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GENERALIZED SHAPLEY VALUES BY SIMPLICIAL SAMPLING

* B. von Hohenbalkenand T. Levesque**

Characteristicfunction representationof n-personcooperative

games precludesthe modelling of structural propertiesof a game

other than the relationshipbetweencoalition structureand the

worth of a game. This means that the Shapley value, a measureof

expectedreturn to a player from playing the game, is restricted

as a solution concept to only those games satisfying the condition

that all coalitions of the same cardinality are equiprobable.

By contrast, as we demonstratebelow, Shapley'sthree axioms

are satisfied for Shapley-likemeasuresbasedon richer character-

izations of a game. In particular, we extend the Shapley value

to a class of abstractgames for which the roles that players

assumeare determinantsof the likelihood of particular coalitions

and for which the original Shapley value can be found as .a special

case.

In Section 1 we briefly considerShapley'saxioms and two possible

derivationsof the Shapley value. Section 2 discussestwo recent

formal attempts to extend the Shapley value to games for which the

structureof roles is important.Section 3 presentsour notion of

a "clique" structureas a formalization of relationshipsamong

roles and describesour extensionof the Shapley value. Since

calculation of Shapley values (especiallygeneralizedones) is

computationallyproblematic for games involving sizeablenumbers

of players, we describe in Section 4 a sampling approachon

(deformed) simplices to estimate (generalized) Shapley values.
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supportedby CanadaCouncil Grant No.4510496.

** AssistantProfessorof Economics, Wilfrid Laurier University,

Waterloo, Canada.



- 2 -

SECTION 1

Shapley defined a game to be a superadditiveset function (the

characteristicfunction v) from the power set of a universe, U,

of players to the real line. An abstractgame is the class of

games TIV define on the set of one-to-onemappings, IT(U), of U

onto itself when

nv(nS) = v(S) (all SCD).

An abstractgame exhibits the property that;; the worth of a

coalition is invariant under the identities of the players

that form it, dependingrather on the roles they assume. For

any game v, a set NCU and all ｩ ｴ ｳ ｾ ｰ ･ ｲ ｳ ･ ｴ ｳ are called carriers

of v if:

ｶ Ｈ ｓ ｾ Ｉ = v (S) (all SCU);

that, is, for any v, the set of players can be partitioned into

sets of real and dummy players, the dummies having no effect on

the worth of a coalition.

Shapley sought to construct a value ¢[v] of a game v which

satisfied three axioms:

Axiom 1: ¢n. [TIv] = ¢i[V]
1

(all nEIT (U) )

That is, value dependsonly on role and not on which players

assumethe roles. Value is thus an intrinsic property of the

abstractgame.

Axiom 2: L ¢. [v] = v (N)
n 1

(all N, carriersof v)

Axiom 2 requires that ﾢ ｾ ｝ exhibit joint efficiency. Combined

with the definition of a carrier it also implies that the value

of the game for dummy playersis zero.
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Axiom 3: ｾ ｛ ｶ Ｋ ｷ ｝ = ｾＨｶ｝ + ｾＨｷ｝

for any two games v and w; i.e. the value of any game must be

independentof the play of any other game.

Shapley demonstratedthat for a game V a unique value

ｾ Ｈ ｶ ｝ exists satisfying axioms 1 to 3 and having the form:

1.1 ｾ • (v]
1

I"= L
S 3 i
StN

(s - 1) ! (n - s) !
n !

s is the cardinality of S, n is the number of players (including

dummies) playing v and Vi(S) is the "marginal characteristic

function"

1.2 v.(S)=v(S)-v(s\ii}).
1

Expression (1.1) has commonly been interpretedin a probability

framework. That is, since all coalitions of size s are equally

likely y ,

n!
1.3 (s - 1 )! (n - s)

I= In -
i,s -

1\ -1

1 )

is just the probability that any coalition S is realized. ｾ Ｎ (v]
1

is player i's expectedcontribution to a coalition where the

expectationis taken with respectto the distribution of coalitions.

Shapley proposed,aswell, a bargainingmodel of coalition

formation that would yield the value ｾ Ｈ ｶ ｝ as the expectedoutcome.

