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FOREWORD

The developmentof optimization methods has a significant meaning

for systemsanalysis. Optimization methods provide working tools

for quantitativedecision making basedon correct specification

of the problem and appropriatelychosensolution methods. Not all

problems of systemsanalysis are optimization problems, of course,

but in any systemsproblem optimization methods are useful and im-

portant tools. The power of thesemethods and their ability to

handle different problems makes it possible to analize and con-

struct very complicatedsystems. Economic planning for instance

would be much more limited without linear programming techniques

which are very specific optimization methods. LP methods had a

great impact on the theory and practice of systemsanalysis not

only as a computing aid but also in providing a generalmodel or

structure for the systemsproblems.

LP techniques,however, are not the only possibleoptimization

methods. The considerationof uncertainty, partial knowledge of

the systems structureand characteristics,conflicting goals and

unknown exogeneousmodels and consequentlymore sophisticated

methods to work with thesemodels.

Nondifferentiableoptimization methods seembetter suited to handle

these featuresthan other techniquesat the presenttime. The theo-

ry of nondifferentiableoptimization studies extremum problems of

complex structure involving interactionsof subproblems,stochastic

factors, multi-stagedecisionsand other difficulties.

This publication covers one particular, but unfortunatelycommon,

situation when an ･ ｳ ｴ ｩ ｭ ｡ ｴ ｩ ｯ ｾ ｯ ｦ the outcome from some definite deci-

sion needs a solution of a difficult auxiliary, internal, extremum

problem. Solution of this auxiliary problem may be very time-

consuming and so may hinder the wide analysis of different decisions.

The aim of the author is to develop methodsof optimal decision

making which avoid direct comparisonof different decisionsand use

only easily accessibleinformation from the computationalpoint of

view.
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1. Introduction

This paper deals with the finite-dimensional unconditional

extremum problem

min f (xl

xEE
n (1)

where the objective function has no continuousderivativeswith

respectto the variable x = (x1 , ••• ,x ). Various methodswere- n
discussedand suggestedin relevant literature to solve problem

(1) with many types of non-differentiableobjective functions.

Bibliography published in [1] gives a fairly good notion of

theseworks. It should be emphasized,that the non-differenti-

ability of objective function in problem (1) is, as a rule, due

to complexity of the function's structure. A representative

example is minimax problems where the objective function f(x)

is a result of maximization of some function g(x,y) with respect

to variablesy:

f(x) = max g(x,y)

yEY
(2)

In this case even a simple computationof the value of f

in some fixed point may be quite a time-consumingtask which

requires, strictly speaking, an infinite number of operations.

With this in mind, it seems to be interestingfrom the stand-

point of theory and practice to investigatethe feasibility of

solution of problem (1) with an approximatecomputationof the

function f(x) and of its subgradients(if the latter are deter-

mind for a given type of nondifferentiability). To the best of

our understanding,e: - sUbgradientsof functions of the form (2),

introducedby R.T. Rockafellar [2], are quite a convenient

object for constructingnumerical methods, and so we offer here

some results generalizingefforts in this direction [3-5].
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2. Weakly Convex Functions

The discussionof a class of the non-differentiablefunc-

tions broader than the convex functions enablesus to gain sub-

stantially in generality at the expenseof a minor increasein

complexity. Propertiesof the class which will be treatedof

are describedby the following definition [6]:

Definition The continuous function f(x) is called the

weakly convex function if for each x there exists at least one

vector g such that

f (y) 2. f (x) + (g, y - x) + r (x, y ) (3)

for all y, and the residual term r(x,y) satisfiesthe condition

of uniform smallnesswith respectto IIx - yU in each compact sub-

set of En, i. e ., in any compact set KeEn for any E: > 0 there

exists ok > 0 such that for Ilx - yll 2. ok' x,y E K

I -1
r (x, y) III x-y II 2 E:

Notice that no constraintsare imposed on a sign of the

residual term r(x,y}. Furthermore, strengthening(3) it is pos-

sible to add to r (x,y) any expressionof the form ep Ｈｾｉｸ - ｹｾＩ ,

where

ep It} < 0 for t ｾ + 0

The term weakly convex functions is suggestedby analogy

to the strongly convex functions studiedby B.T. Polyak [7].

