
A Dynamic Linear Programming 
Approach to National Settlement 
System Planning

Propoi, A.I. and Willekens, F.

 

IIASA Research Memorandum
February 1977

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33892279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Propoi, A.I. and Willekens, F. (1977) A Dynamic Linear Programming Approach to National Settlement System 

Planning. IIASA Research Memorandum. Copyright © February 1977 by the author(s). 

http://pure.iiasa.ac.at/807/ All rights reserved. Permission to make digital or hard copies of all or part of this 

work for personal or classroom use is granted without fee provided that copies are not made or distributed for 

profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other 

purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting 

repository@iiasa.ac.at 

mailto:repository@iiasa.ac.at


A Dynamic Linear Programming Approach 

to National Settlement System Planninq 

Anatoli Propoi 

and 

Frans Willekens 

February 1977 

Research Memoranda are interim reports o n  research being con- 
ducted by the International Ins t i t~ te  for Applied Systen~s Analysis, 
and as such receive only limited scientific review. Views or opin- 
ions contained herein do  not necessarily rcpresent those o f  the 
Institute or o f  the National Member Organizations supporting the 
Institute. 





Preface 

Interest in human settlement systems and policies has been 
a critical part of urban-related work at IIASA since its incep- 
tion. Recently this interest has given rise to a concentrated 
research effort focusing on migration dynamics and settlement 
patterns. Four sub-tasks form the core of this research effort: 

I. the study of spatial population dynamics; 

11. the definition and elaboration of a new research 
area called demometrics and its application to 
migration analysis and spatial population 
forecasting; 

111. the analysis and design of migration and settle- 
ment policy; 

IV. a comparative study of national migration and 
settlement patterns and policies. 

This paper, the fourth in the policy analysis series 
formulates the human settlement system planning problem as a 
dynamic linear programming problem. Dynamic linear programming 
has been a topic of interest in IIASA's System and Decision 
Sciences Area for some time. This paper is a joint product of 
the System and Decision Sciences Area and the Human Settlement 
and Services Area. 

Related papers in the policy analysis series, and other 
publications of the migration and settlement study, are listed 
on the back page of this report. 

Andrei Rogers 
Chairman 
Human Settlement & Services 

Area 

January 1977 
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Abs t rac t  

The problem of  human se t t l emen t  system (HSS) 
p lanning i s  formulated a s  a  dynamic l i n e a r  programming 
(DLP) problem. I n  DLP l a r g e  time-dependent l i n e a r  
programming problems a r e  solved us ing  both  opt imal  
c o n t r o l  and l i n e a r  programming techniques.  A mul t i -  
r eg iona l  popu la t ion  growth model forms t h e  s t a t e  
equat ion  of  t h e  DLP problem. Budget-, resources-  and 
q u a l i t y  of l i f e - c o n s t r a i n t s  a r e  cons idered.  Th is  
i n t r oduc to r y  paper -demonstrates t h e  fo rma l i za t ion  o f  
t h e  HSS planning problem and i n d i c a t e s  i t s  s o l u t i o n ,  
t h e  r e a l i z a t i o n  of  t h e  s o l u t i o n  and t h e  i n t e r p r e t a t i o n  
o f  t h e  dua l  r e l a t i o n s h i p .  
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A Dynamic Linear Programming Approach - 
to National Settlement System Planning 

INTRODUCTION 

The development of human settlement systems is becoming 

a public concern in most countries. Countries all over the 

world are adopting policies to guide the growth and the dis- 

tribution of their populations (for some details, see 

Willekens 1976a). This trend toward explicit national settle- 

ment policies is enhanced by the realization that land and 

environment are not free goods, but are scarce resources to 

be conserved. The task of settlement planning is to elaborate 

such control policies of population distribution over space 

and/or time to achieve desirable socio-economic goals (conser- 

vation of the environment, economic efficiency, etc.), taking 

into account a large number of factors and constraints (total 

population age and sex structure, birth-, death- and migration 

rates, scarceness of resources, educational constraints, etc.). 

An effective way to make optimal decisions when a very large 

number of variables and constraints are involved, is by apply- 

ing mathematical programming. Most successful in dealing 

with large static problems has been linear programming. 

Dynamic decision problems, on the other hand, have been treated 

by using optimal control theory. National settlement systems 

are large scale and dynamic in nature, and problems of their 

planning can therefore be expressed as dynamic optimization 

problems; more particularly as dynamic linear programming 

problems (DLP). DLP comprise both static linear programming 

and control theory methods (for details, see Propoi 1976a). 