Each of the n! orders of the players may be thought of as gener-

ated by the successivearrivals of the players at some given point

to form the presentcoalition N. Player i is awardedVi(S) only

if the players S\{il have arrived before him. For any order t

let
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(1 • 4) St (i) = {j E N I t{ j) 2 t (i) }

where t{i) is the position index of player i. If order t occurs

player i receivesv. (St{i)). Since Shapley's (implicit)
\ ｾ

assumptionof equiprobablecoalitions is clearly equivalent to

assumingthat all orders have the same probability 1" playern.
its expectedmarginal contribution to all ｣ ｯ ｡ ｾ ｩ ｴ ｩ ｯ ｮ ｳ in which

he participates can thus be written

(1. 5) <Pi [v]
n!

= ｾf.
t=1

1
n!

(1.5) is an alternativerepresentationof Shapley'svalue, that

is ｰ ｾ ｲ ｴ ｩ ｣ ｵ ｬ ｡ ｲ ｬ ｹ suitable for the generalizationsto be discussed

below.

An apparent weaknessof the Shapley value is its restriction

to games for which all coalitions of the same size (and equivalent-

ly, all orders) are equally likely. There are many examplesof

games which do not meet this condition becauseof relationships

among the roles (rather ,than the personalitiesof players) enhancing

the likelihood of some coalitions while diminishing that of others.

A foremost exampleare the inter- and intra-party relations of

legislative representatives,which in most countrieswill make a

majority of coalition structuresextremely unlikely. It is thus

of interest to investigatethe value of such games. The usual

vehicle to do this is expression(l.5) 'above, but with differen-

tiated probabilities Pt of orders replacing ｾ Ａ Ｇ i.e.

(l. 6)
G

<p. [v]
ｾ

n!
= L Pt
t=l

,Before discussingour own approachin section 3, we consider two

models of Shapley-likevalues (Kilgour 1974, Owen 1971)

that proceedalong these lines.
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SECTION 2

The first author, Kilgour (1974), explicitly· introduces (1.6),

but his main tool is a redefinition of the characteristicfunction.

His goal is to determine the effect on value of a subsetQ eN of

quarrelling players, no two of which will join the same coalition;

this behaviour can be describedby a characteristicfunction that

is strictly additive if more than one quarreller participatesin

a "coalition". Let v be the game without quarrelling; then

[v,Q] = v* representsthe game with quarrelling, where v* is de-

fined by:

(2.1 )

(2.2)

v*(S) = v(S) if IsnQI = 1

v*(SU{k}) = v(S) + v({k}), if IsnQ\ = 1, kEQ

We note that incrementallyconstructedcoalitions are needed

if v* is to be determinate; i.e., if S nQ = <j> and k and j

are quarrellers, then v* Is U {k} U { j }) will in general depend

on the order in whichk and j joinS.

Kilgour's value <j>[v,Q] is not a true generalizationof the

original Shapleyvalue, since it satisfiesShapley's joint

efficiency axiom only under v* but not under v. This is so

becausequarrelling reducesthe payoff to cooporationfor many

"coalitions"; in particular, v(N) is nbt attainablefor essential

games and hence

n
I <j>.[V,Q] < v(N)

. 1 11=

violating axiom 2.

1 IQI > 2

Owen's ( 1971 ) approachto the problem motivated our own

extensionof the Shapleyvalue. Like Kilgour, Owen focuseson

games for which information about relationshipsamong players

influences the probabilities of different orderings, but he

models a continuousconcept of "affinity" betweenplayers, rather

than Kilgour's absoluterepulsion within a certain subsetof them.
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He does this by introducing a ｧ･ｯｭｾｩ｣ｦｲ｡ｭ･ｷｯｲｫＬ in which

players are assignedto points, pi, on ad-sphere(d 2. n -2) ,

with the points chosen such that the distancesm between them

(geodesicor Euclidean) directly reflect the relative mutual

attractionsbetweenplayers. For instance, two players assigned

antipodal points are least attractedto each other. It is now

possible to derive theoretically the probabilities Pt (in 1.6)

of different orderings, which dependon the systemof affinities

betweenplayers as follows:

Each point, z, on the sphereproducesan ordering t if

implies t(i) < t(j) < ••• < "t(k)

