View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by International Institute for Applied Systems Analysis (IIASA)

’ g International Institute for
- Applied Systems Analysis

[1AS A www.iiasa.ac.at

Natural Language Processor in
Dilos System

Senin, G.
IIASA Working Paper

WP-78-002

1978

https://core.ac.uk/display/33892371?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Senin, G. (1978) Natural Language Processor in Dilos System. IIASA Working Paper. WP-78-002 Copyright © 1978 by the
author(s). http://pure.iiasa.ac.at/899/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or
opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other
organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on
servers or to redistribute to lists, permission must be sought by contacting repository @iiasa.ac.at

mailto:repository@iiasa.ac.at

NATURAL LANGUAGE PROCESSOR IN DILOS SYSTEM
Gregory Senin

January 1978 WP-78-2

Working Papers are internal publications intended for circulation within the
Institute only. Opinions or views contained herein are solely those of the
author.

2361

Laxenburg I International Institute for Applied Systems Analysis
Austria

Review

Author: G. Senin

Title: Natural Language Processor in DILOS System

This paper outlines some of the philosophy and describes the struc-
ture of the Natural Language Processor in DILOS. It is rather brief
and does not really discuss in any depth the reasons for the basic
structure chosen or relate it to other attempts of natural language
processing. As an introduction it is quite adequate for this spe-
cific system and should probably be a working paper. The paper has
been edited by this reviewer to improve its consistency and clarity
of usage.

-iii-

Abstract

The paper describes underlying ideas and operation of the
natural language processor, which is a part of the Dialog Informa-

tion Logical System (DILOS), (Computer Center of the USSR Academy
of Sciences, Moscow).

The natural language comprehension is assumed to be performed
within:

(a) general context, determined by the whole
system purpose;

(b) some local context, connected with current
data base.

The basic parts pf the processor are described: the main
program, transition network and current vocabulary as well as
special mechanisms provided for tackling homonymy and words, un-
known to the system. Some suggestions are proposed for combining
the existing system with a system with a syntactical analyzer.

I. INTRODUCTION

In this paper the underlying ideas and operation of a natural

language (NL) processor ("SPEAK"), which constitutes a part of the
DILOS system are described.

The system was developed in Moscow (Computer Center of the
USSR Academy of Sciences) and partly transferred to the IIASA PDP
11/45 computer [1, 2]. The whole system is written in LISP, which
although makes it less efficient, provides the advantage of machine-

independent design, transparency and portability.

II. FRAMEWORK

Any NL communication occurs in a definite environemnt (context).
This is important to underline, especially with regard to communica-
tion with an artificial system (program). To feed a computer that
has absolutely no human experience with a great deal of human know-

ledge seems rather difficult for two reasons:
1. The capacity of today's computers is comparatively low;

2. So far we are not able to adequately organize our know-

ledge to put it into a computer.

Therefore, we prefer to restrict the scope of our considerations
each time we have difficulties either with the volume or organiza-
tion our data. The approach described here avoids or at least di-

minishes some problems peculiar to the NL phenomena:

- Wide lexicon: some words introduced by the user are

likely to be "unknown" to the system;
- Homonymy: some words have more than one meaning;

- Rather complicated syntax and its indirect correlation
with semantics: even if we obtain syntactical structure,
it is not straightforwardly transformable into semantic
form [3].

The processor has been developed bearing in mind the follow-

ing application environment [4]:

each input phrase tends to be converted into a command
for some operation on data. This feature is predeter-
mined by the purposes and capabilities of the whole sys-

tem and constitutes what we call general context of our

communication;

- Problem_Area Orientation, "at every moment" we deal with

a particular piece of information, rather homogeneous

and rather independent of the remaining part (local context).

ITI. CONFIGURATION

by SPEAK) results in generating a formal expression in some opera-
tional language (¢-language). This ¢-expression then is passed to
In our version ¢-language is a language for data base manage-
ment (information retrieval and amendment). The scope of operations
embraces a data base (DB) which embodies current local context. As
a rule such a DB represents a model of some problem area structured

accordingly to the ¢-language syntax.

