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INTRODUCTION

The application of a certain rule, even if always success­
ful in practice, confronts very strong psychological barriers if
it lacks a certain logical frame linking it causally to the body
of accepted knowledge.

Phenomena rooted in social behavior are always very diffi­
cult to "explain" in such a way, because if we rely too much on
the basic, irrational, and stochastic roots of our decisions,
then the explanation is rejected as "too mechanistic".

If on the other hand we rely on the perception people have
of themselves, as rational and wise decision makers, then we
fall into a maze of ad hoc explanations that strongly resembles
local politics.

Economists, who have faced a much similar problem, have made
a great, partially successful, effort in describing and organi­
zing the monetary measurables of human activity. Although they
too miss primary causes they can introduce concepts of minimiza­
tion and optimization which permit choices and structuring of
the systems.

Our attempt to "hook" the market penetration rules to the
accepted scientific $ystem have followed both routes.

Fleck takes the stochastic "irrational" view. Social pro­
cesses, and introduction of a new technology is a social process,
are seen as the envelope of a maze of tiny decisions, causally
unrelated, and, like nails in the path of a falling ball, slowing
down its chute and "diffusing" its landing point. A good social
example of this process is given by the diffusion of an infection
e.g. the common flue. Although in a case-by-case analysis the
biologist can give a fair causal description of the process, the
contacts that lead to the diffusion are within another realm of
causality and are better described stochastically.

Learning processes are well described in such a way, and
they yield logistic curves. Fleck then visualizes the diffusion
of a technology as a social learning process under constraints.
The stability of the curves is a mark of the stability of man
and society as learning structures.

The weak point of the theory is that the critical parameters
have to be measured post hoc, and they are not reducible to other
measurements that could be made before the penetration is initi­
ated.

Peterka on the other hand follows a more classical route,
taking economics as a driving force. He assumes that an industry
to expand has to generate profits. External capital can produce
some time-shifts, providing actual money for expected gains, but
the picture is not much blurred.
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Consequently, as substitution is driven by differential
growth rates, these rates must be driven by differential profits.
Perhaps a weak point of this theory is that differential profits
must be constant (if smoothed) over long periods in order to pro­
duce well-behaved logistics. This feeds back to regular progress
curves and automatic price leveling.

We can invert the reasoning and look for the stable progress
curves and price leveling whose existence can be postulated from
the very regular evolution of market penetration curves. This
would greatly add to our understanding of the system.

The treatment by Peterka is quite general and produces
curves which can specialize as logistic, but may also have more
complex expressions. In general, the "graininess" of the data
does not permit to distinguish between the various curves, and
we usually stick to our logistic, which has the great advantage
of straightforward simplicity.

Altogether we think that the basic objective of the grant
has been fulfilled. We explored the field experimentally showing
the great efficiency of our model in organizing data, and we
tried two ways to bring its working under logical scrutiny.

The fact that during this operation we have presumably
generated more problems than we solved is a good indication that
we are plowing a fertile field.
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Macrodynamics of Technological Change:

Market Penetration by New Technologies

v. Peterka

1. INTRODUCTION

Abstract mathematical models appear to be powerful tools

in forecasting the future. It seems that there are two main

reasons for their growing popularity and for growing endeavor to

build mathematical models for more and more complex processes.

First, mathematical modeling makes it possible to decompose

human reasoning into simpler steps and to express it in quantita­

tive terms. In this way mathematical models help the forecaster

to be objective and to avoid unintentional bias due to his natu­

ral efforts to make the future what he wants it to be.

Second, once a model is found and verified it gives a better

insight into and a better understanding of the process studied,

and, what perhaps is most important, also shows how the future

6evelopment of the process can be influenced and controlled.

However, any mathematical model and any mathematical theory

can be only a simplified image of the objective reality or of the

laws by which the reality is governed. A very detailed and

thorough model may even be undesirable if it is too complicated

and difficult to apply. A good mathematical model should have

the following properties.

It should reflect the relations that are most important

for the purpose for which the model is built. The

difficulty is that usually it is not a priori clear which

relations are important and which can be neglected.

Therefore the development of a model is, as a rule, an

iterative and learning procedure.

It should be as simple as possible. By simplicity is

meant here, first of all, the low number of parameters
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that have to be determined. Mathematics supplies the

model builder with an immense number of possibilities

for describing a particular relation. However, only

a correct choice of the structure of the model makes

it possible to reduce the number of parameters by which

all possible cases can be characterized and to minimize

the number of exogenous quantities and variables. The

choice of the model structure is perhaps the most crit­

ical step in model building.

It should be based on assumptions that are well under­

stood. As any model can be only an approximate descrip­

tion of the complex reality, it is true that assumptions

are made to be violated. However, the simpler and

clearer the assumptions are, the better the judgment

that can be made about the reliability of the answers

the model can give to our questions.

In general it may be very difficult to meet all the require­

ments formulated above and there is no unique way how to proceed

optimally (if any optimum exists at all). Model building is and

always will remain an art and a game: an art in how to combine

mathematics, intuition, sound reasoning, and experience (one's

own and of predecessors); a game between the human intellect and

nature based on the rule of trial and error. This is what makes

the mathematical modeling of the real world so attractive and

exciting.

This paper deals with mathematical modeling of the dynamics

of interaction between society and new technologies. The progress

in technology can be viewed as a continuing historical process

during which existing forms of satisfaction of human needs are

replaced by new and superior ones.

Reliable forecasting of technologic~l changes is surely of

great interest for corporations and producers planning their

activity and looking for new opportunities. However, it seems

that the understanding of the diffusion of new and emerging tech­

nologies may be of much broader importance. Considering that man

has few basic material needs to be satisfied--food, clothing,

shelter, defense, transportation, communication, health care, and
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entertainment--one can regard the material development of society

as a sequence of substitution processes, or as a single multi­

variate substitution process with many technologies sequentially

entering and leaving the process.

The impulse for this study was given by the work of Marchetti

[1,2] who also oriented the author's attention toward the empirical

model advanced by Fisher and Pry [3,4] for the case of two com­

peting technologies. Inspite of a very low number of parameters,

the curves generated by these models fit the known historical

data with a precision which is much higher than one is used to in

the modeling of economic and social systems. The main objectives of

this study are:

To explain the existing empirical models and rules which

appear to fit the historical data, and to define the

conditions under which they hold.

To find a law governing multivariate substitution pro­

cesses, i.e., with any number of competitors.

To develop algorithms and computer programs for fore­

casting of substitution processes and for estimation of

model parameters from historical data.

To find formulae making it possible to calculate the

model parameters on the basis of the economic assessment

of a new technoloqy in order to be able to incorporate

the newcomers also in the model.

To develop a probabilistic model of the substitution

process, making it possible to describe and evaluate the

accuracy of forecasting.

To apply the model to substitution of primary energy

sources in world energy consumption, to verify the model

on historical data (wood, coal, oil, natural gas), and

to show how the possible role of a new energy source

(e.g. nuclear) can be forecast on the basis of objec­

tive and quantitatively well defined data.
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The paper is organized in the following way.

In Section 2 existing empirical models of substitution

processes are briefly reviewed and discussed. Several examples

are given to illustrate the problem and to point out some im­

portant facts.

The approach adopted in this study is based on a differen­

tial equation formulated in Section 3. This equation reflects

the long-term balance of capital flows governing the production

using one of competing technologies. A system of such equations

describes the multivariate competition and the introduction of

market shares makes it possible to eliminate the market price.

Following this basic idea a simple model is derived in Section 4,

which can be considered as an extension of the Fisher-Pry model

to the multivariate case. This model is derived under certain

simplifying assumptions; they are removed in Section 5, where

a more general model is presented. As a closed analytical solu­

tion does not exist in this case an algorithm is developed which

solves the problem numerically in a very effective way.

The question how the information about the model parameters

can be extracted from known historical data is studied in Section

6. To be able to answer this question in a consistent way, it

was necessary to extend the deterministic models developed in

previous sections to a probabilistic model. The problem of

parameter estimation is solved in detail including the numerical

algorithms and practical examples.

The problem of forecasting is addressed in Section 7. It

is shown how the uncertainty of model parameters can be respected

in forecasting and how a new technology can be incorporated in

the model using its economical assessment. This is demonstrated

on the forecast of market penetration by nuclear energy.

In the concluding Section 8 the range of validity of the

model is discussed from a general point of view and some further

possible applications are outlined.
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Technical details of mathematical character, which have

been omitted in the main text to make it easier to follow, can

be found in Appendix A in the form of mathematical theorems and

proofs.

In Appendix B a simple and effective optimization method is

developed. It is applied in maximum likelihood estimation in

Section 6.

The main practical results of the theory presented are con­

densed in FORTRAN - subroutines the commented listings of which

can be found in Appendix c.

2. FISHER-PRY EMPIRICAL MODEL

Perhaps the first systematic attempt at forecasting tech­

nological changes based on a mathematical model is due to Fisher

and Pry [3,4]. They collected historical data on a wide variety

of substitutions and advanced a model which fits existing data

remarkably well. The results of Fisher and Pry's investigation

apply to two competing technologies of commodities fulfilling

the same need. The essence of their work can be stated as follows.

Let f, (t) be the fraction of market occupied by the commo­

dity produced by the first, old technology at time t and f 2 (t)

the fraction of market penetration by the second, new technology

at the same time.

(2 • , )

If the observed values of f 2 are plotted as a function of time

the plot follows with a high regularity the S-shaped curve given

in Figure ,.

This curve can be described by the following formula:

(2.2)

----~--- - -where t h is the time at-which the half of the market is penetrated,

f 2 (th ) = f, (th ) = i. For given t h the entire substitution process

is determined by a single parameter c 12 which is denoted in the
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original paper as 2a; we changed the notation to be compatible

with the rest of the paper where more than two competing techno­

logies are considered.

1

0.5

o

I
I
I

--t----
I
I
I
I

t

Figure 1. Logistic curve.

The fraction f 1 (t) can be obtained simply as a supplement

to one according to (2.1), or formally from the formula (2.2) when

the indices 1 and 2 are interchanged and the relation

(2 .3)

is used.

The relation (2.2) can be rearranged in the following way:

(2. 4 )
1-f2 (t)

or

(2 • 5 )

This indicates that the substitution data, when plotted in the

form of f 2/(1 - f 2 ) as a function of time semilogaritlunically,

should form a straight line. This appeared to hold with ex­

traordinary precision for a wide range of cases investigated.
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Fisher and Pry defined the "takeover time" of the substitu­

tion as the time period t s required to transfer from f 2 = 0.1

to f
2

= 0.9. It is easy to find that the takeover time t s and

the parameter c 21 are related in the following way:

2 (t - t
h

)
If the dimensionless time T = is introduced, for-

ts

mulae (2.2) and (2.5) can be written in the following parameter­

less forms:

This makes it possible to plot different substitution processes

into a single graph. Fisher and Pry have done it for 17 sub­

stitutions listed in Table 1. The result is shown in Figure 2.

For more details the reader is referred to [3]. Here, we will

point out only that the main outliers in Figure 2 concern the

synthetic/natural rubber substitution and are due to the per­

turbation that occurred during the Second World War when large

effort was undertaken to support the sUbstitution. This is

clearly seen from Figure 3 [3].

A very important feature of the Fisher-Pry model is that

it describes the evolution of the fractional market share and

not the total production of the particular commodity. While the

total production may be influenced by various and often unknown

external factors the evolution of the fractional market share ex­

hibits nice regularity. This can be clearly seen from the ex~

amples in Figures 4 and 5. The line for steel production in the

USSR indicates that the model may be valid also for societies

with planned economies.

For later use some other possible forms of the Fisher-Pry

substitution model will now be given.
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Table 1.

Substitution

Synthetic/Natural Rubber

Synthetic/Natural Fibers

Plastic/Natural Leather

Margarine/Natural Butter

Electric Arc/Open Hearth
Specialty Steels

Water Based/Oil-Based House Paint

Open Hearth/Bessemer Steel

Sulfate/Tree-Tapped Turpentine

Ti0 2 /PbO-znO Paint Pigments

Plastic/Hardwood Residence Floors

Plastic/Other Pleasure Boat Hulls

Organic/Inorganic Insecticides

Synthetic/Natural Tire Fibers

Plastics/Metal Cars

BOF/Open Hearth Steels

Detergent/Natural Soap (US)

Detergent/Natural Soap (Japan)

t
s

Years

58

58

57

56

47

43

42

42

26

25

20

19

17.5

16

10.5

8.75

8.25

1956

1969

1957

1957

1947

1967

1907

1959

1949

1966

1966

1946

1948

1981

1968

1951

1962
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Suppose that we start to count the time t at the moment when

and f 2 (0) (2 • 6)

From (2.4) we have

and the formula (2.2) can be written as follows:

1
f 2 (t) (2 • 7 )
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The Fisher-Pry model can also be written in the differential form

(2 .8)

The formula (2.7) is actually the solution of this simple non­

linear equation of Bernoulli type for the initial conditions (2.6).

The substitution process with two competing commodities may

also be described by two differential equations

(2 • 9)

Notice that the relation

. .
f 1 (t) + f 2 (t) == 0

holds if (2.3) holds. It means that the condition (2.1) is ful­

filled for any t if it is fulfilled for one particular t, e.g.

t == o. This observation may seem somewhat redundant in this

simple two dimensional case. Its importance will be seen later

on when we shall deal with multivariate substitution processes.

Several modifications of the Fisher-Pry model have been sug­

gested [5-10] but they don't seem to be substantial, at least

from the point of view of this study.

Marchetti [1,2] brought up the idea of considering different

primary energy sources as commodities competing for a market.

In the historical period of interest there are at least three

or four primary energy sources in the competition and the Fisher­

Pry model cannot be directly applied. To handle this case

Marchetti, after an analysis of known historical data, suggested

a rule called "first in - first out." According to this rule

both the technology leaving the market and the newcomer follow

the Fisher-Pry straight line (2.5), the former with positive

the latter with negative slope, while the fraction of the oldest

among the growing ones is determined as a complement to 1. In
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this way he was able, using data before 1940, to predict the

fractional market share of oil consumption in the USA up to

1970 with a precision better than one percent. See Figure 6.

o CALCULATED VALUES

A STATISTICAL DATA

f
1- f

.156
.138

.123

.103
10-1L-....L---4__---+__-+__--l-__--I--_--"--+-_

1930 1940 1950 1960 1970 1980 1990

Figure 6. US oil energy fraction calculated from
. 1930-1940 trend lines.

.;;; [91~ource: _

When we try to summarize the present knowledge of the substi­

tution processes, mostly based on experience, several questions

arise naturally.

(1) The fractions of market share exhibit a much higher

regularity than the absolute values of particular productions.

Why is it so?

(2) The equation (2.8) says that "the fractional rate of

fractional substitution of new for old is proportional to the

remaining amount of the old left to be substituted" [3]. This

was asserted by Fisher and Pry as a basic assumption. How can

such an assumption be justified? Obviously, it cannot be true

for more than two competing commodities.
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(3) The parameter c 21 = -c 12 ln equations (2.2) and (2.9)

is a characteristic of the difference in quality of two compet­

itors. From the second equation in (2.9) it can be seen that the

newcomer f
2

never can penetrate the market if c 21 < O. Even if

f 20 > 0, it will die out. (Remember the competition between air­

ships and airplanes at the beginning of this century.) What does

this coefficient depend on?

(4) The previous question was partially answered by Mansfield

[9] who showed that the rate constant was positively correlated

with profitability of the new technology and negatively influenced

by the relative capital investment needed to introduce the new

technology. The question whether this relation can be established

quantitatively is of extraordinary importance. If the answer were

positive it would not be necessary to wait for historical data and

the chance of the new technology could be evaluated in advance and

also the evolution of the competition could be precalculated giv~n

the time instance when the new technology is introduced. For in­

stance, it would be possible to determine under which conditions

solar energy may enter the market and what role it will play.

(5) Considering the case of more than two competing techno­

logies it does not seem likely that the evolution of the looser

and the newcomer could be entirely independent of the competitor

being in transition. Apparently, the Marchetti rule "first in ­

first out" is a well working approximation of a more general law.

What is this law?

(6) The existing substitution models are fatalistic in the

sense that they project the future as uniquely predetermined by

the past history. An interesting discussion on technological fate

can be found in [2]. Is this fate inevitable? A positive answer

can hardly be accepted in general. What can be done if the normal

competitive technological evolution would lead to drastic ecolo­

gical changes or if it would threaten the existence of mankind
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itself? What is the best way to control the substitution pro-

cesses?

All these questions will be addressed and hopefully also

answered, at least partially, in the following sections.

3. BASIC EQUATION

Let P. (t) be the production of the ith competing commodity
1

in time t. By production we mean the number of units of the

particular commodity produced in the unit of time. What unit is

chosen to measure the production is not important at this moment.

For instance the steel production can be measured in tons per day,

in the case of electricity a megawatt can be chosen as a unit of

production.

Consider a finite time interval in which the production was

increased from P. (t) to P. (t+~t). To realize this increase of
1 1

production a certain investment was necessary. Let this invest-

ment be

a. [P. (t +~t) - P. (t) ]
1 1 1

where a. 1S the capital needed to increase the production by a
1

unit and will be called specific investment. In a· also the in-
1

vestment for distribution of the product is respected. Any unit

can be chosen to measure the capital and/or investment. The

reader may consider a monetary measure if he wants. Later on it

will be seen that only ratios are important.

The investment must be covered from some capital sources. One

of the possible sources is the capital accumulated by the producer

during the time period

t+~t

f
t

P.(t)[p(t) - c.]dt
1 1

where c. are specific production costs and p(t) is the market
1
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price. By. specific production costs we mean all expenses con­

nected with production of a unit of the given commodity including

amortization of the material goods used in production and even­

tually also the tax set on the product by the government.

Let Q. (t,6t) be the external capital which was extended to
1

the producer from outside. It also may be, for instance, a

governmental support given to the producer, if there is some

public interest in the production of the given commodity.

Making a balance, we can write

t+6t

a i [P i (t+6t) -Pi(t)] = f Pi(t) [p(t) -ci]dt + Qi(t,6t) + 6 i (t,6t)

t

( 3 • 1 )

where 6 i (t,6t) is either the part of the capital which was kept

by the producer to be invested in the near future, in this case

6. is negative, or it is a part of the capital which was accumu-
1

lated in the past and is invested in the time interval under

consideration.

The equation (3.1) can be rewritten into the following form:

t+6t

f laiPi(t) -Pi(t)[p(t) -ci ] -qi(t)!dt =
t

where

6. (t,6t)
1

(3. 2 )

p. (t)
1

d
=dtPi(t)

and q(t) is the external capital flow defined by the relation

t+6t

Qi(t,6t) = f q(t)dt

t
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When t and/or 6t are changing the right-hand side of equation

(3.2) takes different values, positive and negative. As we are

interested only in long term behavior of the process studied,

6. (t,6t) in (3.2) can be considered as a random variable with
1

zero mean and instead of (3.2) we can write

t+6t

f la.i>. (t) - P. (t) [p(t) - c.] - q. (t)i dt = 0
111 11\

t

(3 . 3)

Strictly taken, the variable p. (t) in (3.2) should be distinguished
1

from the equally denoted variable in (3.3). In (3.2) it means a

realization of a random process while in (3.3) it is used to de­

scribe an abstract "smoothed" process which is of main interest

from the viewpoint of our goals. The stochastic nature of the

true process will be considered in more detail later on when we

shall deal with estimation of model parameters from historical

data and with uncertainty of forecasting.

As the integral in (3.3) is equal to zero for any t and 6t

the following differential equation must hold

.
a.P. (t) = P. (t) [p(t) - c.] + q. (t)
11111

This is the basic equation we shall deal with.

(3. 4 )

The equation (3.4) contains the market price p(t) which is

a very uncertain variable depending on many external and often

unknown factors. It should be stressed that we have introduced

this quantity only as a separator to be able to formulate the

economical balance separately for different competing productions

of commodities satisfying the same or similar need. It will be

eliminated and will never enter our model. This is perhaps the

main trick of the further development of the substitution model.

In the case of societies with planned economies, where no

open market exists, the market price p(t) can be understood as a

social value of the considered commodity for the present deploy­

ment of technologies.
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4. MULTIVARIATE COMPETITION

In this section we shall consider the situation when n pro­

ducers produce commodities satisfying the same need but they use

different technologies. We shall derive a multivariate substitu­

tion model, a special case of which, for n == 2, is the Fisher-Pry

model reported in Section 2.

To start a production with a new technology some investment

must be made using external capital sources. No technology can

start from zero without external help. This can be clearly seen

from equation (3.4). However, if the new technology has been al­

ready established and is viable, it must be able to live and grow

on its own account. In this section we shall assume that none of

the competing technologies is permanently supported by external

capital. These conditions can be defined mathematically in the

following way.

q. (t) == 0
l

Vi t > t o ( 4 . 1 )

For n competing technologies we have n equation of type (3.4)

a.p.(t) ==P.(t)[p(t)-C·]i
l l l l

i == 1,2, ... ,n (4.2 )

Because of the unknown quantity p(t) the system of differential

equations (4.2) is not a complete description of the substitution

process. We have n equations for n+1 unknowns. Before we show

how this difficulty can be overcome two comments are in order.

The differential equation (3.4) has been derived for a growing

production. In the system (4.2) all of the competing productions

may grow if the demand is growing fast enough. See, for instance,

the competition between soap and synthetic detergents in Japan

between 1950 and 1957 in Figure 5. However, in general, some

productions may subside in the course of competition and the

question is whether the corresponding equation in the system (4.2)

applies also to this case. The answer is yes under the condition

that the production does not fall faster than is the natural

amortization of the equipment. Further on we shall assume that
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this condition is fulfilled. Then the negative left-hand side

of equation (4.2) represents the capital flow which is saved

because a part of the worn-out equipment is not renewed. The

old technology lives from his stock.

The second comment concerns the market price. In the system

of equations (4.2) it was tacitly assumed that the market price

is the same for all competing commodities. This is a reasonable

assumption if the commodities are in every respect equal. This

is, for instance, the case when the same steel is produced by

different technologies (e.g. open hearth or Bessemer) or when

electricity is generated using different primary energy sources.

However, even when competing commodities satisfy the same need,

in the sense that the consumer having purchased one commodity will

not purchase the other one, they may satisfy this need in qualita­

tively different ways. The consumer is ready to pay a higher price

for a higher quality. Consider, for instance, domestic heating.