If the spherehas full dimensionalityd = n - 2, i. e., if the

player- points pi are arrangedaffinely independently,there

exists Ｈ ｾ Ｉ ､ ｩ ｳ ｴ ｩ ｮ ｣ ｴ hyperplanesthrough the sphere'scenter,

which are orthogonai to the Ｈ ｾ Ｉ ｳ ･ ｧ ｭ ･ ｮ ｴ ｳ betweeneach pair of

player ｰ ｯ ｩ ｲ ｩ ｴ ｾ ｾ Ｎ These ｨ ｹ ｰ ･ ｲ ｰ ｬ ｡ ｮ ･ ｾ slice the sphere into exact-

ly n! regions (more precisely, n! sphericalpolytopes), and all

points in the interior of each region produce the same unambig-

uous strict order. The probability Pt of the order t is then

defined as the ratio of the measureof the region producing t

to the measureof the whole ｳ ｰ ｨ ･ ｲ ･ Ｎ ｾ Ｏ Given the probabilities

Pt could actually be extracted, their application to (1.6)

would yield a generalizedShapleyvalue.

Owen's value is shown to have two propertiesdeemeddesirable:

1. An ordering and its reversalare equiprobable.

2. The exclusion from the game of a set of players will

not affect the probabilitiesof the relative order-

ings of the remaining players.

The desirability of property (1) is a natural consequenceof

the possibility that an issue initiating a game may be stated

either positively or negatively; in addition it ensuresthe equal-

ity of the power and the blocking index. Property (2) implies

independenceof the degreeof affinity betweenany two players

from whoever else plays the game.
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Owen's basic idea of using a measureof attraction between

players, and the associatedspherical framework are appealing

on the theoretical level. Computability and empirical use are

quite different matters and here the prospectsare not good.

First, the information requirementsof Owen's value are high.

It is surprisingly difficult to find enough independentcriteria

to place n points affinely independentlyinto n-space (where they

then define an (n-2) - sphere), as n becomes larger. It is equally

frustrating to try to define a mapping that distributes lower-

dimensionalclustersof n points onto an (n - 2) - sphere in any

meaningful fashion. Secondly, even if that goal could be attain-

ed, it is virtually impossible to compute the volumes of n!

(n - 3) - dimensionalpolytopes on the surfaceof that sphere, for

n > 4.

To avoid thesedifficulties Owen suggeststhat ､ ･ ｾ ･ ｮ ･ ｲ ｡ ｴ ･

spheresof dimensionality 1, 2 and possibly 3 could be used for

an approximatederivation of n-personvalues. The trouble with

this approachis that a great majority of orderings are immediate-

ly excluded from considerationwhich leads to intolerabledis-

tortions. ｾ Ｎ Ｏ

As another avenue to circumvent the computationalimpasse

of Owen's full dimensionalvalue we tried our sampling approach

(see Section 4) adaptedto spheres. There are various ways of

drawing·· uniformly distributed sample points z on an (n - 2)-

sphere, but none of them is computationallysimple, and at least

one method becomesnumerically unstable in higher dimensions.

The sphericalenvironment furthermore requires, for each sample

point, the calculation of n Euclideandistancesin n-space, a

non-trivial computationalburden.

In summary Owen's value representsa genuine generalization

of Shapley'svalue but its actual use is severely impeded by

informational and computationalobstacles.
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SECTION 3

The goals set for our modification of the Shapley value, ｾ ｛ ｶ ,C,A]

are:

(a) ｾ ｛ ｖ Ｌ ｃ Ｌ ａ ｝ (see (3.1) below) should require only a modest

amount of information beyond the characteristicfunction.

(b) ｾ ｛ ｖ Ｌ ｃ Ｌ ａ ｝ should be a true generalizationof Shapley's

value, i.e., it should satisfy Shapley'sthree axioms and the

original Shapley value should emerge as a special case.

(c) ｾ ｛ ｖ Ｌ ｃ Ｌ ａ ｝ should be easy to approximatecomputationally.

Points (a) and (b) will be answeredin the course of this section,

point (c) in the next.