A. The Three Parts of SPEAK

SPEAK includes three separate parts:

- Main program (MP), which contains basic mechanisms in-

dependent of a particular environment of the system;
- Current vocabulary (VOC);
- A finite state automaton, or transition network (ATN);

1) The Main Program (MP)
- Extracts out of the VOC information corresponding to the

input phrase lexicon; ‘

- VWorks up (through the ATN) current word;

-3-
- Interprets homonymic and unknown words;

- 'Builds up ¢-expression in appropriate points and

provides termination of the analysis.

To estimate the role of vocabulary it should be kept in mind
that each VOC virtually links user's lexicon ("terminology") with
the DB contents.

Thus, generally speaking, each DB (or, more precisely, each
{DB, user} pair) generates its own VOC and the same word in dif-
ferent VOCs may have quite different meanings.

It obviously facilitates description of meanings and dimishes
homonymy, but also creates the difficulty of adjusting the system
to particular DB context.

The ATN is a structured set of programs, one of which becomes
associated with the current word of an input phrase. The whole
body of these programs is directed to generate "regular" ¢-expres-
sions. Thus, the ATN is a function of ¢-syntax and can be regarded
as a physical embodiment of the general context.

To modify ¢~language (and formal representation of data), we
have to replace ATN contents with another, without changing its

structure (or if it is possible to make interface translator ¢1 - ¢2).

Fiqure_1: General Scheme of the Whole Process

{input phrase}

|

-
< vocC
{extraction]
Mp & ATN | ATN

{¢—expression}

Executive DB

Processor

L)

{result}

We can write it in functional form as follows:
SPEAK = F (voc, atn), where in turn

voCc = £, (DB, NL, user) and ATN = £, (¢L).

1 2

11) Voecabulary Structure (VOC)
Some preliminary remarks about ¢-language. Any formal language
of this sort can be described in some metalanguage terms.

Consider a simple example of retrieval ¢-language.

< ¢-expression > + . < operation > < division > < description
< prescription >
< description > ~ ¢|< property > / < pattern >/

< prescription > -+ ¢|< property >

Let s-types be the atomic non-terminal constituents of this meta-
language, e.g., {operation, division, property, pattern}.
In real expressions they are substituted by terminal values

that we call s-codes (or codes), e.g.:

/

< operation > FIND | DELETE | APPEND ...
< division > SCIENTISTS| ... ENERGY| KINO|...
< property > AGE ... LOCATION ... DURATION [1]2 ..

An example of ¢-expression could be:

FIND SCIENTISTS AGE /40/: NAME
with the obvious "meaning":

"find among the scientists everyone who is 40 years old and

obtain their names".
We can notice that some words here correspond to (s-type, s-code)
pairs: old <+ (property, AGE), 40 <+ (pattern, 40). We can suppose
that other words (if of any importance) rather refer to NL pecular-
ities and pay auxiliary roles in the construction of ¢-expressions,
not necessarily occurring in them. These roles can also be classi-
fied. Thus s-types emerge from the ¢-syntax and partly from some
"linguistic-heuristic" considerations. -
Each record in a VOC associates a particular word W with definite
s—-type Sw and (possibly) with corresponding code Cw:

W «> Sw, Cw; or (W(tp Sw cd Cw)) in LISP

Thus, some words are regarded as candidates for filling vacancies
in the constructed ¢-expression.

Generally speaking, a one-to-one correspondence does not exist
between words and s-types (although approximately there is)

So we admit two other cases:

(a) Composites, i.e. words with "more than atomic" sense

(i.e. type); such words are assigned a sequence of
atomic s-types in the form of LISP list: (S1 ... Sn),

that means "S1 + ... + Sn".
For example, "older ..." = "age+beyond ..."
"woman" = "person+sex+female"

(if the words in the right parts are "atomic")

(b) Homonyms, i.e. words with several meanings, obtain as

s-type an "alternative" list: (, S1 ... Sn), that means
"S1 or ... or Sn" (each Si may be either atomic or com-
posite).

MP supplies each word from the input phrase with the VOCabulary

information and passes to the next stage.