Both coal and oil can be used to heat a house but oil heating is

more comfortable and many of us prefer it even if it is more expen­

sive. Mechanical and electronic wrist watches satisfy the same need,

nevertheless many people are ready to pay a higher price for an elec­

tronic watch because they want to have it for some psychological rea­

sons. A drastic example of this kind are women's clothes.

To be able to handle at least some of these cases we have to

introduce a reference price. As a reference price the price of any

of the competing commodities can be chosen. For the sake of

simplicity let us choose the lowest price. Let p be this ref­

erence price, p. the price of the ith commodity and 6p. the dif-
l l

ference the consumer is ready to pay for the higher quality.

The difference between the price and the specific production costs,

which is the source of the capital the producer can accumulate,

can be written in the following way

p. - c. = p + 6p. - c. = p - (c. - 6p. )
l l l l l l

This shows that the system of differential equations (4.2) holds

also for the case of different prices if the specific production
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costs are reduced by ~p.. From now on c. will mean specific
1 1

production costs corrected in this way.

To proceed in the development of our model we shall rear­

range the equation (4.2) in the following way:

.
P.

1
0;. - = p - C.

1 P. 1
1

p - c.
1

( 4. 3)

The same equation can be written for the commodity indexed by j.

= p - c.
J

( 4 • 4)

Subtracting (4.3) from (4.4) we obtain

( 4 • 5)

In this way n-1 independent equations can be constructed which do

not contain the unknown variable Pi however, one equation is still

missing.

To begin with a simple case we shall assume that the specific

investments are the same for all of the competing technologies:

0;. = 0;
1

Vi ( 4. 6)

At first sight, it may seem that this is a drastic and very

restricting assumption. However, later on when this assumption

will be removed, we shall see that the dynamics of market penetra­

tion is not very sensitive with respect to this assumption and

that the result obtained under this simplification may be a very

good approximation for the more general case.

Under the assumption (4.6) the left-hand side of (4.5) can

be rearranged in the following way.
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d d d (S) d ( P j/P)a
J
. dt (£n P

J
.) - a i dt (£n Pl') = a - £n = a - £n

dt Pi dt Pi/P

d ( f.)= a - £n J
dt f.

1

where P is the total production of competing commodities

(4. 7)

( 4 • 8 )

n
P = 2

i=1
P.

1
( 4 • 9)

and f. is the fractional market share
1

f. =
1

P.
1

P (4.10)

Using (4.8) the equation (4.5) can be rewritten for market shares.

d ( f.)
dt £n t7 =

c. - C.
1 J

a (4.11)

In this way the market price p(t) has been eliminated. The

equation (4.11) can be written for any i and j; however, only n-1

of these equations are independent. Hence we still have a system

of n-1 equations for n unknowns f., i = 1,2, ... ,n. But having
1

passed from absolute values of productions P. to corresponding
1

market shares f. we have the possibility to make use of an addi­
1

tional equation, which is independent of (4.11):

n

.2
1=1

f.(t) =
1

(4.12)

Now we have a complete system of differential equations the

solution of which, for given initial conditions, is unique.

The system of equations (4.11) and (4.12) is somewhat un­

symmetric. It would be good to have it in a symmetric form.

Let us find such a form.
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The equation (4.11) can be reorganized in the following way .

· •
f. c. f. c.
-l. -.J. 1 1

+ = r + -f. ex ex
J 1

As this relation holds for any j and i there must exist a function

~(t) which is common for all components of the system and for

which

·f. c.
-.J.+J
f . ex

J
= !pet) Vj (4.13)

Let us determine this function. From (4.12)

n
L f . (t) = 0

j=1 J

From (4.13) we have

f j [ret)
c. ]

f. = _--1.
J ex

and after the substitution in (4.14) we get

(4.14)

If (t)
n

= ex L
j = 1

c. f .
J J

(4.15)

Now, the symmetric system can be obtained from (4.13)

·f. =
1 f.( I c.f. - c

1
·) ,

ex 1 j=1 J J
Vi (4.16)

Making use of the obvious relation

C. =
1

n

I
j=1

c. f .
1 J



-24-

and introducing the notation

C .. =
1J

c. - C.
1 J

a
(4.17)

c .. = 0
11

the equation (4.16) can be written as

.
f. + f.

1 1

n

L
j=1

c .. f. = a
1J J

Vi (4.18)

Notice that this system of equations also holds when the

coefficients c .. are time-dependent. No assumptions have been
1J

made in this respect. Notice also that for n=2 the system (4.18)

is

which is the Fisher-Pry model in the differential form (2.9).

Only very rarely an explicit solution of a system of non­

linear differential equations can be found. Fortunately,

system (4.18) is an exception. A general solution can be found

in different ways. We shall proceed in a way which is somewhat

tricky but simple.

Evidently for any t

f . (t)
f . (t) 1=

1 n
L f . (t)

j=1 J

f . (t) 1
= f. (t)1

1
+ j~i

)
f. (t)

1

(4.19)

With notation (4.17) the equation (4.11) reads
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f.(t))
Q,n f: (t)
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=c .. =-c ..
1J J1

and can be easily integrated:

f . (t)
n J
Nn -::"f""'".--:'"(-t"'-)

1

c .. (T)dT
J1

(4.20)

where

f . (t)
J

f . (t)
1

= c .. (T)dT I
J 1 \

(4.21)

Vi

are the initial conditions. It only remains to substitute (4.21)

into ( 4 . 1 9) .

1
f . (t) = (4.22)1 f

jO ex+f1 + .~. c .. (T)dTff
iO J1J 1

to

If it can be assumed that the coefficients c .. defined by (4.17)1J
are time invariant the following simple result is obtained:

f . (t)
1

If we denote

=

1 + .I.
Jf1

1
-c .. (t - to)J1e

(4.23)

k ..
J1

(4.24)

formula (4.23) becomes
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f. (t)
1

=
1 + I

j=!=i

k .. - c .. (t - to)
J 1 J 1e

(4.25)

Notice that for n=2, formula (4.23) gives the Fisher-Pry

model in the form (2.7) while (4.25) corresponds to (2.2).

The simple formula (4.23) assumes that the coefficients c ji
are time invariant. According to (4.17) these coefficients are

determined by ratios of specific production costs (eventually

corrected by ~p. as discussed above) and specific investment.
1

It is known [11] that due to the learning effect the efficiency

of the direct labor input improves with the number of units

produced. This should be reflected in specific production costs

and also in specific investments. Therefore the assumption that

their ratio remains constant does not seem unrealistic at least

from the time when the technology was well established. Moreover,

from the way that the time-varying coefficients c .. enter the
J1

more general formula (4.22) it can be seen that a mean value,

defined as

c ..
J1 =

may serve as a good approximation for to < t < to+T if c· . (T) does- - 1J
not vary too drastically.

Examp le 1 . Substitution of primary energy sources

Now it will be shown how the multivariate substitution model,

derived in this section, works in a practical example. The model

will be applied to describe the competition between different

primary energy sources during the past 110 years. Wood, coal,

oil and natural gas are considered as competitors in the world

consumption of energy.

Under the assumption that c .. are constants for all j and i
1J

the relation (4.20) can be written in the following form

(4.26)= k.. - c .. (t - to)
J 1 J 1

f . (t)
J

,Q,n f. (t)
1
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It indicates that the logarithms of the ratios of market shares

for all pairs of competitors, when plotted as functions of time,

should follow straight lines. Figures 7a, b, c, d show that in

the given example it is true with a very good approximation. The

straight lines in these figures were obtained as least squares

fits. Notice that oil and natural gas are equivalent competitors

in a certain sense. This can be seen from horizontal lines in

Figures 7c, d and from parallelism of lines for oil and natural

gas in Figures 7a, b.

To see how the model can be used for forecasting, only the

historical data between 1930 and 1950 were taken to estimate the

model parameters. The projections obtained in this way for the

future (and also for the past) are given in Figure 8 where also

true historical data are registered for comparison. The figure

also shows how the future, not yet known, development of the

natural competition could be if no new and superior technology-­

like nuclear--were introduced. The historical data given in

this example were collected at IIASA by N. Nakicenovic [12] who

also performed this preliminary calculation. The question of

estimation of model parameters from historical data will be dis­

cussed in Section 6 where a more detailed analysis and description

of this example will be given. The problem of forecasting is

studied in Section 7.
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5. COMPETITION UNDER DIFFERENT SPECIFIC INVESTMENTS

In the previous section a multivariate substitution model

has been developed under the assumption that the specific invest­

ments a., i = 1,2, ... ,n, were the same for all of competing tech-
1

nologies. This simplifying assumption will now be removed and it

will be shown that the overall dynamics of the substitution does

not change much when the specific investments of competing tech­

nologies are slightly different. As a matter of fact, this was

already indicated by the example of primary energy substitution

where the specific investments apparently are not equal, and also

by many examples of two-dimensional competition given by Fisher

and Pry [3,4]. Now we shall investigate this favorable feature

of the model in detail.

We shall start our investigation with the equation (4.5) which

can be written in the following form
.
P.
---.la. PJ .

J

+ c.
J

.
P.

1= Ct.. P­
1 .

1

+ C.
1

(5. 1 )

For n competing technologies n-1 independent e~uations of this

type can be written. Introducing the fractional market shares

(4.10) we have

.
f.P. .

J J +
P

= r -
P. P

J J

(5. 2)

where P is the total production of all competing technologies (4.9).

If the growth rate factor

.
P d

p = P = d t (R-n P)

is introduced the equation (5.1) gets the form

(5. 3)

.
f.
---.la. fJ .

J

+ C. + a.p
J J

.
f.

1= a'-f + c. + a.p
1. 1 1

1

(5. 4)

By the growth rate p (5.3)

a variable, is introduced.

tity on the system dynamics

a new exogenous parameter, or possibly

The influence of this exogenous quan­

will be discussed in more detail later
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on, at this moment notice only that the growth rate p can be can­

celled in (5.4) if a. = a .. Notice also that all parameters in
J 1

equation (5.4) can be time-varying in general. Some assumptions

concerning this point will be made in due course.

As the relation (5.4) holds for any pair of indices i and j

there exists a function f(t) which is common for all of the com­

petitors and for which

= 'P Vi (5 .5)

Similarly to Section 4 the function ~(t) can be determined from

the condition

From (5.5)

n

I
i=1

n

I
i=1

f.
1

.
f.

1

=

= 0

(5. 6)

(5. 7)

• ( 1 c i )f. = f. -p - - - P
1 1 a. a.

1 1

(5 • 8)

and using (5.7) the following expression for ~(t) is obtained:

n (c. p)L f 2 +
j=1 j a.

~ = J (5. 9 )
n f.

I J
j=1 a j

The replacement of f in (5.8) by (5.9) and a simple rearrangement

gives the following symmetrical system of differential equations:

where

.
f. + f.

1 1

n

L
j=1

n

L
j=1

c .. f.
1J J

a .. f.
1J J

o i = 1,2, ... ,n (5.10)
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Ct..
1

Ct..
J

Ct..
1

Ct..
J
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c. - C.
1 J +

Ct..
J

(5.11)

(:~ ~ p. (5.12)

Notice that the following relations hold for the parameters

c ij and a ij entering the system of differential equations (5.10)

by which the mUltivariate sUbstitution process is governed.

a ..
1J

1
a ..

J1
=

a.
1r

a.
Jr

(5.13)

a .. = 1
11

c .. = -a .. c .. = c . - a .. c . = a .(c. -c. )
1J 1J J1 rJ 1J r1 rJ 1r Jr

c .. = 0
1J.

(5.14)

(5.15)

(5.16)

This means that the system dynamics is fully determined only by

2(n-1) independent parameters (possibly time-varying), for instance,
by

or by

a. c.
rJ. rJ.

'yo'i t r

'yo'i t r

where r is the index of an arbitrarily chosen reference competitor.

All remaining parameters are determined by relations (5.13) to

(5.16) •

Notice also that the system can be considered

with constant parameters if (:~ + 0and the ratios

as
Ct..

J.

Ct..
J

a system

are time-

invariant, i.e. not necessarily c. and Ct.. separately.
1 J.

A comment is in order concerning the growth rate factor p.

The introduction of this factor is the price we have to pay in

orner to get rid of the market price p in the case of different

specific investments Ct. i . Actually the growth rate factor p is

related to the market price p and it is true that eliminating the

uncertain quantity p we introduced the other one p. However, it
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seems to be more advantageous to operate with p instead of p for

several reasons: (1) From the expression (5.12) it can be seen

that the total growth rate factor p does not have much influence

if the ratio a·/a. is close to one. (2) Often the growth of the
1 J

total production P exhibits an exponential behavior and the factor

p can be considered as a constant with reasonable approximation.

World energy consumption and u.s. total energy consumption are

given in Figures 9 and 10 [2] as examples of this kind. In the

former case p ~ 0.02, while for the USA p ~ 0.03 if one year is

taken as the time unit. Later on it will be seen that the dynam­

ics of the system is rather insensitive with respect to stochastic

fluctuations of p(t) around some mean value even when the specific

investments are considerably different. (3) If one would prefer

to go deeper into the market relations it would be necessary to

introduce and parametrize the market demand function and to make

some additional assumption like existence of market equilibrium,

etc.

The solution of the system of differential equations (5.10),

by which the substitution process is governed in the case of dif­

ferent specific investments a., i.e. a .. f 1, cannot be given in
1 J1

a closed explicit form. A straightforward way to obtain the solu-

tion for a particular case is the stepwise numerical solution using

several known general algorithms. However, if it can be assumed

that the ratios a .. = a./a. are time-invariant for all i and j it
1J 1 J

is possible to reduce the solution of the system of n nonlinear

differential equations (5.10) to a problem of finding the root of

a simple univariate transcendental equation. The method we are

going to develop, makes it possible to determine the market shares

f i (t), i = 1,2, ... ,n for any given time instant t in a simple way

and it also gives a better picture about the sensitivity of the

solution with respect to parameter values and their possible var­

iations.

Choose one of the competing technologies, say ~ith index r,

as the reference competitor, divide the relation (5.4) by a r > 0

and subtract from both sides of (5.4) the term (:: - p). The fol­

lowing relation equivalent to (5.4) is obtained:
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+ c.lr (5.17)

Similarly to (5.4) this relation also holds for any pair of in­

dices i and j and therefore

f.
1a. ­lr f.
1

+ c· = 'f rlr (5.18)

where ~ is a function of time which is common for all indices i.r
The meaning of this function becomes clear when the index i is

chosen as i = r and the relations (5.14) and (5.16) are considered.

Then from (5.18)

'f r

f
r=y-
r

(5.19)

Dividing the whole equation (5.18) bya. and using the first
lr

equalities in (5.13) and (5.15), we obtain

a.lr
= a .rl

c.lr
a.lr

= - c .rl

The relation (5.18) can be rearranged into the following form

f.
1

r
1

= c. +a.'frl rl r (5.20)

Integration of (5.20), under the assumption that a . is time­rl
invariant, gives

f . (t) t t

£n 1

J c .(T)dT + f 'Pr(T)dT= a
f. (t ) rl ri

1 0 to to

a .1jJ (t)
f i (t) K . (t) e rl r= rl

(5.21)

(5.22)

where
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t

f c .(T)dT
rl

to
K . (t) = f. (t 0) e
rl 1 (5.23)

tjJr(t)

t

= f rr(T)dT =

to

(5.24)

If it can be assumed that the parameters c . are also time-invari­
rl

ant then the formula (5.23) gets the form

K . (t) = f. (t 0)
rl 1

c .(t-to)
rle (5.25)

Notice that the variations of the parameters cri(t) are

smoothed by the integral in (5.23). This also shows that the

stochastic fluctuations of the growth rate factor p, entering

c . according to (5.12), may well be neglected even when a.,
rl 1

i = 1,2, ... ,n are considerably different.

This value can

given c . the factor
rl

time instance

tjJ (t) for the particular t.
r

be determined from the condition

For given initial condition f. (to) and
1

K . (t) can be easily calculated for all i and any
rl

t using (5.23) or (5.25). To be able to determine also the market

shares f. (t) according to (5.22) it is necessary to know the value
1

of the single function

n

L
i=1

f.
1

when f. are considered functions of an unknown value tjJ for given
1 r

t. If we introduce the function

n
;r(tjJr) = L f. (tjJ ) -

i=1 1 r

a r
n ~tjJr

;r(tjJr) L 1
(5.26)= K e

i=1 ri
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then the unknown value ~r(t) is the root of the transdendental

equation

(5.27)

As both K . and a . for all i are positive the derivative d~r/dWrrl rl
is also positive for any ~ -- the function ~ (W ) is monotonous--r r r
and consequently the real root of the equation (5.27) is unique.

It can be found by several well known iterative numerical methods.

Before we go into these details some rearrangement of the equation

(5.27) is necessary.

The advantage of the procedure outlined above is that it

operates with the minimum number of parameters. The disadvantage

is that it is unsymmetrical in the sense that it depends on the

choice of the reference competitor indexed by r. A more detailed

analysis shows that an unsuitable choice of the reference competitor

might lead to numerical difficulties. To avoid these possible dif­

ficulties we shall forego the minimum number of parameters and we

shall modify the procedure to maintain the symmetry.

Let a be some mean value of all a's the suitable choice of

which will be made later on. Dividing equation (5.5) by a. > 0,
1

we can write it as

(5.28)

Integration of this equation over the time interval (to,t) under

the assumption that the ratio a/a. is time-invariant gives
1

f. (t)
1

~n f. (t 0 )
1 (

t

J

tJc.+a.p
= t dt _ 1 1

a a
to to

dt) aa.
1

where

(lji (t) - B. (t) ) a.
1 1= f. e

10
(5.29)

a
a. =

1 a.
1

(5.30 )
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f. = f. (to), 1jJ (t) is a function of time which is common for all
~ 0 ~

i but unknown for t +to and

S. (t)
~

t

I
c .+ a . p
~ ~= a

to

dt (5.31)

or, when (c. + a· p)/a is constant,
~ ~

c. + a. p
~ ~

a
(t - to) (5.32)

For any given t +to all market shares (5.29) can be considered

as functions of a single quantity 1jJ = ljJ(t). The correct value of

this quantity can be determined as the real root of the equation

t;(1jJ) = 0 (5.33)

where
n

t; (1jJ) = L f. (1jJ) - 1
i=1 ~

n (1jJ - S· ) a.
t; (1jJ) L f. ~ ~

1= e -
i=1 ~o

As all a. = a/a. can be only positive the derivative
~ ~

(5.34)

t;' (1jJ) = dt;(ljJ)
dljJ =

n

L
i=1

(ljJ-S·)a.
~ ~a. f. e

~ ~ 0
(5.35)

t; I (1jJ) =
n

L
i=1

a. f. (1jJ)
~ ~

(5.36)

is also positive and the function t;(1jJ) is monotonously increasing.

Therefore the real root of the equation (5.32), we are lokking for,

is unique and can be easily found by the Newton-Raphson method

illustrated in Figure 11 and realized by the recursive formula

1jJ (k+ 1 )
t; (!p (k) )

t;'(ljJ(k))
(5.37)
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t.: (k)

Jt!(k+1)

Figure 11. Newton-Raphson method.

where Jt!(k) means the kth approximation. Theoretically the root

is found as the limit

= lim Jt!(k)
k-+ oo

however, in practice only a few iterations are fully sufficient

to obtain the root with the required precision if the starting

point Jt!(O) is well chosen. Hence, the question of suitable choice

of the initial approximation Jt!(O) , which we are going to answer,

is of great practical importance. In this context we shall also

find a suitable mean value a of all a's which has not been de­

fined yet.

In the case of equal a's, Le. for a. = a/a. = 1, Vi, the
1 1

root of equation (5.33), i.e. the zero point of the function

(5.34), can be calculated explicitly.
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In this case, equation (5.33) reads

n
e

1Ji
• L
1=1

f. e
10

-B.
1

- 1 = 0

and its solution is

1
n -B.
L f. e 1

i=1 1 0

(5.38)

1Ji = - 9,n (
n -B.)L f. e 1

. 1 101=
(5.39)

Substitution of a.
1

1 and (5.38) into formula (5.29) gives

f. (t) =
1

f,
10

n

L
j=1

-B·(t)
1e

-8. (t)
f. e J

J 0

=
fje 8i (t) - 8j (t)

+ L -e (5.40)
jfi fie

which is the solution we obtained for this simple case in

Section 4.

The value of 1Ji given by formula (5.39) can well serve as

the initial approximation of the root of equation (5.33) if the

mean value a is chosen in such a way that the ratios a/a. = a.
1 1

are as close to one as possible. To meet this requirement we

choose a so that it minimizes the expression

.I1(:. - 1) 2
1= 1

The mean value which has this property is

n
L a.

- i=1 1
a = n

1L 2i=1 a.
1

(5.41)
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The choice of the initial approximation ~(O) according to

(5.39) and of the mean value a according to (5.41) is not neces­

sarily the best one for some particular case. Nevertheless, 1n­

spite of its simplicity it appeared to be fully convenient.

To complete the numerical algorithm one last question remains

to be answered: How is it possible to recognize that the required

precision has been reached and the iteration (5.37) can be stopped?

Let ~ be the true root of equation (5.33), ~(k) its kth ap­

proximation, f1 k ) (t) the kth approximation of fi(t) and

of~k) = f~k) - f.
111

the corresponding errors. From (5.29)

f~k)
1

(~(k) _ 6.)a.
1 1

= f. e
1 0

(~- 6.)a. o~(k)a.
1 1 1= f. e e

1 0

o~(k)a.
1= f.e

1

As all a. are positive all errors of~k) have the same sign. From
1 1

(5.34) we have

n

I
i=1

of .(k) =
1

and consequently

rna x 0 f 1k) I .:::. I~ (~ (k) ) I
i

This means that if E is the greatest acceptable error in the cal­

culation of fi(t) and the iteration (5.37) is stopped when

I ~ I < E, then the required precision is guaranteed for all i.
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The numerical solution can be summarized into the following.

A I g 0 r i t h m PENETR:

1. For given ai' i == 1,2, ... ,n, calculate the mean a according

to (5.41) and a. for all i according to (5.30).
1

2. For given c i ' P and (t - to) calculate Si for all i accord­

ing to (5.32).

3. For given f i (to) == f iO calculate the starting value ~(k),

k == 0, according to (5.39).

4. Assuming ~ == ~(k) calculate the market shares f i == fi(t)

for all i according to (5.29).