We will call the vector g, satisfying (3), the subgradient

of the function f(x} and will denote a set of subgradientsat

the point x by G(x) .

Describe some simple propertiesof weakly convex functions

and of their subgradients.
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Lemma 1. G(x) is convex, closed, bounded and upper semi-

continuouswith respect to x.

The proof of these propertiespresentsno special problems.

Lemma 2. Let f(x,a) be continuouswith respectto a and

weakly convex with respectto x for each a belonging to the

compact topological spaceA. That is,

f(y,a) - f(x,a} .::. (ga' y-x) + ra(x,y} (4)

for all y, and here ra(x,y) satisfies the condition of uniform

smallnessuniformally with respect to a EA. Then

f (x) = max f (x , a)

aEA

is a weakly convex function.

The proof is rather simple.

Let

A(x} = {a f(x,a) = f(x)}

Then, considering (4) for a E A(x), we obtain

fey} - f(x) > f(y,a) - f(x,a} >

> (ga' y - x) + r a (x,y) >

> (ga' y - x) + r (x, y)

where

- r (x, y ) = s up Ira (x , y) I

aEA

(S)

It is easily seen that r(x,y} satisfiesnecessaryconditions and

the lemma is proved.
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The proof of Lernm 2 helps in understandingthe procedureof

calculation of subgradientsof the weakly convex functions.

Specifically, for functions of the form (5) the vector

ga. EGa.(x) , a. E A (x) is the subgradientof the function f (x) at

the point x. It follows from Lemma 1 that an arbitrary vector

9ECO{ga.,a.EA(X}} = G(x)

is also the subgradient.

The finding of even one element of the set G(x) may be a

non-trivial problem and, ignoring efforts spent to calculate

the subgradient9 E G (x), it can be said that problems of com-a. a.
puting f (x) and of its subgradient9 E G (x) are equal in corrple.xity.

In establishingnecessaryextremum conditions for weakly

convex functions of great importance is the existenceof direc-

tional derivatives and a formula for their computation in terms

of subgradients.

Lemma 3. The weakly convex function f(x) is differentiable

in any direction, and

af(x) = lim
ae

ｨ ｾ Ｋ 0

Proof. Let

f (x+he) - f (x)
h = max (g,e)

9 E G (x)

<P(h) = f(x+he) - f(x)

It is easily seen that <P(h) as a function of h is weakly

convex. Denote the set of subgradientsof <P(h) by G<P(h). Assume

the contrary of what the lemma asserts:

a = lim <P(h) <

ｨｾＫ 0 h

lim <p (h)

ｨ Ｍ ｾ + 0 h
= -a
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and let {T k } = T and {ok} = ° be sequencesof values of h such

that

lim
¢ (T

k
)

k+oo
Lk

<P(ok)
lim

k-+ 00 ok

= a t

= a t

Furthermore,we have:

where

(6)

Without loss of generality it may be assumedthat

lim

k-+oo

Dividing (6) by T k and passingto the limit for k -+00 we

obtain

-a

T <PBy virtue of Lemma 1 g E G (O) , therefore

(7)

Dividing (7) by ok and passingto the limit when k-+ 00 we

have a contradictionthat proves the differentiablility in any

direction. By virtue of the weak convexity of f it is easy to

obtain

of (x)

ae
> max (g,e)

g E G (x)



- 6 -

Now let

and

Then

The division of the above inequality by t k and the pass to the

limit when k ｾ ClO yield:

af(x) < (g,e) <
ae

max (g ,e)
g E G (x)

and thus the proof is completed.

Lemma 3 implies that the necessarycondition for the point

be extremal is

o E G(x*) ( 8)

however, unlike the casewith the convex function, this condition

is insufficient.

