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INTRODUCTION

Optimization methods are of a great practical importance

in systemsanalysis. They allow us to find the best behavior

of a system, determine the optimal structureand compute the

optimal parametersof the control systemetc. The development

of nondifferentiableoptimization, differentiable and nondiffer-

entiable stochasticoptimization allows us to state and effec-

tively solve new complex optimization problems which were im-

possible to solve by classicaloptimization methods, for instance

optimization problems with numbers of variables in the order of

100
100

•

The term nondifferentiableoptimization (NDO) was introduced

by Balinski and Wolfe [1] for extremumproblems with an objective

function and constraintsthat are continuousbut have no contin-

uous derivatives. Now this term is used also for problems with

discontinuousfunctions though it might be better to use for

them the terms nonsmoothoptimization (NSO) or, in particular,

discontinuousoptimization (DCO).

The term stochasticoptimization (STO) is used for stoch-

astic extremum problems or for stochasticmethods that solve

deterministicor stochasticextremum problems.

Nondifferentiableand stochasticoptimization are natural

developmentsof classic optimization methods. The interest in

nondifferentiableoptimization and stochasticoptimization is

basedon two reasons: first, as has been mentioned above a wide

range of new applied problems cannot be solved by the classic

methods; secondly, the possibility of reducing known difficult

problems to nondifferentiableor stochasticoptimization prob-

lems that permit obtaining their solutions.

For example, from the conventional viewpoint, there is no

principal difference between functions with continuous gradients

which change rapidly and functions with discontinuousgradients.

Some important classesof nondifferentiableand stochastic

optimization problems are well-known and have been investigated
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long ago: problems of Chebyshevapproximations,game theory

and mathematicalstatistics. However, each of these classes

was investigatedby its own "homemade" methods. General ap-

proaches (extremum conditions, numerical methods) were developed

at the beginnning of the 1960's. The main purpose of this

article is to review briefly some important applicationsof non-

differentiable and stochasticoptimization and to characterize

principal directions of research. Clearly, the interestsof

the author have influenced the content of this article.

1. APPLICATIONS OF NDO & STO

Let us consider some applied problems which require non-

differentiable optimization and stochasticoptimization methods.

Optimization of Large-ScaleSystems

Many applied problems lead to complex extremum problems

with a great number of variables and constraints. For example,

there are linear programmingproblems with a number of vari-

ables or constraintsin the order of 100100. Formally such

problems have one of the following forms:

n
L aOj x j = min (1)

j=1

n
L a .. (8) x. > bi (8) 8 E e, i = 1 ,m (2 )1) )

,
j=1

x. > 0 j = 1 ,n (3))

or

L dO(8) x(8) = min
8E e

L di (8) x(8) > S. i = 1,m
8Ee

1

x (8) > 0 8Ee

(4)

(5 )

(6 )
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Here 8 is a given discreteset, for example

a· .( e) =
1)

r ｾL d ..8 n + ex ..
ｾ ］ Ｑ 1J IV 1J

r

L
ｾ］Ｑ

. 8 n + S·
1 IV 1

r
8= {8=(8 1,···,8r ): L ｹｾＸｾＲＮｹＬＸｾ］ＫＱＬｾ］ＱＬｲｽ

ｾ］Ｑ

Clearly that for this case the total number of constraints
ris equal to 2 • m.

On the other hand theseconstraintshave a form which does not

impose heavy demandson the computer core and one can try to

find their solution with the known methodsof linear programming

[2]. However, the number of vertices of the feasible polyhedral

set for such problems is so large that the application of the

conventionalSimplex method or its variants yield very small

steps at each iteration and consequentlyvery slow convergence.

Moreover the known finite methods are not robust computational

errors. The reduction of these problems to problems of nondiffer-

entiableor stochasticoptimization made it possible to develop

easily implementediterative decompositionschemesof the gradient

type. These approachesdo not use the basic solution of the

linear programmingproblem which enablesto start the computa-

tional process from any point and leads to computationalstabi-

lity. Furthermore, thesemethods converge faster in practice.

Consider the problem (1) - (3). It can be reduced to the

nondifferentiableoptimization problem

fO(x)
n

= L aOj x j = min (7)
j=1

fi(x) C - b j (0l)= max L a .. (8) x. > 0, i = 1 , m (8 )
8E8 j=1 1J J

x. > 0
J

j = 1,n ( 9 )
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which has only m constraints.

We consider now some schemesof decompositionwhich are

describedin [3]. Let the linear programmingproblem have the

form

(c,x) + (d,y) = min

Ax + Dy ｾ b

x > 0 y > 0

We assumethat for fixed X it is easy to find its solution

y(x) with respectto y. For example the matrix D may have a

block diagonal structure, with x being the connectingvariables.

The main difficulty here is to find the value x* of the optimal

solution (x*,y(x*». The search for x* is equivalent to the

minimization of the nonsmooth function

where

f(x) = (c,x) + min (d,y) = (c,x) + (d,y(x)}
Dy>b-Ax

y>O

Another approachis to consider the dual problem:

(u,b) = max

uD < d

uA < 0

u > 0

Let us examine the Lagrangeanfunction

(u,b) + (c-uA,x) = (c,x) + (u,b-Ax)

( 10)

uD < d u > 0 x > 0

In this case the searchof x* is equivalent to the minimi-

zation of the nonsmooth function (the well-known Dantzig-Wolfe-
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decompositionis basedon this principle)

f (x) = (c,x) + max (u,b - Ax) for x > 0
uD<d,
u>O

( 11 )

A subproblemof minimization with respectto variables u, subject

to

uD < d u > 0

is solved easily becausethe matrix D has a special structure

by assumption.