If the absolute value lE;,I is1.f.
1

n

L
i==1

less than the maximum acceptable error in the calculation

of f. stop the calculation.
1

Calculate E;, ==5.

6. Calculate new 1(k+1) using (5.37) together with (5.36) and

repeat 4.

This algorithm is realized by the FORTRAN subroutine PENETR

(N,C,AL,F~,T,F) the listing of which can be found in Appendix C.

Algorithm PENETR operates with 2n + 1 parameters, namely

c., a., i == 1,2, ... ,n, and P. However, as was shown above, the
1 1

solution f i (t) for given f i (to) is uniquely determined only by

2(n-1) parameters. Therefore 3 parameters of the algorithm

PENETR are redundant and could be removed. It is easy to verify

that the same result is obtained if the original parameters P,

a, c are substituted by the modified parameters p, a, c deter­

mined in the following way:

P = 0

a = 1r
1

a.
1 (5.42)a. == a. = == -

1 lr a ri a r
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c = 0
r

c ri
c. -c Ct·1 r

(Ct
1

1) (5.43)c. = cir = - -- = + - P
1 a ri Ct r r

where r is the index of an arbitrarily chosen reference compet­

itor. Of course, other modifications of parameters are also

possible.

To demonstrate the application of the algorithm PENETR we

shall give a simple example. Further examples will be given in

the next sections where we shall deal with real practical cases.

Example 2. Sensitivity analysis of two-dimensional com­

petition with respect to different specific investments.

Consider a two-dimensional competition where f 2 is the

market share of the new, winning technology. The evolution of

the market shares is described by the differential equation (5.10)

which for n = 2 and i = 2 reads

. c 21 f 1
f 2 + f 2 = 0

a 2 1f 1 + f 2or, with

f 1
= 1-f

2
,

c 21 1c 12 = -- a 12 = -- (5.44)a 21
, a

21

f 2 = c 12

f 2 (1-f
2

)

1 + (a 12 -1)f 2

To make the analysis as general as possible let us intro­

duce the dimensionless time

T =

where t h is the time point at which a half of the market is

penetrated (i. e. for t = t h or T = 0, f 1 = f 2 = 0.5) and let us

choose T in such a way thats

= £n9
-2- (5.45)
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in all cases. Obviously

= (5.46)

and for 1 = 0 and f 2 = 0.5

=
o

(5.47)

Comparing the right-hand sides of (5.45) and (5.47) we have

T s

Notice that for a 12 = 1 (i.e. (11 = (12) Ts is the take-over

time defined in the Fisher-Pry model as the time period required

to transfer from f 2 = 0.1 to f 2 = 0.9 (see Section 2).

From (5.46) it is seen that after this normalization the

differential equation describing the evolution of market shares

gets the form

(5.49)

and has to be solved for the initial condition f 2 = f 1 = 0.5

for T = O. For any T (positive or negative) the solution can

be obtained using the subroutine PENETR with the following

values of its formal parameters:

n = 2

c
1

= -(a12 + 1)~n9
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a 1
a 1 = -a 2

a 2 = 1

f 10 = 0.5

f 20 0.5

t = T

The result of this calculation is given ln Figures 12 and 13.

From Figure 13 it can be seen that within the take-over

time the plot ~n(f2/(1 - f 2 )) can well be approximated by a

straight line for a rather large range of ratios a 12 = a 1/a 2 •

This explains why the empirical Fisher-Pry model is able to

describe so many practical cases even when the specific in­

vestments are different. It also conforms with the observa­

tion of C. Marchetti that the parameter c 21 of the Fisher-Pry

model can be determined from the present trend of the market

penetration if the new technology reaches a nonnegligible part

of the market, say approximately 10%.
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6. PROBABILISTIC MODEL AND ESTIMATION OF PARAMETERS FROM

HISTORICAL DATA

To be able to use the model developed in the previous sec­

tion for forecasting the future course of the substitution

process we have to know the values of its parameters. In prin­

ciple, there are two ways of obtaining these values: (a) the

economic evaluation of the technologies entering the process,

(b) the estimation of the parameters from known historical data.

Each of these two possibilities has its advantages and draw-

backs.

In some cases it may be very difficult to determine the

model parameters using the former approach. For instance: How

to calculate the correction l1p. (see Section 4 for definition)
1

by which the specific production costs c i have to be reduced in

the case when the competing commodities satisfy the given need

in a qualitatively different way? Or, what is the precise mean­

ing of the specific investment a. in the case of wood as primary
1

energy source and how this value can be calculated? However,

there is no other way of proceeding when the substitution pro­

cess has not started yet and no historical data are available.

All what we can practically do in this case is to pick up one

or more sets of possible values of model parameters according

to 0~r subjective judgment and to apply the model for these

scenarios.

If the substitution process studied is already running in

reality and its observation in the past is available, then the

parameters -- whatever their interpretation is -- can be estimated

on the basis of this past experience. How to extract the infor­

mation about the unknown parameters from the historical data is

the main question which will be stUdied in this section.

A widely used approach to parameter estimation is the so-

called curve fitting. The parameters of the model are chosen in

such a way that the output of the model is as close as possible

to the known true data. When we try to formalize this ad hoc
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approach mathematically several questions arise. The first one

is: what curves have to be fitted? In our case we have many

possibilities, for instance,

Vi Vi, j =1= i.

Which one of these (or other) possibilities has to be chosen to

obtain the "most reliable" estimates?

A sound, intuitive, feeling says that the more data can be

used the better estimates of the model parameters can be obtained.

However, if the number of data is greater than the number of un­

known parameters, a perfect fit can never be reached in general

and the second question arises naturally: What significance has

to be assigned to different errors and how to express it quanti­

tatively?

To be able to answer these and similar questions in a con­

sistent way we have to go deeper into the stochastic nature of

the process and to build a probabilistic model.

To make this text accessible also to those readers who are

not specialists in probability theory, we shall concentrate

our exposition mainly on the underlying "philosophy" and practic­

al results. The technical details of a mathematical character,

which are not necessary for general understanding, will be stated

in the main text without formal proofs. Full proofs (some of

them are far from trivial) can be found in Appendix A.

Our approach to estimation and forecasting adopted through­

out the rest of this paper is purely Bayesian. The substitution

process we are studying is nonstationary in its nature: the sit­

uation which occurred in the past can never be repeated in the

future. The set of historical data we have at our disposal, is

one realization of one nonstationary stochastic process. There­

fore the concept of probability cannot be based on frequency con­

siderations. In the Bayesian view the probability is understood

as a measure of belief and the probability distribution reflects
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the uncertainty of the relationship between us (you or the

author) and the external world. In general, different people

may have different probability distributions for the same phe­

nomenon depending on the information or knowledge they have.

Because of this subjective feature one often speaks of the sub­

jective probability approach. However, to avoid misunderstand­

ing it should be stressed right at the beginning that using

this approach it is possible to eliminate the prior subjective

opinion about the possible values of unknown quantities and to

base our judgment only on objective data. This will be shown

in detail later on.

The mathematical system that is called Bayesian statistics,

compared to other approaches to statistics, is the only one

which is fully consistent and logically closed. Besides this

mathematical beauty two pragmatic arguments speak in its favor.

It is based on sound principles and works in practice, as we

shall be able to show. An excellent explanation of the logical

foundation of the probability theory with the interpretation

outlined above has been given by De Finetti [13]. Very good

textbooks are De Groot's [14] and Raiffa and Schlaifer's [15].

To those readers who are not familiar with the present state

of mathematical statistics, it may seem that we devote too

much space to the justification of the Bayesian approach. They

are recommended to read a short but pithy talk given by Lindley

at the conference on Directions for Mathematical Statistics

[ 1 6] .

The Bayesian position, from which essentially everything

follows, is that all uncertain quantities -- including the un­

known parameters-- are, before they are observed, random: that

is, have a probability structure and a probability distribution

can be assigned to them. This is, actually, no assumption; it

can be proved on the basis of a few simple and natural axioms.

The act of observation changes the status of the quantity ob­

served from a random quantity to a number. If the quantities

we are interested in, like parameters of our model, cannot be
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observed directly but only through other related quantities,

like the output of the model, they remain uncertain also after

this observation, however, their probability distribution is

changed-- their uncertainty is decreased. From this Bayesian

point of view the parameter estimation means finding the prob­

ability distribution for the unknown parameters conditional on

the observed data. Any single value, which is taken as an

"estimate" is nothing more than some characteristic of this

conditional distribution. It may be, for instance, the point

at which the probability density reaches its maximum.

To be able to solve our practical problem only a few basic

rules of the general probability theory have to be recalled.

Let a,b,c, ... be random quantities or sets of such quantities

and let p(alb) denote the probability density of a conditional

on b. Then the following relations hold:

p(a,blc) = p(alb,c)p(blc)

p (a I c) = Jp (a, b I c) db

( 6 • 1 )

(6.2)

where the integral in (6.2) is taken over all possible values of

b. When (6.1) holds, the following relation must also hold:

p(a,blc) = p(bla,c)p(alc)

From (6. 3)

p(bla,c) = p(a,blc)

~

and using ( 6 • 1 ) and (6.2) we have

p(bja,c) =
p(alb,c)p(blc)

Jp (a Ib , c) p (b Ic) db

(6. 3 )

(6 • 4 )

This is the famous Bayes rule which makes it possible to deter­

mine p(bja,c) when p(a/b,c) and p(blc) are known.



-53-

A successive application of (6.1) gives an other useful

tool sometimes called the chain rule for probability densities.

N

II p(xilxi-1,xi-2,,,,,x1)
i=1

( 6.5)

Later on we shall also need the rule according to which

the probability density p(x1 ,x2 , ... ,x
n

) can be recalculated into

the probability density P(Y1'Y2""'Yn) when the random quanti­

ties {x 1 ,x 2 ' ... ,xn } and {Y 1 'Y2"" ,Yn } are related by a regular

(one-to-one) deterministic transformation. Let

then

1 = 1,2, ... ,n (6. 6)

(6 • 7 )

where IJI means the absolute value of the determinant J (Jacobian)

of the transformation (6.6).

a/;1 a/;1 ~I
aY1 ' ay 2 ' · . . , ayn

V(/;1 '/;2"" '/;n) a/;2 a/;2 a/;2
J = =

aY1
,

aY2
, · .. , ay-I (6. 8)

V(Y 1 'Y2'''' ,Yn ) n!

· .. ,

Now, let us go closer to our estimation problem using these

methodological tools.

Let K be the finite set of unknown parameters we would like

to know and let D be the set of data we have at our disposal.
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Then the probability distribution we are interested in is p(KID).

Let v be the dimension of K (the number of unknown parameters)

and S~ be the space of all possible values of K which have to be

considered. Applying the Bayes rule (6.4) we have

p(KID) =
p(DIK)p(K)

fp (D IK) P (K) dK

Sv
K

( 6 .9)

where p(K) is the prior (subjective) probability density which

we -- as users of this tool -- have to assign to the unknown param­

eters before the observed data are incorporated into our knowledge.

The probability density of the set of the observed quantities D

given the parameters K has to be known. This is one of the

reasons for which we have to build the probabilistic model of

the process. We shall corne to this point after this general in­

troduction where we want to explain the basic philosophy of

Bayesian estimation.

The operation (6.9) can be understood as the correction of

our prior subjective probability distribution for K by objective

data. A classical objection to this Bayesian estimation is that

when the prior distribution p(K) is wrong in the sense that it

prefers other than true values of K, then the resulting p(KID)

is incorrect or at least biased. This objection is fully justi­

fied but should be oriented not against the Bayesian statistics

but against the user. Mathematics provides us with a logical

and consistent system of reasoning but it cannot correct our

mistakes. The prior distribution p(K) is a model of our prior

uncertainty. Like any other mathematical model, for mathematics

it is an input. If the input is wrong the output is also wrong

in general. The system of axioms, on which mathematics operates,

and mathematical models are the only connection between mathemat­

ics and the true world.

If the reader accepts this explanation he has the right to

ask the following question: How should we choose the model p(K)
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to be sure that no subjective mistake is introduced into the cal­

culation?

The author does not know any practical situation when ab­

solutely no prior information is available. For instance, in

our case of market penetration the parameter air means the ratio

of specific investments, a. = a./a , and therefore cannot belr 1 r
negative. But we also a priori know that it cannot be larger

than say 10 12
• Similarly, we can assume with certainty that the

parameter c. lies within the interval -10 30 < c. < 10 3 o. In prac-lr lr
tice we can choose any prior distribution p(K) which is very "flat",

but if we want to be extremely "objective" we may choose the

uniform distribution

where

p(K) = E

p(K) = 0

'V
for Ke: SK

for K ~ S~

1
E =

f d S

s'V
K

In that case (6.6) gives

(6.10)

p(Klo) =
p(OIK)

f p(OIK)dK

s'V
K

for (6.11)

p(KIO) = 0 for

'VStrictly speaking, the space SK can be as large as we want but

finite. It is not possible to distribute uniformly one unit (of

our belief) on an infinite countable set of intervals. If S~ is

growing to infinity then E, defined by (6.10), tends to zero and

the right-hand side of (6.9) becomes undetermined.

For technical reasons it is usually much more convenient to
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operate with probability density functions which are defined by

a unique formula on the whole euclidean space RV
rather than on

its subset s~ C R
V

, like (6.11). (This is actually the reason

why the normal distribution is so widely used also in cases

when it is known that the random quantity may lie only within a

finite interval.) This situation can be reached also for the

conditional distribution (6.11) if the integral

r
J p(DIK) dK

RV

exists. Under this condition (6.11) can be written

p(KID)
p(DIK)

dK - f P (D IK) dK

RV_Sv
K

and for S~ + R
V we obtain the simple relation

1
p(KID) = K(D) • p(DIK) (6.12)

which holds for all K E RV and where K-1 (D) is the normalizing

factor

K(D) = fP (D IK) dK

which does not depend on the unknown parameters K.

(6.13)

The probability density p (DI K), considered -- for given data

D-- as a function of unknown parameters K, is called the likeli-

hood function

L(K) = p(DIK) (6.14)

If we are interested in the point in which the probability

density p(KID) reaches its maximum we have to find such a set of
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A

possible values of unknown parameters K for which

A

L(K) > L(K) (6.15)

The point Kis called the maximum likelihood (ML) estimate.
A A A

When K is expressed as a function of observed data D, K = K(D),

then one speaks about a maximum likelihood (ML) estimator.

A classical (non-Bayesian) statistician may say that this

result is nothing else than the well-known and nowadays almost

generally accepted method of parameter estimation in non-Bayesian

("objective") statistics. He is right--formally. There is a

great difference not only in understanding and interpretation

of this result, but also in practical application: (a) The

maximum likelihood method cannot be derived within non-Bayesian

statistics. It can be only proposed -- as an inductive step of

reasoning (opposite to logically deductive) -- and its properties

can be investigated ex post. (b) All general results concerning

the properties of ML estimates, known i non-Bayesian statistics,

are of asymptotic character, i.e. they apply for a large number

of samples which are independently drawn from the same distribu­

tion. Accepting the Bayesian point of view we know precisely

what we are doing for any sample size. (c) The choice of one

point from the whole distribution (6.12) is, in fact, a decision

problem and as such has to be handled. Depending on the final

goals we are pursuing, some other points may be more suitable

than the maximum of the probability density. (d) In many cases

-- like forecasting -- we are actually not interested in point

estimates. Parameter estimation is usually only one step

in the solution of the whole problem. In such cases it is pos­

sible -- and in general also necessary -- to consider all possible

values of the parameters, i.e. to operate with the whole distri­

bution. This will be clearly seen in the next section where we

shall deal with forecasting.

Let us now reconsider the question which arised at the be­

ginning of this section in connection with curve fitting, namely
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"What curves have to be fitted?", and let us show that it is

irrelevant. The question is equivalent to the question whether

the parameter estimation is influenced by regular (one-to-one)

transformation of the data set used. Let D be the data set ob­

tained from the original one D by a regular transformation

-D = F(D)

(6.16)

and let

p(DIK) = g(D,K)

Then, according to (6.7), the conditional probability density

for the new data set D given K is

p(DIK) = g(¢(D) ,K) • IJ(D) I

where J(D) is the Jacobian

J(D) = V(¢)

V (D)

(6.17)

(6.18)

The transformation (6.16), and consequently also the Jacobian

(6.18) cannot depend on the unknown parameters, otherwise, not

knowing the parameters, we would not be able to recalculate the

data and use them as input for our estimation problem. Using

(6.17) and (6.12), for D instead of D, we obtain

g (¢ (D) ,K)
= p(KID) (6.19)

which proves that not only the ML estimates but the entire prob­

ability distribution for K is invariant with respect to one-to­

one transformation of the data set D.

It is also possible to show that the ML estimates are in­

variant with respect to one-to-one transformation of unknown

parameters K, i.e. that
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" "¢(K) = ¢(K)

To proceed towards our practical problem we have to show

how the probability density p(DIK) can be calculated and what

we mean by a probabilistic model. The processes we are going

to consider are time oriented. Every observation we can make

is related to some time point or time interval. If we want to

describe and analyze the relations between these quantities we

have to distinguish them; we have to specify the set D in more

detail. Let y(k) be the quantity, in ~eneral a vector, which

can be observed at time t k . We shall call y(k) the output of

the process at time t k . Let us order the time indexing in

such a way that t k - 1 < t k < t k+ 1 , i.e. the output y(k-1) pre­

cedes the output y(k). Let y(1) be the f~rst and y(N) the last

output the observations of which are available. To simplify the

writing we shall introduce the following notation for sets of

outputs

For j < i the set (6.20) is empty. With this notation the data

set D is

D = y(N)
(1)

and the probability density which has to be known is

Using the chain rule (6.5) we can expand this density in the

fC?llowing way

(6.21)

To keep the contact with reality we have to understand what the

particular factor in this product, namely

(6.22)
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physically means. The probability density (6.22) describes the

probabilistic transformation between the past history of the

process y~~)1) and the next output y(k). It is the probabilistic

law of the evolution of the process. Notice that the system

{ (
(k-1)) }p y(k) IY(1) ,K : k= 1,2, ..... (6.23)

is the most general description of the process from the viewpoint

of the outer observer that makes it possible to determine (using

two basic rules (6.1) and (6.2)) any finite dimensional probabi­

lity density for any combination of quantities which can be ob­

served on the process. K is the finite set of parameters which

are unknown in this system of functions.

By a probabilistic model of the process we mean any mathe­

matical description of the process which defines the conditional

probability density (6.22) for any k up to a finite set of param­

eters K. In the sequel we shall develop such a model for our

case of market penetration by new technologies.

6.1 Probabilistic Model

Approaching any practical modelling problem we have to

specify, first of all, to what goal the model has to serve. In

our case this goal is: (1) to explain and to identify, i.e. to

describe quantitatively, the past evolution of market shares

f.(t), i = 1,2, ••• ,ni (2) to forecast the future evolution of
1

market shares.

The second question which must be cleared is: What data are

available to identify the process? In this study we shall assume

that only the market shares at discrete time points (not neces­

sarily equally spaced) are available.

The market shares fulfill the deterministic relation

n
L f.(t) = 1

i=1 1
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and therefore one of them, say

fr(t) = 1 - L f. (t)
.~ 1
llr

(6.24)

can be omitted in the probabilistic model. When f i (tk ), Vi t r,

are known, the value fr(t k ) does not bring any new information

and when we are able to forecast f. (t), Vi f r, we are also able
1

to forecast f (t). Hence, the output of the process, we are
r

studying, is the (n-1)-dimensional vector

(6.25)

In algebraic expressions y(k) will mean a column vector the (n-1)

components of which are ordered in an arbitrary but fixed way.

Our modelling effort is to find the conditional probability

density

(6.26)

t+6t

f
t

As we cannot assume the prior knowledge of any parameter of this

distribution, K will be the set of all parameters. This means

that we have -- on the basis of sound and realistic assumptions-­

to find only the structure of this function. Pursuing this aim

we shall start again with the equation (3.1)

P. (t) [p(t) - c. ]dt + Q. (t,6t) + 6· (t,6t)
111 1

(6.27)

which formed the basis of our deterministic model. However,

building the probabilistic model we have to consider also the

stochastic terms. The equation (6.27) can be rewritten as

follows:

t+6t

J{a.P. (t) - P. (t) [p(t)
t 111

-c.] -oq. (t)}dt = 0
1 1

(6.28)



-62-

where oq. (t) now means a stochastic process for which
1

t+l',t

J oqi (t) dt =
t

Q. (t,l',t) + l',. (t,l',t)
1 1

(6.29)

From (6.28) the stochastic differential equation obtained is:

a..P. (t) = P. (t) [p(t) - c.] + oq. (t) (6.30)
11111

We shall again assume that Oqi(t) is zero but only in the mean.

Assumption 1

Vi (6.31)

This means that we admit stochastic fluctuations around zero

both for the external capital flow and for the capital reserves.

Notice that the process Oqi(t) is not necessarily white (actually

no real continuous process can be white). All that we claim

until now is (6.29) and (6.31).

It is not unrealistic to assume that the standard deviation

of the stochastic fluctuations Oqi(t) around the zero mean

is proportional to the instantaneous production Pi (t). As

can be only positive we can write

value

P. (t)
1

q. (t) = P. (t) • Clc. (t)
111

(6.32)

This transformation of the stochastic process q. (t) seems to be
1

reasonable except at the very beginning when P. (t) is close to
1

zero and the new technology needs some external capital input to

be able to start the production. The assumption we are discussing

is only a part of an assumption which will be made later on in a

more formal and precise way.

Substitution of (6.32) into (6.30) gives

a..P. (t) = P. (t) [p(t) - c. + oc. (t·)]
11111

(6.33)
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Notice also that stochastic fluctuations of c i can be incorpo­

rated into oCo (t). This is, actually, the reason for the nota­
l

tion used.

The market price p(t) can be eliminated in a similar way

as in the deterministic case in Section 5 if the following

assumption is accepted.

Assumption 2

P(t)
= P + 0 P (t)P(t)

Eop(t) = 0

(6.34)

(6.35)

where p is the growth rate of the total production P(t) of all

competing technologies and op(t) is the stochastic fluctuation

around the constant p. Similarly to (5.2) we have

Pi (t)

P. (t)
1

=

.
f 0 (t)

1

f 0 (t)
1

+
P (t)

P(t)
=

.
f 0 (t)

1

f. (t)
1

+ p + O;:J (t)

and the following stochastic analogy of (5.4) is obtained.

