
A Fresh Approach to Data Base 
Management Systems. Part I: 
Concepts, Considerations and 
Justifications

Orchard-Hays, W.

IIASA Working Paper

WP-78-064

1978 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33892327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Orchard-Hays, W. (1978) A Fresh Approach to Data Base Management Systems. Part I: Concepts, Considerations and 

Justifications. IIASA Working Paper. WP-78-064 Copyright © 1978 by the author(s). http://pure.iiasa.ac.at/855/ 

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or 

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other 

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work 

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial 

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on 

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at 

mailto:repository@iiasa.ac.at


A FRESH APPROACH TO DATA BASE ｾｾａｇｅｍｅｎｔ SYSTEMS
PART I: CONCEPTS, CONSIDERATIONS AND JUSTIFICATIONS

Wm. Orchard-Hays

December 1978 WP-78-64

Working Papersare ifiternal publications intended
for circulation within the Institute only. Opinions
or views containedherein are solely those of the
aut.hor(s).

2361 I
Laxenburg International Institute for Applied Systems Ana lysis
Austria





A FRESH APPROACH TO DATA BASE MANAGEMENT SYSTEMS

Part I: Concepts,Considerationsand Justifications

Wm. Orchard-Hays

FOREWORD

This paper is in two parts. In this ｰ ｡ ｲ ｴ ｾ Ｎ some of the conceptsand

considerationsin the design of a data basemanagementsystem are set

forth, togetherwith justifications for some of the decisionsmade. In

Part II, a particularsystem is described,essentiallyin the form of a

tutorial usersmanual. Some further justifications are given there as

well as a couple of more discussionsof a conceptualnature. Although

the two parts are intended to form a set, they can each stand largely

alone. A few definitions given in Part I are used in Part II without

restatement.

INTRODUCTION

One of the difficulties -- probably the greatestone -- in designing

and implementinga data basemanagementsystem is the abstractquality of

data. It is hard to avoid the feeling or concept that one is dealing with

real things of some kind. Thus, for example, one tends to think of a

personnel"record" as a conciseentity "belonging to" -- in the senseof

being identified with -- a real individual. The personnelfiles certainly

exist becauseof real individuals and the records for one person or a group

of personscan be taken as a surrogatefor the personor personsin the

senseused, for example, in mathematicalmodels. Furthermore, there are

real data items -- albeit electronically recordedand manipulated-- which

go to make up a data base and the records can be presentedvisually or on

hard copy. However, in using a data base, one is interestedin much more

than retrieving and printing the input records.

One way to approachthe problem -- probably the only way -- is through

formal, abstractdefinitions which define items implicitly. Actually, this

is at best an approachto only part of the problem. In addition to the

conceptualstructureof the data, as such, there are three other ｣ ｯ ｮ ｳ ｩ ､ ･ ｾ

ations:

(1) the "physical" structureof data in the senseof ｣ ｯ ｭ ｰ ｵ ｴ ･ ｾ ｳ ｴ ｯ ｲ ･ ､ files;

(2) the means of specifying and referencingdata by a human which requires

some kind of languagewhich, in turn, involves further abstractions;and



-2-

(3) the relational structureimputed to the body of data which permits

using the data for new or unanticipatedpurposes.

The last is at best a vague idea even though this is often averred to be

the main purposeof a data base. It is the thesishere that whatever

relational structureexists is a consequenceof the designedconceptual

structureand human beings' ability to use it effectively and cleverly.

Nevertheless,a well-designedsystem can, in a sense,createnew informa-

tion or at least aid in its creation.

The physical layout of computerizedentities and the routines to

manipulate them presenttough problems in programming. Furthermore,

massivedata basesmay so overtax physical capacitiesas to lead to a

number of practical problemswhich have very little to do ｷ ｩ ｾ the initial

purposesbut which must be anticipatedin any practical design. Although,

for an initial conceptualapproach, one would like to ignore all but the

most obvious of the problems arising from a massiveamount of data -- after

all, current data processingsystemsare powerful and have large capacities

-- it may not be possible for both practical and theoretical reasons. A

basic dichotomy appearsjustified separatinglarge bibliographic data bases,

and more highly structuredsystemsof refined data used in analysesand for

input to other computerizedprocedures,such as models. The emphasishere,

and definitely in Part II, is toward the latter. There is also a third

kind of data bank, so-called, which involves recordsof a huge number of

measurements,such as telemetered"data" from a satellite. No pretenseis

made at addressingthis sort of records.

