struc-

ture but this may not be a satisfactoryand ultimate solu-

tion. The performanceof control can be improved by using

feedback information; the human decision makers postulated

above in (ii) were using such information implicitly. Now

we would have to say very explicitly what kind of current

information is available.and how it is beinq used in the
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formal algorithms. For example we ｣ ｾ ｮ assumethat the real sub-

system outputs y*i are measured. Then we can consider them to

be used in essentiallytwo ways: in the local algorithm and ln

the coordination algorithm. The secondpossibility has been

quite satisfactorily explored and is discussedto some extent

below. Using this kind of feedback, we are able to obtain coor-

dination algorithms which

end in a point non-violating the real system constraints

(provided they are of the form (c.,u.) E CU. and y € Y),
111

provide for a value of overall performancewhich is

superior to the result of open-loopcontrol.

4.4 ｾ ｭ ｯ ｲ ｾ comprehenniveexample

A typical area of application of steady-stateoptimal con-

trol are the continuouschemical processes.

Let us presenthow the multilevel approachcould be applied

to control of an ammonia plant.

(i) Description of the process

Fig. 14 displays the principal parts of the plant. The

first is methane ｣ ｯ ｮ ｶ ･ ｲ ｳ ｩ ｯ ｮ ｾ ｷ ｨ ･ ｲ ･ H2 is gained from the methane

and N2 from atmosphericair, water steambeing added to care

for stochiometricbalance. The second is converAion of carbon

oxide, where CO is turned to CO2 (CO could not be removed

directly). Then we have ､ ･ ｣ ｡ ｲ ｢ ｯ ｮ ｩ ｺ ｡ ｴ ｩ ｯ ｮ ｾ where CO2 is removed

from the gas stream. At this point there should be no CO or

CO2 present in the gas stream - the rests of them are neutra-

lized by turning them back into methane in the /1J" t I",]Ii 1::-:'1: i {' 1/

part of the plant. The reasonfor doing it is that CO



and CO2 are toxic to the catalyst use9 in the synthesisreactor.

The synthesisreactor is the last essentialpart of the plant -

here the mixture 3H2 + N2 reacts to 2NH3 at high pressureand

high ｴ ･ ｭ ｰ ･ ｲ ｾ ｴ ｵ ｲ ･ ｾ A cooled liquid Ｈ ･ ｳ ｳ ｾ ｮ ｴ ｩ ｡ ｬ ｬ ｹ pure ammonia)

F leaves the plant. The characteristicfeature of the ammoniaa

synthesisprocessis that the synthesisreactor works with a

recycle, whereby its input flow consistsof both ,the fresh gas

and of the recycled gas - the latter with NH 3 removed (trans-

ferred to the liquid Fa)' The fresh gas, however, contains not

only H2 , N2 but also some "inerts", i.e. componentsnot reacting

in the process. They would mainly be.argonfrom the atmospheric

air and CH4 due tO,the methanizationprocessused for ｲ ･ ｭ ｾ ｶ ｩ ｮ ｧ

the rest CO and CO2 , Inerts are no harm but they would cycle in

the synthesisreactor,loop ･ ｮ ､ ｬ ･ ｳ ｳ ｬ ｹ ｾ as new inerts.continuously

flow in with the fresh gas we would end in a considerablein-

creaseof inerts in the loop gas, leaving no space for the use-

Inerts have to be removed. There is, however, no

practical way to remove them selectively and the inert level is

kept down by a very simple measure: part of the loop gas is

being blown out into the atmosphereas the so-calledpurge, F .
P

(ii) The optimization problem

Assume we aim at maximizing the steady-stateproduction

rate Q of ammonia ( in kg/hr). We have

(A) Q = Fa - Fa L r.
j J

where r. is solubility of j-th componentof the circulating gas
J

in liquid ammonia.
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In order to get variablesof other parts of the plant in-

volved in the expressionfor Q let us write two mass balance

equations.

Overall mass balanceof the synthesisloop will be:

(B) F + F = Fa p s

where F is the fresh gas inflow.s

Mass balanceof the inerts in the synthesisloop will be:

(C) F r. + F Y . = F Y .a 1n p p1 S Sl

where r in is solubility of inerts in liquid ammonia, ypi is

concentrationof inerts In purge gas, y . the same for fresh
Sl

gas.

The use of (B) and (C) allows to arrive at

(D) Q = F (1s •

At this statewe assumefrom physical and chemical know-

ledge: r., r. do not dependon any plant variables, and) 1n

Under these circumstanceswe can see that Q

is maximized when F is maximized, y . is minimized and y . is
S Sl p1

maximized (pleaselook at the physical meaning). We thus would

have

y .-a
= bF (1 _ Sl )

S Y .-ap1

where a, b are constants. Note ｾ is in this case a strictly

order-preservingfunction.
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There could be three local ｰ ｲ ｯ ｢ ｬ ｾ ｭ ｳ Ｚ

"
maximize F , minimize

s

Ysi' maximize Ypi.

Since the local problems are of course interconnected,a

coordinationwill be neededto provide for max Q and preserving

all constraintsat the same time. In an actual study performed

it was assumedthat F will be given.s
It was, however, found

reasonableto replace Y . by two local performanceindices, both
Sl

to be minimized:

A 1 1
YCH + Yco'

4

:0 2
= YCH 4

and to form three subsystemsas shown in Fig. 15. They have the

performanceindices Q1'

1We denotedby YCH4
of the first subsystem.

A

Q2 and Q3 = Ypi' respectively.

the concentrationof CH4 at the output

This CH4 directly contributesto the

inert content in the gas F , therefore it makes senseto ｭ ｩ ｮ ｩ ｾs

mize it right away. The same applies to CO content here, be-

causeco will not be removed in decarbonization. The perfor-

mance index Q2 for the secondsubsystemis CH4 concentrationin

the fresh gas stream Fs . This CH4 involves result of methaniza-

tion, which had to be done on CO2 . Local control can decrease

this CH4 by improving decarbonization,i.e. by decreasingthe

rest CO2 content. Operation of the second subsystemis subject

to the constraint that methanizationis always complete, i.e. no

CO2 or CO can be left in the stream.

In the third subsystemwe have to maximizeQ3 = Y 0' thep1

concentrationof inerts in the purge gas. This means of course

that possibly little H2 , N2 is lost, becausein the balanceall

incoming inerts must be let out:
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F Y . = canstp pl

Note that we could replace the goal "maximize y ." by thepl

equivalent "minimize F ".
P

ＨｾｩｩＩｃｯｯｲ､ｩｮ｡ｴｩｯｮ variables and coordinationmethod

For the non-additive function ｾ in

we have to use coordination by direct method (the price coor-

dination, describedfurther on, could not be used here). Let

us look at the possiblecoordinationvariables. In principle

they should be all the subsystemoutputs (or inputs). The co-

ordinator would prescribetheir values and thus separatethe

subproblemsone from another.

Here a serious failure of the approachwas encountered.

Examination of the real plant has shown that there are many

feed-forward and recycle linkages betweenparts of the system,

not only in the main stream. This was due to the plant design

where the linkages serve to utilize the heat energy generated

in the plant and thus make the plant self-supportingin this

respect.