.
f.

o.. fl + C. +
1. 1

1

.
f.

1

r
1

a p - (a
i \ r

.
f

r
a ri f

r

.
f

r + c
f r

r

c. = 0 e .rl rl

= oc 0 - oc + (a. - a ) 0p
1 r 1 r

(6.36)

where a 0 and c . are the parameters, defined by (5.11) andrl rl
(5. 12), and

1 ( o. r )oe 0 (t) = -( oc 0 - oc ) + 1 - - oprl o.. 1 ro.o
1 1

(6.37)

Integration of the equation (6.36) over the time interval
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where

= (6.39)

e(k)ri =

t

r cSe ,(t)dtrl
t k - 1

( 6 . 40)

As the mean value of cSe ,(t) is zero for any t the integralrl
(6.40) also has this property.

Ee(k)ri = o V k,i (6.41)

Let us introduce the following notation for the column

vector of all e(k)ri' i +r.

= e.ol[e(k)ri : Vi f r] (6.42)

In correspondence with (6.25) and (6.24) we also have

= e.ol[f(k)i Vi f r] (6.43)

n-1
f(k)r = 1 -.J. f(k)i = 1 - I Y(k)]'

lfr j=1
(6.44)

For later use vIe shall also introduce the (n-1) - vectors of

parameters

c = e.ol[c, Vifr]rl

a = e.ol [a, Vi f r]rl

(6.45)

(6.46)
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For given parameters a, c and given Y(1) the equation

(6.38) together with (6.44) define a deterministic transforma­

tion between the stochastic processes {Y (k) : k = 2,3, ... } and

{e(k) : k= 2,3, ... }. This means that if we are able to find
, 1 d" 1 b b' l' d' 'b t' ( I (k-1)a sUltab e con ltlona pro a 1 lty lstrl u lon p e(k) e(2) ,

y(1) ,K) we shall also be able to find the density P(Y(k) I

(k-1 )
Y(1) ,K) we are looking for. This is the line we shall follow

now.

If the sampling interval (tk - t k - 1 ) is large enough it is

realistic to assume that the random variable e(k) is independent
(k-1 )

of the previous ones e(2) and also of Y(1)'

Assumption 3

(
(k-1) )

P e(k) le(2) 'Y(1),K = p(e(k) IK) (6.47)

(k-1 )
This assumption means that the knowledge of e(2) and Y(1) (or

equivalently the knowledge of y ~~) 1)) cannot bring any il!formation

about the possible value of e(k)' Because of the deterministic

relation between y~~)1) and e~~)1) (for given y(1) and parameters)

the conditional part of (6.47) can be modified as follows.

(
(k-1)) ( (k-1) )P e(k) IY(1) ,K = P e(k) le(2) ,y(1),K = p(e(k) IK). (6.48)

As shown in Appendix A (Theorem 1) the transformation between

e(k) and Y(k) for given Y(k-1) and for positive a ri , Vi , is

one-to-one with the Jacobian

V(e(k)) f(k)r + i!r arif(k)i
J = =ey ?(Y(k)) n

II f(k)i
i=1

(6.49)

Hence, according to (6.7), we have
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=

=
(6 .50)

This shows that all that remains to be found is a suitable

structure of the probability density p(e(k) IK) with a minimum

number of unknown parameters.

We have no reasons to prefer positive or negative values

of the random variable e(k)' It means that the density p(e(k) IK)

has to be symmetric. From the left-hand side of (6.38) it can

be seen that the density should be defined over the whole range
n-1

R of possible values e(k)' These requirements are fulfilled

by a mUltivariate normal distribution with zero mean. Making

this choice of the form of the distribution we have to define

the covariance matrix

=

for any k through a finite number of unknown constants.

If we want to consider also the cases when the samples y(k)

are not equally spaced in time, i.e. the interval (tk - t k - 1 )

may be different for different k, then the suitable structure

for R (k) is

= (6.51 )

tiliere R is an unknown but constant matrix. To show the relevance

of this structure let us divide the time interval (tk - t k - 1 )

into ~ equal intervals

From the definition of the random variable e(k)ir (6.40) we have
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t
k

t
k

_
1
+m6t

f
~

Ie (k) = oe(t)dt = I oe(t)dt

t k - 1
m=1 t

k
_

1
+(m-1)6t

~

e(k) = I e(k)m (6.52)
m=1

where

t
k

_
1

+m6t

e == J oe(t)dt
(k)m

t
k

_ 1+(m-1)6t

If the time interval 6t is still large enough that the random

variables {e (k) m : m + 1 ,2, ... , ~} can be assumed to be uncorrelated

T a for j +E[e (k)me (k) j] = , m

T
E[e (k)me (k)m] 1-1

we obtain using the relation (6.52)

~ T
R(k) I Ee(k)me(k)m = ~M

m=1

This result shows that if we assume the independence (6.47) then

the covariance matrix R(k) has to be proportional to the length

of the sampling interval (tk - t
k

- 1 ). This justifies the struc­

t ure ( 6 • 51 ) .

Summing up we can make the last assumption.

Assumption 4

p (e (k) IK) ==

(n-1)
--2-

(2'TT) -----n--..,-1 exp

(~-~_1T

T
e(k) e(k)t k -~-1

(6.53)



-68-

where we introduced for later convenience the precision matrix

[ 1 4 ]

rt =
-1

R (6.54)

as the unknown parameter instead of R. Thus the full set of

unknown parameters is

K = {c,a,rt} (6.55)

To make the formulae more compact it is convenient to

introduce the following n-vectors

= [Y(k) ] = c.of[f(k)i Vi]

f (k)r

a ~ [~]

the [(n-1) x n] -matrix

(6.56)

(6.57)

A. [1
1
,-a]

n- (6.58)

where I 1 is an identity matrix of dimension (n-1), and alson-
the following notation

=

=

n

IT f(k)i
i=1

(6.59)

(6.60)

=
f(k)i= £n

f(k-1)i
(6.61)
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c.ol[X(k)i: 'Vi] (6.62)

With this notation the density (6.53) gets the form

n-1---
= (2n) 2

I

_Irl_1_2"'7" e xp {_
n-1

m -2-
.1 (k)

1 T }e(k) rle(k) , (6.63)
2T(k)

the Jacobian (6.49) is

= (6.64)

and e(k) can be expressed from (6.38) as follows:

= (6 . 65)

Substitution into (6.50) gives the probability density

which we are looking for.

n-1 T-
/, I (k-1) ) _ - -2- f (k) a

P~(k) y(1) ,K - (2n) rr(f(k))

!

Irll
2 expl-
n-1

T (k)-2-

Notice that e(k) and thereby the entire conditional density

(6.66) for the output y(k) depends only on the preceding output
. (k-2)

y(k-1)· Hence, the old hlstory y(1) can be omitted in the

condition part

and the output y(k) can be considered as an observable state of

a nonlinear dynamic stochastic system.

The conditional probability density (6.66) is all that we

need to be able to estimate the parameters and to forecast the

future course of the process on the basis of known historical data.
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6.2 Maximum Likelihood Estimates

As mentioned above, to estimate the unknown parameters

K = {c,a,~} means finding the probability distribution for this

parameter set conditioned on the known data

( (N)) ( I (N))P KIY(1) = P c,a,~ y(1) (6.68)

The dynamic probabilistic model, developed in the previous sub­

section, makes it possible to calculate

p (y ~ ~ ~ Iy(1 ) ,K) = N ( (k-1 ) )
IT pY(k)IY(1) ,K

k=2
(6.69)

where P(Y(k) ly~~)1) 'K) is the density (6.66). Using the Bayes

rule (6.4) we can determine the a posteriori probability density

(6.68) in the following way.

( I (N)) =
PKY(1)

(N) I
P y(2) y(1),K

fp (y ~~ ~ Iy(1 ) ,K • p (K Iy (1 ) ) dK

(6.70)

Considering that the single observation of the first output y(1)

does not bring any information about the unknown parameters K,

we can write

p(KIY(1)) = p(K)

where

p(K) = p(c,a,~)

is the prior distribution for the unknown parameters.

(6.71)

Using similar arguments as in the general introductory

part of this section we obtain for the limit case of a very

flat prior subjective probability distribution
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(6.72)

where

( ~

(N)
L c,a,~,y (1)) (6.73)

is the likelihood function for our estimation problem and

( (N))
K Y (1 ) = f f f L(c,a,SG,Y~~~) de . da· d~. (6.74)

S S Sf")c a H

As the components of the vector a (i.e., a . = ala. ,ifr) canrl r 1
be only positive the space Sa is a space of all (n-1)-vectors

with positive components. S~ is the space of all positive

definite matrices of dimension (n-1) x (n-1) and S is thec
euclidean (n-1)-dimensional space R(n-1). It is assumed, of

course, that N is large enough so that the integral (6.74)

exists.

The likelihood function (6.73) is obtained as the product

(6.69) of probability densities (6.66). From the properties

of the trace of matrix expressions

tr B + tr C tr (B+C)

tr (B C) = tr (C B)

it follows that

N 1 TL -- e ~e
k=2 T(k) (k) (k)

= N l 1 T ]L tr ~e(k) -T- e (k)
k=2 (k)

tr[SG ¥ e _1_ e T l
k=2 (k) T (k) (k~·

(6.75)

When the right-hand side of (6.65) is used to express the vec­

tors e(k) we get

T T T T T
A4'(N) A - Am(N) c - c m(N) A + CT(N) c

(6.76)
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where

N 1 T
¢(N) = L x(k) x(k)

k=2 T(k)

N

m(N) = L x(k)
k=2

N f(k)i f(N)i
m(N)i = L 9,n = 9,n

k=2 f(k-1)i f (1 ) i

N

T (N) = L T(k) = t(N) t (1)
k=2

(6.77)

(6.78)

(6.79)

(6.80)

Using (6.76) the likelihood function can be brought into the

following form:

( (N))
L c,a'~'Y(1) =

=

(
(N) )P Y (2)1 Y (1) ,c,a,~

1

N (n-1) n-l
2 (N )--y- N

(2n) k~2 T (k) • k~2 II(f(k))

(6.81)

As the first factor, not depending on the unknown parameters,

cancels in (6.72) it is possible and more convenient to operate

with the modified likelihood function

-( (N))
L,c ,a, ~ ,y (1 )

(6.82)
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1 - ( (N))
~ L c,a'~'Y(1)
K\Y(1)j

(6.83)

-( (N))
K y (1 ) =

The probability density (6.83) reflects our uncertainty about
(N)

the unknown parameters c,a,~ after the data y(1) have been ob-

served.

If we are interested in the ML-estimates of the unknown

parameters we have to find the point at which the likelihood

function (6.82) reaches its maximum. This maximization can be

decomposed into three steps:

(i) In the first step we shall find the maximum of the

likelihood function over c for all possible values of a and ~.

The parameter c enters only the exponent in (6.82). It is easy

to verify that this exponent can be rearranged in the following

way.

= tr ) ~ [A¢(N) AT + (c -~ Am (N)) 1(N) (c-~ Am (N~ T - Am(N)_1- m~)ATJ l
I (N) (N) V l(N) ~

= tr[~AH(N)A]
T

+ 1 (N) (c - Ab (N)) ~ (c - Ab (N) ) (6.85)

where

b(N)
1 (6.86)= --m

l(N) (N)

b(N)i
1 1 Q.n

f(N)i
(6.87)= --m =

f (1 ) il(N) (N)i t(N)-t(1)
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1--m
L(N) (N)

=

=
N 1
L

k=2 T(k)

(6.88)

N 1
L -

k=2 T(k)

(m f (k) i

\ f (k-1) i ) (

f (k) .
- T(k)b(N)i £n J

f(k-1)j
- T (k)b (N) j~

(6.89)

As any possible ~ must be positive definite the last term in

(6.85) can be only nonnegative. It is evident that the minimum

of (6.85) and hereby the maximum of the likelihood function

(6.82) is reached for

c = (6.90)

c .
rl = (6.91)

no matter what the values of the remaining parameters a,~ are.

After this first maximization step we have

max
c

- ( (N)) N (T -) N;1 1 [ TJ lL c,a,~,y (1) = ~ f (k) a • I~I exp - ~ tr ~AH(N)A ~ .
k 2 (6.92)

(ii) In the second step we shall find the matrix ~ which

maximizes (6.71) for any a. According to Theorem 2 in Appendix

A the maximum is taken on at

~ = [ ATJ-1
(N-l). AH(N) (6.93)

and the maximum is
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~ (f ~)a)
-(N-1) (n-1)/2 k=2

e -1----N--""""'1

AH(N) AT 1-2-
( 6.94)

(iii) In the third step we have to find the vector a (by

which also A(6.58) and a (6.57) are defined) which maximizes

(6.94). This last step of maximization procedure cannot be

solved analytically but only numerically. However, some re­

arrangement of the function (6.94) is suitable to facilitate

the numerical solution. Theorem 3 in Appendix A makes it

possible to rewrite (6.94) in the following form.

(6.95)

where

(6.96)

Notice that the value of the function (6.96) remains un­

changed when all components of the n-vector a (6.57) are divided

(or multiplied) by any positive number y.

a =
1
y

a (6.97)

For instance, if we choose y = a then a. = 1/a. for all i, in-r 1 1

eluding r. Alternatively, for y = a /a we have a. = a· as de-r 1 1

fined by (5.30). This shows that the ML-estimate of a .. = a./
1J 1

a. = a ./a . is always the same no mattep what technology is
] rJ r1

~hosen as the pefepence competitor. It also shows that it is

impossible to estimate separately ai' i = 1,2, ... ,n, but only

their ratios.
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A simple and effective numerical procedure which calculates

the vector a maximizing the function (6.96) is developed in

Appendix B and the corresponding. FORTRAN-subroutine AMLE can be

found in Appendix c.

The whole numerical procedure for maximum likelihood esti­

mation of all model parameters can be summarized into the

following algorithm.

A 1 g 0 r i t h m MLEST:

1. Given the market shares f(k)i' i = 1,2, ... ,n; k = 1,2, ... ,N,

at time points t k , k = 1,2, ... ,N, calculate the scalar T,

the n-vector b and the symmetrical n x n - matrix H according

to formulae (6.80), (6.87) and (6.89).

T = t(N) - t (1)

b. 1
~n

f(N)i
i 1,2, ... ,n= =

l T f (1 ) i

N 1 (~n f(k)i
- T (k)b i ) (~n

f (k) j
- T(k)b j )H.. = IlJ k=2 T(k) f(k-1)i f(k-1)j

i,j = 1,2, ... ,n

where

T(k) = t (k) - t(k-1)

2. Find the direction vector a of any length for which the

function (6.96)

N T
IT f(k) a

k=2

N-1

[
-T -1 -J-2a H a
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reaches its maximum. For this purpose the FORTRAN-sub­

routine AMLE, given in Appendix C, can be used. The sub­

routine AMLE gives the maximizing direction vector a of

length (euclidian norm) equal to one.

3. For any chosen reference competitor (indexed by r) calcu­

late the estimates a. and c. , i = 1,2, ... ,n, according1r 1r
to formulae

a
" ra. =-
1r a.

1

"c. = b r - a. b.1r 1r 1 (6.98)

the estimate of the covariance matrix
-1

4. Calculate R = ri

according to formulae which follows from (6.93) .

" 1 (Hii
H. Hrj H )R.. 1r

+
rr Vi, j f r. (6.99)=

N-1
- r;-- r;-- x x

1J a. a. a. a.Jr 1r 1r Jr

The FORTRAN - subroutine realizing this algorithm can be

found in Appendix C.

Before examples of practical use of the algorithm MLEST

are given, several additional comments are in order concerning

the reliability of maximum likelihood estimates.

As stated above, the uncertainty of the various unknown

parameters is fully characterized by the probability distribu­

tion (6.68) which -- in the case of a very flat prior distribu­

tion (6.71) -- is proportional to the likelihood function (6.81).

The maximum likelihood estimate of the set of unknown param­

eters is the point at which this function reaches its maximum.

This means that to a small region around this point a higher

probability has been assigned by observed data than to the

region of the same size around any other point in the space of

all possible values of unknown parameters. It is evident that
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the maximum likelihood estimates (as well as any other point

estimates) can be very unreliable if the probability density

function (6.81) is very flat or if it has a form of a ridge

with almost the same height along some direction. We shall

not go deeper into these details; however, we feel the neces­

sity to emphasize that caution should be exercised in dealing

with maximum likleihood estimates. The problem is not very

critical in the case of the parameters c. but it may be very
lr

critical in the case of parameters a .. *) The reason can be
lr

seen well from the sensitivity analysis of the two-dimensional

competition performed at the end of Section 5 (see Figures 12

and 13). This sensitivity analysis has shown that within the

take-over time the model output is not very sensitive with

respect to the ratio a 12 = a 1/a 2 . Conversely, the historical

data contain little information about this parameter and when

the data are noisy it may be very difficult or even impossible

to extract this information. However, in this case the simpli­

fied model developed in Section 4 under the assumption that

a. = 1 for all i may serve as a reasonable approximation.
lr

For this reason the FORTRAN - subroutine MLEST listed in

Appendix C provides the user both with the ML-estimate of all

parameters (including a. if possible) and with ML-estimates
lr

of c. and R for a. = 1, i = 1,2, ... ,n. The user has tolr lr
choose the alternative which suits his case.

Example 3. Substitution of steam locomotives by diesel

locomotives in the USA

Table 2, taken from Mansfield [9], gives the numbers of

steam and Diesel locomotives in the USA in the years 1925 to

1959. The market shares within the time period 1939-1959 have

been used as input data for parameter estimation. The result

obtained by application of the subroutine MLEST is

A -1
c 12 = -0.505 year

-2
R = 0.75 10

*In the next section it will be shown that, for the
purpose of forecasting, there actually does not exist a single
number (point estimate) by which the uncertain parameter air
could be replaced.
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Table 2. Number of diesel and steam locomotives, USA, 1925-1959.

Source: E. Mansfield, Intrafirm Rates of Diffusion of an Innovation, Review
of Economics and Statistics, 45 (1963), pp. 348-359.

YEAR Diesel Locomotives Steam Locomotives

(Dec. 31 ) Number Share Number Share

1925 1 * 67 713 **

1927 14 * 64 843 **

1929 25 * 60 572 **

1931 80 * 57 820 .*

1933 85 * 53 302 **

1935 130 * 48 477 ** ,

1937 293 * 46 342 **

1939 639 .0144 43 604 .9856

1941 1 517 .0349 41 911 .9651

1943 2 476 .0557 41 983 .9443

1945 4 301 .0949 41 018 .9051

1947 6 495 .1495 36 942 .8505

1949 12 025 .2838 30 344 .7162

1951 19 014 .4570 22 590 .5430

1953 24 209 .6636 12 274 .3364

1955 26 563 .8091 6 266 .1909

1957 29 137 .9179 2 608 .0821

1959 30 097 .9719 871 .0281

*Less than 1%
**More than 99%
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To check the fit of the model with the true data the process

has been recalculated using the subroutine PENETR with the

parameter values modified according to (5.42) and (5.43)

o o

and with the initial condition f 10 = 0.0144, f 20 = 0.9856,

corresponding to the year 1939 (see Table 2). The calculated

and the true process are compared in Figure 14a,b. The bended

lines in Figure 14b indicate that the process is nonlogistic

but, as it can be seen, within the take-over time (10% - 90%)

the simple Fisher-Pry model could still be a reasonable ap­

proximation.

Example 4. Substitution of primary energy sources in

world energy consumption.

In this example a typical sample of calculations performed

on world energy data is recorded.

During the derivation of the model in Sections 4 and 5 it

has been shown that the variations of the most important param­

eters c ir (i = 1,2, ... ,n) are smoothed by integration so that

the model output is not very sensitive to their fluctuations

around some mean value. Nevertheless it is hard to believe

that they could be even approximately constant for a very long

period of time covering two world wars. To investigate this

question several time periods have been considered for parameter

estimation separately. In spite of the fact that the estimates

obtained from different time periods are slightly different

(estimates of a .. sometimes very different), in all cases a remark-
1J

ably good fit with all historical data, both forwards and back-

wards, has been obtained. This indicates a high stability of

the process and supports the confidence in the forecast based

on the model. To demonstrate this favorable feature of the model

at least several of these calculations will be reported in detail

so that the interested reader can easily reproduce them himself
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Figure 14a,L. Replacement of steam by diesel
locomotives in the USA.
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using the FORTRAN - subroutines in Appendix c.

In Table 3 the market shares of the main primary energy

sources in the world energy consumption are registered for the

time period 1920 to 1971. They have been calculated from world

energy data collected at IIASA by N. Nakicenovic [12]. As the

data on wood since 1951 have not been available they have been

replaced by predictions obtained from the past history of the

substitution process in order to make the table complete. No­

tice that these artificial data are relatively insignificant.

When all data from Table 3 are used the following estimates

are obtained.

(:14 == 0.0884, (:24 == 0.0601, (:34 == 0.0353, (c 44 0)

a14 == 0.826, a24 == 0.867, a34 == 0.325, (a 44 == 1)

where the indices have the following meaning: 1 ~ wood, 2 - coal,

3 ~ oil, 4 - nat'.ual gas, and one year is taken as time unit.

Natural gas is chosen as the reference competitor; however,

using the relations (5.13) and (5.15) the estimates can be easi­

ly recalculated to any other choice.

The smoothed curves in Figures 15a,b show the output of the

deterministic model (subroutine PENETR with parameter values

ci == (:i4' ai == ai4 , p == 0) for initial market shares in 1920

taken from Table 3.

As discussed above, the estimates of the parameters

air are rather unreliable but also not very significant from the

point of view of the model output. If all of them are set to

one the following estimates of the parameters c· are obtainedlr
(subroutine MLEST in Appendix C gives both these results at the

same time):

"-

c 14 == 0.0973, c 24 == 0.0622, c 34 == 0.0119, (c 44 == 0)
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Table 3. Market shares of primary energy sources in world
energy consumption.