As to the means for interfacing the system with human users, two

fundamentallydifferent viewpoints are held, at least superficially. One

is that a natural-language-likeformalism should be provided to make it as

easy as possible for almost anyone to use the data base. The other is

that a formal, specializedlanguageis much better suited to the task and

that it is to the users' advantageto take the trouble to learn it. Those

that are unable to should not attempt to work with something they don't

understand. Both these positions are extreme and, in practice, both are

modified considerably. It is, in fact, impossible to use a natural lan-

guage in full generality; only narrowly constricted, specializedsubsets

of a natural languageare really programmable. Furthermore, facility in

such a sublanguagedoes very little to clarify difficult conceptswhich

must somehow be phrased. On the other hand, a formal languageis seldom

used in its pure form by ordinary users. Various simplifications



-3-

and combinationsare usually defined and given reasonable-lookinglabels.

Indeed, with either approach, a substantialpart of the working language

consistsin words which were defined by the user, using the basic capabil-.

ities, however expressed. Natural-languageproponentsadmit that an under-

lying formal languageis necessaryand the natural languagecapabilities

are a superstructure. Any such superstructurewill be ignored here. Nevep-

theless, the languagepresentedin Part II is not strictly a formal lan-

guage. It looks about like the command-styleEnglish found in mathematical

papersbut is rigorously defined.

So much work has been done in this area for such a long time that it

is perhapspresumptuousto speakof a "fresh approach", particularly in

a short poper. The term can be interpretedin the senseof "let's try

again" or "back to first principles". Sometimesthis can bring new clarity

without actually inventing radically new conceptsor mechanisms.

BASIC CONCEPTS AND DEFINITIONS

Of what or in what does data consist? This is not a trivial question

in spite of our intuitive feeling that we know what data is. The question

here is not whether some set of data is correctbut in what sensea number,

symbol, or other representationhas meaning. There is a dual nature to

data: its meaning and its representation. It is almost impossible to fully

specify representations;we always rely on a great amount of cultural and

technical background. How can one define ｾ .. initio an alphabet, the arabic

numerals, word structure, floating point representation,graphs, etc., not

to speakof bits, bytes, words, records, files, etc., in a computer system?

Whole books are written on such subjects. Particularcharacters,such as

the greek letter pi or the plus sign, are understoodto have meaning on the

basis of an extensiveand almost universal cultural background. Representa-

tional structuresare an important aspectof data but they are not its

conceptualstructureeven though there may be some correspondence. In some

cases, the representationalstructuremay even appearto be part of the

concept-- a matrix, for instance. One of our most fundamentalconcepts

is the distinction between right-hand and left-hand. It is natural to use

representationswhich somehow picture such concepts. It is a trap, however,

to supposethat any graphic representationreally defines what it stands

for, even though mental images of the representationmay greatly facilitate

thought processes,such as calculation or puzzle-solVing.



-4-

Although it is even hard to decide what constitutesthe basic elements

of representations,let alone data units, they are specifiable through

various conventionswhich are widely or universally acceptedby people

with any reasonabledegreeof educationfor the purposeat hand. It would

be merely pedantic, and futile, to try to explain, justify, changeor define

in more basic terms those conventionswhich are recognizedby most people

with an interest in what is being discussed.

The conceptualstructureof data is more subtle and less direct or

intuitive. A representationwhich may appearunderstandable,even pronoune-

ible or with exact numeric value, is not a piece of data in isolation. The

representations

PRODUCTION 2.135* 10
6

are readablebut have no meaning standingalone. We will term a representa-

tion like either of the above, or any of severalother possible forms, a

datum. In a workable system, the allowable forms for a datum must be speci-

fied, of course, but that is a subject for Part II.

We encountera deficiency in natural languagehere and will take care

of it immediately. What is the plural of "datum"? A datum is not in and

of itself a piece of data. Hence the rather infantile-sounding"datums"

will be used for the plural. Data (Which we construeas a collective singu-

lar) is representedby datums but has an abstractstructurewhich gives it

meaning over and above representations.

In order for a set of datums to constitutea piece of data, two things

are necessary. At least some of the datums must representvalues of dif-

ferent attributesand the set of attributesrepresentedmust be logically

related to some conceptualitem. We define theseideas more preciselyas

follows:

An attribute is an abstractquality or characteristicwhich can be

measuredby and only by a finite number of discreteand distingu-

ishable values, representedby datums. The attribute must have

a unique identifier in context but its allowable values need not

be unique independently,i.e., among different attributes.

An item is a member of a set defined by a particularset of attributes.