A parametricdecompositionmethod [4] reduces linear pro-

gramming problems which do not have block diagonal structure to

nondifferentiableoptimization problems by introducing additional

parameters. In this case there is the possibility to split the

linear programmingproblem into arbitrary parts, in particular

to single out subproblemscorrespondingto blocks of nonzero

elementsin the constraintmatrix. An analogousidea was also

used in [5,6].

Let us analyse the general idea of the method using the

concreteexample

Y3 = min

a 11y 1 + a12Y2 + a 13Y3 < b 1

a21Y1 +la22y 21+ a23Y3 < b2

where

b 1 ｾ 0 b2 ｾ 0 Y1 ｾ 0 i = 1 ,2,3

( 12)

(13)

Let it be necessaryto cut this problem, for example, into

three parts as it is shown in constraints (13).

Consider the following subproblem: for the given variable

x = (x11,x12,x21,x22,x23) > 0 find Y1 ｾ 0, Y2 ｾ 0, Y3 > 0 for
which
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Y3 = . min

a 11y 1 + a22Y2 < x 11 a 13Y3 < x 12

a21Y1 < x 21 a23Y3 < x 23 (14)-

a22Y2 < x 22

This problem comes to the three subproblemswith the

desirablestructure. If the minimal value of Y3 is denotedas

f(x} then it is easy to show that solving the problem (12) - (13)

is equivalentto solving (14) for such x which minimizes the

nondifferentiablefunction f(x} under the constraints:

x 11 + x 12 < b 1
( 15)

x 21 + x 22 + x 23 2 b 2

x
Y

> 0 i = 1,2; j = 1,2,3

Similar methods are convenientlyapplied in the linkage of

submodels.

Discrete Programming, Minimax Problems, Problems of Game

Theory

The use of duality theory for solving discreteprogramming

problems [1,2] of large dimension necessitatesthe minimization

of nondifferentiablefunctions of the kind

f(x} = max
yEY

n
( La. (y) x. - b (y) )
j=1 J J

where Y is some discrete set. This problem reducesto problems

of the kind (1) - (3) (if we use methods of classicaloptimization):
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= min

n
La. (y) x. - b (y) < xn+1

j=1 J J -
yEY

x. > 0
J

j = 1,n

However, solution of this problem by linear programming

methods is out of question and therefore NDO should be used for

minimization of the associatedfunction (16) below.

More general deterministicminimax problems are formulated

in the following manner [7,8]: For a given function

g(x,y},
n

ｘｅｘｾｒ

it is necessaryto minimize

f(x} = max g(x,y} = g(x,y(x}}
yEY

( 16)

for x EX. Independentlyof the smoothnessof g (x ,y) the function

f(x} as a rule has no continuousderivatives. A particular class

of the minimax problems arises in approximation theory, e.g. in

problems of the best Chebyshevapproximationof the function r(y}

by linear combinationsof the functions OJ (y) :

g(x,y} = /r(y} - £ x.o.(y}\
j=1 J J

Similar problems arise in mathematicalstatistics, in game

theory with zero sum games, in filtration theory, identification,

approximationby splines etc.

A solution of systemsof inequalities

d i (x) < 0 i = 1,m

for g (x,y) = dy (x), Y E Y = {1, 2, ••. ,m} can be reducedto min-

imization of the function (16). This idea was used in the work
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[9] for computing economic equilibria through nonsmoothoptimi-

zation. A solution of the general problem of nonlinear pro-

granuning

min o i{f (x), f (x) < 0 , i = 1 ,m , xEX}

can also be reduced to this problem, if it is assumedthat

In game theory, and in the theory multiobjective optimi-

zation, more complex problems arise in the minimization of the

function

f(x) = g(x,y(x))

for x E X where y (x) is such that

h(x,y(x)) = max h(x,y)
yEY

( 17)

Independentlyof the smoothnessof the functions g(x,y),

h(x,y) the ｦ ｵ ｮ ｾ ｴ ｩ ｯ ｮ f(x) in the given casewill have no. con-

tinuous derivatives and will be discontinuousin general. For

h(x,y) = x .y, g(x,y) = x + y, Y = [1,1], we obtain

__ { 1,
Y (X)

-1 ,

if x > 0

if x < 0

The function h(x,y(x)) = xy(x) = Ixl is continuousbut does not

have continuousderivativesat the point x = O. Function f(x) =
x + y(x) is discontinuous. That is why the value of such

models in applicationsdependson the developmentof numerical

methods for discontinuousoptimization.
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Optimization of Probabilistic Systems

Taking into account the influence of uncertain random

factors even in the simplest extremum problems leads to complex

extremum problems with nonsmooth functions. For example for

deterministic w a set of solutions of the inequality

wx <

where w, x are scalars,defines a semi-axis. If w is a random

variable it is natural to consider the function

f(x) = p{wx < 1}

and to find x which maximizes f(x). If w = ｾ 1 with probability

0.5 then f(x) is a discontinuousfunction (see Figure 1).

(x)

1

I
I

-1 o

Figure 1

Since many complex systems are under the influence of the

uncertain random factors, nonsmooth optimization becomeseven

more important.

Health Care Systems: Patientsmay be sick for random time

intervals, the diagnosis, the results of medical treatmentsare

partly random, epidemiesare similar to random processes,acci-

dents are random as well, and so on.
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Communicationand Computer Networks: Unreliability of

facilities and channels, random characterof the load etc.

Food and Agriculture: Harvests are strongly dependentupon

weather fluctuations which are essentiallyrandom, technological

progress,demands, supply of resources,forecasting investment

for the developmentof new ideas, for new kinds of products etc.