Year

1920
1<)21
1922
1923
192 4
1';25
1926
1927
1928
192<"1
1930
1931
10 32
1933
10.3 4
1935
1936
1°37
193A
1939
19 4 0
1941
1<)42
1<J~3
1elj 11

1<)45
1946
1(1117
19420
1949
1C:-' 5C
19 ~ 1
lS52
1953
1 QI:,II

1<;S5
i~·')G

1c57
lo.S3
1059
1('(0
19 C, 1
1<)02
1<)(,3
10[ 11

1<) () 5
1t;((j

1C'J 7
1C C,e:

1G 7l~

1°71

Wood

0.1511P
(1. H 953
0.1~714

O. 13 1j 03
(\.13537
c. 1328~

C.l~21F

0.123 1l 2
0.11317
n.l10 1l ?
C.1104P
0.12(59
C • 1 3}j F F­
C.12·2 25
C'.11fi."[;
C.l1CUP
C. 10005
C.O()~04

0.lCC71
C.C:2225
0.C?C44
r.Cnl1
0.07 ll22

c:. C7073
G.Cf<1'::3
('.C7918
c . C7 1i Ijli

0.CGS10
C.G(2?P
('. CC115
C:.r5~15

C• C :~ C' C2 l<'-)
C • CI) ~ Q P
C. (';)1 :.1 !l
r.G),U2
(,.r3:;01
O. C<: 11 2
\). ::: ~ 321
n.C?C'°7
C • C?,~~' c
C • C2 (. P(!
('. r2!jC'3
C,(2331
C. (;;;: 15(1
C .C1cnL
r. r 1 .~ (, 1
C. -11 '(r,n
C• ',) 1r, r~ 1

r ,'1 ~, :<
\. • \. I ~ _

(' . l' I ;- ! ';
(', . l 1 11: 1

Coal

0.75531
C:.719Cl7
O.724(.~

('.73715
C.7327E
('.72 0 67
C.7245f\
0.72286
(:.73508
0.71(.77
0.7 C1l)1 C
r.fE565
OJfr;77
o.f,C°p,4
o.(t122
C.07932
C.fP'!;C5
('.G7701
0.70(,62
C.G7f.f,9
C.CC;424
[.(0220
0.70751
t.~ • (; r: r. 76
0.f.7301
o.(10G6
Q. C1 11 04
C.C239,Q
0.(('720
C'.S931P
C• l~ c; G7 1
C.5':JIc)7
r;.57?6P
(' • S6 C112
:' • ~: II :~ 17
r. c' l' h <c:;
\.... • .../ t • ~_'

\.5)1?39
r..53f.93
c. ~,jllil 1
C.52 1112
8.:,15PO
r. II,)7CJ2
C. i: S; 19 1
r.. Ii i' 7? 4
n. I' 773 1
() • II lj F ~ 2
(' • II J; 119 °
c. 1: 2 1r [:
~. '<;-1: r:
('I. 7173
C. ':7~f
c. IIQCjF

Oil

C' • 07 ? 117 .
0.0°107
C'.C')~')05

['.1C307
c. 1r.11n
C.l0 0U ?
C.11221'
C. ];)17f
C.1F1 3 1J

C.l~202

C.13571
C.l~597

C.15222
C.1GCE3
C.157f.2
0..1(-:,1:
C.lf1juE.
C.17'572
(: • 1357 II
0.17,l)~5

O.17?3C
C.1711 u
C.lf.llf
O.lf P73
G. ]('2C5
G.2?crc:o
(".??'G7
G• ? -;: Cc: ~;

C. 2 113'::: 3
C. 2 Ie i= 311

C. 2 11 35 11

O. ?')?;;II

c. 2E? ~F;

G.?72:;~

C.2::2 Q E
C.?0,?()5
C.297°1
n ~C''1')r:
~, . (- " _./

C:.30r c ')
0.<0';.42
r..311'JG
r.?nH
0.??7 i:3
C.33103
() • ~ ~ I' 7 1
C. ';,~ 1 H
(' • ') ~ l r 1
C• 37 1II r
C.)'C i .7(
':'.)11 CC'?

Nat.Gas

C• 0200 II
0.011'53
0.02013
0.023 0 5
('.on07
C. C220<;
C.(:3(:°9
Q.0319G
C.032L:l
0.(3928
O.043 u l
C.C'U179
C.C4252
0.C4127
C:. 0113 EA
~ • C!lll c; 9
o.Oseel
C.0531f
0.(:5602
0.05461
0.0',;302
0.051;55
0.05709
C.OG17P
O.OI':F ll l
r . Ce'i 1f­
C. c~, ')1; S
C' • CP? S)1
O.CP';OO
C.C,C??),
C.1C iI5F.
0,.11377
O.11 c Oc;
G.l?l59
0.121-23
G.l::2P
r..l?II?7
O.12 G SG
0.13 7.(,7
C. 11! 1 II G
n, 111')75

C:.15<')1
G.l~735

(1. 1r:: S3?
r. 1( I; (' II

0.1'«'00
0.17(,11
rl. 111 1 r:; 1\
r 1ll:' 1()
(' . ?:i 7:' 1
C • ? (, c ~ }I

:'.?l c,:7

*The data on wood consumption for energy production since 1951 have not been
available. These numbers are estimates based on the past history of the
substitution process (1885-1950).
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Figure 15a.b. Primary energy substitution: all model
parameters estimated from the period
1920-1971.
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The corresponding model output for the starting point in 1920

is shown in Figures 16a,b. In spite of the great difference in

parameters a i4 (especially in a 34 ) the difference in the model

outputs is not so great as one could expect. The comparison of

fits with historical data indicates that in this case the as­

sumption a i4 = 1 (for all i) may pe more realistic than to rely

on uncertain ML-estimates of these parameters. The important

question, how the uncertainty of parameters has to be projected

into the future, will be studied in detail in the next section

where we shall deal with forecasting.

One could expect that the 2nd World War and the intensive

technical development after this war could cause a significant

change in the model parameters. If this were true then the pre­

war data should not be used in forecasting the future develop­

ment of the substitution process. To clear up this question

only the postwar data from the time period 1945 to 1971 have

been considered in parameter estimation and the model has been

used to "backcast" the past history of the process. Due to the

relatively low number of data with narrow range of their ampli­

tudes only the simplified model under the assumption a. =lr
(for all i) could be obtained in this case. The estimates of

the remaining free parameters are

C14 = 0.1107, c24 0.0586, c34 0.0114, (c 44 = 0)

The comparison with historical data, for the starting point in

1971, is given in Figures 17a,b. The bad fit of the curve sep­

arating the market shares of wood and coal in Figure 17a cannot

be considered as a failure. Notice that only six points of used

data on wood (1945 to 1950) are true. The remaining 21 points

are artificial and smoothed and were taken by the estimation

procedure as very precise. This, of course, drastically in­

fluenced the result of estimation. To overcome this difficulty,

wood (which is insignificant for the future development of the

process) and coal have been aggregated (by summing up the two

corresponding columns in Table 3) and considered as one competitor.
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Figure 16a,b. Primary energy substituion: parameters
a set to 1; remaining estimated from the
period 1920-1971.



-87-

2000
YEAR

NAT. GAS

OIL

19501900

COAL

WOOD

f

1.0

0.5

0.0

Figure 17a,b. Primary energy substitution: parameters
a set to I; remaining estimated from postwar
data 1945-1971.
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The result of the repeated calculation is

A

C 13 = 0.0621 0.0114 (c 33 = 0)

Hhere the indices mean: 1 ~ wood + coal, 2 - oil, 3 - natural gas.

20nsidering the "goodness-of-fit" with historical data for 70

years backwards, shown in Figures 18a,b, it is hard to believe

that the law governing the substitution process should be much

different in the near future. The opponent, who is of different

opinion, should attack the assumptions on which the model is

based and show why and how much, whether significantly, they

will be violated. Of course, the future development of the

substitution process can be considerably influenced when a new

and competitive energy source, like nuclear, enters the market.

This will be shown in the next section.

7. FORECASTING

In this section the problem of forecasting is studied with

emphasis on the following objectives:

to clear up the relation between the deterministic and prob­

abilistic models developed in previous sections in order to

give a precise probabilistic meaning to the curves generated

by the deterministic model, which -- of course -- can never be

precisely true;

to investigate the suitability of maximum likelihood estimates

for the purpose of forecasting;

to show how the uncertainty of parameters can be projected

into the future;

to show, by the example of nuclear energy, how a new techno­

logy can be incorporated into the model.

To follow this program let us show first that the output

of the deterministic model, calculated for some particular time

point t and for given parameters and initial conditions, is
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Figure 18a.b. Wood and coal aggregated, parameters a set
to 1; remaining estimated from postwar data
1945-1971.
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neither the maximum of the probability density nor the mean

value but the median. In the two-dimensional case (n = 2) it

means that with probability one half, the possible true value

lies on one side of the calculated curve and with the same

probability on the other side. Before we prove this statement,

let us formulate it more precisely and generally for the multi­

variate case.

The output of the process at time t k+ 1 is fully determined

by the vector y (k+1) (y (k+1) i = f (t k+ 1 ) i,i +r). Let us denote

the output of the deterministic model by y(k+1) to be distin­

guished from any other possible output y (k+1). Further, let us

introduce the following spaces of possible process outputs.

+ I

Y(k+1)

=

=

{y(k+1)

{Y(k+1)

What we are stating is: Given the model parameters K = {c,a,Q}

and the initial condition Y(k)' the probability that the output

Y (k+1) wi II lie in the space Y(k+1) is the same as the probabi l-
+ity that the output will lie in the space Y (k+1)

pr(y(k+1) E Y(k+1) IY(k) ,K) (7 . 1 )

To prove this statement let us calculate the probability

on the left hand side of (7.1). Using the regular transformation

between the random vectors y(k+1) and e(k+1)' and considering

that y(k+1) is calculated for e(k+1) = 0, we obtain
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y(k+1 )I P(y(k+1)IY(k),K)dY(k+1)
o

o 00

= Ip(e(k+1) IY(k) ,K)de(k+1) = I p(e(k+1) IY(k) ,K)de(k+1) ( 7 .2)

-co a

The last equality in (7.2) follows from the fact that the dis­

tribution of e(k+1) is normal, according to assumption (6.53),

and proves the statement.

Now, let us follow the question of what happens when some

or all model parameters are not precisely known; how is the uncer­

tainty of the parameters reflected in the uncertainty of the fore­

cast. The precise Bayesian answer to this question is as follows.

Let Y(N) be the last output of the process which is known

and Y (N+1) be the future output at time t N+ 1 > t N we want to

forecast. If the set of all model parameters K were known, then

all that could be said about the future output is contained in

the probability density P(Y(N+1) IY(N) ,K) defined by our model.

When all or some of the parameters are unknown or uncertain this

probability density is not available. Consider the parameter

set K decomposed into two subsets

(7.3)

where K is the subset of unknown parameters while the param-u
eters Kc are considered as certain. Not knowing the parameters

Ku we have to look for the probability density P(Y(N+1) IY~~~ ,Kc )

where the information about the unknown parameters is replaced

by the information contained in the known past history of the

process. Forecasting under the lack of parameter values is

nothing else than calculation of this probability density which

can be performed using two basic formulae (6.2) and (6.1) in

the following way_
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(7 .4)

In our case, both probability density functions which are

required on the right-hand side of (7.4), are already known.

The first one is given by (6.66), the second one -- for all

parameters unknown--by (6.83), (6.82) and (6.84).

The formula (7. 4 ) indicates under what conditions the un­

known parameters K can be simply replaced by their maximum

likelihood estimates. Consider the probability density

P(y(N+1) IY(N) ,Kc,Ku ) as a function of Ku for given y(N) and any

but fixed y(N+1). If the probability distribution for Ku is

highly concentrated around the ML-estimate K , as shown in
u

Figure 19a, it is evident that a good approximation of the in-

tegral (7.4) can be obtained if the variable K in the first
u

part of the integrand in (7.4) is simply replaced by the fixed
A

point K .
u

(7 • 5 )

However, if the situation is like Figure 19b, the approxima­

tion (7.5) does not hold and the integration in (7.4) has to be

performed. Unfortunately, it is not easy to recognize what

situation occurs without a more detailed investigation.

K
u

K
u

K
u

Figure 19a,b. Two extreme situations in Bayesian forecasting.
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In our case the integration (7.4) can be performed analyt­

ically for the unknown parameters Ku = {c,~} but only numerical­

ly when also the parameter vector a is considered as unknown.

To facilitate the integration let us bring the formula (7.4)

into a more convenient form. When the density p(KuIY~~~ ,Kc ) is

expressed by the Bayes formula (analogous to (6.70))

(7 • 6 )

and the relation (again the basic formula (6.1))

is applied, the formula (7.4) gets the form

J ((N+1) I )
P,y(2) Y(1) ,Kc,Ku P (Ku IKc 'Y(1))dKu

JP(Y~~~ IY(1) ,Kc,Ku ) p( Ku IKc 'Y(1))dKu

(7 • 8 )

Notice that the initial condition Y(1) for our stochastic model

can be, actually, considered as one of its parameters which is

known. If it can be assumed that the prior distribution for the

unknown parameters P(Ku !Y(1) ,Kc ) is very flat even when Kc and

y (1) are a priori known, then -- under conditions specified in

Section 6 -- the following result is obtained.

(7 • 9)

Notice that the probability densities in (7.9) are, in fact,

likelihood functions given by formula (6.81).
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(7.10)

(7.11)

Of course, the variable Y(N+1) incorporated into (7.10) has to

be considered not as fixed but free.

We shall exploit the general formula (7.9) in two steps.

First, it will be assumed that the parameter vector a is known.

In the second step the solution will be generalized for the

case when also a is unknown.

7.1 Parameter Vector a Known

In this case we have

= K c == {a}

and the formula (7.9) can be written

(7.12)

(
(M) \

L c, a, st, y (1 ) ) dc • dst (7.13)

where M stays either for N + 1 or N.

The ratio on the right-hand side of (7.12) is given by

Theorem 5 in Appendix A. According to this theorem the proba­

bility distribution for the future output of the process, given

only the past history of the process and parameter vector a, is

(for the sake of simplicity we omit the normalizing factor in

(A. 40)
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~
"'T \f'-1

+e(N+1) (N) )

N+n
'" -2-
e (N+ 1 )

(7.14)

e (N+ 1 ) = (7.15)

X(N+1)i
f(N+1)i

= ~n

f(N)i
'Vi (7.16)

= T
A H (N) A (7.17)

and c(N) is the maximum likelihood estimate (6.98) of the param­

eter vector c available at time tN'

Notice that the transformation between the random variable

Y(N+1) and the variable e(N+1) introduced by (7.15) is the same

as in (6.65): only the true parameter vector c is replaced by

its ML-estimate. Using this transformation, the Jacobian of

which is reciprocal to (6.64), we can calculate

(" I (N) )0:
P e (N+ 1) Y ( 1 ) ,a -(----------)-N-+-n

1 '" T \11- 1 '" 2
+ e (N+ 1) T (N) e (N+ 1)

(7.18)

Hence, the random variable e(N+1) has the Student's t-distribu­

tion with zero mean and with the covariance matrix

where

1
N-2 \f'(N)

~

= (tN+ 1 - t N ) R(N) (7.19)

= (7.20)
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(7.21)H )
rr

a. a.
lr Jr

H .
---.£l +
a.lr

H.
lr

a.
Jr

~

Notice that R(N) is related to the ML-estimate R(N)

(6.93) in the following way:

= (7.22)

From these theoretical results the following practical con­

clusions can be drawn:

The deterministic model in which the unknown parameters c. ,lr
Vi f r, are replaced by their ML-estimates~ gives the point

of the distribution (7.14) where e(N+1) = O. As the Student's

t-distribution (7.18) is symmetric (and for N» n-1 close to

normal) the deterministic forecast has the same meaning as if

these parameters were known~ i.e. the meaning of median.

The increase of uncertainty in the forecast due to uncertain

parameters c and ~ is reflected in the covariance matrix (?22)

and in the change of the shape of the probability distribution

p(e ) Iy ) ,K) from the normal to Student's.
UH1 (N

For given parameter vector a the best estimate of c~ for the

purpose of forecasting~ is the ML-estimate. The ML-estimate

of the covariance matrix R has to be corrected according to

(7.22).

Unfortunately, this is also not true when the parameter vector

a is unknown, as we shall show now.

7.2 Parameter Vector a Unknown

If no parameters can be considered as known, then the

parameter sets in the general formula (7.9) are

K = {c,a,~}
u
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and, according to the general formula (7.9), instead of (7.12)

we now have

(
(N)\

p Y (N+ 1) Y ( 1 >J = (7.23)

Using the formulae (A.37) from Theorem 5 and (A.16) from Theo­

rem 3 (Appendix A), it can easily be verified that the following

proportionality holds:

N+1 TII (f (k) a)

~ (NO 1

) k=2
P Y (N+ 1 ) IY (1 ) ex da. (7.24)

II (f (N+ 1 ) )

(I H (N+1) I r+
n

-T -1 ~ -2-
a • a H (N+ 1 ) a

For any chosen y (N+1) (or f (N+1) fulfilling the condition

If (N+ 1 ) i = 1) the right hand side of (7. 14) can be evaluated by

numerical integration. In this way the entire probability den­

sity (as a function of the variable vector y(N+1» can be ob­

tained in the form of a numerical table and any of its charac­

teristics can be calculated nu~erically. This numerical calcu­

lation can be facilitated using the formulae proved in Theorem 4

(Appendix A):

-1
H (N+ 1 ) (7.25)

d (N+1) = x (N+1) - b (N) (tN+ 1 - t N) (7.26)

Y(N+1) (7.27)

e(N+1) = (tN+1 (7.28)

(7.29)

where x(N+1) is defined by (7.16). Notice, that the determinant

(7.29) can be taken out from the integral (7.24) and e (N+l) IH (N) I
can be omitted being a part of the normalizing factor.
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The following practical conclusions have to be drawn:

Generally~ there does not exist a single number - a point

estimate - by which the unknown parameter a could be re­

placed for the purpose of forecasting (neither in determin­

istic nor in probabilistic models). An exception is the

situation shown in Figure 19a~ which occurred in Example 3

(Diesel versus steam locomotives in the USA). In other

cases the maximum likelihood estimate of the parameter vector

a has to be handled with caution. Fortunately~ within the

most important period of transition the model output is not

very sensitive with respect to this parameter~ as it was

shown by the sensitivity analysis of the two-dimensional case

in Section 5. Usually~ the assumption a. = 1, \fi, canlr
serve as a good approximation. Because of these reasons the

subroutine MLEST in Appendix C provides the user both with

ML-estimates of all parameters and with ML-estimates of the

parameter vector c and covariance matrix R under the assump-

tion a· = 1, \fie Whether the question 1.-S critical~ it canlr
be recognized by plotting the ratios of market shares versus

time in semi logarithmic scale~ like in Figures 7a~b~c~d.

If the user has a reason to assume some other value of the

parameter a than suggested~ he can recalculate the estimates

C and R using the formulae (6.98) and (7.21). The vector b
and the matrix H~ which enter these formulae are also supplied

by the subroutine MLEST.

Now, following these rules, we shall show by the example

of nuclear energy, how a new technology can be incorporated into

the model.

Example 5. Forecast of market penetration by nuclear energy.

In Example 4 only four main competitors in the world energy

market have been cons idered: wood (i = 1), coal (i = 2), oil (i = 3)

and natural gas (i = 4). If we want to forecast the future de­

velopment of this substitution process we have to consider the
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possible newcomers. In this example it will be shown how this

can be done in the case of nuclear energy (i = 5). However, the

same or similar procedure can be applied for any other addition­

al competitive energy source.

To be able to apply the deterministic model (with the prob­

abilistic interpretation given above) we have to determine the

parameters c .. , a .. characterizing the relation between each
1.) 1.)

pair of competitors. Only 2(n-1) = 8 of them are independent,

the rest being determined by relations (5.13) to (5.15). If,

for instance, natural gas is considered as the reference compe­

titor (r = 4) then the full set of model parameters is

c i4 , a i4 : i = 1,2,3,5

If we have no reasons to expect a significant change in param­

eters characterizing the competition between the main existing

energy sources -- as shown in Example 4 they could be considered

as constants for more than the last seventy years -- we can use

their estimates based on historical data. Using the data from

the time period 1920 to 1971 we have (see Example 4) for a 14 =
a 24 = a 34 = 1

(:14 = 0.0973 224 = 0.0622 234 = 0.0119 (c 44 = 0).

Notice that wood is no longer significant; it is considered only

for completeness.

To complete the set of parameters we have to determine the

remaining parameters c 54 and a 54 . Having almost no historical

experience with nuclear energy we have to use the economic

assessment of this newcomer relative to some existing and

significant competitor. For the purpose of demonstration the

comparison between nuclear energy and oil, as primary energy

sources for electricity production, given by FRG Ministry for

Research and Development [19] has been used. According to this

source the specific investments and total production costs for

LWR-nuclear plant and natural gas plant, both for a base load
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of 4000 h/a, are:

nuclear a
5

= 1150 DM/kW, c 5 = 0.063 m1/kwh = 552 DM/kW a

gas - a 4 = 755 DH/kl..v, c 4 = 0.075 DM/kWh = 657 DM/kW a

Expecting that the competition will take place -- at least in the

first stage -- in the field of electricity production, the growth

rate factor p = 0.06 a- 1 has been assumed. Substitution of these

figures into the formulae (5.11) and (5.12) gives

Taking the last known market shares in the year 1971 as initial

conditions (f 10 = 0.0114, f 20 = 0.3406, f 30 = 0.4322, f 40 =
0.2159, f 50 = 0) the market shares in the time period 1885-1973

have been calculated using the subroutine PENETR with parameter

values modified according to (5.42) and (5.43). In the year

1973 1% market share of nuclear energy, (f 5 = 0.01) has been

introduced and the remaining market shares have been corrected

accordingly. For these new initial conditions the substitution

process has been calculated until the year 2050. The result is

plotted in Figure 20a,b.

The economical assessments performed by various authors

diverge considerably. To see how much the forecast is affected

when rather different input data are used, the calculation has

been repeated using the assessment given by Michaelis [20] for

electricity power plants using LWR - nuclear energy and oil as

primary energy sources. According to this source the specific

investments and total production costs for the base load 7000 h/a

are:
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Figure 20. Forecast of market penetration by nuclear energy-­
economic assessment from [19].
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nuclear - as = 1S00 DM/kW, Cs = 0.0429 DM/kWh = 376 DM/kW a

oil - a =
3 720 DU/kW, c 3 = O. 0639 m1/kwh = S60 DM/kW a

-1
For these figures and p = 0.06 a the formulae (S.11) and (S.12)

give

+ (:~ - 1)P ~ - 0.256 + 0.065 ~ - 0.191 a-
1

Choosing oil as the reference competitor in this case, the

estimates of the parameters c. , given above for r = 4, havelr
been recalculated for r = 3 (oil) using the formula ci3 =
a43 (c i4 - c34 ) following from (S.1S).