As mentioned in Section 1, Shapley defines a game as its

characteristicfunction v. We generalizethe notion of a game

to a triple [v,C,A] , where v is the characteristicｦ ｵ ｮ ｣ ｴ ｩ ｾ ｮ Ｌ C is

a partition of the set of players N, called a clique structure,

and A is ｾ collusion parameter,a scalar. Players belonging ｾ ｯ

a clique C E C, C eN are postulatedto have mt-tual affinity ,

(measuredby 02. A <1) but not to players be..:-or"ging to other

cliques.

Since clique membershipcan be signified for ecch player by ,I.

single number and becausethe same collusion ｰ ｡ ｲ Ｓ ｭ ･ ｴ ･ ｾ A is

assumedto apply to all cllques, the informaticD requirements

(given the char. function) aI'c n + 1 numbers, which compares

favourably with Owen's Ｈ ｾ Ｉ distances. Information about cliques.is

furthermore easily available, and thus goal (a) is met.

Shapley'saxiom 1 remains satisfied by our assumingthat

clique membershipis a property of roles, re her than of person-

alities of players.

j E C implies 1( j Ec 1(

(see also footnote !/) .

all 1( E ｾ (U)
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(Our implicit use of axioms 2 and 3 is identical to Shapley's

and thus they remain untouched). If the clique structure is

trivial ("X= 0 for any C, or C={N}, or C={{l} {2}, ... ,

{n}}) the game is essentiallydescribedby valone, and the con-

comitant value is Shapley'soriginal one. The above implements

goal (b).

Parallel to Owen (1971 ), we aim at assigninghigher

probabilities of formation to certain coalitions (of given size);

in our case the selected.coalitions will be those which contain

relatively fewer incomplete cliques. The natural route is again

to operateon orders t of players, i.e. to find appropriately

differentiatedprobabilities pt·and to apply them to

(3.1)
n!

¢.[v,C,"X] = L ptV.(S (i»
1 t=l 1 t

which is the generalizedShapley value (compare formula 1.5) .

Theorem (3.2 ) below digressesbriefly to establisha firm, al-

beit partial foundation for this indirect line of attack, which

is also used, but not proved, by Kilgour and Owen (see footnote

2) •

Definition: An order t of n players is clique-preservingif the

membersof every clique appear contiguously in t.

Definition: A partial clique is a strict, nonempty subsetof a

clique.

Theorem 3.2: If clique-preservingorders have probability

Pt > !" then coalitions that include at most one partial cliquen.
are more likely than coa1itioJ'Eof the same size containing more

than one partial clique.
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Proof: Let S be any coalition of size Si the probability of S

is just

cdS) 1+£+[8(s) -a(S)] l-cS
n 1 ---nr-

where

8 (s) = s 1(n - s)! is the total number of orders for

which the first s elementsare contained in S, a(S) is the

number of such orders which are also clique-preservingand
1+£ 1-6 h bb'l" f I' 'd---,-, ---.- are t e pro a 1 1t1es 0 c 1que-preserv1ngann. n. .
non-clique preservingorders, respectively (£ > 0 by assumption

for any nontrivial clique structure,and£ > 0 implies 6 > 0) •

Now, if a particular coalition Sl containsmore than one

partial clique, a (Sl) = 0 and thus Ft(Sl) = 8(s) 1;1
0 • If

another coalition S2 of the same size s contains at most one

partial clique, a(S2) > 0 and pr(S2) = a(S2) £n+l o+ ＸＨｓＩｬｮＭｲｾ i thus

pr(S2) > pr(Sl)' Q.E.D.

Returning to the developmentof games and values with clique

structure, we now introduce a geometric representationof such

games that allow the measurement(and later the computation) of

the probabilities Pt of nl orders t:

Rather than points on a sphere, we assigneach player i £ N
ia vertex p , i = 1, 2, ... , n of a simplex

sP = {z E P. n
n
'"'Z = L

i=l

iP Xi I x , = 1,
1

x,
1

> 0 }

Collecting the pi,s as columns of a matrix P, one can write:

sP= {z £ Rn I z = Px I x. = 1
1

x. > O}
1-

We shall call P the basis of sP, which spans or generatesSp·

The x. 's are barycentriccoordinatesof z, w.r.t. P.
1
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The connectionbetweenpoints Z E: sF and orders t of players

is as follows:

Each point Z producesan order t if

implies

t(i) < t(j) < ••• < t (k)

the z. are the Cartesiancoordinatesof z and the t(i) the position
1

indices of players i in the order t. If P is the identity matrix

( 12 n) (h h i i . )I = e,e , .•. , e were t e p = e are un1t vectors

sP is the unit simplex

SI { R n 1 '. I \" x. = 1, x. > O} ,.= XE: x= x, l. 1 1-

Ifor x E: S , the barycentric and Cartesian coordinatesof x obvious-

ly coincide.

sI depicts games without or with a trivial clique structure,

and its use leads to the original Shapley value. Indeed, the

simplex SI splits into n! subsimplices,such that all points x

in the interior of each subsimplex produce the same unambiguous

strict order. The subsimplicesthus defined are obviously con-

gruent and consideringa probability mass uniformly distributed

over SI, each subsimplexrepresentsthe same probability, i.e.

Pt = ｾＡ for all t. Applying these Pt in (3.1) clearly yields the

plain Shapley value.

Now the clique structure C is brought into play: For each

clique C E: C, the points pi associatedwith players i in the

clique are moved toward their common centroid (which lies, if the

clique contains c players, in the center of an (c - 1) - face of

SI). How much they ｡ ｲ ･ ｾ moved dependson the size of the collusion

parameterA.
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Fbr example, let N = {1,2,3}, C = {{1,2},{3}}, ). = ｾＮ Then

1 1 2 ro015]
P = [{1_).)e1+).e +e = LOo 252

2 1 2 [00251p = [(I_).)e2+).e +e ] = °075J2

p3 =
e

3
= HJ

The associatedbasis is

123 [0075 0.25 np = [p ,p ,p ] = 0.25 0.75

° °

P is a doubly $tochasticmatrix (i.e. both rows and columns sum

to 1),that representsa linear,nonsingular,symmetric contraction

mapping, with det P = ｾ 2 1. If applied to SI, it yields

sP = {zERn\Z=Px, LX. =1, x. >o}
1 1-

I

Pig. 3.1 depicts both SI and sP and the regions associatedwith

the orders Pt.

/1" sP
/' \"

I

S1/

I \
I \

i \

I \,/ )1L ') 1 I
I

Ｌｾ

I
..

/
nl \I ,'nI

i

. l.
t
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Fig. 3.1 also shows that the sectionsof sP containing the non-

clique-preservingorders (1 3 2) and (2 3 1) are much smaller

than the others having clique-preservingorders and further, that

their measurecan be made arbitrarily small as A ｾ 1.

The above exemplified procedurecan clearly be carried out

for any number of players and any clique structure,with the

mapping P retaining the indicated properties. The next theorem

gives a summary.

Theorem 3.3. Let SI be a unit simplex with

distributed. Let P be a doubly stochastic

linear, nonsingular, symmetric contraction
Pz = Px E S . Then

(a) the transformeddensity on the contractedsimplex sP is uni-

form;

(b)
l . P

the mathematicalexpectationsof xES and z ES are equal

(c) theprombility of non-clique-preservingorders is smaller on

sP than on SI, given the clique structuredefining P is not

trivial.

Proof: (a) follows from the fact that the Jacobeanof the in-

verse mapping x = p-lz is nonzero and constant.

(b) The mean of a uniform distribution on any simplex equals the

(ordinary) mean of the simplexI vertices. Ex E SI thus equals

｛ ｾ ｾ ... ｾ ｝ Ｎ The vertices of sP are just the columns of P, andn,n, - ,n
since P is doubly stochasticit follows by (a) that E z E sP is

also ｛ ｾ ｾ ... !]
n, n, - - ·,n

(c) The result of applying the transformationP to x E 51 is that

coordinatesof z = P x E sP correspondingto players belonging to

the same clique are nearer their common mean (and therefore closer

together), while thesemeans themselvesremain invariant for all

cliques. Thus for any three players i, j and k, where k does not
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belong to the clique of i and j, it follows that

Pr (z. < zk < z .) < Pr (x. < x k < x. )
ｾ J ｾ J

Q.E.D.