A rather general problem of the stochasticprogramming can

be formulated [10] as follows

min o i
{F (x): F (x) 2. 0 , i = 1 , m, XEX} ( 1 8)

where
\)= Ef (x,w) = Jf\)(x,W)P(dW) \) = O,m (19)

Here f\)(x,w), \) = O,m are random functions, and w is a

random factor which we shall consideras an element of the

probability space (Q,A,P). For example conditions like

i
P{g (x,w) 2.p} ｾ Pi i = 1,m

become constraintsof the type (18) - (19) if we assumethat

p. - 1, if i 0g (x,w) <
i 1

f (x,w) = ip. if g (x,w) > 0
1

The problem is more difficult than the conventionalnonlinear

programming problem.

It has been noted above that taking into account random

parameterseven in simple linear programming.problemsleads to

nondifferentiableoptimization problems. The main difficulty

of the problem (18) - (19), besidesthe nondifferentiability, is

connectedwith the condition (19). The examplesconsidered

below show that as a rule it is practically impossible to compute

the precisevalues of the integrals (19) and therefore one can

not calculate the precisevalues of the functions F\)(X).
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Usually only values of the random quantities fV(x,w) are avail-

able insteadof FV(x). To determinewhether the point x satis-

fies the constraints

i= E:,f (x,w) < 0 i = 1,m

is then a complicatedproblem of verifying the statistical hypo-

thesis that the mathematicalexpectationof the random quantities

fi(x,w) is nonpositive.

Other applications

Many applied problems reduce to problems of optimal control

with discontinuoustrajectories (in state space), for example in

impulse control, and in the control of systemswith varying

structure. In inventory control theory a trajectory of the sys-

tem is discontinuousat the instancesof deliveries, and (Fig. 2)

here the value of the discontinuity can serve as control variable.

storew

:\

'------------------.:::.t

stor

insur- ｲ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｎ Ｎ ｊ ｌ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ __ｾ ｌ __
ance
store

Figure 2 Figure 3

In static inventory problems the cost function has a graph

as shown in Figure 3, wherew is demand, d, S are the store

expendituresand lossesrespectively.

Very important applicationswhich lead to nondifferentiable

and stochasticoptimization problems are the problems of long
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term planning. In these problems a typical cost function versus

the output is given in Figure 4.

cost '1'

output

Figure 4

The stepsof this function correspondto additional recon-

struction investmentsfor larger-scaleplants.

Let us consider a model of long-term planning

composition of an agriculture machinery park [10].

be a quantity of work of the ith kind (harvesting,

at the kth period, xij(k) is the number of machines

type for the ith kind of work; W, ,(k) is a shift in
1J

ance of the machines. It is required to minimize

for optimal

Let b i (k)

planting etc.)

of the jth

the perform-

I C., (k) x' ,(k) + I
, , k 1J 1J J'1,J,

max
k

I x .. (k) Ak
i, j 1J

I w, , (k) x' ,(k) > b, (k) x' ,(k) > 0
j 1J 1J - 1 1J

where Cij(k) are shift expenses,Ak are annual depreciations.

If we take into account that b. (k) are usually random values
1

we obtain a stochasticminimax problem.
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2. ON EXTREMUM CONDITIONS

The peculiarity of nondifferentiableand stochasticoptimi-

zation problems in comparisonwith the classic problem of de-

terministic optimization becomesapparentalready in optimality

conditions. If f(x) is a convex differentiable function then

the necessaryand sufficient conditions of the minimum have the

form:

where

(20)

f =x
af af
ax 1 , ••• , aX

n

In the nondifferentiablecase this condition transforms into

requirement (Figure 5)

(21)

where

is a set (the subdifferential) of generalizedgradients (the
'"subgradients). These vectors f (x) satisfy the inequalityx

f(y) - f(x) > Vy (22)

It should be noted that the notation fx(x) for a subgradient

used here is convenient in caseswhere a function dependson
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several groups of variables and the subgradientis to be taken

with respect to one of them. (This occurs in minimax problems,

problems of two-stage stochasticprogramming etc. which are con-

sideredbelow.)

The complexity of nondifferentiableoptimization problems

results from the impossibility of practical usageof (21) for

the answer to the questionwhether a specific point x may be a

point of the minimum of f(x).

This discussionrequires testing whether the O-vector

belongs to the set {fx(x)} which usually has no constructive

description. A further complication is checking the conditions

(20), (21) by statisticalmethods. For example verifying the

statistical hypothesisthat for fixed x the mathematicalexpec-

tation of the random vector fx(x,w) is 0, that is, whether

Ff (x,w)- x = 0

Deterministic Methods of NondifferentiableOptimization

There are two different classesof nondifferentiableopti-

mization methods: the non-descentmethods which startedtheir

developmentin the early 60's at the Institute of Cyberneticsin

Kiev [11,12] and the descentones which appearedin the '70's in

the western scientific literature (see [1] for a bibliography).

Let us discussbriefly the basic ideas of these two ap-

proaches.

An attempt to generalizethe known gradient methods of the

kind

s+1
x = s=0,1,...

where X
s is an approximatesolution at the s-th iteration, and

ps are step-sizemultipliers, for functions f(x) with a discon-

tinuous gradient requiresdefinition of an analogueof the

gradient at points where the usual gradient does not exist.

For almost differentiable functions the definition is made by
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limit transfer. A generalizedgradient (almost gradient) of

the almost differentiable function f(x) at point x is a vector
A

fx(x) belonging to the convex hull of the limit points of all

sequences{f (xs )} where {x
s

} is a sequenceof points at whichx
the gradients fx(x

s
) exist and whose limit point is x.

A

If f(x) is a convex function we get a set of vectors fx(x)

which satisfy (22).