(:13 = 0.08S4, (:23 = 0.OS04, (c 33 = 0), c43 = -0.0119

The corresponding model output, obtained for the same initial

conditions as in the previous case, is plotted in Figures 21a,b.

To make the comparison complete the parameter values

aS4 = 2.08 cS4 = - 0.172

have also been determined using the formulae (S.11) and (S.12).

Notice the great difference in these parameter values when com­

pared with the previous case. In spite of this great difference

the model outputs given in Figures 20a,b and Figures 21a,b do

not differ so drastically as one could expect. This again shows

the very high stability of the substitution process and explains

the technological ~fate~ observed by Marchetti [2].

The possible objection that the economical assessment made

for FRG may not be representative for the whole world is fully

justified. Nevertheless, the rather low sensitivity of the

model output with respect to its parameter values demonstrated
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Figure 21. Forecast of market penetration by nuclear energy-­
economic assessment from [20].
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in this example, indicates that this question may be not very

critical.

The meaning of the curves presented in Figures 19a,b and

20a,b corresponds to the probabilistic interpretation of the

output of the deterministic model given in this section, under

the assumption that the parameter values c S4 ' a S4 (in the first

case) and c S3 ' a S3 (in the second case) are certain. This is,

of course, not true. If we wanted to be more objective it w9uld

be possible to construct a "subjective" probability distribution

for these uncertain parameters, based on all available assess­

ments and opinions, and to project this uncertainty into the

future as outlined in this section. In this way the probability

distribution of the future process output conditioned on the

present knowledge could be obtained.

8. CONCLUDING REMARKS

Any scientific approach to the problem of forecasting cannot

be anything else than drawing conclusions on the basis of certain

assumptions. It is possible to check whether these assumptions

have been fulfilled in the past but, strictly speaking, it never

can be guaranteed that they will not be violated in the future.

Employing mathematics in this study, it was possible to base the

forecast on a few simple and well understandable assumptions and

to maintain consistency of reasoning even in rather complex situa­

tions. This makes it possible to reduce the discussion about the

possible future to a criticism of the basic assumptions.

Perhaps the most important assumption, on which the presented

theory is based, is that in the long term a particular technology

has to live and grow on its own account, i.e. that the mean value of

the external capital flow is zero. The assumption that the mean

values of certain economic characteristics do not change in time

restricts the validity of the model to the situations when the

technology starting to penetrate the market is already well estab­

lished. The model also cannot predict the birth of a new technology.

It must be introduced into the model exogenously.
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The penetration of a market by new technologies is a very

complex interplay between producers and consumers. This study

emphasizes the macroeconomic view on the producer side. The

consumer side, as discussed at the beginning of Section 4, is

reflected in the correction by which the total production costs

have to be reduced in order to respect the difference in market

price the average consumer is ready to pay for the higher quali­

ty of satisfaction of his need. In some cases this correcting

term cannot be considered as stationary and can be influenced

by advertisement and/or by official propaganda. In these cases

the consumer side and the spread of information should be con­

sidered in more detail.

In societies with planned economies the mechanism of an

open market is replaced by economic balances and decisions

made by planning institutions and committees. However, not even

a planned economy can afford to support a loser without special

reasons. The planners also have to respect the social demand

in order to ensure a fluent and regular distribution of products

but they can control the substitution process, by setting taxes

and different prices (both can be reflected in the model in

total production costs), in order to achieve some goals. It is

believed that the model developed in this study could serve as

a planning tool for these purposes.

Speaking about possible control of the substitution process

another important point has to be mentioned. As pointed out in

Section 4 no technology can start from zero without external

financial help. The magnitude of the initial external invest­

ment actually determines the initial conditions for the model

and may considerably accelerate (or delay if it is too small)

the substitution process, especially when the new technology is

profitable but requires high investments. This is clearly seen

from the sensitivity analysis performed in Example 2.

In Example 5 the forecast of penetration of the energy

market by nuclear energy, based on its economic assessment,

has been given. Recently, much attention has been paid to the
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question whether such a technological development would not be

too risky. Many other technologies are risky, too. (Consider,

for instance, the automobile--one of the main killers of man­

kind.) Whether a risk has been taken or not is also an econom­

ical question. The presented model could help to evaluate the

economic loss the society should accept in order to avoid the

risk. In this way it would be possible to base the decision on

a more objective (and less emotional) basis.
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Appendix A. Mathematical theorems and proofs

To simplify the proofs of theorems used in the main text

four known Lemmas will be stated first.

Lemma 1. Let A and D be nonsingular square matrices, may­

be of different orders, and Band C matrices of appropriate

dimensions. Then the following relations for determinants hold:

(A. 1 )

(A. 2 )

ppoof: See, e.g., Rao [18], supplement to Chapter 1b.

Lemma 2. Let A be a nonsingular square matrix, b a vector

and y a scalar. Then

[A J-
1 -1 1 A- 1bbTA- 1

+ b~ b
T = A -

Y + b TA- 1b

IA + b l bTl = IA I(1 + +b
T

A-
1
bJy

(A. 3)

(A. 4)

Ppoof. To prove (A.3) multiply both its sides by (A+b..l.b T).
y

The second equality (A.4) is a special case of (A.2).

Lemma 3. Let M be a positive definite matrix of dimension

(v x v). Then

I exp {­

RV

v _!

(x - c) T M(x - c) }dx = ( 2 TT )"2 IMI 2 (A. 5)

Ppoof. See, e.g., Anderson [17] ~~2.3.
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Lemma 4. Let Sn be a space of all positive definite

matrices n of dimension v and let ¢ be also positive definite.

Then

)..I
2"

Inl exp {-! tr(n¢)}dn

=

)..I+v+1
2

(A. 6)

where f(·) is the gamma-function.

Proof· See, e.g., DeGroot [14] §5.5.

Theorem 1. The transformation between two v-dimensional

rea l vectors {e. : i = 1 ,2, ... , v} defined by re lations
1

e.
1

i = 1,2, ... ,v (A. 7)

=
v

1 - L
i=1

f.
1

(A. 8)

o < f. < 1 Vi
1

where all a i are positive and real~ is regular (one-to-one) and

its Jacobian is

J =

v
.r
1=1 f. a. + f v 1

1 1 +
v+1

IT f.
i=1 1

(A. 9)

Proof. Notice that the transformation is continuous. To

prove its regularity it is sufficient to show that all partial

derivatives ae·/af. are positive. From (A.7) and (A.8) we have
1 J
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j =1= i
de.

1

~
]

=
a.

1

f V+ 1
> 0 (A. 1 0)

de.
1

ar
1

= 1
a.

_ + 1

f i f v+1
> 0 (A.11)

and the Jacobian can be expressed as follows:

J

o

• - 1
f v

-
a

1
-IT1

1
1

a 2
+

f v+ 1

1 a

Application of (A.2) with A- 1 = diag (f
1
,f2 , ... ,fv)' C

T =
[1,1, ... ,1], D = f

V
+1 and B = [a1 ,a2 , ... ,a) proves (A.9).

(A.12)f(~)

Theo~em 2. Let f(~) be a scala~ function of a positive

semidefinite mat~ix ~ of dimension v defined by

p

1~12 e-~tr(~D)

whe~e D ~s positive definite. The maximum of f(~) ~s taken on

at

-1
pD (A.13)

and the maximum ~s

( )

PV P

f ( p D- 1 ) = ~"2 1D 1- 2" (A.14)

P~oof. See Anderson [17] §3.2.

The 0 ~ em :3. Let H be a s ymmet ~ i c non sing u l a~ (n x n) ma tJ' i x

and

A = [I, -a] (A. 15)
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where I is an identity matrix of dimension n-1 and a is a

column vector. Then the following equality holds

(A. 1 6)

where a is the vector a extended by 1.

a ~ r:]
Proof. Consider the matrix H and its inverse G = H- 1

partitioned in the following way

(A. 17)

where h,g are vectors and n,y scalars. From the equality HG = I

the following relations are obtained.

1 1 hT G hY = - + 2"n rn

g = -G h.l
r n

(A. 18)

(A. 19)

(A. 20)

Using the definition (A.15) of the matrix A we have

[I ,

=

=

= . (A. 2 1 )
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Making use of (A.4) we obtain

and reversed application of (A.1) gives

=

Considering also (A.18), (A.19) and (A.20) we can continue

in rearranging of (A.22) as follows

(A.23)

_1_ hTG h-lhTG a-aTG h.1. +
2 r n r r n

n

T T T)+ g a + a g + a Gra

IAHATI = IHI(~ +

= IH I (~ +

= IHI (Y

However, the last expression in (A.23) can be written also in

this way

= T
[a ,1]

which completes the proof.

Theorem 4.

to (6. 88)

Let H(N+1) be a (n x n)-matrix defined simiZarZy

= T
¢(N+1) - b(N+1) L(N+1) b(N+1) (A.24)

ZiJhere~ according to (6.77) and (6.80)

¢ (N+1)
N+ 1 1 T

= L --x x
k=2 T (k) (k) (k)

(A.25)
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=

=
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(A. 26)

(A. 27)

and b(N+1) is a n-vector the components of which are defined

according to (6.87)

b(N+1)i = 1

l (N+ 1)
\Ii (A. 28)

Then the following recursive relations hold:

l (N+ 1 ) =

=

l(N) + T(N+1)

l(N) (b + X(N+1)\

l(N+1) (N) l(N) )

(A. 29)

(A.30)

H = H + 1 (x T b) ( T b)T (A. 31 )
(N+1) (N) 8 (N+1) (N+1) - (N+1) (N) x(N+1) - (N+1) (N)

8(N+1) =
T(N+1)l(N+1)

l(N)

-1 -1 1
d (N+ 1 )

T
H (N+ 1 ) = H(N) d (N+ 1 )

Y(N+1)

d (N+ 1 ) = (x (N+1) - T(N+1)b(N))

8(N+1) +
T -1

Y(N+1) = d(N+1)H(N)d(N+1)

IH (N+1 ) I = 8 (N+1 ) IH (N) IY (N+1 )

(A. 32)

(A. 33)

(A. 34)

(A. 35)

(A. 36)

Proof. Relation (A.29) directly follows from the defini­

tions of l(N+1) (A.27) and T(k) (A.26).
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The i-th component of the vector b(N+1) (A.28) can be

written as follows:

b(N+1)i
1 (in f (N) i in f (N+1) ~= +

T (N+ 1 ) f (1) i f(N)i

T (N)

(b(N)i + T;N) X(N+1)i)=
T(N+1)

which proves (A.30).

Using (A.25) and (A.30) the matrix H(N+1) (A.24) can be

expressed in the following way:

=

- ~ (N)

+ x (N+ 1 )\

T (N) /

2
T (N)

T (N+1) ( )

T
b + x (N+ 1 )

(N) T (N)

and after a simple rearrangement, (A.31) is obtained.

Application of (A.3) and (A.4) to (A.31) gives (A.33) and

(A.36), respectively, which completes the proof.

Theorem 5. Let L (c,a,Sl,y~~U be theZ,ikelihood function

de fin e d by ( 6 . 81 ) for M = N, wh.;; :i e c E Sis a (n-1 ) - ve c tor and
c

Sl E SSl a (n-1) x (n-1) -matrix. The integral. of this function

taken over the (n-1) -dimensional space Sc:: R
n

- 1
and over the

space SSl of all. positive definite matrices of dimension (n-1)

x (n-1) is

cont.I ...
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n-12

n
~1- - N

2
1T IT T(k)

k=2
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M

n-1. . IT (f~k) a)
IT r (Mt-n- J ) 0 _k_=2 _

. 1 2MJ=
IT IT(f(k))

k=2

x

M+n-1
2

(A. 37)

where r(o) means gamma-function and 1 0 I means determinant. For

M = N+ 1 the determinant in (A.57) can be expressed as follows:

(A.38)

e (N+ 1 ) = (A. 39)

l/!(N) = T(N+1)

T
(N+1) A H AT

T (N) (N)

where x(N+1) is the vector introduced by (6.61) and (6.62)3 and

c(N) is the maximum likelihood estimates (6.90) of the parameter

vector C 3 available at time tN. Hence

( (N+1) )
K Y(1) ,a

(
(N) )

K Y(1),a

=

n-1
-2-

1T

I'¥(N)I

T
f (N+ 1) a

IT(f (N+1))

1
x • (A. 40)

(

AT 11/-1 A \ N+~
1 + e(N+1) T (N)e(N+1))

Proof. To proof (A.37) rearrange the exponent in the

likelihood function (6.81) according to (6.85) and apply Lemma 3

first and Lemma 4 afterwards.
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Using (A.31) the determinant on the left-hand side of

(A.38) can be expressed as follows:

IAH(N+1)A
T I

IAH(N)AT + A(x(N+1) - T(N+1)b(N))e(N~1-) (x(N+1) - T(N+1)b(N))T AT I .
According to (6.90)

=

and consequently

where e(N+1) has been introduced by (A.39). Now apply (A.4)

to prove equality (A.38).
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Appendix B. An optimization method

In Section 6 we had to find the vector a maximizing the

function

A(a) = (B. 1 )

where

a = [:] (B. 2)

In the sequel we shall propose a simple and effective numerical

method which serves this purpose.

As already pointed out, the value of the function A

does not change when a in (B.1) is substituted for

a = 1
y

a (B. 3)

where y is any nonzero number, not necessarily constant. Let

us choose y as follows:

y =

where k is an arbitrary constant. Then the function (B.1) gets

a simple form

=
N T _
II f (k) a

k=2
(B. 4 )

but the vector a, the last component of which is no longer fixed

to be one, is restricted by the condition

-T -1-
a H a = 1

k 2 (B. 5)

In this way the optimization problem is transformed into

the problem of finding a point a* on the ellipsoid (B.5) at
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which the function (B.4) is maximal. In other words, we have

to find the point a* at which the direction of the gradient

with respect to the ellipsoid

(B. 6)

and the direction of the gradient with respect to the function

;\(a)

g>. (a) = grad { >. (a) }

N T N f.

g>. (i) i L
1

= II f (m) a • (B. 7)
Tm=2 k=2 f(k)a

coincide, as shown in Figure B1. Notice that only directions

are significant.

Figure B1. Optimization algorithm.
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The optimum point a* can be found using the following

A 1 g 0 r i t h m M1LE :

1 •

2 •

-(m) -(0) T
Choose any starting point a , m = 0, say a = [1,1, ... ,1] .

Calculate the direction of the gradient with respect to the

function A

g (a (m) ) 0: g (m)
A

- (m)g.
1

=
N

I
k=2

f(k)i

f T -(m)
(k) a

(B. 8)

3. Find the next point a(m+1) in which the gradient g (a(m+1))
e

with respect to the ellipsoid (B.6) has the same direction

as the gradient gA (a(m)).

-1- (m+ 1 )
H a

- (m+1)a

=

=

- (m)g

H g (m) (B. 9)

4. Normalize the vector a(m+1), say to unit length, and
-(m) -(m+1) . 'd 'hrepeat 2 until the vectors a and a COlnCl e Wlt

given precision.

The FORTRAN - subroutine realizing this algorithm can be

found in Appendix C.

No convergence proof is available for the optimization

algorithm described but it never failed on a number of examples

and appeared to be very fast.
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FORTRAN Subroutines

subroutine penetr(n,c,al,ro,f0,t,f)
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

function

usage
parameters

precision

- market penetration - prediction
of market shares

- call penetr(n,c,al,ro,f0,t,f)
n - number of competitors , ~nx.10

c - n-vector of production costs;
as the result depends only on differencies
between costs any number can be substracted
from all c's.

al n-vector of specific investments;
only nonzero components are allow2d

ro - growth rate factor of total oroduction of all
competitors

f0 - n-vector of initial market shares at t=0;
the sum of all f0 1 s must be equal to I

t - the value of time for which the prediction
is calculated; t can be negative.

f - output : n-vector of predicted market shares;
the sum of all elements of f is equal to 1.~0

3 decimal digits behind the decimal 90int
of all f's; if higher orecision is required
see cl

dimension c(l) ,al (1) ,f0 (l),f (1)
dimension a(10) ,beta(10)

c calculate aIm
alm=0.
sum=21.
do 5 i=l,n
ali=al(i)
alm=alm+l./ali

5 sum=sum+l./(ali*ali)
alm=al!Tl/sum

c calculate a,beta and initiel ?si
sum=0.
do 10 i=l,n
a(i)=alm/al(i)
beta(i)=(c(i)+al(i)*ro)/alm*t

121 sum=sum+f0(i)*exp(-beta(i))
psi=-alog(sum)

c iterative solution of eqn. xi(psi)=0
15 xi=-l.

dxi=0.
do 20 i=l,n
f (i) =f0 (i) *exp ((psi-beta (i)) *a (i))
xi=xi+f(i)

20 dxi=dxi+a(i)*f(i)
if(abs(xi).lt.0.5e-3) go to 25

cl if higher precision is reauired change
c 0.5e-3 to 0.5e-d where d is the number
c of decimal digits behind the decimal poir.t
c of fls which have to be guaranteed

psi=psi-xi/dxi
go to 15

25 return
end

%
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subroutine mlest(n,ir,t,f,kf,kl,cir,air,r,clir,rl,
*h,b,tau,it,itest)

a i me ns i on t (10 (3) , f ( 10. 0 , 7) ,h (7 , 7) ,b (7) ,a ( 7) ,
&air(7),cir(7),clir(7),r(7,7),rl(7,7)

pa r <llnete r s
input: n - number of competitors,max.7

ir - index of the reference competitor
t - vector of time points for which the ~arket

shares are given
f - matrix of market shares, f(k,i)=f(t(k),i),

SUll f(k,i):i=l,n must he l.
kf - first row in t and f which is considered in estimation
kl - last row in t and f considered,kf.lt.kl.le.100

output: cir - ~l-estimate of c(i,ir) :i=l,n; c(ir,ir)=0.
air - ml-estimate of a(i,ir) :i=l,n; a(ir,ir)=l.

r - ml-estimate of covariance matrix r
clir - ml-estimate of c(i,ir) under assumption a(i,ir)=l

for all i.
rl - ml-estimate of covariance matrix r under assumption

a(i,ir)=l for all i.
h - auxiliary matrix reouired for bayesian forecasting
b - vector for bayesian forecasting

tau - scal~r ?arameter for bayesian forecasting
it - number of iterations oerformed in calculation

of air. maximum it is set to 50. if it=5~

the iteration has not been cOffiryleted.
itest - regular case itest=l. if itest=0 then the calcu­

lation could not be completed because one or more
a's are zero, in that case cir and r are set to zero
and a,i=l,n is given out on the place of air.

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c

function

usage

- market penetration - maximum likelihood estimation
of model ?arameters

- call mlest(n,ir,t,f,kf,kl,cir,air,r,clir,rl,
*h,b,tau,it,itest)
requires the subroutine amle

m=kl-kf
tau=t(kl)-t(kf)
ks=kf+l

c calculate vector b
do 12 i=l,n

12 b(i)=alog(f(kl,i)/f(kf,i))/tau
c calculate matrix h

do 16 i=l,n
cia 16 j=l,i
sum=0.
do 14 k=k.s,kl
l=k-l
dt=t(k)-t(l)
sum=sum+(alog(f(k,i)/f(l,i))/dt-b(i))

&* (a 109 ( f (k , j ) / f (1 , j ) ) / d t - b ( j ) ) *d t
14 continue

h(i,j)=sum
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16 h(j,i)=sulT.
c calculate estimates of a

call amle(n,f,ks,kl,h,a,it,itest)
c

c

if(itest.gt.0)go to 2~

cio 18 i=l,n
cir(i)=V1.
3ir(i)=a(i)
do 13 j=l,n

1.3 r(i,j)=VJ.
']0 to 28

calculate vectors air and cir
20. do 22 i=l,n

air(i)=a(ir)/21(i)
22 cir(i)=b(ir)-air(i)*b(i)

~ calculate covariance matrix r
do 25 i=l,n
do 26 j=l,i
r (i , j ) = (h ( i, j ) -h ( i, i r) 121 i r (j) -h (i r , j ) la i r (i) +

& n ( i r , i r ) I air ( i) I air ( j ) ) 1m
26 r(j,i)=r(i,j)

c

c

calculate vector clir
La do :)8 i=l,n
30 clir(i)=D(ir)-b(i)

calculate cov2riance matrix r1
.:10 32 i=l,n
00 32 j=l,i
r 1 ( i , ] ) = (;-\ ( i , j ) - h ( i , i r ) - h ( i r , j ) +h ( i r , i r ) ) 1m

3:2 rl(j,i)=rl(i,j)
return
en:i
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subroutine amle(n,f,ks,kl,h,a,it,itest)
c
c function
c
c usage
c parameters
c remar k
c

- market penetration -maximization of likeli-
hood function with respect to vector a

- call a~le(n,f,ks,kl,h,a,it,itest)

- see subroutine mlest
- output vector a is normalized to unit length.

dime ns ion a (7) ,ap (7) ,g (7) , f (l ~ f} , 7 ). , h ( 7 , 7 )
it=0
xn=n
sum=l./sgrt(xn)
do lIE i=l,n

101 ap(i)=sum
c

102 itest=l
do 103 i=l,n

HJ3 g(i)=0.
do li15 k=ks,kl
sum=0.
do 104 i=l,n

104 sum=sum+f(k,i)*ap(i)
do l05 i=l,n

135 ,~(i)=g(i)+f(k,i)/sum

ra=~.

do 1Z'3 i=l,n
sum=0.
do 106 k=l,n

106 sum=sum+h(i,k)*g(k)
if(sum.gt.3.)go to 107
itest=0
sum=0.

107 a(i)=sum
l~a ra=ra+sum*su~

ra=sgrt(ra)
sum=O.
cio 1~9 i=l,n
a(i)=a(i)/ra
sum=sum+(a(i)-ap(i))**2

1.39 ap(i)=a(i)
c

it=it+l
if(sum.lt.l.e-6)go to ll~

if(it.lt.50)go to 132
1Hl return

end
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•
The Regularity of Market Penetration

F. Fleck

1. INTRODUCTION AND BRIEF REVIEW OF THE LITERATURE

Although innovations may vary greatly, their market pene­

tration processes show a uniform picture. It is therefore natu­

ral to assume that these processes have basic characteristics

in cornmon. Most studies published on this subject try to de­

scribe these processes in mathematical models and to plot the

available data as accurately as possible. The most accurate

results were obtained with the logistic growth function.