2727) ATN Structure
The ATN is a set of records, each of those represents a "state"
of the automaton. FEach state contains a prediction (in the form of
list) of likely s-types, "expected” in the state.
Further, with each (state, s-type) pair a specific program
(PROG) is connected.
Normal actions in a PROG are:
- Building up some piece of ¢-expression;
- Changing contents of some important variables
("registers"), that influences further analysis;
in particular, changing the state of the ATN.
Each PROG also returns a value that indicates to some point in MP,
from which the analysis goes on. The most "usual" points of return

are "jump" (that means "proceed with the next word") and "move"

(means "proceed with the current one"). Other two points serve:
"upset" - for tackling homonyms and unknown words (see below) ;
"finis" - for building up the resulting ¢ expression and termi-

nation of the analysis.

Thus, in fact the PROG associated with each word is a function of
the word s-type and the ATN state.

These programs are evaluated one-by-one while MP passes along
the input string. Since ATN is a parameter of SPEAK, it can be
augmented by recursion - with subnetworks processing ¢-language

substrings (that may posses their own detailed syntax).

B. Processing of Composites, Homonyms and Unknowns

A composite, being encountered, suspends the normal word-by-
word analysis. Atomic elements, listed in the composite type,'
are processed one-by-one until the list is exhausted, after that
the normal process resumes. When dealing with a homonym, MP cre-
ates a branch point (BP). In each BP the content of necessary va-
riables is stored to have the possibility of recovery if further
analysis fails (i.e. an ATN-PROG returns "upset"). When this
happens, MP passes on to the next alternative type Si. If all
alternatives in the given BP comes back to the previous BP, thus
covering the entire tree of alternative paths.

Any word in a VOC may be marked as "nil", i.e. "unimportant"
and then it is simply ignored while scanning. However, when look-
ing through the VOC, MP can discover some words, not pfesent in it
and still employed by the user. During the first scanning MP omits
them, but if necessary it is also able to make some predictions about
their possible meaning. Namely, each unknown word also creates BP,
but not earlier than all paths produced by homonymic words fail.
Unlike homonyms, unknown words acquire the alternative type not
from the VOC, but as a rule from the prediction list, drawn out of
the current ATN state. The content of this list may be varied accord-

ing to the system adjustment to particular NL, DB and so forth.

IV. TAKING INTO ACCOUNT NL SYNTAX

It may seem surprising but for the time being SPEAK does not

need any syntactical analysis (SA). Of course, it proves only that
the areas chosen for application have been rather narrow and .simple.
However, syntactical considerations (if any) could be combined rather
naturally with the present system. So far, a string of input phrase

words supplied by vocabulary information serves as an immediate in-

put of the ATN process. But this string can be considered as a
result of some preliminary processing such as syntactical.

Further, any syntactical tree can be represented in a list
form, with parenthesis serving as special delimiters. Moreover,
the result of SA is not necessarily intended to be a tree, but
merely a set of "small" trees not linked together. At last, we
can consider a "weak syntactical analysis" according to the follow-
ing: the effect it is required to produce is reordering of initial
string of words into a "more regular" form taking into account some
syntactical reasons. And naturally we shift crucial considerations

to the ¢-oriented stage of analysis.

V. CONCLUSION

We have performed first testing of the system in Moscow and

at IIASA and assess it as hopeful. Not dealing with NL syntax,
the SPEAK processor admits as input almost all range of expressions
intermediate between NL and ¢-language.

Probably it would be psychological better for users to start
with more formal language and then gradually move to a "more na-
tural" one thus getting accustomed to the system. In fact, it means
establishing real context of communication very much like in a human-
to-human case.

Possible improvements of the SPEAK operation could concern:
- Combining it with a syntactical processor

(likely, a "weak" one);
- Capability of efficient dialog with user as a way

of better understanding;

We plan to introduce necessary modifications during the next
two years.

[1]

[2]

[3]

(4]

References

Briabrin; V. M. "DILOS Reference Manual: Part I",
IIASA, RM-76-52, July 1976.

Briabrin, V. M. "Natural Language Access to the Model
Data Base", IIASA (RM), to be published.

Briabrin, V. M., and G. V. Senin, "Natural Language
Processing Within a Restricted Context",
International Workshop on Natural Language
for Interaction with Data Bases, IIASA,
January 1977.

Schank, R. et al. "Conceptual Information Processing",
North-Holland Publishing Co., Amsterdam, 1975.