Let us note that a convex function has a gradient almost

everywhere. There are classesof problems however, in which

every point with rational coordinateshas no gradient and there-

fore, in any computationalprocessat each iteration, we have

to deal with a point of nondifferentiability.

Principal difficulties are connectedwith the choice of

step multipliers Ps even for convex functions. It is impossible

in practice to review the whole set of subgradientsand to choose

that one in the opposite direction to which leads the domain of

smaller values of the objective function. Usually one can get

only one of the subgradientsand therefore there is no guarantee

that a step according to the procedure

s+1 s A s
0, 1 , ...x = x - psfx(x ) s =

or to the more general one

s+1 II (x
s A S

0, 1 , ...x = -Psfx(x)) , s =x

(23)

(24)

(where IIx(o) is a projection operatoron the set X), will lead

into the domain of the smaller values of f(x) (Figure 6).

Figure 6
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To avoid this problem procedure (23) was proposedin 1962 by

N.Z. Shor [11] and called the method of generalizedgradients.

It allows the use of any subgradientin the subdifferential.

General conditions for its convergencehave first been obtained

by Y.M. Ermoliev [12] and independentlyby B.T. Polyak [13],

where the Ps should satisfy the conditions

00

p t 0s
= 00

These conditions are very natural as (23) is a nondescent

processi.e. the value of the objective function does not

necessarilydecreasefrom iteration to iteration even for ar-

bitrarily small ps.

The influence and close relations of researchby 1.1. Eremin

on solutions of systemsof inequalitiesand on nonsmooth penalty

functions [14] to this area of work should be noted.

Since then the method (23) has been further developed (see

review [16]) and rates of convergencehave been studied.

E.A. Nurminski [16] studied the convergence of methods of

the type (23) for the functions satisfying the following con-

dition

f(y) - f(x) > (fx(x) ,y-x) + 0 (Ily - x II) (25)

Moreover he proposeda new proof technique for convergence

basedon the argumentsad absurdo, i.e. he adaptedthis technique

for studying the convergenceof nondescentmethods of non-convex,

non-smoothoptimization.

As has already been said the algorithms constructedon the

basis of (23) are simple and require relatively little storage.

Thus let us consider an application of the method (24) to the

developmentof iterative schemesof decomposition. For the

function (10) one of the generalizedgradientsat point x S is

=
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s s
where u are dual variables correspondingto y(x ). Therefore

the iterative schemeof decompositionaccording to the procedure

(24) has the form

X
s+1 -_ max {O,xs - ( sA)} 0p c-u , s= , ...s (26)

The same may be obtainedby consideringthe function (14):

if yS is an approximatesolution of the subproblem (15) for
s s s , d' t sx = x = {x " } and u are dual var1ablescorrespon1ng 0 y ,

1)

then

s+1x s s= TI (x - p u ), s = 0,1, ...
x s

(27 )

where TI (0) is the projection operator on the set (15). A very
x

sinple algorithm for tne solution to this problem exists.

For the minimax problem (17) in the casewhen g(x,y) for

each y E yis a convex function with respect to x, the subgradi-

ent is defined as f. (x) = ｾ (x,y) I ( ) = gx(x,y(x))
x 'x y=yx

If g(x,y) is continuouslydifferentiablewith respectto x then

fX(x)=gX(X,y) =g (x,y(x)).
y = y (x) x

If we use this formula for function (11), we obtain the

following iterative method of decomposition:

x s+1 =max {O,xs_p (c-usA)}, s=O,1...
s

where uS is a solution of the subproblem

s
(u, t - Ax ) = max , u D :5.. d, u ｾ 0

The iterative methods of decompositionbasedon the non-

differentiableappro"3chare effective techniquesfor the solution

of different complex optimization problems. For example, for

linear problems of optimal control we can use the method consider-

ed above. Consider the following problem: to find a control

X= (x(0), ... ,x(N-1)) and a trajectory z= (z(O), ... ,z(n)), satisfy-
ing the state equations:
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z (k + 1) = A(k) + B(k) + a (k)

z(O) = zO , K = 0,1... , N - 1 ,

the constraints

G(k) z (k) + D(k)x(k) < Q.(k) k = o,1... , N - 1,

u(k) > 0-

and minimize the objective function

N-1
(c (N) , z (N) + L [c(k),z(k)) + (d(k) ,x(k)) 1 ,

k=O

where x (k) ERn , z (k) ERr The difficulty of this problem is

connectedwith the stateconstraints. If matrice G(t) 0, we

can solve this problem with the help of the Pontzjagin'sprin-

ciple.

The dual problem [34] is to find dual control A = (A(N-1) , ... ,

A(O)) and dual trajectory p = (p(N) , •..p(O)), subject to state

equations

p(k) = p(k+1) A(k) - A(k)G(k) + c(k)

p (oN) = c (N), k = N-1, ... , 0

and constraints

p(k+1) B(k) + A(k) D(k) < d(k)

A(k) > 0

which minimize

N-1
(P(O),zO) L [(p(k+1),a(k))+ (A(k),b(k))]

k=O
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We have the following analog of the iterative schemeof de-

composition consideredabove (for finding the optimal control):

where >..s(k) (k=N-1, .•• O) , pS(k) , k = N-1, ..• ,O is a solution of

the subproblem minimize the linear function:

°(p(O),zO) + I [(p(k+1),a(k)) + (A(k),b(k) +
k=N-1

s
+ d (k) - P (k+ 1) B (x) - >.. (x) D(x) , x (k))]

under constraints

p(k) = P(k+1)A(k) - A(k)G(k) + c(k)

peN) = c(N) , k = N-1, .•. ,O ,

A(k) > 0 , k = N-1, ... , 0

We may use the well-known Pontzjagin'sprinciple for solving this

problem. Its solution is reduced to the solution of N simple static

linear programming problems.