The main links are shown in Fig.16. The failure ｯ ｦ ｾ ｰ ｰ ｲ ｯ ｡ ｣ ｨ

consistedin the fact that to describea crosscutthrough all

links would take about 40 variables; thesewould have to be

decision variables in the coordination problem. But all parts

of plant togetherhad only 22 control variables to be adjusted

(the set points of 22 different controllers). Hence we would

replace a 22-variableproblem by a 40-variableproblem at the
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coordination level plus a need to solve the local problems also.

The two-level problem was more complex and expensivethan the

direct one.

An insight into quantitativepropertiesof the problem and

into the actual operating experiencehas permitted to propose

an approximatesolution. Only 5 out of 40 variableswere found

to be "essential" and were consequentlychosen as coordination

variables:

v, - gas (CH4) inflow to the process,

v 2 stearn inflow,

v 3 - gas pressureih the gas preparationsection,

v
4
,v

5
- two principal heat stearn flows

The other variableswere found to be either directly re-

lated to the five, or were assumedto be constantand needing

no adjustmentby the coordinator, or their values were almost

irrelevant for the plant optimization.

Note, for example, that the coordinatorwould not have to

prescribethe air inflow to the process. If he sets gas and

stearn, the amount of air is automaticallydictated by the

required N2 to H2 ratio.

The ammonia processhas indicated an important topic for

hierarchicalcontrol studies: subcoordinationthat is the use

of less coordinationvariables than would be required for a

strict solution.

4.5 Subcoordination

Let us very briefly presentthe problem of subcoordination

for the caseof the direct coordinationmethod. The main point
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is that the coordinatorwould prescribethe output y by using a

vector v insteadof Yd' where dim v < dim y. There may be two

principal ways of using v in coordination.

One way of using v could be to set up a fixed matrix Rand

specify for the local problems:

y = Rv, that is y = R.v for each subsystem.d . di 1

ｎｯｴｾ･ that if we knew our system accurately, we could set

an adequatematrix R = R and a value v = v, obtaining Yd = Yd

(the strictly optimal value), whatever the dimension of v.

This makes little sense, however; model vs. reality difference

must be assumedto make the investigationmeaningful.

Another way of using v could be to set a fixed function

y(.) and require from the local problems to comply with

( (y) = v, that is y. (y.) = v. for each subsystem.
].]. ].

This makes more senseintuitively, since we are granting

the subproblemsｴ ｨ ･ ｩ ｾ freedom except for the fulfilment of the

demandsspecified in v. For example, we demand a total produc-

tion but do not specify the individual items. However, in this

case the subproblemsare not entirely separatedand analysis of

such a system is much more difficult.

SUbcoordinationapproach is also possible in the price

method. We will see it in the next paragraphs.

4.6 CooY'd1:na/;-ion hy Ｏ Ｎ ｨ ＿ ｾ usp- of ｰ ｲ Ｇ Ｑ Ｚ ｾ ｃ ｾ ｪ ｬ Ｚ ｮ ｴ Ｈ Ｚ ｙ Ｇ ｡ Ｈ Ｇ ｴ Ｗ Ｚ Ｈ Ｉ ｲ ｬ h1. 70I/,','

method

Let us recall the descriptionof the system and of the con-

trol problem, as was given by (6) (10) in section 4.1, that
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is, recall the subsystemequations,system interconnection

equation, resourceconstraint, local constraints,and local per-

formance indices.

Note that even before we define the global performance

index of the system we can define the task of coordination,

which can be to influence the local decision makers in such a

way that system constraintswill be preserved.

ppice coopdination consists in authorizing the coordinator

to prescribeprices on inputs, outputs and resourcesand then

ｰ ･ ｲ ｭ ｾ ｴ ｴ ｩ ｮ ｧ the local'decisionmakers to define their own choices

of the values of these variables. The system is coordinated

when the local choices cause the interconnectionequation (7)

to be satisfied and the global constraint (8) to be non-violated.

The prices which effect thi$ state of the system can be termed

･ ｱ ｵ ｩ ｬ ｩ ｢ ｾ ｩ ｵ ｭ ｰ ｾ ｩ ｣ ･ ｳ ｾ since satisfactionof (7) means an equili-

brium of the inputs and outputs.

The equilibrium prices bring about overall system optimum

if the global ｰ ･ ｾ ｦ ｯ ｾ ｭ ｡ ｮ ｣ ･ index is a sum of local ones

N
Q = E

i=1
Q.

1
( 12 )

It is worth remembering, that direct and penalty function

coordinationmethods presentedbefore allowed a more general

form of global performance,see (11).

The discussionof price coordinationwhich will now follow

omits the resourceconstraint (8), focusing on interconnections

(7) •
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We will discussthe so-called Interaction balance method

(IBM). In this case the local problems i.e. problems associated

with the individual subsystemscan be formulated as follows

(assumingQ. (c.,u.) has to be minimized):
111

minimize Q = Q.(c.,u.)+<A.,U.> - ＼ｾＮＬｆＮＨ｣ＮＬｵＮﾻ (13)i mod 1 1 1 1 1 1 1 1 1

subject to

(c. , u.) £ CU.
111

,. ,..
= F.(C.(A),U.(A».

1 1 1

If (13) is related to a finite-dimensionalproblem ( as is

the case in steady-stateoptimization), then the scalar product

<A. , u . > means
1 1

dim u.
1

E
j=1

A..U.. , and <lJ., (F. (c. ,u.) > means
1J 1J 1. 1 11

dim Yi

E
j=1

ｾ ..F .. (c.,u.)
1J 1J 1 1

In the problem (13) we assumedcoordinationto be effected

by a price vector A, composedof prices on inputs in the whole

system. Hence Ai are prices on interaction input u. ;
1

the prices

ｾ Ｇ on output y. are defined as well by virtue of (7), namely
1 1

ｾｩ =
N
E

j=1

T
Hoo)'"

J1 J

It is therefore right to say that the resultsof (13) are

dependent exclusively on vector A.
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'"The interaction balance or equilibriumprices A will be

defined such as to provide for

..... ,..
u (A)

,... '"
HY(A) = 0 ( 14)

""here Y (A) = F (c 0.) ,u (;\ ) )

Providing for the condition (14) to be satisfied is the

task of the coordinator. In the classicaleconomics this could

be assignedto a "tatonnement"procedureat the stock exchange:

a personoutside the negotiatingparties would vary the price A,
A

watch the responsesY(A) and U(A), and stop the procedureat
A

A = A.

Severalquestionscan now be raised, for example:

existenceconditions.for A, that is for the equilibrium

price;

systemoptimality with control C(A);

proceduresto obtain A.

The answersare basedupon discussionof the Lagrangian

function of the global problem. After the local ｭ ｩ ｮ ｾ ｭ ｩ ｺ ｡ ｴ ｩ ｯ ｮ ｳ

(13) have been performed, this Lagrangian is

N
rj,(A) = 2;

i=1

A ｾ ｾ A ｾ

Q. (c. (A) ,u. (A» + < AI U( A) - HF (c ( A) ,u ( A) ) >
-1 1 1

and it is required that it has a maximum at A = A:

6 p.) = maxIj> (;\ )
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If A so defined exists, its further use to determineopti-

mal control is practically restricted to the casewhere (e,u),

the mathematicalsolutions are single-valuedfunctions of \.