Local 9ropertiesof the weakly convex functions do not

differ from theseof the convex functions but their global pro-

perties are radically dissimilar. Specifically, the weakly con-

vex functions lack the salien feature of subgradientsthat enables

us.to prove the convergenceof subgradientmethod, i.e., the

positivity of scalarproduct of an arbitrary subgradientat some

point X in the direction from the extremum point x*:

*(g, x - x ) ｾ a

for an arbitrary g E G(x) .

This and the fact, that a shift in the direction of the

antigradientdoes not assurea decreasein value of a function
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being optimized both for the weakly convex objective functions and

the convex functions, complicate tangibly the proof of the sub-

gradient method convergence.

All said above about the complexity of the proof of conver-

gence applies also to the £ - subgradientmethod of solution of
problem (1).

Definition. The vector g£ E G£ (x) is called the £ - subgradi-

ent of the weakly convex function f(x) if

f (y1 - f (x) > (g £ ' Y - x) + r (x, y) - £ (9)

for all y and £ > 0 •

In (9) it is meant that r(x,y) satisfiesthe condition of

uniform smallnessdescribedabove.

Propertiesof G£(x) are obvious:

(i)

(ii)

G£(x) :> G(x)

G (x) is convex, closed and bounded.
£

The property (i) holds out a hope of the definition of

£ - subgradientbeing an easiertask than the calculation of sub-

gradient. Indeed, for functions of the type (5) the £ - subgradi-

ent of function f(x} is an arbitrary vector

where

ct E A (x) = {ct: f(x,ct) > f(x) - £}
£ . -

or an arbitrary vector from the convex hull co{G , ct E A (x)}.
ct £

The proof is a standardone: for ct E A£ (x)

f (y ) - f (x) > f (y , ct ) - f (x , ct ) - £ >

> (g ,y - x) + r (x,y) - £- ct

where notations used in Lemma 2 are preserved.
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The demonstratedprocedureof computing E: - subgradients

also implies that it is inconsistentto employ simultaneously

exact computationof the objective function, one-dimensional
_., -_.-

optimization, etc. Thus, it is safe to say, that the 'f: - subgradi-

ent methods will be the non-relaxationones for reasonsof

principles.

Difficulties that presentthemselvesin proving the conver-

gence of non-relaxationalgorithms are of cornmon knowledge. H.ow-

ever, in a number of casesthey pay, opening new possibilities.

In the following chapterwe will describecertain criteria of

convergenceof iterative algorithms which made it possible to

prove convergenceof a number of algorithms whose behaviour is

substantiallynon-monotonic.

3. Convergenceof Iterative Methods Of Non-Linear Prgoramming

General conditions of convergenceof iterative procedures

received attention of a lot of researchers. The most fundamental

results appear to belong to W.I. Zangwill who suggestednecessary

and sufficient conditions of convergenceof iterative methods of

the mathematicalprogramming [7]. However, the convergencetheo-

rems derived by W.I. Zangwill do not exhaust investigationscon-

ducted in this field, and many authors formulated other conditions

that characterizeconvergenceof iterative procedures. In spite

of the fact that the later approachesare less general and

universal they proved to be more helpful in investigationsof

specific algorithms. Take [7-9] as an example. It should be

emphasizedthat in the majority of casestheseworks deal with

convergenceof algorithms whose objective function decreases

monotonically as a processgoes and, therefore, they are not

applicable, in principle, to the case in hand. These and other

reasonsservedas the starting point in the elaborationof condi-

tions of convergenceof iterative procedureswith weakenedproper-

ties of a monotonousvariation of the objective function in the

progressof the solution of an extremumproblem. The approach

set forth below is basedon author'spaper [12].

We will consider an algorithm of the mathematicalprogramming

as a certain rule of constructionof a sequence{x s } of points of
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an n-dimensionalEuclidean space En. Conditions of convergence

of this sequencewill be formulated in terms of propertiesof

this sequenceand of a certain subsetX* of the spaceEn which

we will call the solution set. The algorithm will be thought

of as the convergentalgorithm if each limit point of a sequence

generatedby it belongs to the set X*.

