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Preface

Interest in human settlement systems and policies has been
a critical part of urban-related work at IIASA since its incep-
tion. Recently this interest has given rise to a concentrated
research effort focusing on migration dynamics and settlement
patterns. Four sub-tasks form the core of this research effort:

I. the study of spatial population dynamics;

IT. the definition and elaboration of a new research
area called demometrics and its application to
migration analysis and spatial population
forecasting;

IIT. the analysis and design of migration and settle-

ment policy:

IV. a comparative study of national migration and
settlement patterns and policies.

This paper, the fourth in the policy analysis series
formulates the human settlement system planning problem as a
dynamic linear programming problem. Dynamic linear programming
has been a topic of interest in IIASA's System and Decision
Sciences Area for some time. This paper is a joint product of
the System and Decision Sciences Area and the Human Settlement
and Services Area.

Related papers in the policy analysis series, and other
publications of the migration and settlement study, are listed
on the back page of this report.

Andrei Rogers

Chairman

Human Settlement & Services
Area

January 1977
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Abstract

The problem of human settlement system (HSS)
planning is formulated as a dynamic linear programming
(DLP) problem. In DLP large time-dependent linear
programming problems are solved using both optimal
control and linear programming techniques. A multi-
regional population growth model forms the state
equation of the DLP problem. Budget-, resources- and
quality of life-constraints are considered. This
introductory paper demonstrates the formalization of
the HSS planning problem and indicates its solution,
the realization of the solution and the interpretation
of the dual relationship.
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A Dynamic Linear Programming Approach

to National Settlement System Planning

INTRODUCTION

The development of human settlement systems is becoming
a public concern in most countries. Countries all over the
world are adopting policies to guide the growth and the dis-
tribution of their populations (for some details, see
Willekens 1976a). This trend toward explicit national settle-
ment policies is enhanced by the realization that land and
environment are not free goods, but are scarce resources to
be conserved. The task of settlement planning is to elaborate
such control policies of population distribution over space
and/or time to achieve desirable socio-economic goals (conserf
vation of the environment, economic efficiency, etc.), taking
into account a large number of factors and constraints (total
population age and sex structure, birth-, death- and migration
rates, scarceness of resources, educational constraints, etc.).
An effective way to make optimal decisions when a very large
number of variables and constraints are involved, is by apply-
ing mathematical programming. Most successful in dealing
with large static problems has been linear programming.
Dynamic decision problems, on the other hand, have been treated
by using optimal control theory. National settlement systems
are large scale and dynamic in nature, and problems of their
planning can therefore be expressed as dynamic optimization
problems; more particularly as dynamic linear programming
problems (DLP). DLP comprise both static linear programming
and control theory methods (for details, see Propoi 1976a).

The purpose of this paper is to discuss briefly the
possibilities and perspectives of the DLP approach to national
settlement system planning. It consists of two parts--the
first part describes DLP models of national settlement system
planning; the second is devoted to the application of DLP
theory and meth¢ds in the solution of these models.



1. THE PLANNING PROBLEM

The purpose of this section is to describe in some detail
the problem of national settlement system planning. The models
we envisage are in the format of a DLP problem. A DLP problem
consists of three components: the state equations, the con-
straints imposed on the system variables, and the performance
index (objective function). The state egquations describe the
combined effect of internal systems dynamics and policy inter-
vention on the population distribution. The internal dynamics
are represented by the "laws of motion." External intervention
will disturb the motion of the system. But the degree and the
direction of the disturbance depend on the dynamic character-
istics of the system. \

To avoid counteractive and undesired effects of a settle-
ment policy, we need to understand the internal dynamics gov-
erning a multiregional population system, that is, we need to
understand the behavior of the system over time before app}ying
control to it. The mechanism of spatial demographic growth has
been studied by Rogers (1968, 1971, 1975). Some relevant
aspects of his-work will be reviewed in the first section.

To transform the growth model into a policy model we add
a sequence of vectors, describing control actions distributed
over time and space. A control vector defines the instruments
of population distribution policy. A fundamental feature of
population distribution policy is that it does not occur in a
vacuum. In most instances, it is subordinate to social and
economic policies. Frequently'the goals of population redis-
tribution are environmental and economic in nature. To achieve
these non-demographic goals, use is made of non-demographic but
economic and legal instruments. Although the focus is on
population and its distribution, the policy implementation
requires the consideration of socio-economic factors. The
study of the interdependence between spatial population growth
and the socio-economic system is the subject of demometrics.
The first section of this paper shows how demometrics may

‘contribute to the formulation of national settlement system



planning models. 1In particular, it is relevant to the formu-
lation of the complete state equation of the system, describ-
ing not only the internal dynamics, but also the influence of
external intervention on the system.

Besides the state equations, there are the constraints.
Relocating people or intervening in the residential location
decision incurs a cost, both from economic and social points
of view. The planning model must reflect these constraints.
They will be treated in a second section. The third section
discusses the objectives of the system planning and derives
explicit expressions for the preference system of the policy-
maker. In this paper, it is assuméd that this preference

system may adequately be described by linear functions.

1.1 The State Equations

The state equations describe the development of the multi-
regional population system over time. They appear as linear
heterogenous equations. The homogeneous part of the equation
system describes the behévior of the system undisturbed by out-
side influences. This behavior is described by a multiregional
demographic growth model. The heterogenous part describes the
impact of factors exogenous to the demographic system, such as
policy intervention. Both components of the state equations

will now be discussed in more detail.