An item is defined implicitly by a particular set of values for

the attributesdefining the set to which it belongs. At least one

combination of attributesmust have unique sets of values over

the set of items if identification of items is to be possible.



Ｍｾ

A data structureis an organizedset of datums to which meaning is

imputed, first by its rules of organization, and second by the

meansof accessingit.

An inferior is a substructurewhich is accessibleonly through a

superstructure,called its superior.

A peer group is a set of structuresall of which have the same superior.

If all membersof the peer group are actually hooked to the same

superior, the group is called an echelon. If a superior has only

one hook to the inferior group, all membersof the group have

the Same structure, and they are connectedto each other (including

the one hooked to the superior) by some ordering principle, the

group is called an inferior set. Any memberof a peer group may

have its own inferior group which is a peer group. The inferior

groups of a peer group are said to be at the same level regardless

of the connectingrules.

We interrupt to comment on the two forms of peer groups. It might be supposed

that the strictly hierL,chical echelonsare simpler, more natural and hence

more efficient and usefLl. This is not the case, however. The organization

presentedin Part II is based on inferior setswhich have advantagesboth

for storageand searches.

A data bank is a collection of data structureswhich themselvesform

a grand data structure. One and only one data.structure, called

ｴ ｨ ･ ｾ Ｌ is a superiorwithout a superiorand without peers in the

context of the data bank. The root is regardedas level zero.

A data basemanagementsystem (DBMS) is a system for creating, modify-

ing, manipulatingand using a particularstyle of data banks.

The DBMS consistsof a system of computer routines, one or more

languagesfor controlling theseroutines and for specifying various

forms of datums, and manuals for explaining and documentingall

parts of the DBMS including themselves. However, the DBMS should

be distinguishedfrom any particular data bank and relatedmaterial

which is implementedusing the DBMS, except possibly an illustra-

tive example or embryonic structurescommon to all uses of the DBMS.

It mayor may not be possibleto separatea DBMS from a particular type

of computer. We do not regard such inseparabilityas a fault, nor porta-

bility at the expenseof worthwhile characteristicsas a virtue. These are

questionsof implementationwhich require different viewpoints and jUdgments



from those taken here. One cannot completely ignore the style of computer

system used, however. Good characterand charactep-stringmanipulation

capability, adequatecentral and peripheralstorage, fast execution speeds

and high data transmissionrates, and extensiveprovision for supporting

numerous types of perioheraldevicesand telecommunicationlines are all

necessaryfor effective implementationof an elaborateDBMS. Interactive

operation is also a requirement. We are not interestedin the question

of how small or inadequatea computing system can be "supported".

Some readersmay feel that the generalconceptof data banks and OBMSs

have already been overly constrictedby the foregoing discussionsand

definitions. As a practical matter, however, it is difficult to see where

one Can begin with much less bounding of the problem area. When one gets

to actual specificationsand design, many further limitations have to be

imposed.

FURTHER BASIC CONSIDERATIONS

Certain terms used in the definitions of the precedingsection were

neither intuitively clear nor defined. This was necessarysince the intent

was to first briefly encompassthe range of the subject.

Let us first distinguish betweendata entities and functions of sets

of entities. The definition of an attribute is normally an entity. An_item,

on the other hand, mayor may not be an entity but the set to which it

belongs is at any rate a function of a set of attributes. An entity must

have some form of identifier by which it can be referenced,and be extractable

as a unit when once located. The set of identifiers for all attributes

defining a set of items may itself be collected togetherand given an iden-

tifier, in which caseit has the formal structureof an attribute. However,

regarding it as such involves one in a logical morass. Rather, the identi-

fier for the set of attribute identifiers is effectively the referent to

the set of items. This is only the first of many exampleswhere great care

must be taken to distinguish between formal structureand conceptualstructur.e.

The following definitions will be useful.

A erimitive set is a set of datums deliberatelydefined for some pUP-

pose with fixed formats and specified values, arrangedin the form

of a set of items embracingor as though embracingone or more

attributes. The set of items and, optionally, the attributes

are given pre-definedreferentswhich have the statusof reserved

words, either in a languageor the meta-languagedefining it.

(One of the difficulties with a natural languageis that it is its own

meta-languageand hence ｣ ｾ ｾ ｯ ｴ be rigorously defined.)



-7-

A symbol is a characterstring restricted in form by conventionand

used as the name of something. A typical restriction is that the

first characterbe a letter, that only letters, digits and perhaps

one or two other characters(such as the period or currency sign)

be used, and that total length not exceed eight characters(some-

times six). (Less restrictive conventionsare also in use but

too much latitude createsproblems for both designerand user.)