This requirementappearsto be vital for applications. Unfor-

tunately we know sufficient conditions only:
ｾ ｾ

(c,u) are single-

valued if the functions Q. (.) are strictly convex and the map-
1

A .
pings F. (.) are affine (linear). with A = A the unique Solutlons

1
ｾ ｾＮ

CIA) ,U(A) are optimal.

It may be appropriateto indicate that the requirementof

uniquenessof (c,u) in responseto a change in A has a simple

interpretation: since the prices A aim at providing a match of

the outputs to the inputs of other subsystems,they should have

a well-defined influence.

In many real-life problems the uniquenessof responsecan

be predictedby physical considerationsfor systems far from

being linear (remember that we fail to know necessaryconditions,

while the sufficient ones are too severeto be of much practical

use) .

It is quite easy to show an example where the uniquenessof

responsewill fail to appear. If A would be price imposed by

the coordinatoron some product and yeA) the optimal amount

produced by a subsystemaccording to its own local optimization,

the output yeA) will not be well-defined in the particular case

where the unit production cost would be equal to A. Note that

there would be no local gain or local loss associatedwith the

size of production y.

Let us now turn back to the main streamof our considera-

tions. What procedurescould be used at the coordination level
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continuous and F. (.)
1
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It can be shown [25] that if Q. (.) an'
1

are continuous, then gradient procedures

forA can be used, provided we find a way to deal with the points

where the (c,u) are not unique and where the gradient is not

defined (subgradientscan be consideredthere). In those regions

of A-space where Ｈ ｾ Ｌ ｵ Ｉ are unique, the following formula holds

for the (weak) derivative of ｾ Ｈ ａ Ｉ

'" ,/'\ ....,
'J 1/1 ( A) = u ( A) - HF (c ( A) ,u ( A) ) ( 1 5 )

Note that this is exactly the input-output difference (the

di3cooPdination in the system, and it has to be brought to zero.

The secondderivative, ｖ Ｒ ｾ Ｈ ａ Ｉ Ｇ does not exist in the general

case.

Let us mention that the interaction balancemethod (IBM)

describedso far can be applied to both static and dynamic prob-

lems, becausewe are dealing with models only. In particular,

the search for A is basedon the difference, ｾ Ｈ ａ Ｉ Ｍ ｉ ｉ ｾ Ｈ ｜ Ｉ Ｎ It is,

therefore, a computationalconcept rather thana control struc-

ture. In a ｳｹｾｴ･ｭ which is already in operation the inter-

connectionequation is satisfiedall the time, for any control

c. We could never see if A is correct. We could, therefore,

use the describedconcept for open-loop control only. It means

"" "-that we would first compute and then apply'the computed C(A) to

the real system; the result will of course strongly depend on

the accuracyof the models.

Let us now come back for a while to the resourceconstraint

( 8) :

r 1 (c1 ' u1) + ... + r n (cN' ｾＩ .::. ro .
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This additive form of global constraintcan be incorporated

in the price coordination schemeby using an additional price

vector n (the resourceprice) and adding to each local problem

a value <n,r. (c.,u.», so that the local objective function be-
111

comes:

Qi mod = Q.(c.,u.) + <A.,u.> - <\J.,F.(c.,u.» +
1 1 1 1 1 1 1 1 1

+ <ll,r.(c.,u.»
1 1 1

( 16)

By varying fj the coordinatorwould change the resource

requirementsof the local problems so as to satisfy the overall

constraint.

In the mathematicalprogramming terminology, n would be a

Kuhn-Tucker multiplier.

The next paragraphswill show some other ideas of price

coordination, where feedback from the operatingsystemwill be

used to improve control.

4.7 Price coordination in steady-statewith feedbaek to
coordinator (the IBMF method)

In this section we shall consider the optimization problem

to be in the finite-dimensional space, i.e. to be a problem of

non-linear programming. In terms of control it means control of

steady-statein a complex system. We remember from Section 2.4

that steady-statecontrol is an appropriatetechnique if the

optimal state trajectory of a dynamic system is slow enough to

assumethat the value of statevector x is at any time related

•to control only, the statederivative x being so small as to be

neglected.
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The mappings F., Q. are now functions in finite-dimensional
1 1

space. We have therefore the following model-basedglobal prob-

lem:

N
minimize Q = E

i=1

subject to

y. = F. (c. , u. ) ,
1 111

u = H Y

(c . , u .) E CU.,
111

Q. (c. , u. )
1 1 1

We have dropped the resourceconstraint for simplicity. A

"..

solution to the model-basedproblem yields model-basedcontrol ｾ Ｎ

We intend now to pay considerableattention to the difference

betweenmodel and reality, let us therefore formulate the fol-

lowing real problem :

N
minimize Q = E

i=1

subject to

y. = F*. (c. , u. ) ,
1 111

u = H Y

(c . , u .) E: CU.,
111

Q.(c.,u.)
111

i E 1,N
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We should notice that the only difference betweenmodel

and reality is herewith assumedto exist in the subsystemequa-

tions, that is the functions F*i (.) are different from the model

ones F. (.). We shall indicate in the sequel some effective
1

way to fight the consequencesof this difference.

It must be stressed,however, that differencesmay exist

also in the performancefunction and in the constraintset. For

example, if a performancefunction is explicitly Q. (c.,u.,y.)
111 1

then it will reduce to some Q. (c.,u.) by using the subsystem
111

equation, but this makes it model-based. The real Q*. (c.,u.)
1 l. 1

would be different from Q. (c.,u.). A similar reasonmay lead
111

to the set cu*. being different from cu..
1 1

Solution to the real problem will be termed real-optimal

A
contrf)l c*. It is not obtainableby definition since reality

is not known. We can only look for a structurewhich would

yield a control that would be better than the purely model-

based
A
c, but in principle what we will achieve is bound to be

/\
inferior to c*.

One of the possible structuresis price coordinationwith

feedback to the coordinator. It is shown schematicallyby Fig.

1 '7 •

The local problems are exactly the same as in the open-loop

interaction balancemethod, that is we have for each i t ｾｎＺ

minimize Q. (c. ,u.) + <>... ,u. > - <11' ,F. (c. ,u.) >
11111111 l.

subject to

(c . , u .) £ CU.
111
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A

The controls c. (A) determinedby solving this problem.
1

(computationally) for the current value of A are applied to the

real system, resulting in some u* and y*. The coordination con-

cept consists in the following upper-level problem:

A "-
find A = A such that U(A) ( 17)

Condition (17) is an equality of model-basedoptimal input
,...
U(A) and of the input u*, measuredin the real system and caused

A
by control C(A). Providing for this equality is the basic con-

tept of "interaction balancemethod with feedback" (IBMF).

The propertiesof control basedon condition (17) have been

studied quite extensively, see [12]. The usual questionsof

existence ｯ ｦ ｾ Ｌ systemoptimality with control ｾ Ｈ ｲ Ｉ and proce-

dures to obtain 1 have been discussedand answershave been for-

mulated. The essenceof these answers is in principle as follows.