In Volume I of this report it was shown that the primary

energy substitution processes can also be described very accura­

tely by logistic functions. That was the impulse for this paper

which is part of a Ph.D. thesis written at the University of

Karlsruhe. The aim of this study is to analyze the penetration

pocess, to determine the facts giving rise to the regularities

of these processes, and to organize these facts in a suitable

formal model. Subsequently, the quality of the model is to be

checked by applying it to some practical examples.

The first attempts at a mathematical definition of such

penetration or expansion processes were made by biologists.

Above all Pearl (1925) used the logistic function, sometimes

called Pearl function, to precisely describe the population

growth in the US and the reproduction of yeast cells. The logi­

stic function used by Pearl has the following form:

y = k
-ax-b

1+e
( 1 )

where y indicates penetration as a function of x (x can be often
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interpreted as time t). a,b,k are parameters which have to be

determined, with k representing the absolute limit of saturation.

Other biologists found that epidemics spread in a similar way.

They used stochastic formulations rather than deterministic ones

in order to account for the indefiniteness of such developments.

Barlett (1946), Bailey (1950), and Haskey (1954) should be

mentioned in this context.

Geographers like H~gerstrand (1952, 1967) and Hudson (1969),

who studied mainly the spatial aspects of the spreading of inno­

vations, greatly contributed to the explanation of penetration

processes. H~gerstrand was one of the first to realize that the

diffusion of the information on the innovation plays an impor­

tant role when the product penetrates the market.

An impressive starting point for many research studies has

been a study by Griliches (1957) which deals with the penetration

of a new seed (hybrid corn) into the market of US farmers. In

this case we can speak of a substitution process, since the

innovation (new seed) did not enter an empty market but had to

displace the established product (ordinary seeds). Using the

logistic function for this systematic and comprehensive study,

Griliches plotted the substitution process very accurately.

Mansfield (1961) contributed a fundamental study of the

industrial sector. Using the logistic function, he studied the

market penetration of twelve innovations in four industrial

branches, concentrating on the penetration speed of innovations.

This work gave rise to a wide range of similar studies. One of

them is a revision of Mansfield's model by Blackman (1974). He

no longer described market penetration in absolute numbers but

expressed it in relative quantities of market shares.

The model by Bass (1969) for the first time included

aspects of behavioral theory and a differentiation between con­

sumers. How suitable the logistic function is for describing

such penetration processes is clearly demonstrated by the studies

of Fisher and Pry (1970), and Pry (1973). They used Pearl's
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function but introduced a relative saturation limit (market

share).

On the basis of these studies Marchetti found that the pri­

mary energy market can also be described in this way. He had to

modify the basis in such a way as to assure that more than two

products can be studied. In the first part of this volume

Peterka extended this approach and theoretically substantiated

this empirical analysis. His macroeconomic analysis in the

perspective of production and capital led to a generalization of

the Fisher-Pry model.

In this context it should also be mentioned that the logi­

stic function is not the only way of exactly describing such

penetration processes. Stapleton (1976) proved with the Fisher­

Pry model that accumulated normal distribution also supplies

exact values. This result is confirmed by an early study by

Winsor (1932), which shows that among different symmetrical

growth curves the logistic function and the accumulated normal

distribution clearly give the most accurate results.

The widespread use of the logistic curve is probably due to

the fact that the basic differential equation can be easily·

interpreted and that the assessment of parameters is relatively

simple. An important characteristic both curves have in common

is the S-like shape of all penetration processes. The reasons

for this property of the functions are discussed in the following

section.

2. ANALYSIS OF THE PENETRATION PROCESS

In most models the S-shape of the curve 1S taken for granted

and the decisive factors are not analyzed. Sahal's (1976) study

is an exception. From his attempts of systematizing the reasons

it becomes clear that not only economic factors but also socio­

logical and psychological factors play an important role. In

general, however, the reasons given do not follow from a general

analysis but result from the special intentions of each model

builder.
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Thus numerous and relevant reasons are offered for an appro­

priate interpretation of the model parameters, but there is hard­

ly any reference to the facts all of these processes have in

common. For detailed analysis, however, one has to abandon the

macroscopic approach towards such processes and change over to

an individual microscopic analysis, since it is the individual

in an economic and social environment who decides on the adoption

or rejection of an innovation, i.e. the market penetration of an

innovation is controlled by the decisions of individuals. The

individual's decisions are mainly influenced by the diffusion of

the information available on the innovation, and they are actual­

ly a result of the decision-making process itself. These are

the two main reasons for the course of such penetration pro~

cesses.

Of course, the behavior of individuals is not uniform.

Casetti (1969) describes this behavior in the following way:

(1) The adoption of an innovation by interested adopters results

from messages of individuals who already have the innovation;

(2) Potential adopters show a clearly differentiated resistance

against the innovation; (3) Such a resistance can be observed

everywhere; (4) This resistance can be overcome by frequent

repetition of the messages.

After the individuals make their decision, the adopters may

be subdivided into different groups. A possible and reasonable

categorization was made by Rogers (1971). He assumes that a

normal distribution for the stratum of adopters is sufficient,

as measured by the time at which an individual adopts an innova­

tion. The arrangement according to the single or double standard

deviations from the mean value results in a categorization of

adopters (Fig. 1).

This is, of course, an idealistic state compared with the

real situation. The two groups showing an extreme behavior are

the innovators and the laggards. The first 2.5% of adopters are

innovators; the laggards on the other hand are those who can
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only be made to adopt the innovation through pressure from their

environment. An exact description of each group is given in

Rogers' work (1971), pp. 183.

However, before an individual decides on whether to adopt

or reject a certain innovation, the individual is influenced by

the detailed information he has on the innovation. How can this

process of information diffusion, which constitutes a special

type of communication process, be described in a model?

I
I
I
I
I I
I I
I LATE I
I MAJORITY ILAGGARDS
I 34% -L.__16_O

_% ...J

X X + sd

EARLY
MAJORITY

34%

~ EARLY I
, IADOP~oE R~

2.5% I 13.5 Yo I

X - 2sd X - sd

INNOVATORS

The innovativeness dimension, as measured by the time at
which an individual adopts an innovation or innovations,
is continuous. However, this variable may be partitioned
into five adopter categories by laying off standard devia­
tions from the average time of adoption.

Figure 1. Adopter categorization on the basis of innovativeness.
From Rogers (1971).

For a long time the two-stage model of the flow of communi­

cation was of great importance. According to this model the

diffusion of information among potential adopters is the follow­

ing: The mass media address the opinion leaders, i.e. people

who have authority in their social environment and whose opinions

are taken over by others; and the opinion leaders communicate

their opinions through interpersonal channels. Several studies

show, however, that this model is too simple to describe reality.
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A model better suited to describe reality is the 8.M.C.R.E.

model, Rogers (1971). There the information on a certain inno­

vation is passed on in the form of messages (M) from source (8)

through channels (C) to receiver (R) where they cause certain

effects (E), see Figure 2. The messages originating from the

source (inventors, scientists, institutions, etc.) contain in­

formation on characteristic features, advantages, and disadvan­

tages of the innovation in question.

elEMENTS IN
RECEIVER EFFECTSTHE S.M.C.R.E. SOURCE MESSAGE CHANNEL

MODEL:

I I
CORRESPONDING INVENTORS INNOVATION COMMUNICAnON MEMBERS OF CONSEQUENCES
elEMENTS IN CHANNELS ASOCIAL OVER TIME
THE DIFFUSION SYSTEM
OF INNOVATIONS:

Figure 2. Elements in the diffusion of innovations and the
8.M.C.R.E. communication model are similar.
From Rogers (1971).

One can distinguish five main characteristics that are

typical of all innovations: relative advantage, compatibility,

complexity, testability, observability (for definition .and com­

ment see Rogers (1971), pp. 138). The mass media and inter­

personal communication serve as communication channels. Mass

media can reach big groups of potential adopters rapidly and

serve as a general source of information accessible to every­

body. With interpersonal contacts subjective influences are of

special importance; reluctant and undecided individuals can be

more easily persuaded. Thus it follows that opinion leaders or

innovators can be addressed by mass media, while persons of the

late majority or even in the group of laggards can, if at all,

only be convinced of the advantages of an innovation by intensive

personal contacts.
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The effects observed In a receiver as a result of informa­

tion may vary greatly. It depends on whether the receiver has

already formed his opinion or not, i.e. on his stage of opinion­

forming. For example, a person may be simply informed of the

existence of a certain innovation, or there may be changes in a

person's assessments and judgements, or the individual decides

to adopt or reject an innovation. Thus the information reaching

the individual through the diffusion process clearly serves as

an input to his decision process, by which he processes the in­

formation on the economic and social environment and obtains as

an output a decision to adopt or reject the innovation.

The course of the process is influenced by personal charac­

terisitcs; its duration depends on the individual. Innovators,

for example, pass this stage very fast, the process will not

take long. The innovation decision process can be subdivided

into various functions (stages). They are: knowledge, persua­

sion, decision, and confirmation (see Fig. 3).

(ANTECEDENTS) (PROCESS) (CONSEQUENCES) *

IRECEIVER VARIABLES

1. PERSONALITY
CHAR"CTEflISTICS

2. SOCI;'L
CHARACTERISTICS

3. PERCEIVED NEED FOR
THE INNOVATION

4 ETCETERA

COMMUNICATION SOURCES

~------,---------r----7''---,.

(CHANNELS)

CONFIRr~ATION

IV

PERCEIVED CHARACTERISTICS
OF INNOVATIONS

__________________T1ME .~

* For the sake of simplici ty we have not shown the consequences of the
innovation in this paradigm but only the consequences of the process.

Figure 3. Paradigm of the innovation-decision process.
From Rogers (1971).
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During the first stage of knowledge the individual is in­

formed that there is an innovation and collects the first in­

formation on it. The stage of persuasion is characterized by

the adoption of a positive or negative attitude towards the

innovation which is assessed on the basis of the main character­

istics mentioned before. The next step towards adoption or re­

jection is the decision function. During the final stage of

confirmation individuals check whether the right decision has

been taken, which may either consolidate or change the opinion

held.

It is important that the decision process can be interpreted

as a learning process, i.e. a systematic change in the behavioral

pattern. This systematic change is caused by stimuli the indi­

vidual receives. During the decision process the stimuli

correspond to the information given. According to learning

theory the response triggered by the stimuli corresponds to the

decision to adopt or reject an innovation.

Learning experiments have shown that the decision processes

can be understood as learning processes. If a person faces a

new task to which he or she is not accustomed, the person will

make many mistakes in the beginning, but they will be fewer with

increasing skill. The decrease in the number of mistakes

(learning increments) is concerned and can be understood as being

proportional: (a) to the skills already acquired; and (b) to the

remaining skills still to be acquired.

Plotted versus time these learning increments lead to

S-shaped curves, since the determined proportionality of learning

increments corresponds to the assumptions made for the differen­

tial equation leading to the logistic function. It should be

emphasized that this S-shaped course of learning processes was

found in real learning situations.

How can the individual decision process be formally re­

corded? It is a process going on within the person deciding,
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and is thus inaccessible for direct observation. Only the input

(information) and the output (decision) of the process can be

observed. In many such models, therefore, it is regarded as a

black box which supplies an output that is only determined by

the input. Thus the question is avoided as to how the input is

processed and how a certain output comes about.

An exception are the buyer behavior models which try to

describe the process in the black box. This is done in great

detail in structure models (Howard/Sheth (1969, Nicosia (1966)).

The disadvantage of these models is their deterministic and

verbal character. Deterministic here means that the individual

processes have to be accurately determined. Therefore, many of

the postulated relations cannot be checked and are thus hypo­

thetical. The verbal feature is a disadvantage because despite

all attempts it has not been possible to corne to an unambiguous

clear-cut definition of terms. Furthermore, on account of the

detailed data required it seems to be difficult to apply such

models in practice.

Other than these deterministic models, the stochastic buyer

behavior models avoid a detailed description of the black box

processes. They are rather regarded as random processes, which

is not to suggest that they are actually random processes. The

data gathered to date do not warrnat such an assumption. The

use of the stochastic approach actually indicates uncertainty

with respect to the actual processes. Therefore, the output

cannot be determined with certainty, but only with a certain

probability. Another advantage of the stochastic approach is

that one can confine oneself to the explicit determination of

the most important relations, and all other influences are taken

into account by the stochastic approach.

possible stochastic formulations can be subdivided into

Markovian models, learning models, and diffusion models. All

three types of models have been used for commodities regularly

consumed (coffee, beer, cigarettes, etc.) and not for durable
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producsts which are important in this context. Markovian models

can easily be handled mathematically, since the transition prob­

abilities depend only on the most recent past.

with regard to commodities of regular consumption this is a

severe restriction, since older changes in brands are not taken

into account. This is no reservation on long-lived commodities

since former purchases will hardly influence the present buyer

decision. Technologies and environmental situations have also

changed, and it is therefore difficult to compare the two buyer

decisions.

The learning models are based on the stochastic theory of

learning developed by Bush and Mosteller (1951, 1955); the best­

known model is the linear learning model of Kuehn (1962) which

includes the entire past, but it is more complicated mathematic­

ally. Furthermore, the model itself is not always consistent

with the theory of Bush and Mosteller (see Topritzhofer (1974),

pp. 164).

Diffusion models use another concept of learning theory,

the stimulus sampling formulation by Estes (1963). The past is

not taken into account, and there is no learning from experience.

The individual has a number of buying arguments, and it is

examined how the buying arguments are distributed over the com­

peting brands. The product with most buying arguments is most

likely to be bought. The most important studies in this field

were compiled by Montgomery (1966, 1969) and Coleman (1964).

The practical applicability of these models is more re­

stricted than that of the other models, mainly because it is

difficult to determine the state space formed by the buying

arguments. The following interpretation of the innovation

decision process may be helpful to find a formulation that would

correspond to the facts. This process can be understood as a

process changing from a state of balance to imbalance and then

to a new balance.
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Before an innovation appears on the market, the potential

adopter is in an equilibrium, i.e. the information (stimuli) re­

ceived from the environment do not lead to any changes in the

black box, they are consistent with the internal variable of the

individual (attitudes, motivations, intentions, satisfaction,

etc.). When the innovation appears, the potential adopter re­

ceives information causing changes of his internal variable.

The system in the black box is no longer in an equilibrium. The

more information is received, the bigger the imbalance becomes.

This situation changes when the individual adapts his inter­

nal state to the new situation by making a decision in favor or

against the innovation. If the decision turns out to be right,

the individual will again be in a state of equilibrium. In order

to plot such a process in a formal model, one would have to use

a time-dependent formulation of the relations to capture reality.

This results in a time-dependent stochastic process which is con­

sequently more difficult from the mathematical point of view.

In the next section an attempt is made to describe the innovation

decision process by means of the time-dependent Markovian process.

3. MATHEMATICAL FORMULATION

The following definitions are given by Ferschl (1970) and

Opitz/Schader (1975):

Definition (aJ:

A stochastic process S is a set of random variables X with
t

S={Xt:tET}. TC~1 is the parameter space, whereby time t is

frequently understood as a parameter. The value range Z of the

random variables Xt for all tET is called state space. The

Markovian rpocesses are special stochastic processes.

Definition (bJ:

A stochastic process S={Xt:tET} is called Markovian process

of the first order if with n=2,3, ... it holds that for t 1 , ... t n
E T

with t 1<t2 ... <tn
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for any X and with z1 ... zn_1EZ.

This means that the value of the random variable Xtn only

depends on the realization in the previous period but not on the

realizations of periods that go back farther. This speciality

is called Markovian property. It is, of course, also possible to

define Markovian processes of the O-th order (Bernoulli pro­

cesses) and of higher order in this way.

Definition (c):

A stochastic process S={Xt:tET} is called Markovian process

of the first order with a discrete time or Markovian chain of the

first order, if it holds that T= IN U{O}, which means that

S={Xt :t=0,1,2, ... },and if (b) is fulfilled, i.e. if it holds that

for all z., z.EZ.
1 J

The quantities p, J' (t-1,t) are called transition probabili-
1,

ties of the first order. Since they are time-dependent, they can

be regarded as nonstationary transition probabilities. They can

be summarized in a nonstationary transition matrix of the first

order

P (t-1 ,t) = [(po . (t-1 ,t)]
1,J

( 1 )

These nonstationary Markovian processes can be applied to

various innovation decision processes. The innovations under

consideration are durable ones that means innovations with long

lifespans. The use of Markovian processes of the first order to

describe decision processes involving products frequently pur­

chased is not very realisitc, since the present purchase decision

is influenced not only by the last purchase but also by all pur­

chases during a certain period (year, month). But in the case
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of durables earlier purchases are so far In the past that they

have hardly any influence on the present decision. In many

cases the old products and the new ones are so different that

they cannot be compared. In these cases the deciding individual

cannot apply his judgements derived from the use of the old pro­

duct. The individual cannot apply any routinized decision be­

havior but rather has to show problem solving behavior (Howard/

Sleth, 1969). This means that the probability to adopt the

innovation changes with the time. The conclusion from this is

to apply a nonstationary Markovian process.

In the following the decisions are considered that can be

characterized by two states. This situation includes all sub­

stitution processes where an innovation is substituted for an

established product ("new" for "old"), and penetration pro­

cesses where the state "old" means non-adoption and the state

"new" means adoption of the innovation. In this context it

should be emphasized that this formulation is not restricted to

innovations in the economic sector but can also be applied to

nonmaterial innovations (ideas, convictions, life styles, habits,

etc.). Carson (1965) showed in impressive examples (penetration

of modern math, programmed instruction) that these penetration

processes also follow S-shaped curves. Furthermore, only those

innovations are observed that proved successful on the market.

This means in the substitution case that the old established

product will be fully replaced by the innovation. In the case

where no established product has to be substituted it means that

all potential adopters will adopt the innovation sooner or later.

For the nonstationary Markovian process it follows that an indi­

vidual who has reached the state "new", i.e. the individual is

in the possession of the innovation, is unlikely (with a prob­

ability of 1) to leave this state. Such a Markovian chain of a

certain state which once reached cannot be left any more, is

called absorbing Markovian chain. If the state "old" is ex­

pressed by zero and the state "new" by one we have the following

situation (Fig. 4).
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Figure 4.

Note that there is no arrow going back from state one to

state zero. This expresses the absorbing ability of state one.

The situation described in Figure 4 corresponds to the following

transition matrix

[

Po,o(t-1,t)

P(t) ==

P1,O(t-1,t)

PO,1 (t-1 ,t)]

P1,1 (t-1 ,t)

(2)

Since the Markovian chain is absorbing (P1,1 (t-1,t)==1) and p(t)

is a stochastic matrix (the sums of rows equal one), the process

is controlled by the transition probability from state zero to

one. It is assumed that this probability has the following form:

PO,1 (t-1 ,t) == af 1 (t-1 )+6 ,

where

a,B are parameters, and

f 1 (t-1) is the market share of the state "new" in

period (t-1).

(3)

Equation (3) refers to the innovation decision process

analyzed above. This leads to the following interpretation of

the two parameters a and B. If the market penetration of an

innovation is still small, the transition probability is deter­

mined by parameter B. Thus B can be interpreted as a measure

for the individual's innovativeness. This causes an increased

receptivity for stimuli from the environment, which results in

increased interest (Howard/Sleth (1969), p. 286). One of the
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results of many investigations has been that novelty is an impor­

tant reason for many consumers to adopt an innovation. Especial­

ly in the beginning when an innovation enters the market it is

the novelty that causes the first purchases because the indivi­

dual is not yet in a position to obtain and process the necessary

information to come into objective judgements about the innova­

tion. As already mentioned, only a few individuals will purchase

an innovation in such an early stage. Sometimes you can realize

that the effect of novelty is reinforced by an effect of boredom

caused by dissatisfaction with the established products. Param­

eter S can also be understood as a measure for the individual's

propensity to take risks. This propensity depends on the social

and economic importance of the innovation. If the innovation

possesses great social and economic impacts, the individual will

try to minimize the risks. In such a case people generally show

an aversion towards risk. Nevertheless some are more likely to

take risks than others (comparison of innovators with laggards).

So parameter S can help characterize the potential adopter. A

high value of S signals a high propensity to take risks.

The other parameter a should be seen in connection with the

market share reached in the previous period. As the penetration

process increases, the contribution of equ. (3) towards transi­

tion ?robability also increases. Parameter a thus expresses the

increased effect of information (stimuli) from the environment.

These stimuli reach the individual mainly by interpersonal com­

munication with people who have already made their decision to

adopt or reject the innovation. The degree of penetration of

the innovation is expressed by the market share of the previous

period. As parameter a is linked multiplicatively with the

market share of the previous period, a can be interpreted as a

measure of the individual's propensity to imitate other people.

This imitation behavior has to be understood as a learning pro­

cess. Thus one important aspect of the learning process which

takes place during an innovation decision in reality is projected

in the formal model of a nonstationary Markovian process expli­

citly. A high value of a then signals a high propensity to
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imitate. Both parameters a and 8 are constants. It is assumed

that they do not vary during the decision process on the innova­

tion. The character of this process as a learning process is

implied by the mathematical formulation. With the Markovian

chain, which means that the transition probability to a certain

state depends on the previous state, the effect of learning by

experience is taken into account. The matrix P (t), see equ. (2) ,

can be written as follows:

[

1-af (t

o

-1)-8

P (t) = (4 )

The temporal development of this nonstationary Markovian

chain cannot be defined in mathematical terms as explicitly as

can be done if stationary Markovian processes are involved.