Special charactersare characterswhich are given specialmeaning,

usually wherever they appear. The set of special charactersare

usually further differentiated into operators, punctuation,

flags, etc. (Their definitions are an instanceof primitive sets.)

The use of special charactersis unavoidableand no one would want to

do away with all of them. However, beyond those universally accepted--

such as the arithmetic operators, comma, and such like -- there is little

agreementon the meaning or desirability of further special Characters.

Their proliferation is limited by the availability of graphics on various

peripheraldevicesalth8ugh the number of availablegraphics has been

increasing. Unfortunatel.y theE'e has been little standardizationwith respect

to keyboard positions, internal codes, and local meaning (SUCh as typing

controls). Even the standardspecial charactersare often used with non-

standardｭ ･ ｡ ｾ ｩ ｮ ｧ ｳ or traditionally have multiple meaningsdependingon context.

The asterisk, for example, may mean multiplication, indicate a comment, be

used as a universal character,or, doubled, representexponentiation. One

cannot deny the naturalnessof thesevarious uses (except possibly the last)

but proliferation of specialmeaningsfor charactersleads to logical

snarls, or at leastuntidiness. Some languagesare built up carefully and

almost exclusively from special characters;if suitable to the purpose,

they may be highly efficient. However, such an approachseemsunsuitable

for a DBMS languagefor the generaluser. Perhapsthe cryptic nature of

some formal languageshas been the chief motivation for proponentsof

natural language.

It might be thought useful at this point to introduce the conceptof

. divisions into data banks, in the senseof main functional subsystems,

somewhatas in COBOL. One might, for example, define a languagedivision,

an operationaldiVision, and a data division. (Another main subsystem, the

underlying file system, is clearly necessarybut it is best kept below the

view of the user.) A seriousattemptwas made to use the idea of divisions

-- in fact, the three just mentioned-- even to the point of trying to base



a preliminary design of the DBMS in Part II on it. It proved to be

unworkablewhen details were examinedmore closely. It is true that a

system has what may be termed dimensions, and three important ones are

the command and control languageand mechanism, the operationsand func-

tions existing in executablecode, and the data files and other structures

upon which the system operates. However, theseare quite dissimilar things,

even conceptually. While it may be possible to conceiveof some super-

system which embracesthe various subsystemsas though they were special

casesof a unified formalism, this leads one into a number of difficult

problems in programming, computerscience, logic and probably other areas.

At best, the solution of these problems, however elegantin concept, must

lead to inordinate complexity in the actual routines which do the work.

The practical problems to be dealt within a DBMS are already severeenough

without further burdening the system for the sake of abstruseideas.

Furthermore, it does not appearthat the idea of divisions really helps

the user or leads him to a more orderly breakdownof his work and material.

If anything, on the contrary, it blurs distinctions which ought to be kept

clearly in mind.

(The writer once designedand implementeda large system for a different

but not unrelatedapplicationarea in which a similar kind of generaliza-

tion was largely achieved. The system was extremelydisappointingin a

practical sensebecauseof its inefficiency and continual respecification

of what was, in fact, already known. From B programmer'sviewpoint it was

elegantand flexible but it solved the implementer'sproblems, not the ｵ ｳ ･ ｲ ｳ ｾ

One can be deceivedby the apparentsimilarity of all coding in the imple-

mentation language. The use of standardizedtechniquesand structuresin

the implementationlanguageis to be recommended,even required, but these

often involve ｾ ｯ ｭ ｰ ｬ ｩ ｣ ｂ ｴ ･ ､ formalisms which the user of the system is unfami-

liar with and should not be required to understand. However, if these

formalisms inhibit the practical and efficient application of the ｳ ｹ ｳ ｴ ｾ Ｌ

the user has a right to complain. The user of a large system, particularly

a DBMS, is alreadydealing with a difficult problem area. The system should

assisthim with his problems without bUrdening him with the implementer's

problems. Of course, if a clever conceothelps both -- as occasionally

happens-- it should by all meansbe used. It appearsthat the idea of

divisions helps neither.)

We will restrict attention here to what would have been termed the

data division, i.e. the data bank proper. Some further considerationof



ｾＭ

referentsis in order. Even if theseare restricted to symbols, one symbol

will seldom be sufficient. It is probably impossibleand certainly undesir-

able to maintain uniquenessacrossall levels and data structures. Both

the meaning of a datum and the way it is accesseddepend on the relational

path by which it is reached. If the data bank is hierarchical, as has

already been tacitly assumed,it is possible to record the most direct

path from the root node to any physical entry by a chain of referentsymbols

or some kind of pointers. However, attempting to record these chains would

be silly since they would amount to a large set of predefinedidentifiers,

of varying length. Since they would not representthe type of relationship

frequently required, even a large set of them would representonly a small

fraction of the desired possibilities.