Original work by Wolfe and Lemarechal (see [1]) on descent

methods are, on one hand, a ｧ･ｮ･ｲ｡ｬｩｺ｡ｾｩｯｮ 6f algorithms of E-

steepestdescentstudied by V.F. Demyanov [8] and on the other

hand they are formally similar to algorithms of conjugategradients

and coincide with them in the differentiable case.

The set {f (xs )} is required to implement the descentprocess.
x ｾ

Since at the point x S it is impossible to get the whole set {f (xs )}
x

an attempt can be made to construct it approximately. In Wolfe

and Lemarechal'sworks, the following idea is used for this purpose.

If at the point x S the movement in the direction opposite to the

subgradientf (x s ) leads to the decreaseof the objective functionx
by not less than E > 0 (this is essentialfor convergence) the move-

ment to x s+ 1 is made in this direction. If not, as trial step to
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zS1 is made in this direction, the subgradientf (zs1)
sO s x

point z = x. The con-

certain senseapproximates

a point

is calculatedand one returns to the
A sO A s1 .

vex hull of f (z ) and f (z ) ln a
A x x

{f (xs )} from which one finds the elementof the hull which has
x

the least norm. If it is near zero, it should be excepted,

according to the optimality criterion (21) that X
S is near

optimal. Let the norm of this element be distinct from zero.

If the direction from this point leads to a decreaseof the ob-

jective function by not less than E the move from X
S to x s+1

is made in this direction. If this is not true, only a trial
. s2 A s2

step is made to a pOlnt z f (z ) is calculated, then one

returns to x sO The convex hull ｾ ｦ the vectors f (zsO), f (zs1),
x x

f (zs2) is consideredand so on.
x

The further developmentof subgradientschemesresulted in the

creation of E-subgradientprocesses. This technique, instead

of subgradients,uses E-subgradientsintroduced by Rockafellar

[17]. The early results in this direction belong to Rockafellar

[18], D. Bertsecas[19], C. Lemarechal [20], Nurminski and

Zhelikhovski [21]. The recent researchunveiled such properties

of E-subgradientmappings as Lipschitz continuity which make E-

subgradientmethods attractive both in theoretical and practical

respects.

Stochasticmethods of NDQ

Two classesof deterministicmethodswere discussed:non-

descentand descentones. The first class of the methods is easy

to use on the computer but it does not result in a monotonic de-

creasingof the objective function. The secondclass obtains mono-

tonic descentbut has a complex logic and is rather difficult for

computer implementation. Both classeshave a common short coming,

they require the exact computationof a subgradient (in a differ-

entiable case - the gradient). Often however, there are problems

in which the computationof subgradientsis practically impossible.

Random directions of search is a simple alternativemethod to con-

struct nondifferentiableoptimization descentproceduresthat do

not require an exact computationof a subgradientand which are

easy to use on the computer.
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There are various ideas on how to constructmethods of ran-

dom searchin deterministic problems which only require the exact

values of objective and constraint functions. One of the simp-

lest methods is as follows: from the point x
S

, the direction of

the descentis chosenat random and the motion in this direction

is made with a certain step. The length of this step may be

chosen in various ways, in particular such that:

co

Such methods are easy to implement on the computer and they can

be made to have a good asymptotic behaviour. As shown in [22],

they can have a geometric rate of convergencewhich is rare for

the deterministicmethods consideredabove.

Nondescentmethods of random searchare of prime importance

in the solution of the most difficult problem arising in stoch-

astic programming. In these extremum problems it is impossible

to compute either subgradientsor exact values of objective and

constraint functions. The presence of random componentsin the

searchdirections of nondescentprocedurespermits overcoming

local minima, points of discontinuity, etc. Let us analysefirst,

in detail, the above mentioneddifficulties of stochasticpro-

gramming problems by way of concreteexamplesand then consider

the general ideas for descentSQMs.

The stochasticprogramming problem

The problem (18)-(19) representsa general stochasticpro-

gramming problem. It is a model of optimization of a stochastic

system in which the decision (planned values of the systempara-

meters x) is consideredindependentof the random factors. Such

a situation is typical for planning the developmentof systems

which will work in a random enviroment for a long time. There

are other classesof stochasticsystemsin which the decisions

are basedon the actual knowledge of the random parametersof

the system and thus the decision x becomesa random vector. Such
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situationsusually occur in real-time control and short-term

planning. In practice this problem can sometimes (via a deci-

sion rule) be reduced to the problem.(18)-(19).

The main difficulty of problem (18)-(19), as has been noted,

is that the functions FV(x) , v = o,m often have no continuous

derivatives. Another important difficulty is connectedwith con-

dition (19). Let us consider some examples.

1. The two-stageproblem

Problemsof this kind often appear in long-term planning.

It is often necessaryto choose a production plan or make some

other decision which takes into account possiblevariations in

the exogenousparametersand which is resistantto random varia-

tions of the initial data. For this purpose the notion of cor-

rection is introduced and the lossesconnectedwith this correc-

tion are considered. An optimal long-term plan should minimize

the total expendituresfor the realizationof the plan and for

its possiblecorrection.

The simplest two-stagestochasticprogramming problem may

be formulated in the following way:

The decision z consistsof two separateparts:

where with every z a certain loss is associated:

(c,x) + d,y)

Every decision variable should satisfy constraints:

Ax + Dy = ｾＬ x .:. 0, y.:. 0

All coefficients w = Ｈ､ＬｾＬａＬｄＩ｡ｲ･ random variables and a decision

is chosen in two stages.
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Stage 1. The long-term decision x is made.