The theoretical framework discussedsofar is clearly capable

of generatingreasonableand consistentvariations in the prob-

abilities Pt of the orders of players, which could be used to

calculatemodified Shapleyvalues. A blemish is still present,

however: The probabilities culled from sP do not satisfy Owen's

property 1; as Fig. 3.1 shows, sectionsof sP representingsome

orders may neither be congruentnor equal in measureto the

sectionsassociatedwith the reversalsof theseorders. Fortu-

nately, an easy remedy is available: Since carriers of a game

can be arbitrarily enlarged, one simply adds dummy players to the

smaller cliques (if any) until all cliques are of equal size.

This evens out heterogeneousclique structures (which are res-

ponsible for the asymmetriesviolating property 1) and in con-

sequencethe contractedsimplex sP becomescentrally symmetric.

Using the example given above, {3} EC is augmentedby dummy

player 4, resulting in C' = {{1,2}, {3,4}}.

The associatedmatrix P is then

0.75
0.25

,-

P =

"\0.25 0 0;
0.75 0 0 I

0.75 0.25J
o 0 0.25 0.75

which, when applied to a suitably enlargedSI yields c simplex

sP whose 4! sectionsappear in symmetric pairs, e.g., the order

( 1 2 3 4) is represented by a polytope congruentto the one

containing the ｲ ･ ｶ ･ ｲ ｾ ･ order (4 3 2 1).

Again, this symmetrizationclearly generalizeswithout

difficulty to clique structureswith any number and size of

cliques. The sampling procedurediscussedin the next section

uses this approachcomputationally.
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SECTION 4.

Exact calculation of Shapley values for large games has always

presenteda problem due to the combinatorially large numbers of

probabilitiesof coalitions (or orders) that have to be eval-

uated. Owen (1975) and Manne and St.l.iiJ?le¥(1962) have given approx-

imation proceduresthat have been used to find values for the

u.S. electoral college. The exact calculation of generalized

Shapley values is even more difficult becausethe volumes on n!

high-dimensionalpolytopeswould have to be computed (this holds

for both Owen's and our generalization).

A strikingly simple remedial idea is to adapt a sampling

approachto the problem, thus making (generalized) Shapley values

easily accessibleto any desired and - affordable - degreeof

accuracy.

For our simplkialmodel the procedureis as follows: After

the clique structure C has been symmetrizedby the addition of

duriunies (if any) the game contains m > n players. A uniformly

random m - vector x E SI (the (m-l) - dimensional unit simplex)

is drawni/ and transformedinto z = P x E sP by the m by m con-

traction [latrix P, that was derived from C' and the collusion

parameter0 < A. < 1. A reorderingof the players 1,2,... , n, ...m

according to the values of the coordinatesof the vector z yields

an order t, which is used to evaluatethe order-dependentmarginal

characteristicfunction V. (St (i») for each player i -= N (dummy
. 1

players always get zero and can be ignored at this point). Each

player i then receives the indicated number of tokens, the draw

of another x E SI is made, etc. After the allot ted number of

sample draws is exhaustedthe tokens each player has received are

toted up and the approximate (generalized) ｓ ｾ ｡ ｰ ｬ ･ ｹ value of each
,

player is obtained by dividing his holdings by the total number

of tokens disbursed.
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Following standardstatistical theory, confidence intervals

can be derived for each player's value ｾ Ｎ independently. If the
1

sample size is k > 30, the 95% confidence interval is

ｾ

rｾ i (lk- ｾ i)J
ｾＮ + 1.96

1 ....

The expectedaccuracyof values approximatedin the above fashion

thus increasesrather slowly with the square root of sample size,

but it is surprisingly unaffectedby large numbers of players.

E.g., our trial solutions for the 50 u.s. state electoral college

game, with sample sizes of 3000, were remarkably close to the

values found by Mann and Shapley (1962), despite the relatively

insignificant computationaleffort required.

In Table 1, we give a well-documentedAPL-code called VALUE,
I

that uses our simplicial model and the above sampling approachto

calculategeneralizedShapley values for the special case of ｷ ･ ｩ ｧ ｨ ｴ ｾ

ed majority games with simple majority. We chose this case because

its simple 0-1 characteristicfunction can be found solely on the

basis of voting strengthso£ players (a mere n-vector).