The purpose of this paper is to discuss briefly the 

possibilities and perspectives of the DLP approach to national 

settlement system planning. It consists of two parts--the 

first part describes DLP models of national settlement system 

planning; the second is devoted to the application of DLP 

theory and methods in the solution of these models. 



1.  THE PLANNING PROBLEM 

The purpose o f  t h i s  s e c t i o n  i s  t o  desc r i be  i n  some d e t a i l  

t h e  problem of n a t i o n a l  s e t t l e m e n t  system p lann ing.  The models 

we env isage a r e  i n  t h e  format  of  a  DLP problem. A DLP problem 

c o n s i s t s  of  t h r e e  components: t h e  s t a t e  equa t ions ,  t h e  con- 

s t r a i n t s  imposed on t h e  system v a r i a b l e s ,  and t h e  performance 

index (ob jec t i ve  f u n c t i o n ) .  The s t a t e  equa t ions  d e s c r i b e  t h e  

combined e f f e c t  of  i n t e r n a l  systems dynamics and p o l i c y  i n t e r -  

ven t i on  on t h e  popu la t ion  d i s t r i b u t i o n .  The i n t e r n a l  dynamics 

a r e  rep resen ted  by t h e  " laws of motion." Ex te rna l  i n t e r v e n t i o n  

w i l l  d i s t u r b  t h e  motion of t h e  system. But t h e  degree and t h e  

d i r e c t i o n  of t h e  d i s t u r b a n c e  depend on t h e  dynamic cha rac te r -  

i s t ics  of  t h e  system. , 
To avo id  coun te rac t i ve  and undes i red  e f f e c t s  o f  a  s e t t l e -  

ment p o l i c y ,  we need t o  unders tand t h e  i n t e r n a l  dynamics gov- 

e rn i ng  a  mu l t i r eg i ona l  popu la t ion  system, t h a t  i s ,  we need t o  
- .  - 

unders tand t h e  behav ior  of  t h e  system over  t i m e  be fo re  app ly ing  

c o n t r o l  t o  it. The mechanism of s p a t i a l  demographic growth has  

been s t u d i e d  by Rogers (1968, 1971, 1975) .  Some r e l e v a n t  

a s p e c t s  of h i s -wo rk  w i l l  be  reviewed i n  t h e  f i r s t  s e c t i o n .  

To t rans fo rm t h e  growth model i n t o  a  po l i c y  model we add 

a  sequence o f  v e c t o r s ,  d e s c r i b i n g  c o n t r o l  a c t i o n s  d i s t r i b u t e d  

over  t ime  and space.  A c o n t r o l  v e c t o r  d e f i n e s  t h e  ins t ruments  

o f  popu la t ion  d i s t r i b u t i o n  po l i c y .  A fundamental f e a t u r e  of 

popu la t ion  d i s t r i b u t i o n  p o l i c y  is  t h a t  it does n o t  occur  i n  a  

vacuum. I n  most i n s t a n c e s ,  it i s  subord inate  t o  s o c i a l  and 

economic p o l i c i e s .  F requen t l y  t h e  g o a l s  o f  popu la t ion  r e d i s -  

t r i b u t i o n  a r e  envi ronmenta l  and economic i n  na tu re .  To ach ieve  

t h e s e  non-demographic g o a l s ,  use  i s  made of non-demographic b u t  

economic and l e g a l  i ns t ruments .  Although t h e  focus i s  on 

popu la t ion  and i t s  d i s t r i b u t i o n ,  t h e  po l i c y  implementat ion 

r e q u i r e s  t h e  cons ide ra t i on  of socio-economic f a c t o r s .  The 

s tudy  o f  t h e  in terdependence between s p a t i a l  popu la t ion  growth 

and t h e  socio-economic system i s  t h e  s u b j e c t  o f  demometrics. 

The f i r s t  s e c t i o n  of  t h i s  paper  shows how demometrics may 

c o n t r i b u t e  t o  t h e  fo rmu la t ion  of n a t i o n a l  s e t t l e m e n t  system 



p lann ing  models. I n  p a r t i c u l a r ,  it is  r e l e v a n t  t o  t h e  formu- 

l a t i o n  of  t h e  complete s t a t e  e q u a t i o n  o f  t h e  sys tem,  d e s c r i b -  

i n g  n o t  o n l y  t h e  i n t e r n a l  dynamics,  b u t  a l s o  t h e  i n f l u e n c e  of  

e x t e r n a l  i n t e r v e n t i o n  on t h e  system. 

Bes ides  t h e  s t a t e  e q u a t i o n s ,  t h e r e  a r e  t h e  c o n s t r a i n t s .  