Stage 2. The random parametersw = Ｈ､ＬｾＬａＬｄＩ are observed

and a corrective solution y is derived from the known w:

min {(d,y) Dy = B - Ax , y.:. °}
The problem is to find such vector x that the function

(28)

+ E min (d,y) = (c,x) + E(d,y(x,w))
ｄ ｹ ］ ｾ Ｍ ａ ｸ

y.:.O

has a minimum value.

It is evident that FO(x) is a convex, but in the general

case nonsmooth function since the operationof the minimization

is presentunder the integral sign. The value of the function

°f (x,w) = (c,x) + (d,y (x,w))

can be calculatedwithout difficulty. To calculateFO(x) it is

necessaryto find the distribution of the (d,y(x,w)) as a func-

tion of x and then to calculate the correspondingintegral (28)

which is possibleonly in rare cases.

The problem (28) is strongly connectedwith large scale

linear programmingproblems. For instance, if w has a discrete

distribution: w E {2,2, ... ,N} and w = k with probability Pk and

N
Pk .:. 0, L Pk = 1

k=1

then the initial problem becomesthe following:
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(c, x) + (d(1) ,y(1) + (d(2) ,y(2)+...+(d(N) ,y(N) = min (31 )

A(1)x + D(1)y(1) = R, (1)

A(2)x + D(2)y(2) = R, (2) (32)

A(N)x + D(N)y(N) = R, (N)

x > 0, y (1) ｾ 0, y(2) ｾ ｏ Ｌ ... ,Y(N) > 0 (33 )

where y(k) is the correction of the plan if w = k. The number

N may be very large. If only the coordinatesof the vector

R, =(R,1, ... ,R,m) are random and each of them has two independent

outcomesthen N = 2m .

2. The stochasticminimax problems

The objective function of the simplest stochasticminimax

problem looks as follows

N
F

0 (x) = E max [L a. j(w) x. - R, 1 (w) ]
1 < i < M j=1 1 J

or more generally

o
F (x) = E max g (x,y,w)

yEY

(29)

(30)

It should be noted that the two-stageproblem (28) and the

stochasticminimax problems generalizethe problems (10), (16), (17).

A very important particular class of stochasticminimax

problems arises in inventory controi problems (a stochasticmodel

of optimal structure of an agricultural machinery park is also

stochasticminimax problem). Thus the expectedexpendituresin

planning the stock x 1, ... ,xn of nonhomogeneousproducts equal
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n
y .x . -w) , S(w - I y. x . ) }

J J j=1 J J

where w representsdemand, a,S are storageexpendituresand losses

and y. are the coefficients of substitution.
J

For problems (29), (30) it is again easy to calculate

°f (x,w) = max
1 < i < 1-1

n
[I a .. (w)x.-R.. (w)]
j=1 1J J 1

but FO(x) remains difficult. It is a convex but often a nonsmooth

function.

3. The stochasticproblem of optimal control

The same difficulties are inherent in stochasticproblems

of the theory of optimal control. Taking into account the dyna-

mics of a complex system leads to the following very general

problem: find x = (x(0),x(2) , ... ,x(N-1)) which minimizes

°F (x) = E ¢(z(0),... ,z(N),x(0),... ,x(N-1),w)

under the constraints

(34)

z(k+1) = g(z(k),x(k),w,k),z(O)

x(k) EX(k),k=0,1... ,N-1

In particular, one might have

°F (x ) = E max II z (k) - z* (k) II
k

°= z , (35)

(36)

(37)

Thus the solution of even the simplest stochasticprogramming

problem which we consideredabove requires the developmentof

numerical methods of optimization without using exact functional

values. The stochasticquasigradientmethods [10,23] allow to

solve successfullythe above mentionedproblems with the rather
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arbitrary but in practice useful measuresP(dw).

The general idea of stochasticquasigradientmethods

Consider the problem

min FO (x) f i (x) .:. 0, i = 1 ,ro, x EX}

v -We assumehere that F (x),v=O,M are convex functions, i.e. where

;v is a subgradientand the setx

v v ｾｶ
F (z) - F (x) > (F (x) ,z-x)- x

is convex.

In stochasticquasigradient(SQG) methods the sequenceof.. ° 1 s. d .th th h 1 fapprox1mat1onsx ,x ... ,x ... , 1S constructe W1 e e p 0

random vectors ;v(s) and random quantitiese (s) which are sto-v ｾ

chastic ･ ｳ ｴ ｩ ｭ ｾ ｴ ･ ｳ of the values of subgradientsｆ ｾ Ｈ ｘ ｳ Ｉ and of

the function pV(xs ) :

v sF (x ) + S/., (s)v
,

Thus in thesemethods
v

E, (s),6,(s) are used.

a vector, S/.,v(s) is a number dependingupon xC,
vusually a (s) -+O.s/" (s) -+0 for s-+oo .

v ｾ. v s v s1nsteadof exact values of F (x ) ,F (x )x
For further understandingit is important

to see that the random values 6v (s) and vectors E,v(s) are easily

where aV(s) is
1 sx , ... , x , ... , where

calculated. For example, if

FV(X) = Efv(x,w)

then 8v (s) = fV(xs,ws ) where the wS result from mutually independ-

ent draws of w.
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We have

v s sE(f (x ,w)/x )