Solution ｾ exists, if solution ｾ of the open-loop interaction

balancemethod Ｈ ｉ ｂ ｾ Ｑ Ｉ exists for all s-shifted systems

u = H F (c, u) + s

where s E S, and S is the set of all possiblevalues of the

model-reality difference

H F*(c,u) - H F(c,u) = s

with (c,u) E CD = CD1 x x CDN.

'" '"When the models do not differ from reality, C(A) is strict-

ly optimal control and ｾ equals equilibrium prices 1 which would

be obtained by solving the problem by the interaction balance

method of the previous paragraph. When models differ from

reality, the control basedon (17) is in the first approximation

"always non-inferior to the one basedon open-loop value A. In
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the particular casewhere

F*.(c.,U.) = F.(c.,u.) + 8.
111 111 1

i e: 1,N

that is the model-reality difference of the sUbsystemsconsist

in a shift, the control basedon (17) is strictly real-optimal.

The open-loopwould of course in this case be much inferior.

A most important feature of control basedupon (17) is its

property to keep to the constraintsin the real system. Note

that the "real control c* equals model-basedc for any A, be-

cause the result ｾ (A) is applied to the system. For A= Awe also

have u* = u.
.... ....

Since the model-basedsolution will keep (c.,u.)
1 1

e: CU., i = 1,N the same will be kept in the real system, but
1

_ A ｾ

only, at A = A. Note that the open-loop control C(A) may violate

the constraintsin the real system, becauseat A =A it will in

generalbe u* f u.

The control basedon A = A does not violate the constraints

(c.,u.) e: CU. if the real constraintsets equal the model ones
111

CU*. = CU., i e: 1,N. There exists also a modified method (MIBMF)
1 1

where the caseCU*i f CUi is covered by appropriateuse of ｦ ･ ･ ､ ｾ

back information, see [12].

ａ ｾ far as the proceduresto find A are concerned, iterations

have to be done at a rate acceptableby the real system, i.e. per-

mitting new values u* to establishthemselvesafter a changeof

A. Unfortunately, the expression

'" ,..
R* (A) = u (A) - u* (c (A ) ) ( 18)

which has to be brought to zero is not a derivative of any func-

tion, as it was in the caseof interaction balancemethod. The



-65-

value A has,to be found by equation-solvingmethods, aiming at

R*(A} = O. It should be ｳ ｴ ｲ ･ ｳ ｳ ｾ ､ that if there are inequality

constraintsin the local problems, R*(A} will in general be non-

differentiable. Suitable numerical methods to find A have been

proposed [12] [31] .

We are now able to justify discussion,of ｳ ｴ ･ ｡ ､ ｹ Ｍ ｳ ｴ ｡ ｴ ･ Ｎ ｣ ｯ ｮ ｾ

trol here as opposedto more general problem formulation in the

previous paragraph. The reason is the practical field of appli-

cation of ｣ ｯ ｯ ｲ ､ ｩ ｮ ｡ ｴ ｾ ｯ ｮ principle (17): it must be iteratively

done on the real system. This can be performed in steady-st<ilte

optimization, but not in a dynamical one. ｾ ｨ ･ ｯ ｾ ｬ ｹ ･ ｸ ｣ ･ ｰ ｴ ｾ ｯ ｮ
I ;: .

would be iterative optimization of batch or cyclic processe9,
, • • i. I •.

the iteration in time-function spacebeing performed from ｯ ｮ ｾ

batch to another. For that particular caseall considerations

can be appropriately'generalized.

Let us add an example to explain what the on-line price

coordinationreally means. Consider the electric power system

and its customers. The amount of power that is being produced

is matched to the current load. How can we tell whether the

price on electrical energy is correct since there is no demand-

supply difference? The on-line price ｡ ､ ｪ ｵ ｳ ｾ ｭ ･ ｮ ｴ proposedin
,- .1". ｾ Ｌ Ｎ

this section applies to this problem: ｴ ｾ ･ price is consiqered
.;,'

to be correct when the production-loadbalanceof the powyr
ｾ ' .

which has actually ･ ｳ ｴ ｡ ｢ ｾ ｩ ｳ ｨ ･ ､ itself in ｴ ｾ ･ real system (u*)

. '"is equal to the ｭ ｯ ､ ･ ｬ ｾ ｢ ｡ ｳ ･ ､ optlmal value (u). The difference

would be used to generateprice modification.
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4.8 Decentralizedcontrol lJith priee r'oor'dinai,iort (j\:el1f;(I('''':
to local decision units)

The structureof Fig.17, although proved to be effective

and superior to open-loopmodel-basedcontrol, may be criticised;

the information about real systemu. is made available to the

coordinator only. The local problems base on models and calcu-
A

late their imaginative ri for each A, "knowing" that reality is

different. The schemeof Fig. 17 is therefore a structuresuit-

able for a mechanisticoontrol system, but does not reflect the

situation which would be establishedif the local problems were

confined to decision makers with more freedom of choice.

We can expect that the local decision maker would tend to

use the real ｶ ｡ ｬ ｾ ･ u*. in his problem, that is that he would
1. . .

perform

minimize Q.(c.,u.) + <A.,u•. > - <\J.,F.(c.,u•. » (19)
1 1 1 1 1 1 1 1 . 1 .

sUbject to

(c.,u.,) c CU.
1 1 ·1

Schematicallythis is presentedin Fig. 18 as feeding ｵ Ｊ ｾ ....

to the correspondinglocal problem. Even with fixed A the con-

trol exercisedby local decision makers on the systemas a whole

remains to some extent coordinated,since the value of \ will

influence the control decisions. However, since ｵ Ｎ ｾ are used

locally, we may call the structure ｯ ｾ Fig. 18. d,'(?entraZ£2ed.

A problem for itself is system stability or the convergence

of iterations made by local optimizers while trying to achieve

their goals. It is obvious that all the iteration loops in the
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system are interdependent,since an u*i will depend on the deci-

sions c = (c1 ' ... ,c
N

) in the previous stage, that is on the de-

cisions of all decision units.

"If the iterations converge, some steady-statevalues ｾ Ｈ ａ Ｉ Ｌ

ri*(A) and Y*(A) will be obtained for the given price vector A.
,...

It may be predicted that if this A would happen to be A

from the previous paragraph,the result of decentralizedcontrol

would also be the same as in the previous structure. This does

not say that we should aim at it, since the ｾ ･ ｳ ｵ ｬ ｴ ｳ obtained
,...

with A are not real-optimal and a better value of A may exist.

We should look for some way to iterate on prices A in the

system of Fig. 18. A possibility might be

minimize Q =
N
l: Q. (a. (A) , Q* . (A) )

i=1 1 1 1
(20 )

which simply means to find a price A such that the overall re-

suIt of local controls be optimized.