1.1.a. The Homogeneous Part: The Multiregional Demo-

graphic Growth Model

The dynamics of multiregional population systems are
governed by the interaction of fertility, mortality and migra-
tion. In recent years demographers, geographers, economists
and planners have devoted their attention to model these
dynamics in order to describe and explain.the changes taking
place in actual human settlement systems. The models that

have been developed have a similar underlying structure. In



most instances, they appear as a system of linear difference
equations or they may be transformed into it. The general

format of the models is the matrix equation
x(t + 1) = G(t) x(t) (1.1)

where x(t) is the population distribution at time t; G(t) is
the population growth matrix at time t, which in most cases is
assumed to be constant over time: G(t) = G. This model does
not consider exogenous contributions to population growth.
They will be added later.

Depending on the aggregation level, x(t) is the population
by region, or the population by age and region. Matrix models
of aggregate multiregional population change are, for example,
the Markov chain model, the input-output model and the compo-
nents-of-change model. Willekens (1977) shows how they
relate to equation (1.1). The model of disaggregate multi-
regional population change is known as the multiregional cohort-
survival model (Rogers, 1975, Chapter 5; see also Rees and
Wilson, 1975). 1In this paper we review briefly the components-
of~change model and the cohort-survival model. It is assumed
that the multiregional population system is closed, i.e., no

external migration is allowed for.
1. Components-of-Change Model

The components-of-change model of multiregional population
growth has been described by Rogers (1966, 1968, 1971). Concep-
tually, it may be considered as an extension of the Markov
model. Consider an ergodic Markov chain

x'(t + 1) = x"(t) P _ (1.2)
or -

x(t + 1) = P'x(t) (1.3)



where P is the transition matrix. An element Pj4 of this
matrix denotes the probability that an individual in region i
at time t will be in region j at time t + 1. In an ergodic
Markov chain model, it is possible to move from an arbitrary
state i to any other state in one or more steps. This implies
that the row elements of P sum up to unity. 1In this pure
‘migration model, natural increase is ignored.

The components-of-change model introduces fertility and
mortality by premultiplying x(t) by a suitably constructed
fertility and mortality matrix. Such matrices have in the
principal diagonal the probabilities of dying and childbearing
respectively. Let B and D be the fertility and mortality

matrix. Then the components-of-change model becomes

x(t + 1)

[P' + B - D] x(t)

or

x(t + 1)

Il

G x(t) , (1.4)

with G = P' + B - D being the growth matrix. The components-
of-change model is in the form of'(1.1). The assumptions
Iunderlying this model are analogous to those of the Markov
model: Markov property, time homogeneity, no multiple transi-
tion. The column elements of G usually do not sum up to unity.
The deviation is due to natural increase. If in each region
the birth rate equals the death rate, then the components-of-

change model reduces to the ergodic Markov chain model.
1. Multiregional Cohort-Survival Model

"The multiregional cohort-survival model describes the
growth of multiregional population systems disaggregated by

age (Rogers, 1975, Chapter 5). The basic format of the model
once again is

x(t + 1) =G x(t) . (1.5)




But in this case,

x(t)(O) xft)(a)
x(t)(S) x(t)(a)
. (t) 2 .

x(t) = . X (a) = :

x(t)(z) x(t)(a)
N
where x(t)(a) is the regional distribution of the population

in age group a to a + 4, assuming an age
interval of 5 years,

x(t)(a) is the population in age group a to a + U4 in

region i at time t,
z is the highest age group (85 years and over,
say), and

N is the number of regions.

The growth matrix G is of the form

0 0 B(a-5) **+ B(B=5) 0 +*+ 0 0
5(0) 0 : :

G=| 0 5(5) , : : (1.6)
0 Secersnsssssss ettt st essosssav s S(Z_S) 0

where o and B are, respectively, the youngest and oldest ages
of the reproductive period. The matrix G is known as the
generalized Leslie matrix, indicating that it is a generaliza-
tion of the growth matrix of the single region cohort-survival
model, described by Leslie in 1945. The elements B(a) of the
first row describe the fertility behavior of the population
and the migration and survival pattern of the just born. The
subdiagonal elements S(a) denote the migration and survival

pattern of the people aged a to a + 5. The submatrices B({a)



and S(a) are computed from observed fertility rates and from
the multiregional life table. For details, see Rogers (1975).
Both the components-of-change model and the multiregional
cohort-survival model take the form of a system of homogeneous
first order difference equations. They describe the dynamics
of a closed multiregional system. The transformation of these
models to open systems is straightforward. We add to the

system (1.1) a vector s(t):
x(t + 1) = G(t) x(t) + s(t) (1.1a)

which then describes the exogenous contributions to population
growth, such as external migration. The inclusion of socio-
economic policy variables affecting population growth in the
models, needs some more discussion. This is the topic of the
next section.

1.1.b. The Complete State Equation: Addition of
Control Variables

In the components—of-change model and the cohort-survival
model, population at time t and its regional and/or age distri-
bution depends only on the population distribution in the \
previous time beriod. They are pure demographic models, since
they do not include other socio-economic variables. In this
closed system, the predetermined variables consist of lagged
endogenous variables. The growth path of the system is com-
pletely determined by the growth matrix G and the initial
condition.