The basic convergencetheorem is formulated as follows:

Theorem 1. Let the sequence{x s } and the set X* be such t.hat

A1) If then

A2) There exists a compact set K such that

all £ < £
- 0

such that

A3)
sk _ *

If x ｾ x' F X , then there exists £0 > 0 such

tk
and any k's there exists a point x ,

He will assume

that for

min > £

A4) There exists a continuous function W(x) such that

t
lim W(x k) <

s
lim W(x k) = W(x l

)

for arbitrary sequences{sk}' {t k } satisfying condition

A3.
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AS) The function W assumeson x* an everywhereincomplete set

of values.

Then all limit points of the sequence{x s } belong to

*the set X .

This theorem is proved in [12]. A version of conditions

given there varies to some extent from the given above, however,

proofs of both theoremsare practically similar. An assertion

weaker that Theorem 1 is also of interest.

Theorem 2. under the conditions of Theorem 1 Al-A4 there

exists a limit point of the sequence{x s } which belongs to the set

x*. The proof of this theorem employs the same argumentsthan

those of the proof of Theorem 1.

4. Minimization Of Weakly Convex Functions

In this chapterwe shall study convergenceof the recurrent

procedure

s+1x s= x s=O,l,... ( 10)

for finding the unconditional minimum of the weakly convex func-

tion f. In the above relation p > 0 are step multipliers,s
gS E G£s(x

s
) is the E s - subgradientof the objectiv function f

at the point xS, {E } is some sequenceof positive numbers.s
Requirementsplaced upon this sequencewill be stipulatedin

what follows.

To prove convergenceof procedure (10) requires an auxiliary

geometrical lemma. In a simplified form such lemma was first

proved in [6].

Lemma 4. Let D be a convex compact set which does not

contain a zero and let {yn} be an arbitrary set of vectors from

D. By means of a sequenceof numbers on such that
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n
let us form a sequenceof vectors {z } as follows:

o 0z = y

n+1z
n= z ( n+ 1 n)+ an Y - z , n=O,1,•••

Denote by ink} a sequenceof indexes such that

Then·for some y > 0 such a sequenceexists and

nk +,-1

L as < C < 00

s-n- k

Proof. It is obvious that {zn} CD. Since 0 ｾ D, then

constants0 and ｾ exist such that

n
Let us consider now the changesin the length of vectors z

If for all n
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then

Since 0 ｾ 0, then for sUfficiently large nn

Sununing the above inequality with respect to n from N to N + M- 1

we obtain

(12 )

02 N+M-1

2 L:
n=N

o
n

2 62 N+M... 1
< 6 - '"--2 LJ

n=N

o
n

The pass to the limit when M ｾ 00 leads to a contradictionto

the supposition (11). It follows that there exists a sequence

{n k } such that

Further, from (12) it follows for sufficiently large k that

.:s. 62 62 nk+1-1

0 - - L: 0
2 s

s=nk

Hence

nk+1-1
6

2
L Os < 2

02-
s=nk

what complete the proof.

The main result which will be preved here later is the

proposition about convergenceof procedure (10). At first the
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solution set will be defined using the necessaryextremum

conditions:

X* = {x* o E G(X*)}

The following theorem is valid:

Theorem 3. Let

s
and the sequence{x } be bounded. Then all limit points of

this sequencebelong to the set x*.

Proof. In proving this theoremwe shall employ the general

conditions of convergencedescribedin Section 3.

The objective function f(x) is chosenas W(x) and it is

demonstratedthat conditions A1-A4 will be also satisfied. For

simplicity, we will assumethat condition AS is satisfied.

It is obvious, that the satisfactionof conditions A1,A2

follows directly from the assumptionsof the proof.

nk dLet {x } be a convergentsubsequencean

lim

ｫ ｾ ｯ ｯ

nk _ *
x = x' E X

In this case 0 E G(x') and by virtue of G(x) being upper semi-

continuous it is possible to choose so small a> 0 that

o E CO{ G(x), II x - x' II ｾ a}

This is also true for the e: - subgradients. It is always possible

to choose so small e:, a > 0 that

oE co{G y (x), II x - x' II < a, y < e:} = G (x' )
e:,a
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Then, if condition A3 is not satisfied, for k's large enough

and by virtue of separationtheoremsthere exists a vector e

such that

( s ) <-C<O.g ,e_

Therewith

(xs+1 , e) = s s
(x - psg ,e) =

s s s= (x , e) - ps (g , e) ｾ (x , e) + CPs

The above inequality implies becauseof our assumptionsan

unlimited growth of the inner product (xs,e). This implication

obviously contradictsto the assumptionand, therefore, proves

that condition A3 is satisfied.