Table 2 shows 3 sample computationswith VALUE, of the ｾ ｬ ｩ ｱ ｵ ･ ﾭ

structuredgame "My aunt and I": "My aunt" (player 1) has tw,:

votes and forms a clique with her nephew":':" (player 2), who 110.s

one vote; two other players (3 and 4) with ore vote each stand by

themselves. If the clique {1,2} does not ｣ ｯ ｬ ｬ ｾ ､ ･ (A /= 0), the

precise Ｈ ｓ ｨ ｡ ｰ ｬ ･ ｾ value is

III 1
ｾ｛ｏ｝ = [2''6''6'6]. With A = 0.5 the power distribution

becomes.about

ｾ ｛ Ｐ Ｎ Ｕ ｝ = [0.6,0.2,0.1,0.1],and tLc. .. _miting result, with

players 1 and 2 always acting together, should be

2 1
4'[0.9999]= [3'3,0,0].
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vVALUEAHOW[[I]v
v VALUEAHOW

[1] 'THE FUNCTION VALUE APPROXIMATES GENERALIZED SHAPLEY'
[2J 'VALUES FOR GAMES INVOLVING CLIQUES, FOR THE SPECIAL'
[31 'CASE OF WEIGHTED VOTING GAMES WITH SIMPLE MAJORITY.'
[4] 'LOCAL INPUTS: V, N-VECTOR OF VOTES,'
[5J 'C, MATRIX REPRESENTING CLIQUE STRUCTURE, E.G., FOR 3 '
[6J 'PLAYERS 1,2 3, 1 AND 2 IN CLIQUE, C=(2 2)pl 2 3 0'
e7] 'INPUTS ENTERED ON REQUEST: ｏｾｌ＼ｬＬ SCALAR COLLUSION'
C8] 'PARAMETER (l=O MEANS NO COLLUSION)'
[9] 's, SCALAR. SAMPLE SIZE'
Cl0] 'OUTPUT: S, Nx4 MATRIX; 1ST COL.: PLAYER NUMBERS,'
Cl1] '2ND COL.:VOTES, 3RD COL.: VALUES SUMMING TO TOTAL VOTES,'
[12] '4TH COL.: VALUES SUMMING TO UNITY'

v

vVAU.Ir,[[]]v
v ｓｾｃ VALUE V;I;J;K;L;M;N;P;T

[1] nClIQUE MATRIX; ADDITION OF DUMMIES
[2] ｃ ｾ Ｈ ｐ ｃ Ｉ ｐ Ｈ ｴ ｃ ｽ Ｋ ｋ ｜ Ｈ ｰ ｖ Ｉ Ｋ ｜ Ｋ Ｏ ｋ ｾ ｏ ］ Ｌ ｃ

[3] nCONTRACTION MATRIX (LOOP 1)
[4] ｬ ｾ ｄ Ｌ ｏ Ｏ ｏ ｾ Ｇ ｅ ｎ ｔ ｅ ｒ COLLUSION PARAMETER'
[5] ｐ Ｎ ｋ ｯ Ｎ ］ ｋ ｾ ｜ ｸ Ｏ ｰ ｃ ｸ ｉ ｾ ｬ

[6] ａ ｴ Ｚ ｋ ｦ ﾷ ｆ Ｇ ｛ ［ ｔ ｾ ｾ ｃ ｛ ｈ ｝ ｊ

[7] ｐ ｛ ［ ｔ ｊ ｾ Ｈ ｋ ｘ ｉ Ｍ ｌ Ｉ Ｋ Ｈ Ｋ Ｏ ｋ Ｋ ｐ ｔ Ｉ ｯ Ｎ ｸ Ｈ ｰ ｔ Ｉ ｐ ｌ

[BJ ｾ ａ Ｑ ｘ ｜ Ｈ Ｑ ｾ ｐ ｃ Ｉ ｾ ｉ ｾ ｉ Ｋ Ｑ

[9] nSAMPLING FOR VALUE (LOOP 2)
[10] ｓ ｾ ｎ ｾ ｎ ｾ ｜ ｐ ｖ ｸ ｉ ｾ ｬ

[:[1] ｋ ｾ ｄ ,O/Of- 'ENTER SAMPLE 51 ZE '
I:: 12] nMA,JORITY
[: 13J MH 1++/V+2
[14] A2: nSAMPLE POINT GENERATION
r 1. ｾｮ ｊｾｊＫＫＯＬＮｉｾ ( 1.1';iF') ?1000
[16J nCONTRACTION OF SAMPLE POINT, ORDER
U.7J ｔ ｾ ﾷ ｎ ｛ Ｋ Ｈ ｐ Ｋ Ｎ ｸ Ｌ ｊ Ｉ ｛ ｎ ｝ ｊ