' To make the models more realistic, we extend the set of
predetermined variables to include economic variables such as
income, employment, housing stock, accessibility, several types
of government expenditures, and so on. Some of the predeter-

mined variables are controllable by the policy-maker, and are

labeled policy variables, control variables, or instrument

variables. Others are uncontrollable but are exogenously given.




The complete policy model may therefore be written, assum-

ing linearity.1
x(t + 1) = G(t) x(t) + D(t) u(t) + E(t) w(t) + s(t) (1.7)

where x(t) and s(t) are as in (1.1), (1.1a),
u(t) is the vector of controllable wvariables,
w(t) is the vector of uncontrollable predetermined
socio-economic variables,

D(t) and E(t) are matrix multipliers.

For simplicity, and without loss of generality, we delete again
the uncontrollable predetermined variables. The model (1.7)

then ‘reduces to
x(t + 1) = G(t) x(t) + D(t) u(t) . (1.8)

The control vector u(t) consists of socio-economic instru-
ment variables affecting the distribution of the population.
AThe matrix multiplier D(t) is important in this setting. An
element dij(t) denotes the impact on the population in region-
age combination i of a unit change in the j-th instrument at
the step t. In many cases the elements of this matrix are also
assumed constant over time: D(t) = D. This implies that the
effects of certain policies on the population distribution are
independent of the time period when the policies are implemented.
This is consistent with the Markovian assumption of time-
homogeneity. The linearity of (1.8) implies that the effects
of the various policies are additive.

Equation (1.8) is the state equation of a state-space model.
How it may be derived from linear demometric models, describing

the interdependence between demographic and socio-economic

~

1The fact that (1.7) is a first-order difference equation
is by no means restrictive. Higher-order difference equations
may be converted into a system of first-order difference equa-
tions, (Zadeh and Desoer, 1963).



variables, is described in Willekens (1976b). The rationale
for using the state-space model (1.8) as the analytical or
numerical tool for population policy analysis, is that the
homogeneous part of (1.8) is exactly the demographic growth
model (components—of-change or cohort-survival), that describes
the population growth without intervention. The logical exten-
sion of population growth models to policy models is therefore
the addition of a heterogenous part to the growth model (see
also Rogers, 1966; 1968, Chapter 6; 1971, pp. 98-108). The
resulting model is a heterogenous system of linear first-order

difference equations.

1.2 Constraints

Policy making is subject to constraints. The values that
the control and state vectors u(t) and x(t) in (1.8) can take on
are restricted by'political, economic and social considerations.
For example, let u(t) denote the number of inmigrants from
outside the system, that have to move in, in order to achieve
certain population distributicon objectives. It is politically
and socially unacceptable to relocate a very large number of
people during a short time period. Therefore, there is an
upper bound to the number of inmigrahts during a unit time

period (Evtushenko and MacKinnon, 1975, p. 5):

Y ug(f) < u(e) , t=0,1,...,T-1 (1.9)
1

where the scalar u(t) is the total inmigration pool available
in the t-th time period.

Instead of restricting the control vector by defining a
total inmigration pool, each element of u(t) may be reguired

to lie within a lower and an upper bound:

ug (B) < (k) <u (k) . (1.10)
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Population redistribution policy is not free. Imposing
controls implies the incurrence of costs. It is therefore
nati ral to assume a budget constraint limiting the action span
of the policy maker. We distinguish between a budget constraint

for each period:
c'(t) u(t) < C(t) ' t=20,1,...,T-1 (1.11)

and a global budget constraint:
1 c'(t) u(t) <c . (1.12)

An element c; (t) of the cost vector c(t) denotes the cost of
transferring a person to region i in the t-th time period.
The total budget available during period t is C(t). The
global budget is C.

Frequentiy, the pOpuiation distribution itself is con-
strained in addition to the control vector. For example, in a
pure redistribution policy, the total population of the system

is held constant

xj(t) = X = xj(O) ' t=1,2,...,T . (1.13)

Il >3
N~

j=1 J=1
As in the case of the control vector, the policy maker may

want to put lower and upper bounds on the population in each

region. This would avoid the excessive growth of some regions

and the depopulation of others:
x5 (t) < x4 (t) f_;cj(t) , t=1,2,...,T . (1.14)
A constraint receiving considerable attention in recent years

is the resource constraint. Not only capital, but also raw

materials, water, and environment all are scarce resources. As
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mentioned in the introduction to this paper, human settlement
policies in most countries are directed toward the conservation
of those resources. This commitment must be reflected in the

planning model. Therefore, we introduce the resource constraint:
R(t) x(t) + Q(t) u(t) < £(¢t) , t=0,1,...,T (1.15)

where f(t) is the vector of available resources in the t-th
time period. The matrices R and Q are rectangular matrices.
An element rkj(t), for example, denotes the amount of resource
k required by an individual in region j during time period t.
An element qkl(t) denotes the use of resource k per unit of
control £ during period t. Note that (1.11) is a special case
of (1.15) in which a single resource, capital, is considered
associated with the control.