Re loca t i ng  peop le  o r  i n t e r v e n i n g  i n  t h e  r e s i d e n t i a l  l o c a t i o n  

d e c i s i o n  i n c u r s  a  c o s t ,  bo th  from economic and s o c i a l  p o i n t s  

of view. The p lann ing  model must r e f l e c t  t h e s e  c o n s t r a i n t s .  

They w i l l  be  t r e a t e d  i n  a  second s e c t i o n .  The t h i r d  s e c t i o n  

d i s c u s s e s  t h e  o b j e c t i v e s  o f  t h e  system p lann ing  and d e r i v e s  

e x p l i c i t  e x p r e s s i o n s  f o r  t h e  p r e f e r e n c e  system o f  t h e  po l i cy -  

maker. I n  t h i s  paper ,  it is  assumed t h a t  t h i s  p r e f e r e n c e  

system may adequa te l y  be d e s c r i b e d  by l i n e a r  f u n c t i o n s .  

1.1 The S t a t e  ~ q u a t i o n s  

The s t a t e  e q u a t i o n s  d e s c r i b e  t h e  development o f  t h e  m u l t i -  

r e g i o n a l  p o p u l a t i o n  system ove r  t i m e .  They appear  a s  l i n e a r  

he te rogenous  e q u a t i o n s .  The homogeneous p a r t  of t h e  e q u a t i o n  

system d e s c r i b e s  t h e  behav io r  o f  t h e  system und is tu rbed  by o u t -  

s i d e  i n f l u e n c e s .  T h i s  behav io r  is  d e s c r i b e d  by a m u l t i r e g i o n a l  

demographic growth model. The he terogenous  p a r t  d e s c r i b e s  t h e  

impact o f  f a c t o r s  exogenous t o  t h e  demographic sys tem,  such  a s  

p o l i c y  i n t e r v e n t i o n .  Both components o f  t h e  s t a t e  e q u a t i o n s  

w i l l  now be  d i s c u s s e d  i n  more d e t a i l .  

1 1 . a  The Homogeneous P a r t :  The M u l t i r e g i o n a l  Demo-  

g r a p h i c  Growth Model 

The dynamics of  m u l t i r e g i o n a l  popu la t i on  sys tems a r e  

governed by t h e  i n t e r a c t i o n  o f  f e r t i l i t y ,  m o r t a l i t y  and migra- 

t i o n .  I n  r e c e n t  y e a r s  demographers,  geographers ,  economis ts  

and p l a n n e r s  have devoted t h e i r  a t t e n t i o n  t o  model t h e s e  

dynamics i n  o r d e r  t o  d e s c r i b e  and e x p l a i n  t h e  changes t a k i n g  

p l a c e  i n  a c t u a l  human s e t t l e m e n t  systems.  The models t h a t  

have been developed have a  s i m i l a r  unde r l y i ng  s t r u c t u r e .  I n  ' 



most i n s t a n c e s ,  t h e y  appear  a s  a  system o f  l i n e a r  d i f f e r e n c e  

e q u a t i o n s  o r  t h e y  may be t rans formed i n t o  it. The g e n e r a l  

format  o f  t h e  models i s  t h e  m a t r i x  equa t ion  

where x ( t )  i s  t h e  p o p u l a t i o n  d i s t r i b u t i o n  a t  t ime t; G ( t )  is  

t h e  p o p u l a t i o n  growth m a t r i x  a t  t i m e  t ,  which i n  most c a s e s  is 

assumed t o  be c o n s t a n t  ove r  t i m e :  G ( t )  = G .  Th is  model does  

n o t  c o n s i d e r  exogenous c o n t r i b u t i o n s  t o  popu la t i on  growth. 

They w i l l  be added l a t e r .  

Depending on t h e  aggrega t ion  l e v e l ,  x ( t )  i s  t h e  p o p u l a t i o n  

by r e g i o n ,  o r  t h e  p o p u l a t i o n  by age and r e g i o n .  Matr ix  models 

of  agg rega te  m u l t i r e g i o n a l  popu la t i on  change a r e ,  f o r  example, 

t h e  Markov c h a i n  model, t h e  input -ou tpu t  model and t h e  compo- 

nents-of -change model. Wi l lekens (1977) shows how t h e y  

r e l a t e  t o  e q u a t i o n  ( 1 . 1 ) .  The model o f  d i s a g g r e g a t e  m u l t i -  

r e g i o n a l  popu la t i on  change is  known a s  t h e  m u l t i r e g i o n a l  cohor t -  

s u r v i v a l  model (Rogers,  1975, Chapter  5; see a l s o  Rees and 

Wilson, 1975) .  I n  t h i s  paper  w e  rev iew b r i e f l y  t h e  components- 

of-change model and t h e  c o h o r t - s u r v i v a l  model. I t  i s  assumed 

t h a t  t h e  m u l t i r e g i o n a l  popu la t i on  system i s  c l o s e d ,  i . e . ,  no 

e x t e r n a l  m i g r a t i o n  i s  a l lowed f o r .  