Two propertiesof the problem seem predictable. If the

models are adequate,and all iterations converge, they will

converge to the strict overall optimum for the system. If the

models differ from reality, then the constraints (c.,u.) € CU.
111

will be secured (like in the structure in Fig.17), but the

overall result will be suboptimal. This suboptimality is due

to the fact that in performing the local optimizationswe con-

tinue to have an inadequate(model-based)value of the output Yi.
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5. Dynamic multilevel control

The structuresof on-line dynamic control using decompo-

sition of the control problem differ from those applicable to

steady-state. The differenceslie in the use of feedback from

the system in operation. In steady-statecontrol we could use

feedback in the form of measuredinputs or outputs of the sys-

tem elementsand provide for an extremum of a current or "in-

stantaneous"performanceindex, as describedabove. The dynamic

optimization needs consideringat time t the future behavior of

the system, that is to consideran "optimization horizon".

Since the future behavior dependson both the initial state

and the control input that follows it, we cannot determine the

optimal control unless we know the presentstateof the system.

It means that if we wish to have a control structurewith feed-

back, this feedback must contain information on the statex(t) .

There are three principal ways in which local dynamic con-

trol problems can be formed and, subsequently,coordinatedby an

appropriatesupremal problem. They are the following:

dynamic price ｣ ｯ ｯ ｲ ､ ｩ ｮ ｡ ｴ ｩ ｯ ｾ ｷ ｨ ･ ｲ ･ time-varying prices

on the inputs and outputs are imposed by the coordina-

tor, along with the target statesto be achievedby each

subsystemover the local optimization horizon;

structure based on state-feedbackconcept, where the

local decision making is reduced to a static (instanta-

neous) feedbackdecision rule, and the coordinator sup-

plies signals which serve either to modify the local

decisions,or to modify the local decision rules, so as

to account for the performanceof the system as a whole;
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structures using conjugate ｶ ｡ ｲ ｩ ｡ ｢ ｬ ･ ｳ ｾ where the local

decision making is a kind of static (instantaneous)opti-

mization, and the optimal dynamic policy is securedby a

vector of prices on the trend of the subsystemstate

(i.e. by the vector of conjugatevariables) imposed on

the subsystemsand readjustedby the coordinator.

In this section we shall briefly discuss these alternatives.

We will particularly expose the "dynamic" features.

5.1 Dynamic Price Coordination

Assume the global control problem of the interconnected

system to be as follows:

N
minimize Q - I

i=1

subject to

q . (x. (t) ,m. (t) ,u. (t) )dt
01 1 1 1

(21)

x.(t) = f.(x.(t),m.(t),u.(t)), i £ 1,N (state equations)
11111

y. (t) = g. (x. (t) ,m. (t) ,u. (t)), i £ 1,N (output equations)
11111

u (t) = Hy (t) (interconnections)

with x(O) given, x(t f ) free or specified.

Decomposition

Consider that in solving the problem we incorporatethe

interconnectionequation into the following Lagrangian:
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N Jtf t f
E q . (x. (t) ,m. (t) ,u. (t) ) d t + f0··· <A(t) ,u(t ) - Hy (t» d t

i=1 0 01 1 1 1

dim u
where <A(t) ,u(t)-Hy(t» means E

j=1
A . (t) (u (T) - Hy (t) ) .

J J

Assume the solution to the global problem using this

Lagrangian has been found and it has provided for

"- optimal trajectoriesx. , i = 1 , ... ,N - state1

A
i 1 , ... ,N optimalm. , = controls

1
A

optimal inputsu. , i = 1 , ... ,N
1

"y. , i = 1 , .•. ,N - optimal outputs
1

- solving value of Lagrangianmultipliers.

Note that now the Lagrangiancan be split into additive

parts, thus allowing to form a kind of local problems:

minimize

where

t f
Q. = J [q. (x. (t) ,m. (t) ,u. (t» +

1 0 01 1 1 1

+ ＼ｾＮＨｴＩＬｵＮＨｴﾻ - <C'. (t),y. (t»]dt1 1 1 1

(22)

Y1·(t) = g.(x.(t),m.(t),u.(t»1 1 1 1

and optimization is subject to

x.(t) = f.(x.(t),m.(t),u.(t»1 1 1 1 1

where xi(O) is given and xi(t f ) is free or specified as in the

original problem.



"In the local problem the price vector A. is an appropriate
1

A A . ｾ

part of A and ｾ Ｎ is also given by A as
1

"ｾｩ =
N
1:

j =1

T"H.. A.•
J 1 J.

Notice that we have put optimal value of price vector A

into the 16cal problems, which means that we have solved the

global problem before. Thanks to it the solutions of local

problems will be strictly ｾ ｰ ｴ ｩ ｭ ｾ ｬ Ｎ There is little sense,how-

ever, in solving the local problems if the global was solved
,..

before, be'causethe global solution would provide not only A

but
,.. A

sys'tem.also x,m for the Whole

Short horizon and feedback'at local level

To make the' thing practical let us try' to shortenthe

local horizons and to use feedback in the local problems. If

we shorten the horizon from t f to ti' the local problem (22)

becomes

minimize Q. =
1 ro [q . (x. (t) ,m. (t) ,u. (t» +

01 1 1 1

(23)

ｾ 1\."+ <A.(t),U.(t» - <\-I.(t),y.(t»]dt
1 1 1 1

with xi(O) given as before, but the target state taken from the

global long-hor!zonsolution,xi(ti) = ;i(ti). Here we might

remind the readeron the discussionof multilayer hierarchies

with the divided time horizon, discussedin Section 2.1, (see

Fig. 7) •
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For the local problem (23) we must of course supply the

ｾ A A
price vectors A., ｾ .. It may be reasonableto use also u. from

111

the global solution, that is the "predicted" input value.

The short horizon formulation (23) will pay-off if we will

have to repeat the solving of (23) many times as opposedto

solving the global problem once only. Consult now Figure '9

where the principle of the proposedcontrol structure is pre-

sented.

Feedbackat the local level consists in solving the short-

horizon local problems at some intervals T, < ti and using the

actual value of measuredstatex*i(kT,) as new initial value

for each repetition of the optimization problem.

This brings a new qualitYi we now have a truly on-line

control structureand can expect, in appropriatecaSeS, to get

results better than those dependenton the models only.

The operationof the structure is more exactly as follows:

at t = a we solve the problem max Qi for the horizon [O,ti] with

ｾ

x. (0), then we apply control m. to the real system for an inter-
1 1

val [O,T,], at t = T, we again solve max Qi for horizon [T"ti]

with initial state Xi(T,) = x*i(T,) as measured, then we apply
ｾ

control mi to the real system for the interval [T,,2T,], etc.

We now have a practical gain from both decompositionand

shorteningthe horizon. The local problems, which have to be

repeatedat intervals T" are low-dimension and short-horizon.

We should mention disturbanceswhich act on the real sys-

tern and were not yet shown explicitly in the formulations. Dis-

turbanceprediction would be used while solving (2') and (23),
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that is the global and the local problems. And it is indeed

becauseof the disturbanceswhich in reality will differ from

their prediction that we are inclined to use feedback structure

of Figure 19.

Feedbackat coordination level

The feedback introduced so far cannot compensatefor the,

• • A.
errors done by the coordlnation level in setting the prlces A.