The above difficulty is resolved by recalling the distinction between

an attribute name (and form definition) and an attribute value, and by the

use of inferior sets rather than echelons. The inferior-set organization

endows the data bank with an unambiguousform of hierarchy which distributes

values in such a way that only inseparablerelationshipsare recorded. That

is, the form of physical paths through the structureis ｦ ｩ ｾ ･ ､ but the pos-

sible paths are very large in number and efficient on the average. The

attribute definitions are maintainedat just the point where they are needed

and apply to the most nodeswithout duplication. This position is at the

unique connectionof a node to its inferior set. If the idea of a key attri-

bute is introduced here, physical paths are then uniquely defined. One can

then searcheither strings of attributesby name, to locate a set, or strings

of values to collect membersof an implicit set. The assignmentof the key

attributesis critical of courseand representsa restriction on the generality

of structure. However, since each one applies to only one (homogenous)

inferior set, the restriction is minimal. This concept is elaboratedin

detail in Part II and defines the fundamental ｯ ｲ ｧ ｡ ｮ ｩ ｾ ｡ ｴ ｩ ｯ ｮ of the data bank.

There is still a large question left as to the order in which a complicated

searchcommand should be executed,and to what extent, if any, this should be

intermixed with parsing and interpretationof the command. But this problem

is close to the surfaceof the DBMS and can be improved independently,

without altering existing data structures.

ON ALLOWABLE KINDS OF DATA AND OPERATIONS ON IT

At first glance it would appearimpossible to circumscribeallowable

kinds of data and operationson it without seriously reducing the generality



-10-

of a DBMS. Yet it seemsthat this must somehowbe accomplished. We

begin by dividing the problem into parts, a not very novel idea.

There is, first, the matter of form which has two aspects:external

or graphic form, and internal or coded form. Although not completely

trivial, this aspectcan be taken care of fairly easily.

Second, there is the matter of content. One's first reaction to

this is possibly the snip reply that we don't care what the content is

as long as there'snot too much of it. On more careful thought, however,

contentmust be consideredif only in a negativeway. Voluminous data

or preliminary studieswhich cannot be abstractedand organized in some

fashion to give meaningful "handles", so to speak, cannot be much helped

by a DBMS. That is, content does have implications for the third matter

of our concern, namely, the induced structurewhich the DBMS must,beade-

quate for. This conceptualstructurebecomesa kind of generalizedsyntax

for the material being organized.

Fourth, there is the matter of useful operations. These are not as

diverse in practiceas might first be thought. The form of data restricts

the range of operations. The widest range of operationsand functions is

for numerical data but this is also the easiestto deal with and to pass

to external procedures,if necessary,using standardor easily definable

conventions. The DBMS need not accept responsibility for the interpretation

or validity (other than for arithmetic and a few standardfunctions) of

numerical transformations. It is sufficient to produce the requested

inputs and to re-file the proferred results.

Fifth, as just implied, there is a distinction which should never be

forgotten betweenvalid handling of data and valid interpretation. We

contend that no mechanisticsystem can impute meaning to data or deduce

interpretations. Data meansat most what the user says it means (often

less). The DBMS need not be concernedwith meaning or interpretationbut

only with formal relationships. This introducesa large divisor between

the possible range of applicationsand the necessaryrange of processes

which must be carried out.

Sixth, there is the matter of the style of language,which has impli-

cations in restricting the range of operations. We are preparedto be

quite arbitrary, though hopefully consistent,with regard to languagestyle.

There are two kinds of restrictions: those that prevent unnecessarily

complicatedor difficult-to-executestatements,and those that deprive the



-11-

user of desired capabilities. Within reason, the latter restrictions

should bp. avoided. The former seem allowable; it is impossible to satisfy

everyone'stastesanyway and legitimate restrictionsshould not be shied

away from. It is always possible to build superstructuresfor convenience

on a clean language.

Seventh, and finally, the possibility of special versionsshould be

provided for. Almost any larqe application is likely to have special

requirementsfor which special provision should be made in the basic pro-

grams. This is not a suggestionthat everyone tinker with the system or

that it should be necessaryin general. But large, complex applications

will almost surely have a life of many years and the expenseof a special

version may be very low when amortized over its lifetime. This depends,

however, on clean design in the first place.