Let for some small E > 0

min

Requirementsplaced on E will be refined later.

We meet the dominant difficulty at the following step of

the proof; an estimationof a decreasein the objective function
n

h . f h . k h d" sw en passlng rom t e pOlnt x . As t e lrectlons - g are,

generally speaking, not the directions of decreasein the function

f(x) the problem of estimationof the function decreaseis fairly

difficult and rather unwieldy in view of the large number of com-

putation.



Let us fix a sufficie.ntly large k and examine a difference

m nk m m nk nkf (x ) - f (x ) < (g , x - x ) + E:m - r (x
mx ), m> nk

Estimatewith greaterprecision the addendon the right

side of this inequality.

m m nk
(g ,x - x ) =

m-1
m "" s- (g , L.. psg) =

s=nk

=
m-1
L:

s-n- k

m-1
(L:
s=nk

m-1
= - L

s=nk

m
Vectors zk can be obtainedby means of the recurrent

formula:

= s a (k) (gs+1
zk + s

with the initial condition

Z ｾＩＬ s = n
k

, nk + 1, nk + 2, . . . ,

and coefficients a(k) equal to
s

a (k)
s

It is easily seen that a < ｡ｾｫＩ < 1

00 ,
(k)as ｾ a for s ｾ 00
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Then in virtue of Lemma 4 there exists a sequence
k

{s., i = 1,2,.•. ,} of indexes such that
1

and here

ks.
1(g ,

k
5.-1) >

z 1 y > a

ks. n
kf (x 1) - f (x ) < - Y

k- n s.
+ £ k - rex k, x 1)

S.
1

k5.-1
1

2: p +
5

Choose from the sequence{s ｾＬ i = 1 , .•• ,} a maximum ｩ ｮ ｾ ･ ｸ whose

value does not exceedthe index mk and denote it by vi

k k k
v 1 = si < mk < 5 i+1

-From the inequality

k
si+1-1

L:
k

5=5.
1

(Lenuna 4)

< C

it follows that for sUfficiently large k's

1 > (1 - a (k» > p > 0
5

what implies that
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The above inequality may be put in another form:

s-n- k

where q = 1 - p < 1

( 12 )

kn \)1
Ps + £ k - r (x k, x )

\)1

that

k
\)1- 1

L:- y
n

f(x k) <

Summing up it is possible to say that we have constructed
\)k

as a result the point x 1 such

s=n
k

and therewith

ｾ Ｍ Ｑ ｾ Ｍ Ｑ

L: Ps < q L: Ps
k

-
s=\)1 s=n

k

( 13)

P +s

k
\) -1

2

L:
ks=\)
1

- y

\)k \)k

f(x 2) - f(x 1} <

k
\)1

If in a similar reasoningthe point x is consideredas the

initial one, than it is possible to show the existenceof a point
\)k

x 2 such that

and

m -1 m -1 m -1·k k

L 1: 2 k
Ps ｾ q Ps < q L Ps-

k ks=\) s=\)1 s=n2 k



- 18 -

Let us fix an arbitrary small t > 0 and repeat this process

a required number of times in order to construct a sequenceof
kv.

points {x 1, i = 1,2, •.• ,M} such that for each i inequalities

similar to (13)-(14) be satisfied:

k k

f(x
vi

+ 1) _ f(X
vi

) < y

k vkv·
+ € k r(x 1 x i+ 1)-v.1

ｾＭＱ ｾＭＱ

L i L:Ps < q Ps-
k s=nks=v.1

p +s

(1 5)

mand q ｾ t. It obviously suffices to repeat the above reason-

ings no more than M = [logqt] + 1

respectto i from zero to M -.1 we

d . k )enot1ng vM = t k :

times. Summing (15) with

b . ( . k do ta1n assunungv0 = nk an

n
f(x k) < _ Y

t -1
k

L
s-n- k

P +s

M

L:
i::::l1

€ k
v.