Another constraint relates to the quality of life or income
levels. Let g(t) be the vector denoting the regionél distribu-
tion of required quality of life-levels. The quality of life
constraint is then

M(t) x(t) + N(t) u(t) > g(t) . (1.16)

‘An element mij(t) of M(t) denotes the per éapita level of the
quality of life index i in region j at time t. An element
nil(t) of N(t) represents the impact of policy variable £ on
the level of the quality of life index 1i.

A final restriction on the action span of the policy maker
is represented by the boundary conditions. Since the planning
of settlement systems starts from the current population distri-
bution, we have the initial condition

x(0) = x4 . ' (1.17)

On the other hand, the population distribution at the planning
horizon x(T) may be fixed

x(T) = X (1.18)

or may be kept free.
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1.3 Performance Indices

The ultimate goal of national settlement system planning
is to increase the guality of life. There is no agreement on
the factors determining the quality of life, and even less on
its quantitative measurement. For practical reasons, the
guality of life goal is replaced by a single objective, involv-
ing monetary costs and benefits only. Such an objective func-
tion is given in (1.19). It is necessary to maximize the total
benefit J(u):

T
J) = ] a'(t) x(t) + 8'(t) u(t) , (1.19)

where o(t) is the vector of unit benefit associated with the
regional population levels at step t, and

B(t) is the vector of unit benefit associated with the

controls.

A performance index involving costs is shown in (1.20).

The problem is to minimize
T
L(u) = ) v'(t) x(t) + 8'(t) u(tr) . (1.20)

where y(t) is the vector of unit costs associated with the
regional population levels at step t, and
§(t) is the vector of unit costs associated with the

controls.

In some instances, the policy maker may not want to mini-
mize the costs associated with the settlement system and with
the intervention in this system. Instead he may just want to
bring the population distribution as close as possible to a
desired distribution X(T) at the planning horizon. This
problem has been treated by Willekens (1976b, pp. 66-85) for
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cases where explicit analytical solutions could be derived:
the initial period control, and the linear feedback control
problems.

In the case of DLP approach the performance index can

be formulated as
J(u) = [x(T) - x(T)| + min (1.21)

where |.| denotes the absolute value.
The goal of obtaining a desired population distribution at
the end of the planning horizon can be formulated also in the

following way. Given the positive numbers kj, maximize the value

J(u) = min J—A—— (1.22)
1<j<u | X3

-where numbers kj define the desired proportions of the terminal
distribution. It can be shown, that in this case the optimal
distribution {xj(T)} possesses the following property
(Kantorovitch, 1965):

x4 (T) ‘ x. (T) x (T)

= e« o0 = J = LA =_n
k1 - - k. X . (1-23)

In some other cases the numerical analysis of the policy

may be of interest which maximizes the performance index

.

a.(T) x.(T) = a'(T) x(T) (1.24)
i J J

1

where aj(T) is the weighting coefficient of a population group
xj(T).
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2. DYNAMIC LINEAR PROGRAMMING THEORY AND METHODS

The purpose of this part is to describe the DLP theory and
methods in relation to problems of national settlement system
planning.

The impact of linear programming models and methods on the
practice of decision making is well known. (Dantzig, 1963; Kan-
torovitch, 1965). However, both the LP theory itself and the ba-
sic range of its applications are of one-stage, static nature.
When the system to be optimized is developing, and its develop-
ment is to be planned, a static approach is inadequate, and the
problem of optimization becomes a dynamic multistage one.

It can be seen from the above, that the principal feature of
settlement planning problems is their dynamic character. On the
other hand, the basic relations and conditions in these problems
are linear. Hence, DLP might be a Qery efficient approach for
elaborating optimal policies in large-scale national settlement
planning s&stems.

With a new gquality of DLP, new problems arise. While for
the static LP problems the basic question consists of determining
the optimal decision, the realization of this decision (related
to the questions of the feedback control of the optimal system,
stability and sensitivity analysis of the optimal system, etc) is
no less important for the dynamic problems.

This part consists of four sections. In the first section it
is shown how demographic DLP problems can be reduced to a canoni-
cal form. This enables the development of a unified approach for
a whole range of national settlemeht planning problems arising
in practice.

The DLP theory is a base for obtaining the important proper-
ties of optimal demographic sYstems and for the development of com-
putational methods for determining optimal policy in such systems.
The DLP theory with emphasis on duality relations is given in the
second section. The third section describes the DLP computational
methods.

As has been mentioned before, the problems of realization of
the optimal policy are very important for dynamic systems. These

questions will be considered in the fourth section.
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2.1 The DLP Canonical‘Form

Analysing models of multiregional population policy, which
have been described in the first part, we can see, that all of them
can be reduced to some canonical form. Before formulating DLP
problems in a canonical form it is useful to single out and consid-

er separately:

(i) state (development) equations of the systems with
the distinct separation of state and control vari-
ables.

(ii) constraints imposed on these variables;

(iii) planning period T-the number of stages during which
the system is considered;

(iv) performance index (objective function) which quan-

tifies the quality of a control.

2.1.a. State Equations

State equations have the following form:
x(t+1) = G(t)x(t) + D(t)u(t) + s(t) , (2.1)

where the vector x(t) = {x1(t),...,xn(t)} defines the state of the
system at stage t in the state space X, which is supposed to be the
n-dimension euclidean space; the vector u(t) = hH(t),“.,urﬁj}E:Er

(r-dimensional euclidean space) specifies the controlling action

at stage t; the vector s(t) = {51(t),...,sn(t)} defines Fhe exo-
genous uncontrolled variable (known a priori in the deterministic
models), for example, the exogenous part of equation (1.7) is
E(t)w(t) + s(t). G(t) is the state transform matrix (nxn) (in the
majority of demographic problems G(t) = G is the growth matrix);
D(t) is the control transform matrix (nxr), which defines the in-

fluence of a control to the state of the system.