In the following sections, the above aspectsof the problem will be

dealt with in more detail ｴ ｨ ｯ ｾ ｧ ｨ not strictly organizedas numberedabove.

DATA CONTENT

Ignoring for the ｭ ｇ ｾ ･ ｮ ｴ the distinctions betweenmere datums and data

to which some meaning can be imputed, how varied Can data content be?

If one approachesthis question from the standpointof subjectmatter,

there are virtually no bounds. Subjectmatter, per se, however, is of no

consequenceto the design of a generalDBMS. Nevertheless,some SUbjects

normally have a semanticcontentwhich is more readily organized than others.

Stastisticaldata, for example, is more manageablethan textual reference

material though one subjectmay involve both. Textual material is itself

quite diverse; it might be reasonableto put a handbookfor a scientific

area in a data bank but hardly a history book. At least some kind of

indexing 8asedon key words and phrasesmust be possibleand even then

inclusion of an entire documentmay be impractical and unnecessary. Refer-

ences to encyclopaediasmight be suitable content in a data bank but not

the encYclooaediasthemselves. It must be admitted that some degreeof

arbitrarinessaopearsinvolved here. It is not inconceivablethat someone

might find it useful to have an encyclopaediacomputerized, but a special

system would be more suitable for such a purpose.

The problem of abstractingmaterial from scientific and scholarly

material is a very difficult one. Even professionalsin this area don't

seem to always do a very effective job which no doubt reflects more the

difficulty of the task than on their competence. It would seem foolish



-12-

to attempt to make a contribution to so difficult an area in a DBMS. The

most that seemsfeasible is to mechanizethe techniqueswhich abstractors

would find useful in their work or use in presentingtheir results. Thus

a request to a DBMS to find all referencesto, say, "energy supply" in the

entire data bank would be a very inefficient use of the system unless

referencesunder such a heading, perhapsunder severalsuperiorheadings,

had previously been created. It is true that computer programs exist --

for example, context editors -- which will quickly find all occurrences

of any string in a body of material, but the volume of data through which

they search is comparativelysmull, usually no more than a few thousand

characters,and the organizationis simple. At around 100,000 characters,

perhapsthe equivalentof 50 typewritten pages, search time begins to be

quite noticeable.

Should the user then be required to separatehis material into distinct

classes,with clearly statedhierarchicalorganization? Most DBMSs require

this and there are severaladvantagesas well as the apparent ｮ ･ ｡ ｾ ･ ｣ ･ ｳ ｳ ｩ ｴ ｹ Ｎ

A possibledisadvantageis that it may make it difficult for others than

the developerto use the data bank but, first, this can be overcomeby the

ability to display organizationalstructure, and second, what other approach

would make it easierfor an unfamiliar user. A very important advantage

is that the developerof a complex data bank ｾ organize the material if

the result is to be worthwhile. The DBM6should aid in the processbut not

be required to give good servicewithout it.

The usermust, in fact, organizehis material in two ways: the concept-

ual structurewhich only he can createthough with assistancefrom the DBMS,

and the separationof different fonns of material which require different

handling and which the DBMS can enforce. A discussionof foroms will clarify

the latter point.

DATA FORMS

As previously stated, data must be consideredin both external and

internal fonns. Externally, it must also be further differentiated in part

according to whether it is input or output. A graph, for example, can not

be input and stored as such but can be output. Some output data appears

the way it does by virtue of a peripheraldevice, such as a plotter, and

is not properly an output of the DBMS itself. However, it is a waste of

time to be too picayune about such distinctions.

How many external forms for input are reasonable? Actually, not many,



-13-

and some distinctions are mere technical details, such as fixed-point

versus floating-point numbers. From one point of view, the following list

covers all reasonablepossibilities:

1. Statementstyped at a terminal which are structuredbut may contain

commands, numbers and some amount of text.

2. Computerizedinput files (tapes, cards and disks primarily) con-

taining arrays of numbers, possibly with some symbolic indicators.

3. Computerizedinput files containing larger amounts of text, perhaps

with some editing or indicative information.