Another repetitive feedbackcan be introduced to overcome this

shortage, for example bringing to the coordinatoractual value

x*i ｡ ｾ time ti! 2ti, .•• and asking the global problem to be

resolved for each new initial value. This principle of control

is also indicated in Figure 19.

We ｳｨｯｾｬ､ very well note that feeding back the actual values

of state achievedmakes ?enseif the models used in computation

differ from reality, for example becauseof disturbances. Other-

wise the actual state is exactly equal to what the models have

predicted and ｾ ｨ ･ feedback information is irrelevant.

A doubt may exist whether the feedback to the coordinator

makes sense,becausethe lower level problems have to achieve

xi(ti) = ｾｩＨｴｩＩ ｾｳ their goal and already use feedback to secure

it. It should be remembered,however, that the model-basedtar-

get value ｾ ｩ Ｈ ｴ ｩ Ｉ is not optimal for the real system and asking
,..

the local decision making to achieve exactly x*i(ti) = xi(ti)

may be not advisableor even'not feasible.

The coincidenceof feedback to coordination level with

times ti, 2ti is not essential. It might be advisableto use

this feedbaqk.andperformthe re-computatiohof the global prob-

lem prior to time ti, that is more often.
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Static ･ ｾ ･ ｭ ･ ｮ ｴ ｳ

In a practical case it may happen that some of systemele-

ments can be approximatelyconsideredas statio, that is non-

dynamical. It can be explained as follows.

The length of the global problem horizon t f has to be

matched to the slowest system element dynamics and the slowest

of the disturbances. The shortenedhorizon t f for the local

problems would in fact result from consideringrepetitive opti-

mization at the coordination level, for example as 1/10 of t f .

It may then happen that the dynamics of a particular system

element are fast enough to be neglectedin its local optimiza-

tion problem within the horizon t f . This means, in other words,

,. "that if we would take m. ,u. from the global optimization solu-
1 1

tion, "the optimal state solution x. follows thesewith negli-
1

gible effect of element dynamics.

To make this assumptionmore formal let us consider that

the system element has been supplied with first-layer follow-up

controls of some appropriatelychosencontrolled variablesc.,
1

see section 2.2. We are then allowed to assumethat c. deter-
1

mines both x. and m. of the original element and the optimiza-
1 1

tion problem becomes

minimize Q.
1

,.,
[q' . (c. (t) , u. (t» + < >.. i (t) , u

l
' (t) >

01 1 1

"- <ll·(t),y.(t»]dt
1 1

(24)

where g'. (.) is a reformulation of the function q . due to
0101

substitutingc. in place of x.,m..
111
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Note well that although (24) will not be a dynamic problem

its results will be time functions.
ｾ .

In particular c. wlll be
1

time-varying control. This is due to time-varying prices

A . , ]..J ••
1 1

Let us repeat the essentialassumptionunder which the

dynami·cal local problem (23) reducesto the static problem (24):

the dynamic optimal solutions

The use of simplified models

" A r-m.,u.,x. were assumedto be slow.
111

In the describedstructureof on-line dynamic coordination

we have made no use till now of the possibility of having a sim-

plified model in the global problem, which is being solved at

the coordination level at times 0, ti, 2 ti' etc.

The global problem may be simplified for at least two

reasons: the solution of the full problem may be too expensive

to be done, and the data on the real system, in particular pre-

diction of disturbances,may be too inaccurateto justify a

computationbasedon the exact model.

Simplification may concern dimension of statevector (intro-

duce aggregatedXC insteadof x), dimension of control vector

(m
c

insteadof m) and dimensionsof inputs and outputs (uc = HCyc

insteadof u = Hy).

The global problem Lagrangianwill now be

N rtf
Jtf)" c c c c <A c (t) ,uc (t)L = J qoi (x. (t) ,m. (t) ,u. (t) )dt +

ｩｾＱ 111

0 0

C c dt (25)- H Y (t»

The simplified solution will yield optimal state trajectory

ｾ ｣ c c c cx = (x
1

' x
2

, ... , xN ) and optimal price function A . The
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linking of those values to the local problems cannot be done

directly, becausethe local problems consider full vectors

x. , u. and y ..
111

"We have to change the previous requirementxi(ti) = xi(ti)

to a new one

y. ｛ ｾ Ｎ (t f')] = ｸｾＨｴｦＧＩ
111

which incidentally is a more flexible constraint, and we also

have to generatea full price vector A:

A "c
A = RA

where R is an appropriate"price proportion matrix". The prices

composing the aggregatedAC may be termed "group prices".

We should note that functions y. and matrix R have to be
1

appropriatelychosen. The choice may be made by model consider-

ations, but even with the best possible choice optimality of

overall solution will be affected, except for some special cases.

Systeminterconnectionthrough storage elements

The system interconnectionsconsideredtill now were stiff,

that is an output was assumedto be connectedto an input in a

permanentway. We may consideralso another type of interconnec-

tion, a "soft" constraintof integral type:

(u .. (t)- Yl (t) )dt = 0
1J r

which correspondsto taking input u .. from a store, with some
1J

output Ylr connectedto the same store and causing its filling.
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Asking for integral over [ktb ,(k+1)tb ] to be zero means that

supply and drain have to be in balanceover each balancing

period t b •

A store may be supplied by severaloutputs and drained by

more than one subsysteminput. There may also be many stores,

for example for different products. If we assumethe same

balancingperiod for all of them the integral constraint

becomes

where u,y are parts of u, y connectedto the stores (thew w

stiffly interconnectedparts will be termed us'Ys)'

Matrices H1 ,H2 show the way by which uw' Yw are connected

to various stores. The number of stores is of course dim H1yw

= dim H2Uw' A state vector w of the inventories can also be

introduced

ktb+ t

w(ktb + t) = w(ktb ) + J (H 1Uw(t)- H2Yw(t)dt (26)

ktb

With both stiff and soft interconnectionspresentin the

system, the global problem Lagrangianbecomes
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N

L
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q . (x. (t) ,m. (t) ,u. (t) )dt +
01 1 1 1

<). (t) ,u (t) -Hy (t) >dt +s s

(k+ 1) t
b

< nk
, [ (H1U w (t)-H

2Yw(t))dt>

ktb

. (27)

and we of course continue to consider

•x.(t) = f.(x.(t),m.(t),u.(t)),
1 1 1 1 1

Y1' (t) = g. (x. (t) ,m. (t) ,u. (t))
1 1 1 1

1 = 1, ... ,N

i = 1, ... ,N

In comparisonwith the previous Lagrangian a new term has

now appeared,reflecting the new constraint. Note that prices

Ti
k associatedwith the integral constraintare constantover

periods tbo Note also, that if t b will tend to zero, the

integral constraintgets similar to the stiff one and the step-

wise changingnwill changecontinuously, like 1 does.

With two kinds of interconnectionsthe local problems also

changecorrespondinglyand they become

[

t

of
A

minimize Q.= [q .(x.(t),m.(t),u.(t))+<.\.(t),u.(t»-
1 01 1 1 1 1 Sl

(20)

,..
-<jJ.(t),y .(t»]dt +

1 Sl

t f t
b

k=--1 It I\kL b < n, (H 1 . u . (t) - H
2

. Y . (t ))d t >
k=O 0 1 W1 1 W1
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where y . (t) = g . (x. (t) ,m. (t) ,u. (t»,y . (t) = g . (x. (t) ,m. (t),
S1, S1 1 1 1 W1 W1 1 1

u. (t» and optimization is subject to
1

•x.(t) ,,- f.(x.(t),m.(t),u.(t»
1 1 l' 1 1 .