2.1.b. Constraints

In rather general form, constraints imposed on the state and
control variables may be written as

R(t)x(t) + Q(t)u(t) £(t) (2.2)

| A

u(t)

v

0, (2.3)
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where f(t) = {f,(c),...,f (£)} is given vector, R(t) and Q(t) are
(mxn) and (mxr) matr;ces .

2.1.¢c. Planning Period
The planning period T is supposed to be fixed. It is also

assumed that the initial state of the system is given:

x(0) = x0 . (2.4)

2.1.d. Performance Index

The performance index (which is to be maximized) has the
following form

I =a" (Mx(T) + ] la'(B)x(0)+8" (t)ult)] ,  (2.5)

where a(t) (t=0,1,...,T) and B(t) (t=0,1,...,T~-1) are given

weight coefficients (unit benefits, associated with x(t) and u(t)).

2.1.e. Definitions

(i) The vector sequence u = {u(0),...,u(T-1)} is a control
(policy) of the system;
(ii) The vector sequence x = {x(0),...,x(T)}, which corre-

sponds to control u from the state equations (2.1) with

the initial state x(0), is the system's trajectory;

(iii) The process {u,x}, which satisfies all the constraints
of the problem (i.e. (2.1)-(2.4) in this case) is fea-
sible;

(iv) The feasible process {u*,x*} maximizing the performance

index (2.5) is optimal.

Hence, the DLP problem in its canonical form is formulated as

follows.
Problem 1: Given the initial population distribution

x(0) = x0 | (2.6)

and the state equations:

x(t+1) = G(t)x(t) + D(t)u(t) + s(t) , (2.7)
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where

x(t) is the population distribution at time t (state of the
systems) ;

G(t) is the population growth matrix (usually constant over
time) ;

D(t) =A{dij(t)}(i =1,...,m; 3=1,...,r) denotes the impact
on the population distribution x; (t) in region i by the con-
trol instrument uj(t); d
s (t) describes the exogenous contributions to population

growth;

and the constraints

R(t)x(t) + Q(t)u(t) < £(t) (2.8)
u(t) > 0 (2.9)
where
f£(t) = {f1(t),...,%Jt)}is the vector of available resources
at time t;
the matrix R(t) = {rki(t)}(k==1,...,m; i=1,...,n) denotes

the amount of resource k required per individual in region
i at step t;
the matrix Q(t) = {qki(t)}(k=:1,...,m; i=1,...,r) denotes

the consumption of resource k per unit of control i at step t,

find a control (policy)
u = {u(0),...,u(T-1)}
and corresponding state trajectory
x = {x(0),...,x(T)}
which maximize the performance index
T-1

Jy(u) = o' (T)x(T) + ) [a'(t)x(t) +8' (t)u(t)] (2.10)
t=0



-18~

where

o(t)(t=0,...,T) is the n-vector of unit benefit, associated
with the regional population distribution x(t);
and B(t)(t=0,T-1) is the r-vector of unit benefit associ-

ated with the control u(t).

The choice of a canonical form of the problem is to some ex-
tent arbitrary, various modifications and particular cases of Prob-
lem 1 being possible. Some of them have been considered in the
first part of this paper, a classification of these modifications

is given in Table 1. 1In the table, state equations, for example,

may include matrices A, B'and/or vector s not depending on the
number of stage t (I.2) or external disturbance s(t) may vanish.
(See (1.2)-(1.5)). Equations (I.3) are obtained, for example,
from considering the difference approximation of the continuous
analog of Problem 1.

An important class of DLP are the systems with delays in state
and/or control variables (I.4), where {n1,...,nv}, {m1,...,mu} are
the sets of integers. They reflect the fact, that in a demograph-
ic system the state x(t +1) at the step t + 1 may depend on cer-

tain previous states x(t-n,), x(t-n,),...,x(t-n ) and certain
previous control actions u(t-—m1),u(t-—mz),...,u(t-mu). In par-
ticular, when {n1,...,nv} = {0}, {m1,...,mu} = {0}, a conventional

system (I.1) is obtained.

Constraints on the state and control variables can have the

form of equalities (II.2), (see for example (1.13)) or be separ-
ate (II.3),(II.4), (examples are (1.9)-(1.14)). These variables
‘can have additional restrictions on its sign (II.5), (II.6), (for
example, the number of people cannot be negative). In some cases,
the constraints should be considered in the summarized form (II.7)
or (II.8) (see (1.12)).

It is useful to single out the constraints on the left and/or
right side of the trajectory (boundary conditions). For example,
the left and/or right side of the trajectory can be fixed (III.1),
(III1.3) or free (III.2), (III.U4).

The number of steps T of the planning period can be fixed
(IV.1) or may be defined by some conditions on the terminal state
(i.e. (II.3), (II.5) for t=T). (Typical problem here: to bring
a demographic system to a desired population distribution for mini-

mal number of steps T).
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The value of the performance index can depend only on the
trajectory {x(t)} (V.4) or on the control sequence {u(t)} (v.3) or
be even determined only by the terminal state x(T) of the trajec-
tory (V.2) (for example, see (1.19)-(1.22)).