4. Mass transfersfrom anotherdata bank.

There are variants of some of these, such as input via remote telecommuni-

cation, possibly use of a light pen or an optical scanner,or the output

of anotherprogram, but theseare not fundamentaldistinctions. If pro-

grams, per se, are to be dealt with, there are two possibilities: source

code to be put in the data bank itself, and executablecode for extending

operationalcapabilitiesof the DBMS. The first does not pose any problem

different in kind from other textual data; it is probably even simpler to

organizeappropriatereferencerelationships. Executablecode, on the

other hand, does posetechnical difficulties but, hopefully, thesewill

not be insurmountablethough certain restrictionsmay be required. In

this connection, one must distinguish betweenmacros in the languageof

the DBMS itself, and linkage by the DBMS to an executablelibrary of routines.

On the output side, the four types of input mentionedabove all have

equivalencesand, in addition, forms such as graphic displays, plotted

material, and possibly others are desirable. However, most of the addi-

tional forms are in the nature of post-processingof data produced by the

DBMS proper, that is, they can be added to the basic system as required.

General format control for printed output should be in the DBMS itself.

Internally, the major dichotomy is between rather stereotypedstruc-

tures used in the command languageand the varied forms in the data proper.

These should have an obvious relationship, however, and some overlap in

form. The first requirementfor the data is the ability to store items

which are entities but which have a mixed-modesubstructure. This implies

at least two more capabilities: some way to describethe format of the

substructure,and some way of relating the items to subjectmatter. These

obviously have implications for external syntax as well -- there must be

some way to specify these things and the way should seem natural. It is

probably to be recommendedthat stereotypedformat descriptionsbe used

(except for report generation). This turns out to be natural for the

definitions of attribute forms once the allowable datum forms are defined



-14-

and given labels. No practical limitation need be made. A relatively few

forms can accomodatealmost any reasonablekind of datum. There are some

limitations of a different kind, however. Many itemfi will have associated

data which may be fairly voluminous, such as a matrix, a table or actual

text. The case of actual text is the most difficult since it is uncertain

how to store an unstructuredand unknown amount of input. It can be done

but it would seem reasonableto impose a fairly low upper limit on any

one such body of text. Searchingshould be done on abbreviatedrelational

and indicative data, with associatedpointers to voluminous data, the latter

being stored separatelyand retrievableonly in large units. As an analogy,

it is usually better to consult a card index in a library rather than wander-

ing through the book stacks. However, the ability to do some amount of

browsing may be desirable.

The questionof packing sparsedata is also important. For example,

supposeten different attributesare embracedby a set of items but, on

the average,six of them are void. Without packing, fiJojo of the storage

spaceis wasted (though packing eats up some fraction of the saving).

Packing in itself is not so much of a problem but both updating packed data

and searchingit can be awkward and inefficient. Perhapsthe best that

Can be done is to allow the user an option as to whether packing is reason-

able or not, at least for arrays attachedto an entity. If identifying

attributesare often void, it is QUestionablewhether the defining set of

them is properly defined itself.

These are some of the considerationswhich must be taken into account

in detailed design. We must pass on now to other aspects.

INDUCED STRUCTURES AND OPERATIONS ON DATA

To illustrate the conceptand problems of induced structure, let us

considera small example. Supposea personnelfile consistsof items,

which are entities, with the following twelve fields:

name, exmplyee no., social security no., sex, data of birth,

department, title, salary, fixed deductions,dependents.

(Severalmore would be required in a real personnelfile of course, but the

above is sufficient for illustration.) First we note that different formats

are required for the fields. Down through salary, thesecan be fixed for

all employeesalthough "name" would then require maximum length which would

be neededfor only a very few. (The wastagecould easily average10 char-

actersper person.) But "fixed deductions"and "dependents"require sUb-

structuresof their own unlessonly totals are recorded; this might be



-15-

sufficient for "dependents"but hardly for the other. 50 already there is

a problem of storageorganization. There are, of course, many solutions

to it but they all complicatesearchingof items, especiallyfor particular

attribute values. If one is concernedonly with the personnelfile, some

"best" organizationcan be determinedstatistically, but how can this be

done for a generaldata bank and how many rules can a DBM5 support?

5econd, only the secondand third fields are absolutelyunique to the

real individual, and hence to the file; even namesmay duplicate. At the

same time, no field will have consecutivevalues over items no matter how

the latter are sequenced.

Third, there are several possibleorderingsof the items which are

"sensible": alphabeticallyby name, monotonically increasingby employeeno.,

major by grade, major by department,minor by name within department,and

so on. Only ordering by employee no. (if assignedsequentiallyover time)

will guaranteethat no insertsneed be made, although deletionswill be

required.

Such problems are familiar enough to anyone who has had to deal with

such files. But our personnelfile is essentiallythe simplest kind

possible; it is quite homogeneouswith only a couple of possibleexceptions.