For a two-stageproblem

(38)

s swhere u(x ,w ) are dual variablescorrespondingto the second-

stageoptimal plan y(xs,ws ). It can be shown [10] that

where FO(Xs ) is a sUbgradientof the function (28). For the
x

objective function (29) of the stochasticminimix problem the

vector ｾ ｯ Ｈ ｳ Ｉ = ＨｾｾＨｳＩ , ... Ｌ ｾ ｾ Ｈ ｓ Ｉ Ｉ is calculatedby the formula

ｾ ＿ (s) =
J

(39)

where i is defined by the relations

n

2
j=1

. ( s) S n (s)a. J w x. - N' W =
ｾｳ J ｾｳ

max
i

n s s[2 a .. (w Ｉ ｸ Ｎ Ｍ ｾ Ｎ (w )]
j=1 ｾ ｊ J ｾ

It may be shown [10] that

where ;O(xs ) is a subgradientof the function (29). It shouldx
be noted that stochasticquasigradientmethods are also applic-

able to NDD deterministic problems, without requiring values of

subgradients. For example, for the deterministicminimax prob-

lem (17) the vector

o
ｾ (s) =

s s s s sg(x +6 h ,y(x )) - g(x ,y(x )
s hS

6s
(4 0)
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where ｾ > O,h
s

is the result of independentrandom draws ofs
the random vector h = (h, ... ,h ) whose componentsare independent-

n
ly and uniformly distributedover [- ,1]. (40) satisfies the

condition

where fO(xs ) is a subgradientof the function (17) and IlaO(s)11 < 6
x - s

const, if g(x,y) has uniformly limited secondderivativeswith

respectto x Ex, Y E Y. For the objective function of the stoch-

astic minimax problem (30) the vector ｾ ｏ Ｈ ｳ Ｉ have the same formula

(also see [20]) :

ｾｏ (s) =
s s s s s s s s s

g (x +6s h , Y (x , w ),w ) - g (x , y (x , w ),w )

6s

It is remarkablethat independent of the dimensionalityof the

problem the vectors (40), (41) it can be found by calculating the

functions g(x,y) ,g(x,y,w) at two points only. This is particularly

important for extremum problems of large dimensionality. Let us

consider a number of SQG methods in which 8 (s) Ｌ ｾ ｶ Ｈ ｳ Ｉ are used
. v s A V S v
lnsteadof F (x ), F (x ).x

THE SQG METHODS

1. The stochasticquasigradientprojection method

Let is be required to minimize the convex function in x E X,

where X is a convex set.

The method is defined by the relations:

s+1 s 0
x = 7T (x -p ｾ (s», s = 0,1,•.. ,

x s (42)

where 7T
X

(·) is a projection operationon X,ps one step multipliers.

o AO s
If ｾ (s) = F (x), we obtain the well-known method of gener-x

alized gradients (28). If

o 0 nF (x) = Ef (x,w), X = R ,
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where the function FO(x) has uniformly limited secondderivatives,

it can be shown that for

ｾ ｏ (s) =

we have

n
L

j=1 6s

j
s )w -

s sj
f(x,w )

(43)

° so si sn .where Iia (s)ll.2 const 6s ' w, ..,w, ..,w result from lndependentdraws

over w. Then the method (41)-(42) correspondsto the stochastic

approximationmethod [24,25]. The method (42) has been proposed

in [23]. The characteristicrequirements,under which the

{x s } convergeswith probability to the solution, are: if

II k II - II ° II 2 ° sX I .2 B, k = 0,s, then E ( ｾ (s ) Ix, . .. ,x ) .2 C
B

, where

constants; p are step multipliers which may depend upon° 1 s sx ,x ,x

sequence

B,C
B

are

co
p >O,l: P =cos- ss= 0

with probability 1, (44)

co 2 °l: E(Ps+ps II a (s) II) < co

s=O
(45)

Particularly if P are deterministicand independentof (xO, ...x s )s
then, under (44), (45) we obtain for the method (41) using the

random direction (40)-(41) that

l: P 6 < co
S S

LP <00,s

The methods, which we shall considerbelow, converge under con-

ditions approximately analogousto those mentionedabove.

From (38) and (41) we obtain the following method of solving

two-stageproblems:
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sFor given x observe the random realisationsof d,A B.Q,

which we note as:

d (s)A (s) ,B (s) ,.Q, (s)

(ii) Solve the problem

(dS,y) = min

B (s) y <.Q, - A X
S

- s s '

y .:. °
and calculatedual variables us.

(iii) get

t.;0 (s) = s
｣ＨｾＩ + u(s) A(s) and change X

go to (i).

It is worth noticing that this method can be regardedas a

stochasticversion of the iterative procedureof decomposition

(28). It is simply implementedon the computer and it permits

to solve extremely large-scaleproblems of the kind (32)-(33).

2. The stochasticlinearizationmethod.

Let the function FO(X) have continuousderivatives. If

ｆ ｾ Ｈ ｘ ｳ Ｉ is known then standardlinearization is defined by the

relations:

s+1 s -s s
x = x + ps(x -x ), s = 0,1,... ,
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° sIn the case where F (x ) is unknown, the stochasticvariant of
x

this method has been studied in [10,26] and is defined by the

relations

s+1 s -s sx = x + P (x -x ), s = 0, 1 , ... ,
s

(vo(s) ,xs ) = min
xEX

°(v (s) ,x)
(46)

vO(s+1)

where 0 satisfy the conditions of the kind (44)-(45). It iss
worth noting that if insteadof vO(s) the vectors ｾ ｯ Ｈ ｳ Ｉ are

used that, as simple examples show, the method does not con-

verge. If ｾ ｳ = 1/s+1 then

°v (s)
1 s

= - L: ｾs
k=O

In this method on every iteration the subproblemis to be

solved in the region X. For this problem the well-known methods

of nonlinear programmingor linear programming can be applied

and will not require great computationalefforts especiallyas

an initial approximationof is the point i s +1 is chosen.