1

M-1

ｾ
i=O

k k
v, v. 1

( 1 1+)r x ,x

Addends in the right part of the inequality are evaluated

separately:

M
r E: < M sup €m = M €k --l' 0 for k-+oo

i=1 ｶ ｾ
1 m>n- k

M-1 k k
M-1

k k
Vi

x
Vi

+1) I Irex
vi

, x Vi +1)I r r (x , < r <
i=O i=O
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Ir(x,y)!
.... nk

< M sup = M r £ (x )

IIx
nk- x II < £-
n

lIy - x kll < £
n

For the k's t.hat are large enough Ilx k - x" II < £ therefore-

sup I r (x , y) I < £ 0 (E)

IIx - xli < 2 £

lIy-x'll < 2 £

where 0 (£) -+- 0 for £-+- 0

Finally we obtain:

ｾ n t nkf (x ) - f (x k) < f (x k) - f (x ) +

t -1
m t k

+1 f(x k) .... f (x k) I < - Y L Ps + M £k + £0 (E) +-
s=nk

ｾ
t ｾＭＱ ｾＭＱ

+ C IIx - x k ll < - Y L P + yT L Ps + M £k +- ss-n- k s=nk

ｾ Ｍ Ｑ

+ £0(£) + C' 2: Ps < .... (Y-YT)

s=tk

ｾ Ｂ Ｂ Ｑ

E Ps + M £k +
s=nk

ｾＭＱ

+ £ 0 (.£) + C' T L
s=nk

ｾＭＱ

Ps < - (y .... Y T -- C' T) 1:
s=nk

P +s

where T may be assumedto be so small that

ｾ Ｎ
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In doing so we obtain:

n
f (x k 1 < y- ......

2
Ps + ME k +£ 0(e:1 (15 )

Furthermore,

ｾ -1

E
s=n

k

Substitutingthis estimate into (151 we obtain:

ｾ nkf (x ) - f ex L < - .Y£2C + M e:k + e: 0 (e:)

It may be always assumedthat

hence

IS (e:) <

ｦＨｸｾＱ

y

4C

n
f (x k 1 <: - ye: + M £k

4C

Passingto the limit when k rl (Xl we obtain;

m n
klim W(x k) < lim wCx 1

ｫｾ (Xl

......

ｫｾ 00

which is what it was required to prove.

As a result the convergenceof algorithm (101 is a sequence

of the satisfactionof conditions Al-A5 of Theorem 1.



- 21 -

5. Convex Case

To solve the problem of convex minimization some results

can be obtain describing the behaviourof process (10) in the

casewhen £s = £ = const.

Theorem 4. Let the objective function f(x) be convex

Then, if the sequence{x s } is bounded, there exists if only one
sk

convergentsubsequence{x } ｾｵ｣ｨ that

lim

k-+-oo

and

f(x) < min f(x) + £

XEE n

Proof. The proof will be basedon the same formalism as in

Theorem 3. Let

x* = {x* : f(x*) = min f(x), XEE
n }

and

x* -- {x*
£

Denote

f(x*) < min f(x) + £}

ｘ ｅ ｾ

W(x) = min Ifx- x*1I 2

X*EX*
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In our case the role of a set of solutions will be played

by X*. Let us verify whether conditions A1-A4 from Section 2
£

can be satisfied. It is obvious, that on no account condition

AS can be satisfied in this case and, therefore, it is possible

to prove only a weakenedconvergenceof pr0cess (10) in the

spirit of Theorem 2.