In connection with Table 1, we can consider the patterns of

Problem 1 modifications.

Problem l1la: (with terminal performance indices (1.19)-(1.22)).
In this problem, the performance index (V.1) should be changed to
(v.2). ‘

Problem 1b: (with equality constraints). For this problen,

the variable constraints are of equality form (II.2).

Problem 1c: (without state constraints). For this case, the
problem has no constraints, or they (see (II.6)) may be imposed
only on control variable (e.g. (1.9)-(1.12)). 1In case of a linear
performance index, the problem is trivial. It is however of a sig-
nificant interest, when the objective function is concave (in par-

ticular, nonpositive quadratic (Willekens, 1976b)).

-

Problem 1d: (nonfixed planning period). In this case, the
number of stages T is not fixed but determined by the condition

(ITT.3): x(T) = X

Problem le: For this problem variable constraints are of the
form (IT.8) (e.g. budget constraint (1.12)).

Of course, Table 1 doesn't present the whole variety of modi-
fications for Problem 1 and, naturally, Problems 1-1e do not pre-
sent the total set of the possible DLP problems.

It should be noted that any problem stated above can be trans-
ferred into the other. For example, let us consider the Problems 1
and la with performance index (2.5). Introducing a new additional
variable xo(t)(t==0,...,T), subject to xo(t-+1) = xo(t) + a' (t)x(t)
+ B(t)u(t); xO(O) = 0 one can see that

T-1
X, (T) = tzo [a' (E)x(t) +B' (t)u(t)]
So Problem 1 will have a form of Problem 1a with the performance

index

Jq = T (T)IXR(T) ;
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and the state equations

R(t+1) = G(B)R(T) + D(t)u(t) + s(t) ,
where
qiT) = {1,01(T),...,an(T)}; X(t) = {xo(t),x1(t),...,xn(t)}
(t=1,...,T); %) = {0,x°(0)} ,
N 1 a(t) 0 B(t)
G(t) = D(t) = .
0 G(t) 0 D(t)

Similarily performance indices (1.19), (1.20) can be reduced
to (1.22). For example, the performance index (1.20) can be re-

placed by the problem
J(u) = a > max

wi-h additional terminal state -constraints
xj(T) < akj (i=1,...,n) .

If we consider Problem le with constraints (1.12) and intro-

duce a variable Xn+1(t)’ subject to state equation:

(t) xn+1(t) + c'(t)u(t) (¢t =0,1,...,T - 1)

xn+1

xn+1(0) =0
then we obtain Problem 1 with equations
R(t+1) = GEIR(E) + B(tlu(t) + J(t)

where

R(t) = {xq(t), ..., x (£),x . (£)}

~e

n+1
D(t) 0

G(T) 0 \
& (t) B(t)

0 I c(T) I
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and only one terminal condition

X(T) < C

where
¢ ={0,...,0,c} .

Here 0 and I are the zero and identity matrices of proper di-
mensions. ‘

These reasonings show that it is sufficient to develop solu-
tion methods only for Problem 1 in order to obtain the solution
methods for the whole set of DLP problems arising in case studies.

But before discussing these methods let us consider some im-

portant theoretical properties of the DLP problems.

2.2 DLP Theory

Problem 1 can be considered as an optimal control problem
with sate equation (2.6), initial condition (2.7), constraints on
state and control variables (2.8), (2.9) and performance index
(2.10). However, Problem 1 may be also considered as a certain
"large" LP problem with constraints on vatiables in the form of
egualities (2.6), (2.7) and inequalities (2.8), (2.9). 1In this
case, Problem 1 turns out to be an LP problem with the staircase
constraint matrix (Table 2).

For the numerical solution of Problem 1, one can therefore
rely on a standard LP computer code. However, this straightfor-
ward approach to solving DLP problems is inefficient for two rea-
sons. First, the "static" LP problem thus arrived at are so large
in real cases that they cannot be solved even by using the most
up-to-date computers. ‘

The second reason is more importént. Even if the optimal so-
lution of the DLP Problem 1 should have been found by conventional
means, the problems of the realization of this solution would still
exist. These reasons provide the rationale for the development of
dynamic LP methods. The methods must include: a theory (duality
and optimality relations), numerical algorithms, and methods for
the implementation of the solution.
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The duality theory plays a key role in optimization methods.
It permits the replacement of the original primal problem by some
equivalent dual problem. It should be stressed that this equiva-
lent dual problem can be interpreted in real terms for all real
problems, thus enabling one to understand more deeply the original
problem.

Analysing Problem 1, written in the forﬁ>of Table 2, and
applying to it LP duality theory, the following results can be
obtained (Propoi, 1977).