Xi (0) given, xi(t f ) free or specified.

A new quality has appearedin problem (28) in comparison

wi th (23): the inputs u . taken from the storesare now free
W1

control variables and ｾ ｡ ｮ be shapedby the local decision maker,

who previously had only m. in his hand. The local decisions
1

,., ,. 0 1
will be under the influence of prices A and n=(n ,n , .•. ), where

,.. ｾ

both A and n have to besetby the solution of the global prob-

lem.

The local problem (28) has no practical importanceyet; it

will make sensewhen we ｾ ｮ ｴ ｲ ｯ ､ ｵ ｣ ･ local feedback and shorten the

horizon, like it was'in the previous stiff-interconnectioncase.

We.shall ｯ ｭ ｩ ｴ Ｎ ｴ ｨ ｾ details and show it ?nly as a control

scheme (see Figure 20).

Thinking about how to improve action of the coordinatorwe

made previously a proposal to feed actual ｸ Ｊ Ｈ ｴ ｾ Ｉ to his level.

We have now additional statevariables, the inventoriesw. If

the price ｾ ｫ is wrong, the storeswill not balanceover

[ktb ,(k+1-) t b ]. ,It is almost obvious that we can catch-upby

I\k+1 dinfluencing the price for the next period n an that we should

condition the change on the differencew[(k+1)tp]- w*[(k+1)t b ],

where w*(·) is a value·measuredin the real system. This kind

of feedback is also shown in Figure 20.
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Conclusion on dynamic ppice cooPdination

It has been shown that time-varying prices are a possible

coordination instrumentwhich can be used in a multilevel struc-

ture of on-line control. They must, however, be accompaniedby

prescribingalso the target states.

The local problems may be formulated as short-horizonand

each of them has low dimension. The coordination level must

solve the global problem for full horizon in order to generate

the optimal prices and the target statesfor the local problems.

It is expectedthat a simplified global model may be used in

appropriatecases.

The price coordination structureapplies to systemswith

stiff interconnectionsand also to systemswith interconnections

through storageelements.

The operationof the structuredependson the possibility

of numerical solution of optimization problems.

Analytical solutions of the dynamic problems involved are

not needed, thereforewe are by no means restrictedto linear-

quadratic systems.

5.2 Multilevel contpol based upon state-feedbackconcept

The literature on optimal control has paid considerable

attention to the structurewhere the control at time t, that is

m(t), would be determinedas a given function of current state

x(t). Comprehensivesolutions exist in this area for the linear

system and quadraticperformancecase, where the feedback func-

tion proved to be linear, that is, we have
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"met) = R(t) x(t)

where R(t) is in general a time-varying matrix.

Trying to apply this approachto the complex systemwe

might implement for each local problem

"m. (t) = R .. (t) x. (t)
1 11 1

where R.. is one of the diagonal blocks of the matrix R.
11

(29)

The result of such local controls, although all stateof

the system is measuredand used, is not optimal. Note that for

"m. (t) we would rather have to use
1

;.,
mitt) = Ri (t)x{t)

"that is we should make mi(t) dependenton the whole state x{t).

We can compensatefor the error committed in (29) by adding

a suitably computed correction signal

ｾ ｾ

m. (t) = R.. (t)x. (t) + v. (t)
1 11 1 1

(30 )

"The exact way to get viet) would be to generateit contin-

uously basing upon the whole x(t). This would, however, be

equivalent to implementing state feedback for the whole system

directly, with no advantagein having separatedthe local prob-

lems.
"-

From the local problem point of view, adding v. (t) as in
1

(30) means,in fact, overriding the local decision. In particular,

dim v. = dim m..
1 1

Exactnesshas to be sacrificed. with this in mind we may

proposevarious solutions, for example ( see Figure 21).

(i) "v. will be generatedat t = 0 for the whole optimization
1

horizon t
f

(open-loop compensation);
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(ii) v. will be generatedat t = 0 as before but will be recom-
1

puted at t = ti < t f , using actual x(ti), etc. (repetitive com-

pensation);

(iii)v. will not be generatedat all, but we implement instead
1

in the local problems

"m
1
. (t) = R. . (t) x. (t) ( 3 1 )

11 1

ｾｨ･ｲ･ R.. is adjustedso as to approachoptimality. This struc-
11

ture may be referred to as decentralizedcontrol. We could

think of re-adjustingR.. at some time 'intervals, which could
11

I,c' J ＨＩＨＩｫＨｾ､ upon uS aduptation. This adaptationwould presenta

way of on-line coordinationof the local decisions.

It may be worthwhtle to mention that local decision making

based upon (29), (30) or (31) makes more sensefor a mechanistic

implementationthan for a hierarchy of human operators,where

the previous approachbasedon "maximization of local perfor-

manca subject to imposed prices" seems to be more adequate,to

what really happensin the system.

We should also remember that the feedback gain solutions

to optimization problems are available for a restrictedclass

of these problems only.

5.3 Structures using conjugate variables

It is conceivableto base on-line dynamic control upon

maximization of the current value of the Hamiltonian, thus

making a direct use of the Maximum Principle.

For the complex systemoptimization problem, describedas

(21) at the beginning of this section, the Hamiltonian would be

N
7e = - I

i=1
q .(x.(t),m.(t),u.(t» +<IjJ(t),f(x(t),m(t),u(t» .
01 1 1 1

(32)
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The interconnectionequation

u (t) - Hy (t) u (t) - Hg (x (t) , m(t) , u (t)) = 0

provides for u(t) to be a function of (x(t) ,m(t)) in the inter-

connectedsystem

u(t) = <I>(x(t),m(t))

Therefore

N

J:
i 1

q . (x. (t),m. (t),11. (x(t),m(t)))+
OL 1 1 1

+ .... IfI (t) , f (x: ( t) , m (t) , tj> (x (t) , m (t) ) ) > (33 )

}\ssumc the global problem has been solved (model.,..based)

using this Hamiltonian and hence the optimal trajectoriesof

conjugatevariables ｾ are known.

We are going to use the values of ｾ in local problems.

Pirst let us note that having ｾ we could re-determineopti-

mal control by performing at the current time t

maximizeJe. = -
N

L
i=l

q . (x. (t) ,m. (t),<I>. (x. (x(t) ,m(t)))+
01 1 1 1 1

"-+ "l/I(t) ,f(x(t) ,m(t) Ｌ Ｈ ｾ Ｈ ｸ Ｈ ｴ Ｉ ,m(t))» (34)

will' "(' IIII' problem is Lln " instantaneousmaximization" and needs

no considerationof final state and future disturbances. This

information was of course used while solving the global problem
/\

and determining w for the whole time horizon.