[IBJ nSEQUENTIAL VOTING, PIVOTAL PLAYER
[19J J.T[+/t,M)+\V[T]]
[20] nVALUE ACCUMUl.ATICIN
[21J ｓ ｛ ｊ ｝ ｾ ｓ ｛ ｊ ｊ Ｋ ｬ

[221 ｾ ａ Ｒ ｘ ｜ ｋ ｾ ｉ ｾ ｉ Ｋ ｬ

[23J nPlAYERS, VOTES, VALUES (2 NORMALIZATIONS)
ｃｾＴｊ ｓｾｾＨＴＬ pS)pN,V,(S·H+/SH-+/V),S++/S

v



C
1. 2
3 ()

4 ()

V
2 1. 1 1

C VALUE V
ENTER C()U..USION PARAMETER
n:

0
FNTEH SAMPLE SIZE
0:

ｾ Ｎ Ｚ ｩ ｏ Ｈ Ｉ

:L ｾｬ ?63 O. !.'.'j26...
? 1 0.7 0.14
Ｚ ｾ 1 0.84 0.168
4 1. 0.83 0.166

C VALUE V
ENTER COLLUSION PARAMETER
n:

().ｾＢＬ

ENTER ｾＢ［ａｍｐｌｅ SIZE
n:

ｾ ［ ［ ｏ Ｈ Ｉ

:I ? 2.95 O. ｾ ｪ Ｙ
" 1 1..02 0.204,'.

:.3 1. O. ::)5 0.1. .l
4 1. 0.48 0.096

C VALUE: V
ENTER COl.LUSION PARAMETER
u:

0.99999
ENTER SAMPLE SIZE
nr.

ｾ［ｯｯ

2 3. ｾ Ｚ ［ Ｔ 0.108
" 1 :1..46 0.292-:.

:3 1 0 0
4 1. () 0
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TABLE 2
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FOOTNOTES

Footnote 1/. It is important to realize that the equiprobability

of coalitions of the same size in Shapley'svalue is not a con-

sequenceof axiom 1, as is often erroneouslyassumed(e.g. Owen;

Political Games, p.346)

but is implicit in the ｰ ｾ ｭ ｬ ｡ ｴ ･ that the characteristicfunction

is sufficient to describethe game. Shapley (p.311. A Value for

a n-persongame) tacitly invokes the principal of insufficient

reasonto arrive at (1.3). Axiom 1, in contrast, brings about

only equal sharing of the spoils of a coalition among players in

symmetricgames, out of which more general games are then construct-

ed, with the help of axiom 3.

A move to introduce additional information to differentiate

the probabilities of coalitions is thus a true generalizationof

Shapley'svalue, since no violation of the 3 axioms occurs.

Footnote 2/. It is easy to verify in a graphic example with 3

players on a circle, that the above framework assignshigher prob-

abilities to ordering in which players that are close (in affinity

and on the sphere) appear contiguously. A general proof of this

proposition might be constructedusing displaceddual cones, but

Owen does not do so; he also takes for granted another, albeit

intuitively suggestiveresult, namely that higher probabilities of

orderingswith clustersof friendly players increasethe likelihood

of coalitions containing these clusters (see theorem 3.2.) .

Footnote 3/. For instance, in large majority games, of which we

testedseveral computationallyon a half circle as suggestedby

Owen, some single player toward the middle of the affinity spectrum

has an impossibly high power spike, i.e. his value is up to 10

times his voting weight, while his equally deservingneighborswith

similar numbers of votes receive small values.

Footnote4/. For our simplicial approach, uniformity of the

distribution of sample points is not essential,as long as the dis-

tribution is centrally symmetric. In contrast, an adaptationof

the sampling procedureto Owen's spheresdependsvitally on the

uniformity of sample points on the sphere, becausethere the n!

sectionsare not arrayed around a center (as in the simplex), but

are distributed like countrieson a globe. See also Section 2.
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