5upposeit is stored in order on employee no. but we chain togetherall

employeesin the same departmentand also with the same grade. First we

must decide on the order of chaining. Perhapswe want a departmentchained

alphabeticallyby name, and grade by department. We have then induced two

more sUbattributes,"after" and "before", to each of the attributes"grade"

and "department"and fields must be provided for each in at least one direc-

tion. Furthermore, anchors for these chains, for each departmentand each

grade, must be provided. Already the overall structure, both conceptually

and mechanistically,has taken a quantum jump in complexity.

Of course, the above requirementscould be satisfied in other ways

such as searchingand sorting. Indeed, the ordinary user would probably not

considerchaining but would siQlply request, for example, "all employeesin

departmentxyz, alphabeticallyby name". If chaining had not been done,

the implied searchand sort would be the only way to get the information.

5uppose, however, that chaining had been done but this user didn't know it.

Should the DBMS be able to take advantageof the chaining automatically?

This might not be unreasonableif the attributesand any subattributeswere

properly recordedinternally. What would be too much to ask is that the

DBMS be able to do the chaining automaticallywhen the items were stored,



-16-

that is, without specific instruction.

A departmentmanagermight want merely an up-to-date listing of his

employeesbut, more likely, some executivewould want a distribution-by

departmentof salariesand perhapsother attributes like sex and ｬ ｾ ｣ ･ (or

whatevercircumlocation is in vogue). This leads us to the question of

what standardfunctions should be provided. Should "distribution by ••• "

be available or must someoneprogram it from more basic operations? In

the latter case, if the requestwere frequent, it would be desirableto

store the program as a new operation. In one situation, a decision could

be made but if we turn to other kinds of data, an entirely different type

of operation is needed. For example, if one is dealing with sets of en-

codings which must be combined in various ways, operationslike concatena-

tion, masking and symbolic incrementingare needed. Again, for some kinds

of data, one wants means, standarddeviations and other statistical tools.

The four arithmetic operations,squareroot, exponentialsand logarithms,

and similar basic tools are frequently needed.

The criteria for primitive operationsshould probably be generality

and difficulty of programmingwith any others built up as storablemacros

or accessiblein a subroutine library. With this approach, the content

of the basic routines in the DBMS can be minimized and specialized,providing

robustnesswithout excessivesize. The basic and general operationsand

functions usually require more polished implementationthan more comprehen-

sive functions. For example, squareroot can be programmedfrom the arith-

metic operations(indeed must be at some level) but an efficient and robust

squareroot routine is not trivial to program. Even the arithmetic opera-

tions for mixed modes and precisionsare rather complicated. (Compilers

hide all this from the averageuser of a higher-level language.) However,

given general summation, counting and squareroot, the mean of a set of

values is trivial to program. In the caseof symbolic operations,such

things as masking, concatenationand symbolic incrementingare tricky to

code but, given such primitive capabilities, quite complicatedsymbolic

functions are readily programmed. The set of primitive operationsshould

be much larger than those mentionedabove, of course, but not excessive.

Rather than trying to be too comprehensive,optional inclusion of both user-

defined macros and standardor usep-providedsubroutinesshould be made

easy and workable.

Desirableas it might seem to be able to extend the set of primitive

operations, that is, by the user, this not only leads to severeimplemen-



-17-

tation problems but requires the user to be aware of and take into account

numerousconsiderationswith which he is most probably not familiar, and

should not be required to be. As previously remarked, when special situa-

tions justify special versions of the DBMS, they should be createdby those

who are familiar with internal intricaciesand can guaranteereliable use.

EPILOGUE TO PART I

Clearly much more could be said on any of various parts of the subject

raised in the foregoing sections. Equally clearly, not all readerswill

be satisfied with what has been said and this includes the writer. Still,

no purposeis served by endlessdiscussion. At some point, the principles

and suggestionselicited by discussion(albeit a monologue) must be tried

and the results evaluated. It seemsthat that point has been reached.

In Part II, a design for a DBMS will be presented. Some concepts

presentedvaguely or by mere referencein this part will be given greater

precision as a matter of course. Other featureswill appearwhich have

not been discussed. Son,e will be justified, others will be left to the

reader'sown evaluation.

Order of presentationis itself a problem. No justification or explan-

ation for the order used will be given in Part II. The writer has followed

what seemedto him a logical sequencewhich minimizes the number of terms

used which, at any point, have not previously been explained. It does not

seem possible to find any order in which this can be completely avoided.

When seriousmisunderstandingappearspossible, forward referencesor interim

definitions are used.