Problem 2 (Dual): Find the dual control

A= {A(T =1),...,2(1),A(0)}
and the associated dual trajectory

p=1{p(T),...,p(1),p(0)}
satisfying the co-state (dual) equation

p(t) = G' (£)p(t+1) — R' (£)A(t) + al(t) (2.11)
with the boundary.condition

p(T) = aiT) ' (2.12)
subject to the constraints

D' (t)p(t+1) - Q' (t)A(t) <- B(t) (2.13)
A(t) > 0 (2.13a)

and minimizing the performance index

-1
T = p' (0)x% + T [pr(t+1)s(t) - £ (E)A(E)] .  (2.18)
t=0

I

Here p(t) {P1 (t)l"°lpn(t)}l A(t) = {>\1(t)l"'lxm(t)}
Ai(t) >0 (i=1,...,m) are Lagrange multipliers for constraints
(2.6), (2.7) and (2.8), (2.9) respectively.
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The dual Problem 2 is also a control type problem as is the
primal Problem 1. Here the variable A(t) is a dual control and
p(t) is a dual or a co-state of the system. Note, that we have
reversed time in the dual Problem 2: t =T -1,...,1,0.

For the pair of dual Problems 1 and 2 the following duality
relations hold:

Theorem 1. (The DLP global duality conditions). 1) For any

feasible controls u and A, the inequality
I < I, 0 (2.15)

holds. 2) The solvability of either of Problem 1 or Problem 2 im-
plies the solvability of the other, with

J1(u*) = JZ(X*) . (2.16)
where u* and A* are optimal controls of Problems 1 and 2.

The equality (2.16) shows, that the solution of the primal
Problem 1 can be replaced by the solution of the dual Problem 2,
while the inequality (2.15) gives the upper bound of the Problem
1 performance index value.

The solution of the dual Problem 2 may be preferable from com-
putational point of view for some cases; more important, that the
duality relations can be effectively used for realization of opti-
mal policy.

The duality relations can also be formulated in a decomposable
way for each step t, t = 0,1,...,T = 1. For this purpose, let us
introduce the Hamiltonian

H1(p(t-+1),u(t)) = B'(t)u(t) + p'(t+1)
(2.17)
D(t)u(t)
for the primary Problem 1 and
H2(X(t),A(t)) = At (L) f(t) - A" (E)R(E)x(t) (2.18)

for the dual Problem 2.
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Theorem 2. (The DLP local duality conditions). 1) For any

feasible processes {u,x} and {A,p} the following inequalities hold:
Hy(p(t+1),u(t)) < Hy(x(£),A(E))  (£=0,...,T-1) .

2) For any feasible processes {u*,x*} of the primal and {A*,p*}
of the dual to be optimal i1t is necessary and sufficient that the

values of Hamiltonians are equal:

H1(p*(t-+1),u*(t)) = H2(x*(t),k*(t)) (t=0,...,T-1) .

Theorem 2 shows that in order to investigate a pair of dual
dynamic Problems 1 and 2 it is sufficient to consider a pair of

dual "local" (static) problems of LP:

max H1(p(t-+1),u(t))

R(t)x(t) + Q(t)u(t) f(t) (2.19)

A

u(t) >

v
o

t=0,-,-.-,T—1
and

min H, (x(t),A(t))

D' (t)p(t+1) - Q' (t)A(t) -B(t) (2.20)

|A

A(E) >

v
o

t=T7-1,...,1,0
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So, any of the "static" duality relations or LP optimality
conditions (Dantzig, 1963) for the pair of dual LP problems (2.19)
and (2.20) linked by the state equations (2.6), (2.7) and (2.11),
(2.12) determine the corresponding optimality conditions for the
pair of dual DLP Problems 1 and 2. Such conditions have been for-
mulated above; in a similar manner the following important opti-
mality conditions are obtained (Propoi, 1977).

Theorem 3. (Maximum principle for primary Problem 1). For

a control u* to be optimal in the primary Problem 1, it 1s necessary
and sufficient that there exists a feasible process {A*,p*} of the

dual Problem 2, such that for t = 0,1,...,7-1 the equality:

max H1(p*(t+1),u(t)) = H1(p*(t+1),u*(t))
holds, where the maximum is taken over all u(t), satisfying the
constraints (2.8), (2.9), and A*(t) 1s the optimal dual variable

in the LP problem (2.20).

Theorem 4. (Minimum principle for dual Problem 2). For a

control A* to be optimal in the dual Problem 2 it is necessary and
sufficient, that there exists a feasible process {u*,x*} of the
primary Problem 1, such that for t = 0,1,...,T-1 the equality

min H, (x*(t),A(t)) = HZ(X*(t),X*(t))
holds, where the minimum is taken over all A(t), satisfying the

constraints (2.13), (2.13a) and u*(t) is the optimal primary vari-
able in the LP problem (2.19).

These theorems can also be obtained by using the corresponding

optimality conditions for discrete control systems (Propoi, 1973).
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2.3 DLP Computational Methods

Simple DLP problems can be handled by standard LP codes.

DLP problems of a realistic size require however, the development
of special DLP methods. We shall distinguish finite and itera-
tive methods.

DLP finite methods allow the finding of an optimal solution
for a finite number of steps and are a further development of
large-scale LP methods to dynamic problems. First of all, we
mention the extension of the well-known simplex-method to DLP
problems (Krivonozhko and Propoi, 1976). The dynamic simplex-
method permits the obtaining of exact optimal solutions of DLP
problems for a finite number of steps by treating at each step
only the set of T local bases of dimension m X m (m is the number
of constraint rows in the (2.2)) instead of handling with global
basis of dimension mT X mT at the straightforward approach. The
dynamic simplex-method is proved to be closely connected with the
most effective large-scale LP methods based on factorization of
the constraint matrix. These methods can also be used for the
solution of DLP problems (Winkler, 1974; Chebotarev and Krivonozhko,
1976) .