But it is possible to obtain some information on the behavior in

the long run if the changes of the transition matrix (4) are

considered from period to period. These changes can be under­

stood by applying the concept of causative matrices (see Lip­

stein (1965, 1968), Hurary, Lipstein, Styan (1970)). The causa­

tive matrix C{t), which describes the change in the transition

matrix (4) from period t to period t+1, is obtained by

P{t) C(t) = P{t+1)

C(t) = p{t)-1 p (t+1)
( 5)

From (5) it is obvious that in the case of stationary tran­

sition matrixes the causative matrix C(t) corresponds to the

identity matrix. Conceptually the causative matrices can be

compared with the derivatives of a function. They have row sums

of one, but they are not necessarily stochastic matrices, since

the inverse matrix of a nonsingular stochastic matrix may also

have negative elements (see Lipstein (1968)). In order to obtain

the causative matrices (5), the inverse of each transition matrix

must exist, i.e. the transition matrix must be nonsingular. In

the specific case of (4) nonsingularity is always safeguarded
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except if the transition probability from state zero to state

one (PO,l (t-l,t) becomes one. However, in this case the causa­

tive matrix is meaningless, for a stable state has been reached,

l.e. state one ("new") has been reached with certainty. For

general cases McKenzie (1960) gives the following criterion which

guarantees nonsingularity: If matrix A possesses a dominant

diagonal (the elements of the main diagonal are greater than the

row sums of the remaining elements in the respective rows), A is

nonsingular (possesses an inverse). According to (5) one obtains:

C(t) =

af 1 (t-l)+S ]

1-af: (t-1)-S

(t)-S,

C (t) = [

l-af (t)-S

1-af; ~t-1 H

a (f 1 (t) -f 1 (t-l)) ]
l-af (t-l)-S1

(6 )

It follows from (6) that C(t) is a stochastic matrix where

£1 (t) is bigger than f 1 (t-l). The nonstationary Markovian chain

generates a sequence of causative matrices. Their long-term

behavior is characterized by the eigenvalues of C (t) (Lanczos

(1956), McKenzie (1960)). The eigenvalues are the solutions of

the characteristic polynomial. In this case the following

characteristic polynomial is obtained:
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IC(t)-A(t)II= 0 C-"f (t)-S +1)= A(t)2_ 1-af~ (t-1)-S
A(t) (7 )

1-af (t)-S1
0+ 1-af 1 (t-1)-S

=

where

A(t) are eigenvalues and

I the identity matrix.

The solutions of (7) are

1-af 1 (t)-S
= 1-af 1 (t-1)-S

(8 )

From (8) we draw the following conclusion:

(a) f 1 (t) = f 1 (t-1) 1\ 1. 2 (t) = 1

(b) f 1 (t) > f 1 (t-1) 1\ 1. 2 (t) < 1

(c) f 1 (t) < f 1 (t-1) I\. 1. 2 (t) > 1

Case (a) characterizes a stable situation. The market share of

the innovation does not change from period to period. Case (c)

characterizes a situation where C(t) is no longer stochastic

because the element (1.2) of C(t) is negative. C(t) converges

(see Lipstein (1968)) if the absolute value of each of its eigen­

values is smaller than one or equals one. This is case (b). It

follows that in this case only successful innovations are con­

sidered because the market share has to be higher or at least

as high as in the previous period. This implies that with an

increasing market share of the innovation the element (1.1) of

the matrix P(t) (see equ.(4)) decreases. This means that the

individual's loyalty to state zero (the established product)

decreases and the readiness to change to state one (decision in

favor of the innovation) increases. It follows that the indi­

vidual has adopted the innovation with probability one at the

end of the penetration process. Then the nonstationary Markovian

process has developed into a Bernoulli process (Markovian process

of zeroth order).
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By means of the nonstationary Markovian chain the penetra­

tion process can be characterized as a process leading from a

state of equilibrium via a state of disequilibrium to a new

state of equilibrium. To illustrate this point of view the

individual's state vector at any period t should be considered.

This state vector w(t) expresses the probability that the indi­

vidual is in one of the given states. At the time t=O, the ade­

quate state vector w(O) is called initial vector. For the inno­

vation decision process this initial vector w(O) = (1,0), i.e.

the individual is with certainty in the state zero. This is

reasonable, since at time t=O the innovation has not yet entered

the market. It is impossible for the individual to adopt the

innovation. This initial state w(O) = (1,0) also characterizes

a state of equilibrium. The individual is in a stable state

because there are no stimuli that do not agree with its judge­

ments about the established product or situation. As soon as

the innovation appears on the market, informations about the

innovation reach the individual and cause conflicts in the indi­

vidual's pattern of behavior. The individual feels doubts

whether its judgements about state zero are still justified.

The transition mechanism starts and the individual is no longer

in a state of equilibrium. This is expressed by the eigen-

value A2 (t) of C(t), which in the case of a successful innovation

is smaller than one. The more A2 (t) deviates from one, the big­

ger is the state of disequilibrium caused by the penetration of

the innovation. This imbalance is also expressed by the state

vector which changes from period to period by application of the

transition matrix (4) to the state vector of the previous period.

Thus w(t) can be determined from

w (t) w(t-1) P(t) (9 )

When most of the people have adopted the innovation, the market

share increments are getting smaller and smaller, i.e. the market

share remains more or less constant. This is also expressed by

the eigenvalue A2 (t), which approaches one. This means that the
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individual reaches a new state of equilibrium. This state is

characterized by the state veotor w(t) at the time of saturation.

But there exists only a state of equilibrium if the individual

is satisfied with his decision, i.e. he does not feel any cogni­

tive dissonance. If this is the case, one obtains the state

vector w(t t t' ) = (0,1), i.e. the individual is with prob-sa ura lon
ability one in state one. It should be emphasized that all

potential adopters may be characterized by a state vector at the

time t, with the transition mechanism being projected by means

of matrix P(t).

If this nonstationary Markovian chain is to be applied to

real penetration processes, description of the development of

aggregated data like market shares or sales figures is necessary.

Therefore it is necessary to aggregate the individual approach.

With N potential adopters, the aggregation occurs via N parallel

processes characterized by N transition matrices P(t). If one

assumes homogeneity and independence of the individuals, all

N potential adopters can be characterized by the same transition

matrix P(t). Applying this transition matrix to the number of

people in states zero and one, the average number of people who

are in one of the two states at time t is obtained. By dividing

these numbers of individuals by the total number of potential

adopters, fractions of the total number are obtained. If it is

assumed that each of the potential N adopters can adopt only one

issue of the innovation so that N is the saturation limit of the

innovation, the fraction can be understood as a market share.

If an individual purchases ten issues of an innovation, it is

replaced by ten identical individuals. So it is possible to

obtain instead of the state vector of a single individual the

vector of expected market shares. The constant parameters a

and 8 are estimated from a time series of aggregated data {market

shares} as will be shown below. They are equal for each of the

N potential adopters and can be considered average values. They

characterize an average adopter. It should be emphasized that

the assumptions of homogeneity and independence constitute a

strong limitation of reality. To be more realistic would mean
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to assume heterogeneity of the parameters a and B. In this case

a and S would follow a certain probability distribution (e.g.

the beta-distribution) but then the nonstationary Markovian chain

would become too complex with respect to its applicability.

Whether the chosen aggregated formulation has thus become too

unrealistic will be shown by way of concrete examples.

Instead of the individual state vectors w(t) we consider

market share vectors in the aggregated version as already indi­

cated. The market share vectors f(t) are obtained according

to (9). The initial vector f(O) = (1,0) indicates that the state

zero has a market share of 100%, i.e. that all individuals are

wtth certainty in state zero. This has to be understood in the

aggregated version too as an expression of a stable situation.

When the innovation has not yet entered the market there is a

state of equilibrium. More or less heavy disturbances of the

market are caused by the appearance of the innovation. Market

shares are no longer stable, they change from period to period.

If the innovation is successful it will increase its market

share continuously. This state of disequilibrium of the market

is characterized by the corresponding market share vectors.

When the increase of the market share of the innovation decreases

continuously, the limit of saturation is approached. The market

share vectors begin to remain constant which means that a state

of a new market equilibrium is reached. This is expressed by

the market share vector at the time of saturation f(t t )=(0,1),sa .
i.e. the successful innovation has reached a market share of 100%.

It should be mentioned that there exists a special index, the

rate of convergence (Topitzhofer, 1964), to describe the behavior

of convergence from the state of disequilibrium to the state of

equilibrium. This index can be applied to the causative

matrix C(t) of equ. (6) if C(t) is stochastic. It holds for the

eigenvalues of a stochastic matrix that their absolute values are

less or equal one. Hence the rate of convergence follows:

n
IT

i=1
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The conclusion is that the more the rate of convergence

approaches one, the slower the state of equilibrium will be

reached (Topitzhofer, 1973, p.153).

To describe the penetration process of an innovation you

can determine the market share of the innovation at any time t.

According to (9) we obtain:

or

f(t) = f(t-1) P(t) (1 Oa)

[

1-af1 (t-1)-B,af1 (t-1)+B]

o 1.

(1 Ob)

The market share of the innovation in period t,f 1 (t)is:

f 1 (t) = f o (t-1) (af 1 (t-1)+B+f 1 (t-1) ( 1 1 )

Only the market share of the innovation has to be considered be­

cause the market share of the state zero, i.e. the established

situation or product, at time t,f (t) results from the differenceo
between 1 (the limit of saturation) and the market share of the

innovation f 1 (t). It becomes evident from (11) that f 1 (t) con­

stitutes a mean value (the expected market share), as f 1 (t) re­

sults from multiplication of the market shares of the previous

period by the corresponding probabilities. To gather information

about the temporal development of f 1 (t) we consider the increase

of f 1 (t) from period (t-1) to period (t) and obtain:

f 1 (t) - f 1 (t-1) = f o (t-1) (af 1 (t-1)+B) (12)

= 8(1-f 1 (t-1)+af 1 (t-1) (1-f 1 (t-1))

If the values for the parameters a and B are known equ. (12)

describes the temporal development of f
1

(t). We will obtain

a curve from which we want to find its properties (derivatives,

maximum, point of inflection). We therefore consider the conti­

nuous quotient instead of the difference quotient, and change
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from the difference equation (12) to the following differential

equation:

f
1

(t) =
df

1
(t)

dt = af 1 (t) (1-f 1 (t) )+8 (1-f 1 (t)) ( 13 )

With (13) we obtain the market share rate of the innovation at

time t. This differential equation has the following solution

(see Bass (1969), Opitz/Schader (1975)):

£ 1 (t)
= 1-exp(-(a+B)t)

~ exp(-(a+B)t)+l
a

( 1 4 )

In order to find the point of inflection of (14) we form the

derivatives:

f 1 (t) =

2
(a+6) exp(-(a+B)t)

a 2S exp(-(a+B)t)+l)
( 1 5 )

(15) yields another expression of the market share rate. It can

be compared with (13). Differentiating (15) we obtain:

d(f
1
(t))

dt

3
(a ~ B) e xp (- (a + 8 ) t) (~ e xp (- (a + B) t) - 1 )

= a 313 exp(-(a+6)t)+1)
( 1 6 )

Setting (16) equal to zero we obtain the point of inflection:

d(f
1

(t))

dt = 0
1 a

t* = a+8 in 13 ( 17 )

It follows from (17) that t* becomes greater than zero, if a is

greater than B.

Substituting (17) for (15) we obtain the maximum market

share rate:
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( 18)

Substituting (17) for (14) we obtain the market share at the

point of inflection. The value obtained at the point of inflec­

tion is important because it can be compared with the correspond­

ing values of other growth functions, especially the logistic

function. The following market share is obtained at the point of

inflection:

a-8= "2"a (19 )

It follows from (19) that analogous to the logistic function we

obtain a value of the market share of 50% at the point of inflec­

tion, if 8 is very small in relation to a. This means that the

proportion of a and 8 determines whether the value of the market

share at the point of inflection approaches the limit of 50%.

a»8!\f1 (t*) (20 )

Before we can apply the stochastic process characterized by (10)

to practical cases in order to test the validity of the non­

stationary Markovian chain, we have to estimate the two param­

eters a and 8. The parameters can be estimated by applying the

principle of ordinary least squares. For this purpose (12) is

written as follows:

f 1 (t) -f 1 (t-1 )
af 1 (t-1)+8 (21 )=1-f1 (t-1)

Setting

f 1 (t)-f 1 (t-1)
YtY t1-f (t-1) =

1 a = a

8 = b

f 1 (t-1) = XtXt
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we obtain the following straight line:

The distances between the values calculated by means of (21) and

the actual values Yt have to be minimized. We obtain:

min L
a,b Yt

2(y -ax -b) = :min Q
t t (23)

The partial derivatives of (23) result in a system of normal

equations. From this we obtain the following estimated values

for a and S:

LXtYt-TXy
ta = 2 - - 2
LXt-T(X)
t

b Y ax

with

x = L x t-
T t

(24)

-T horizon of observation (number of time periods).

With (24) we obtain estimates for the parameters a and 6, and the

market shares of the innovation at the time t can be calculated

according to (11). The goodness of fit between the calculated

course and the actual course is examined by means of the chi­

square-test. The chi-square statistic is defined as follows:

T
L

t=1

2
(f (t) - f (t) )

1 actual 1 calculated

f 1 (t)calculated
(25)

On the basis of the zero hypothesis that the nonstationary

Markovian chain described by (10), (11) is consistent with the
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data given, it is examined whether the value X
2

calculated
20 2

according to (25) is higher than the bound (X.
05

0r ~01) belonging

to a significant value A (5%, 1%) to be determined. If this is

the case one must abandon the zero hypothesis that the model is

consistent with the data with a probability of 1-A (95%, 99%).

Now we are able to investigate some practical cases in order to

test the validity of the model.

4. APPLICATIONS

We applied the model to five practical examples. These are

the substitution processes of material innovations, and the

diffusion of two nonmaterial innovations. The data for these

studies are from the United States, because these empirical pub­

lications were readily available.

First case:

The substitution of synthetic fibres for natural fibres in

the US between 1930 and 1965 is described. The data are taken

from the study by Fisher and Pry (1975) mentioned above (see

Table 1 below). They found that the logistic function fits the

data very well. The nonstationary Markovian chain produces a

x2
-value which is clearly below the bound of the significanceo

level of 5 percent:

2 2
Xo = 6,366 < XO. 05 = 11,07, 5 degrees of freedom

It follows that the stochastic model is consistent with the data

(see Figure 5). The quotient of the two parameters a and 8 is:

a = 0.3479644

8 = 0.0257398

s = 0.074a

This means that the value of 8 is 7.4% of the value of a. It

follows for the market share of synthetic fibres at the point of

inflection t*:



-155-

ff'b (t*) = 46.3%
1 re thsyn

i.e. the point of inflection is reached somewhat earlier than in

the case of the logistic function.

Table 1. Market shares of synthetic fibres.

year

1930

1935

1940

1945

1950

1955

1960

1965

fibre synth.
actual

4.4%

7.9%

10%

14%

22%

28%

29%

43%

fibre synth.
calculated

5. 18%

9.99%

14.8%

19.42%

23.85%

28.09%

32.15%

36.02%

f
FIBRE

(SYNTH) A­
I

50;,1"

40%

30%

20%

10% .

/
I

I
/

I
I

I
/

I
/

NATU RAL FIBRES II
/,

/.1
CALCULATED / SYNTHETIC FIBRES

~~;'
;'

;' ACTUAL

1930 1940 1950
I I >-

1960

Figure 5. Substitution of synthetic fibres for natural fibres.
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Second case:

The substitution of stem ships for sailing ships in the US

between 1800-1960 is considered. The data are taken from

us Department of Commerce (1975), see Table 2. Here too the

result obtained shows the consistence of the stochastic model

with the given data:

2 2
Xo 0 6.10 < XO.05 = 22.36, 13 degrees of freedom.

As this process has reached the limit of saturation in reality,

the stochastic process can be applied to the whole penetration

process of the innovation (steam ships) from entering the market

until saturation. The curve is as expected S-shaped, and the

value of market share at the point of inflection t* approaches

nearly the 50% value of the logistic function. The value ob­

tained at the point of inflection is:

f ship (t*) = 48.88%
steam

This is expressed also by the quotient of a and 8, which is

remarkably lower than the quotient in the first case. The

following quotient is obtained:

a = 0.4974329

8 = 0.011186
8 = 0.225
a

i.e. the value of 8 is 2.25% of the value of a.
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Table 2. Substitution of steam ships for sailing ships.

year f ship f ship year f h' f .S lp Shlp steamsteam steam steam
actual calculated actual calculated

1810 O. 1% 1 ,12% 1900 58.5% 66.29%

1820 1. 7% 2.78% 1910 75.5% 77.78%

1830 5.4% 5.21% 1920 91 .0% 86.62%

1840 10.2% 8.73% 1930 94.5% 92.53%

1850 14.9% 13.71% 1940 99.5% 96.05%

1860 16.2% 20.56% 1950 99.7% 97.98%

1870 31 .2% 29.57% 1960 99.9% 98.99%

1880 34.0% 40.72%

1890 46.9% 53.39%

STEAM SHIPS

SAILING SHIPS

50%

10% I
+--i"'r""-'::;-I-+1--+1-+1-+-1-+1--+1-;-1""I~I--+I-1..........1-+1-+-1-Jt>!>

1810 1850 1900 1950 t

STU-.M
SHIP ~,

100%

Figure 6. Substitution of steam ships for sailing ships.
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Third case:

This example does not describe a substitution process but

the spreading of an innovation which did not directly displace

an established product but rather filled a gap. The penetration

process of the telephone in the US is examined for the period

from 1880 to 1965 (see Figure 7). The data are taken from

Martino (1968), see Table 3. The percentages of telephones given

there refer to 1000 people. The saturation limit is assumed at

a value of 696.9 telephones per 1000 people. The goodness-of-fit

test again shows the consistence with the actual values:

2 2
Xo = 20.45 < XO.0 5 = 25.15 degrees of freedom.

The value of S is 5.4 percent of the value for a with

a = 0.1860416 and

S = 0.0100194

This leads to the presumption that the value of market share at

the point of inflection t* will be somewhat lower than 50%.

Actually the following values are obtained:

f (t*) = 47.3%telephone
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Table 3. Market penetration of telephone.

year f f year ftelephone ftelephonetelepone telephone
actual calculated actual calculated

1880 0.16% 1. 0% 1930 23.3% 24.8%

1885 0.28% 2.1% 1935 19.6% 29.2%

18g0 0.5% 3.52% 1940 23.7% 33.7%

1895 0.7% 5.05% 1945 28.4% 38.3%

1900
,

2.5% 7.04% 1960 40.3% 43.4%

1905 7.0% 9.2% .1955 48.4% 48.4%

I1910 11 .8% 11.85% 1960 58.5% . 53.5%

1915 I 14.9% 14.8% 1965 68.6% 58.8%

1920 I 17.7% 17.8%

1925 20.8% I 20.75%

f
TELEPHONE ..

/

CALCULATED
'\ 'I

1OCI -I \ ", /e Y I--------

2
/

, '", .....-
l.>"~'::;''"'i' I I I I

I
I

/
/

/
~,,,

/

TELEPHONE

ACTUAL

J I I I I I--+---+->
lseo ClO 1900 1925 1950

Figure 7. Market penetration of telephone.
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Fourth case:

Here the spreading of a nonmaterial innovation is considered.

It is the adoption of modern math in American high schools and

colleges (see Figure 8). This case is reported by Carlson (1965),

see Table 4. Within the period from 1958 to 1963 the degree of

penetration reached 74.5 percent of the schools under considera­

tion. This rapid penetration of educational methods at this time

can be explained by the start of Sputnik I. The American society

was shocked and all possible efforts were undertaken to fill the

gap in science and technology. In the early sixties these efforts

seem to decrease. After annual increases between 15 and 25 per­

cent from 1959 to 1962 in 1963 only 9 percent increase is ob­

served. This is the reason why the goodness-of-fit is only tested

until 1962. If data after 1963 were available the model would be

able to include this smoothing effect. For the time period from

1958 to 1962 the model is consistent with the data:

2 2
Xo = 7.33 < XO.05 = 12.59, 6 degrees of freedom.

The value of S is very small in relation to a (2.14% of the value

for a) with

a = 0.6666443 and

S = 0.0142879

Thus it follows that the degree of penetration at the point of

inflection t* is:

fmodern math(t*) = 48.93%
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Table 4. Penetration of modern math.

year f f ! year !f mod . rna th fmod.math mod. math \. mod. math
actual calculated actual calculated

1958 1. 4% 1.42% July 32.24% 35.24%1960
July 3.45% 3.75% 1961 45.61% 51.38%1958

1959 6.54% 7.53% July 56.45% 68.73%1961

1962 65.23% 83.5%
July -July-- -----------------------

13.0% 13.49% 70.28% -1959 1962

1960 21.31% 22.51% 1963 74.5% -

f
MODERN

MATH t
100%1

50%

T

I
I

I
I

I
I

I
/

I

CALCULATED II
~I

~
h

MODERN MATH10%

1958 1959
JULY 58

1960 1961 1962

Figure 8. Penetration of modern math.
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Fifth case:

Here another penetration process of an educational inno­

vation is described. It is the spreading of programmed instruc­

tions from 1958 to 1963 in the US (see Figure 9) reported again

by Carlson (1965). The rate of diffusion is not so fast com­

pared with the spreading of modern math. But again one realizes

after 1962 a smoothing effect. Probably the same arguments hold

for the temporal development of this innovation as in the case

of modern math. So again the data from 1958 to 1962 are applied

to test the goodness-to-fit (see Table 5). The model is again

consistent with the data:

2 2Xo = 3.67 < XO.05 = 12.59, 6 degrees of freedom.

The value of S is 1.41% of the value of a with

a = 0.5902603 and

S 0.0083161

This implies a value at the point of inflection t* of nearly 50%.

It is exactly:

f (t*) = 49 3%progr.instr. .
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Table 5. Penetration of programmed instructions.

year f prOjr. instr . f progr.instr. year f progr.instr. f progr. instr .
actual calculated actual calculated

1958 2.05% 0.83% July 36.26% 39.96%1961
July 2.34% 2.14% 1962 44.58%' 52.18%1958 ------- ------------
1959 3.55% 4.18% July 48.04% -1962
July 7.01% 7.34% 1963 49.53% -1959

1960 12.62% 12.16%

July
18.97% 19.19%1960

1961 26.17% 29.01%.

f

PROGRAMMED
INSTRUCTION J\

50%

1958 1959
JULY 58

I
I

I
I

I
I

I
I

I
I

CALCULATED /
--I

I
I.

PROGRAMMED
INSTRUCTION

I i I >-
1960 1961 1562

Figure 9. Penetration of programmed instructions.
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LIST OF SYMBOLS

S = stochastic process

x t = random variable at time t

T = parameter space

Z = state space

I = identity matrix

P(t)= transition matrix at time t

C(t)= causative matrix at time t

a,B = parameters

t = time

z = elements of the state space

p(t)= probability at time t

f(t)= vector of market shares at time t

fo(t)== market share of state zero at time t

f 1 (t)= market share of state one at time t

w(t)== state vector of the individual at time t

A(t)= eigenvalue vector at time t
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