Consider now the general problem of minimization of the

function

under conditions

i
F (x) < 0, i = i,m

xEX

(47)

(48)

(49)
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where FV(X) are convex functions, X a convex set.

3. The penalty functions stochasticmethod

Constraints (48) can be taken into account by means of

penalty functions and insteadof the general problem we can con-

sider the problem of minimizing the function

F°(x, c) = F°(x) + c L: min
i = 1

on the set X.

i(O,F (x))

iSince it is practically impossible to calculateF (x) in

problems of the stochasticprogramming i.e. it is impossible to

find min (O,Fi(x)), [27] defined the relations

s+1 s ° ix = TT X (x - p s Ｈｾ (s ) + c i ｾ 1 mi n (0 , z i (s) ) ｾ (s) ) , s = 0, 1•.• , (: Q)

z. (s+1) = z. (s) + 0 (e. (s) - z. (s) ), s = ° , 1•.. ,
1 1 S 1 1

4. Besides the above mentionedmethods there are many others

(see [29]). In particular Gupal &28] has studied the method char-

acterizedby the relations:

( 51)

s+1
x

I;;°(s), if zi (s) = max z. (s) < °
S 1

i=1<m

i
I;; S(s), if zi (s) >0,

s

where the values zi(s) are defined by the relations (51).

5. Non-convex functions

In [16] the convergenceof the stochasticquasigradient
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methods for the functions pV(x) satisfying the condition (25) was

studied. We also note the investigationof the minimization of

almost-everywheredifferentiable functions and discontinuousfunc-

tions [28,29,30,35]. In this paper the simple and easily imple-

mented methods for the problems (17) and others, appearingin the

theory at multicri±eriaoptimization were developed. In these

papers the convergenceof the following methods have been studied.

-s j -s
s+1 = XS _ L f (x +t:lse ) - f (x )

x Ps j=i t:I
s

(52)

where e j are unit vectors of the point is is randomly chosen in a

neighborhoodof the point XS with radius r s -+ O,s-+oo.

The procedures,as (52), are basedon the general ideas of

solving limit extremum problems, which have begun to be developed

in [33].

6. The limit extremum problems.

Briefly, the essenceof this theory is the following. Let it

be required to minimize the function f(x) without continuous

derivatives. A sequenceis consideredto be composedof "good"

functions fS(x), e.g., smooth ones which convergeat f(x) for

s -+ 00 and the proceduresof the following form:

s+1 s s s
x = x - psfx(x ), s=O,1... ,

Under rather general conditions it is possible to show that

(53)

Often "approximate functions have the form of mathematicalexpect-

ations

(54)
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where the measureP (dw) for s+oo centersat the point x. Hences
insteadof the procedure (53) the realization of which requires

exact value of the gradientof the mathematicalexpectation (54)

the stochasticquasigradientmethods are used which employ the

vectors ｾ ｳ satisfying the condition

s 0 s
ｅＨｾ Ix , ... ,x ) sa ,

sh , s=0,1... ,
ｾ s

s+1x

where is(x) -subgradientof the function fS(x). Por example, if
x .

for function (54) we consider random vector (stochasticquasi-

gradient) ｾ ｳ type (43) then we obtain the method (52); if we

consider random vector type (41), we obtain the following method

ｦ Ｈ ｸ ｳ Ｋ ｾ h S) - f(x s )
s

s (-s -s). . d"'where x = x , .•. ,xn 1S a random p01nt P
s

1str1butedin a

neighborhoodof the point x s • If f(x) satisfiesthe Lipschitz

local condition, then distributions P can be uniformly in ans
,n-dimensionalcube with the side r , e.g. ｸ ｾ are

s )
random values uniformly distributed on intervals

&milar distributions are applicablewhen f(x) is

function. Then the function

where hS,Ts are random vectors with independentcomponentsuni-

formly distributed on [- r"l] is smooth, pS(x)+f(x) is uniform

in any boundeddomain.

Theseapproachesseem to be very important in nonsmoothand

particularly discontinuousoptimization. Thus in [35] it was

shown that general schemeof linearization method may be used

for the optimization of a wide range of nonconvexnonsmooth

functions. Let us examine a problem of minimization of a function

f(x) under constraintsxEX, where f(x) satisfiesthe Lipschitz

local condition, X is a convex compact in R
n

. The following method

is considered



s+1
x

35

s -s s= x + p (:x: -x ), 0 < p < 1, s= 0 , 1••• ,s - s-

(v(s) ,xs ) = min (v(s) ,x)"
xEX

v (s+1) = v (s ) + 0 (es-v (s) )
s

where xOE,X; Os satisfy the conditions of the kind (44)-(45);

1
8s = rs

r .
-s -s s s -s)] J, ••• , x ) - f (x 1 ' ... , x .--2' ••• , x e,n J n

ｸｾ are independentrandom values uniformly distributed on intervals
J 's r s s r s
[x j -2 x j +"""2 ] •

Some applied NDO, STO problems were briefly discussedin this

work. There are many applicationsof STO numerical methods in mathe-

matical statistics, complex systems, identification, reliability,

inventory control, production allocation [10]. The deterministic,

stochastic,descentand nondescentmethods were considered. Each

one requires some definite information about objective and constraint

functions. Deterministic descentmethods use the exact values of

these functions and their subgradients,stochasticdescentmethods

use only the exact values of functions; deterministicnondescent

methods require only exact values of subgradients;stochasticnon-

descentmethods do not use values of functions and exact values of

their sUbgradients. Obviously, every method reveals its advantages

in a specific class of extremum problems, for instance, complex

stochasticprogramming problems are solvable only by stochasticnon-

descentmethods.