For the (34) to be performed we need the actual value of

state x. We could obtain it by simulating systembehavior
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starting from the time t, when initial condition x(t,) was

given, that is by using equation

•x (t ) = f (x (t) ", m(t) , ¢> (x (t) , m(t) ) )

with x(t,) given and m

solutions of (34).

ｾ= m known for [t"t] from the previous

We could also know x(t) by measuring it in the real system

(note that a discussionof model-reality differenceswould be

necessary).

Problem (34) is static optimization, not a dynamic one.

We would now like to divide it into subproblems. It can be

done if we come back to treating u(t)-Hy(t) = 0 as a side con-

dition and solve (34) by using the Lagrangian

L =
N

l
i='

A
q . (x. (t) , m. (t) , u. (t)) + < IjJ (t) , f (x (t) , m(t) , u (t) » +

01 1 1 1

+ < >.. (t) , u (t) - Hy (t) > (35 )

where y (t) := g (x (t) ,m (t) ,u (t))

.
Before we get any further with this Lagrangian and its

decompositionlet us note the difference with respect to dyna-

mic price coordination presentedbefore. We have had there

t f N
( l

L := J i='
o

sUbject to

t f
q . (x. (t) , m. (t) , u . (t)) d t +f < >.. (t) , u (t) - Hy (t) >d t

01 1 1 1

o

•x. (t) = f. (x. (t) ,m. (t) ,u. (t)),
1 1 1 1 1

It was a dynamic problem.
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In the presentcase there are no integrals in L(·) and the

dynamics are taken care of by the values of conjugatevariables
1\
$. The differential equationsof the system are neededonly to

compute the current value of x in our new, "instantaneous"

Lagrangian. No future disturbancesare to be known, no optimi-

/\
zation horizon considered- all these are imbedded in w.

Assume we have solved problem (35), using systemmodel

i.e., by computationand we have the current optimal value of

ｰ ｲ ｩ ｣ ･ ｾ Ｌ that is ｾ Ｈ ｴ Ｉ Ｎ We can then form the following static

local problems to be solved at time t

(36)

maximize L . = - qoi (xi (t) ,m
1
, (t) ,u. (t) + < ｾＮ (t) ,f , (x. (t) ,m. (t) u. (t) ) >

1 1 1 11 1 '1

ｾ ｾ

+ <;\. (t) ,u. (t) > - <]J. (t) ,yo (t) >
1 1 1 1

These goals could be used in a structureof decentralized

control, see Figure 22. The local decision makers are asked

here to maximize L. (.) in a model-basedfashion and to apply
1

A

control m. (t) to the systemelements. Current value x. (t) is
1 1

needed in performing the task. The coordination level would
A /\ ｾ

supply $. (t) and the prices A. (t) ,u. (t) for the local problem.
111

They would be different for each t.

Note that there is no hill-climbing searchon the system

itself.

Figure 22 would first imply that the local model-basedprob-

lems are solved immediately with no lag or delay. We can therefore

assume, conceptually, that the local decision making is nothing

else but implementationof a state feedback loop, relating con-

1\
trol m. (t) to the measuredx. (t).

1 1
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If analytical solution of (36) is not the case we have to

implement a numerical algorithm of optimization and some time

will be neededto perform it. An appropriatediscreteversion

of our control would have to be considered,but we drop this

formulation.

Now let us think about feedback to the coordinator. We

might decide to let him know the state of the systemat some

time intervals ti' that is x(kti). On this he could base his
ｾ ｾ

solution ｾ for all t > kti and also the prices A for the next

interval [kti' (k+l)t f l. This policy would be very similar to

what was proposedin the "dynamic price coordination".

It might be worthwhile to make again some comparisonsbe-

tween dynamic price coordinationand the structureusing both

prices and conjugatevariables.

In the "maximum principle" structure the local problems

are static. The local goals are slightly less natural, as they
ｾ

involve < ｾＮＬｾＮ (t» that is the "worth of the trend". This would
1 1

be difficult to explain economically and hence difficult to imple-

ment in a human decision making hierarchy. As the problem is

static, no target state is prescribed.

Note that both these casesavoid to prescribea state tra-

jectory. It is felt that in the dynamic control this kind of

direct coordinationwould be difficult to perform if model-

reality differencesare assumed.

5.4 A compapisonof the dynamical stpuctupes

We have shown three main possibilities to structure a dy-

namic multilevel control system, using feedback from the real

system in the course of its operation. We do not think it
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possible at this stage to evaluateall advantagesand drawbacks

of the alternatives. It may be easily predicted that if the

mathematicalmodels used do not differ from reality, all struc-

tures would give the same result, the fully optimal control.

The clue is what will happen if models are inadequate. Quanti-

tative indications are essentiallymissing in this area, although

efforts are being made and some results are available [11], [13].

Another feature of the structuresconcernstheir use in a

human decision making hierarchy. In that case it is quite

essentialwhat will be the local decision problem, confined to

the individual decision maker. He may feel uncomfortable, for

example, if asked to implement only a feedback decision rule

(as it happens in the "state feedback" structure), or to account
/\ .

for the worth of the trend <w. (t) ,x. (t» in his own calculations,
1 1

as it is required in the structureusing conjugatevariables, see

Table 1.

Table 1. Comparisonof dynamic coordination structures.

SYSTEM COORDINATOR LOCAL LOCAL
TYPE PROBLEMS GOALS

DYNAMIC solves global problem, dynamic maximize performance,. '"PRICE sets ｰ ｲ ｾ ｣ ･ ｳ A and tar- optimiza- achieve target state
COORDINATION " tiongets x.

ｾ

STATE-FEEDBACK solves global problem, state feed-
CONCEPT supplies compensation back decision no goal

. 1" ruleｳ ｾ ｧ ｮ ｡ v.
ｾ

USING solves global problem, static maximize performance
• J\

CONJUGATE sets ｰ ｲ ｾ ｣ ･ ｳ A and con- optimiza- inclusive of
VARIABLES jugate variables $. tion

i\ •<w. (t) ,x. (t»
ｾ ｾ ｾ
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6. Conclusions

Hierarchical control systems, as a concept, are relatively

simple and almost self-explanatory. They exist in many applica-

tions, ranging from industrial processcontrol, through produc-

tion managementto economic and other systems [10], [17], [23],

[301, [331. Some of these systemsmay involve human decision

makers only, other may be hierarchiesof control computers, or

mixed systems. The hierarchical control theory is developing

quite rapidly; its goals may be defined as

- to explain behavior of the existing systems, for example

find out the reasonsfor some phenomenawhich occur;

- to help designing new system structures, for example deter-

mining what decisionsare to be made at each level, what

coordination instrumentsare to be used, etc;

- to guide the implementationof computer-baseddecision

making in the system.

In the first two casesa qualitative theory may be sufficient,

whereby the models or the descriptionof the actual system do not

have to be very precise. The available hierarchical control theory

seems to be quite relevant for this kind of applications, and can

help in drawing conclusionsas well as in making system design de-

cisions.

The third case calls for having relatively exact models of

the system to be controlled (although suitable feedback structures

relax the requirements)and calls also for having appropriatede-

cision making algorithms, which would have to be programmedinto

the control computers. The existing theory and above all the

existing experienceare rather scarce in this area.
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