The second approach is based on decomposition methods of LP,
especially on the Dantzig-Wolfe decomposition principle. For
DLP problems this technique was used for example by Glassey (1970),
Ho and Manne (1974) and Krivonozhko (1976).

Iterative methods do not produce exact solutions in a finite
number of iteratives. But in many cases the approximate solution
is quite adequate.

In addition, the iterative methods are characterized by
simplicity of computer coding, low demands on computer memory and
low sensitivity to the disturbances.

The most effective algorithms, however, combine the advan-
tages of both the finite and the iterative methods. We mention
here the finite-step algorithm, based on a penalty functions
approach (Chebotarev, 1977) and the finite-step-algorithm, based

on a Riccati equation solution (Propoi and Yadykin, 1975).
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2.4 Implementation of Optimal Policies and Related Questions

Unlike for static LP, the realization of an optimal solution
in dynamic problems is as important as its determination. One
should mention here the questions of realization of the optimal
solution as a program (i.e., in dependence of the numbers of state:
u¥(t) (t=0,...,T=1)) or as a feedback control (i.e., in dependence
on the current value of states: u¥(t) = ut(x(t))(t=0,...,T—1));
stability and sensitivity of the optimal system, connection of
optimal solutions for long- and short-range models, etc. These
problems are a waiting solution. We shall mention only some of
them here.

It is often necessary to determine in which way the performance
index and/or the optimal control will behave when the parameters
of the problem are changing (for example, "prices" a(t), B(t),

"resources" f(t), "exogenous variables" s(t) (parametric DLP).

Solution methods in this case can be developed on the basis of
static parametric LP (Dantzig, 1963).

In computing the optimal program, especially for a large T,
it is very important to know how the inaccuracies in the coeffi-
cients of matrices G(t), D(t) and in other parameters of the
system, influence the stability of the optimal program and the

quality of control (sensitivity problem).

In many cases the most appropriate way of realizing an opti-

mal policy can be reduced to the problem of finding the relations:

Su¥(t) = A(t)dx*(t) (t=0,1,...,T-1)

where 6x*(t) = x(t) - x%x*(t) is the deviation of the current state
x(t) of the system from optimal state x*(t) and is supposed to be
sufficiently small; Su*(t) = u(t) - u*(t) is a regquired correction

to the optimal program {u*(t)}. This is the local feedback control

of the optimal system.

4 Naturally, all the practical national settlement planning
problems cannot be kept within the format of DLP. Here we should
mention some directions of further DLP development.

In some cases the performance index is stated as quadratic or
nonlinear (convex) function of state and control variables,

(Willekens, 1976b). The extension of DLP methods to quadratic and
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convex DP problems can be developed in a way similar to the
static methods (see, e.a. Hadley, 1964).

When the exogenous variables cannot be given a priori we
come to DLP problems with uncertainty conditions. They can be
formalized using stochastic optimization methods (Ermoljev, 1972)
or max-min methods (Propoi and Yadykin, 1974). The solution of
max-min DLP problems is of considerable practical interest when
guaranteed control quality is to be obtained under the conditions
of uncertainty, as well as for sensitivity analysis and related

problems.

3. CONCLUSION

In this introductory paper we sketched the basic idea of
the DLP approach to national settlement system planning. The
approach might be a very effective tool for deriving and imple-
menting optimal policies in demographic systems. However,

additional work is required. It includes:

- development of a library of typical demographic policy

models in DLP format;

- interpretation of the basic dual relations in demographic
terms and the use of the DLP theory and methods for

obtaining "qualitative" relations in demographic systems;

- numerical case studies of different DLP demographic

models.
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L. 8tate masmﬂponm

(I.1) x(t+1) G(t)x(t) + Uwﬂucﬁﬁv + s(t)

(I.2) x(t+1) Gx(t) + Du(t) + s

(I.3) x(t+1) x(t) + G(t)x(t) + D(t)u(t) + s(t)

(I.4) x(t+1)

Y .
pwé G(t-n;)x(t-n;) +

uMd UanlsuVsﬁﬁlauv.

II. Constraints

(II.1) R(t)x(t) + Q(t)u(t)

< E(E)
(II.2) R(t)x(£) + Q(t)u(t) = £(t)
(I1.3) , rR(eyx(t) < £ (r)
(II.84) oﬁnvcanv.m.mANVAnv
(I1.5) x(t) >0
(II.6) - u(t) > 0
(I1.7) MMA [R(Dx(T) + Q(D)u(n] < £(8)  (t=1,...,T)
(11.8) .HMA Hwawvxﬁﬁv + Q(t)u(t)] < £

III. Boundary Conditions
(III.1) x(0) = x°
AHHH.Nv xﬁov is free
(I11.3) x(T) = x

T.
(III.8) x(T) is free

Table 1.
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IV. Planning Period

(tv. 1) T is f . xed

(IV.2) T is free

V. Performance Indexes

T-1

(h.1) ‘J1(u) = a'(T) x(T) + } [a'(T)x(t) +B"'(t) u(t)]
t=0

(.2) J1(u) = a'(T) x(T)

(7.3) a(t) = O (t=0,...,T)

(V.4) B(t) = O (t=0,...,T-1)
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