Conditions A1, A2 are obviously satisfied in assumptionsof

this theorem: verify whether condition A3 is satisfied. Let

be some subsequence:

that is,

lim

k-+ 00

nk *x = x' E X
£

f(x') > min f(x) + £

xEEn

Assume the contrary to condition A3, that is,

lim

ｳ ｾ ｯ ｯ

sx = x'

Then for an arbitrary <5 > 0 for a sufficiently large k

Ux
s

- x'" < <5

for s > nk . Choose <5 > 0 in such a way that the set

U4 <5 (x') = {x: II x-x' II < 4 <5 }

d . *oes not lntersectwith the set X*£: U4 <5 (x') n X£ = <p. Then in

suppositions of the proof for an arbitary x* E X* and s > n
k

:

II s+1 *U 2 n s s *11x - x = x - p g - x =s

( 17)

II s *0 2 2 s 2 s s *= x - x + p IIg II - 2p (g ,x - x ) <s s
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since

then

whence we have for s > nk

Substitutingthe above inequality into (17) we obtain

or for sufficiently large k

Summing (18) with respectto s from n
k

to m-1 we obtain:

n m-1
W(xm) < W(x k) - Y L Ps

s=n
k

( 1 8)

(19)

Passingin the above inequality to the limit when m-+ co we

have a contradictionto the boundednessof the continuous func-

tion W(x) on U4o (x'). The obtained contradictionproves the

fact that condition A3 is satisfied. Let

ｾ = min m

m>n
k

n
II ｾｭ _ x k ll > 0



- 24 -

For k's that are large enough

n
Uo(X k) C U20 (X') C U40 (X')

therfore the estimateof (19) is also valid for m = mk

n In.. -1

ｗ Ｈ ｘ ｾ Ｉ
.K

< W(x k) - Y r Ps
s=nk

However,

ｉ ｬ ｸ ｾ
n

k
ｾＭＱ

0 < - x n < c r Pss=nk

By means of the above estimatewe finally obtain:

'Yo
C

and passingto the limit when k -+ 00

m n
lim w(x k) < lim W(x k)

k-+oo k -+00

that by virtue of Theorem 2 proves our preposition.

In all probability the assertionof this theoremcannot be

strengthenedunless additional hypothesesconcerning the choice

of vectors gS from appropriatesets G (xs ) of E-subgradients
E

are involved.

It is also of interest to estimatea deviation of the limit

points of the sequence{X S } from the set of solutions x* .
E

If we denote

d = sup inf

X*EX* X*EX*
E E

Ilx*-x*n
E

then from geometricalconsiderationsit is easily shown that all
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limit points of the sequence{x
s

} occure in the set

x* + d S
E

where S is a unit ball and the addition is meant in Minkovsky's

sense.

6. Appendicesand Generalizations

An essentialfeature that distinguishesthe result of

Theorem 3 as comparedto that obtainedearlier in [13] is, as

applied to minimax problems of the type

min max f{x,y)

x y
(20)

the possibility to rid oneself of the check of exactnessof

the solution of an auxiliary problem of finding the internal

maximum:

ｾ Ｈ ｸ Ｉ = max f{x,y)

y

This enablesus to justify the applicationof Arrow-Gurwitz'

method

s+1 sx = x (21)

( 22)

in the solution of problem (20) on the basis of broaderassump-

tions than cornmon assumptionsof strict convexity-concavityor

similar ones. Under some of them concerningthe relation between

step multipliers it proves to be possible to consider iterative

relation (2) as the E - subgradientmethod of minimization of the
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function ¢(x). Convergenceof method (21)-(22) is here an implica-

tion of Theorem 3. Results obtained in this field are described

in more detail in [14L Of great practical interest is also the

developmentof methods for regulating step multipliers in pro-

cedure (10). Basically, Theorem 3 assertsthat the E - subgradient

methods convergeunder the same assumptionsas the subgradient

methods. In all likelihood, ideas that underlie the subgradient

methods are applicable to the E - subgradientmethods when their

step multipliers are regulatedand, furthermore, the computational

effect is also the same.

A non-formal requirementhere consists in giving up the

exact computationof the objective function as statedearlier

in the introduction to this paper. For instance, the generaliza-

tion on the caseof E - subgradientmethod of step regulation [11]

presentsno difficulties.
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