The components-of-change model of m u l t i r e g i o n a l  popu la t i on  

growth h a s  been d e s c r i b e d  by Rogers (1966, 1968, 1971) .  Concep- 

t u a l l y ,  i t may be  cons ide red  a s  an e x t e n s i o n  o f  t h e  Markov 

model. Cons ider  an  e r g o d i c  Markov cha in  



where P i s  t h e  t r a n s i t i o n  m a t r i x .  An e lement  p i j  of  t h i s  

ma t r i x  deno tes  t h e  p r o b a b i l i t y  t h a t  an  i n d i v i d u a l  i n  r e g i o n  i 

a t  t i m e  t w i l l  be i n  reg ion  j a t  t i m e  t + 1 .  I n  a n  e r g o d i c  

Markov cha in  model, it i s  p o s s i b l e  t o  move from a n  a r b i t r a r y  

s t a t e  i t o  any o t h e r  s t a t e  i n  one o r  more s t e p s .  T h i s  i m p l i e s  

t h a t  t h e  row e lements  of  P sum up t o  u n i t y .  I n  t h i s  pu re  

m ig ra t i on  model, n a t u r a l  i n c r e a s e  is i gnored.  

The components-of-change model i n t r o d u c e s  f e r t i l i t y  and 

m o r t a l i t y  by p r e m u l t i p l y i n g  x ( t )  by a  s u i t a b l y  c o n s t r u c t e d  

f e r t i l i t y  and m o r t a l i t y  ma t r i x .  Such m a t r i c e s  have i n  t h e  

p r i n c i p a l  d iagona l  t h e  p r o b a b i l i t i e s  o f  dy ing  and c h i l d b e a r i n g  

r e s p e c t i v e l y .  Le t  B and D be t h e  f e r t i l i t y  and m o r t a l i t y  

ma t r i x .  Then t h e  components-of-change model becomes 

x ( t  + 1 )  = [ P '  + B - D ]  x ( t )  

w i t h  G = P '  + B - D be ing  t h e  growth ma t r i x .  The components- 

of-change model i s  i n  t h e  form of (1 . l )  . The assumpt ions 

under l y ing  t h i s  model a r e  analogous t o  t h o s e  of  t h e  Markov 

model: Markov p r o p e r t y ,  t i m e  homogeneity, no m u l t i p l e  t r a n s i -  

t i o n .  The column e lements o f  G u s u a l l y  do n o t  sum up t o  u n i t y .  

The d e v i a t i o n  i s  due t o  n a t u r a l  i n c r e a s e .  I f  i n  each r e g i o n  

t h e  b i r t h  r a t e  e q u a l s  t h e  d e a t h  r a t e ,  t h e n  t h e  components-of- 

change model reduces  t o  t h e  e r g o d i c  Markov cha in  model. 

ii. MuZtiregionaZ Cohort-SuruivaZ Mode Z 

The m u l t i r e g i o n a l  cohor t - su rv i va l  model d e s c r i b e s  t h e  

growth o f  m u l t i r e g i o n a l  popu la t i on  sys tems d i saggrega ted  by 

age (Rogers,  1975, Chapter  5 ) .  The b a s i c  format  o f  t h e  model 

once aga in  i s  



But in this case, 

where x ( ~ )  (a) is the regional distribution of the population 

in age group a to a + 4, assuming an age 

interval of 5 years, 

x ( ~ )  (a) is the population in age group a to a + 4 in i 
region i at time t, 

z is the highest age group (85 years and over, 

say), and 

N is the number of regions. 

The growth matrix G is of the form 

b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  S(z-5) 0 

where a and 6 are, respectively, the youngest and oldest ages 

of the reproductive period. The matrix G is known as the 

generalized Leslie matrix, indicating that it is a generaliza- 

tion of the growth matrix of the single region cohort-survival 

model, described by Leslie in 1945. The elements B(a) of the 

first row describe the fertility behavior of the population 

and the migration and survival pattern of the just born. The 

subdiagonal elements S(a) denote the migration and survival 

pattern of the people aged a to a + 5. The submatrices B(a) 



and S(a) are computed from observed fertility rates and from 

the multiregional life table. For details, see Rogers (1975). 

Both the components-of-change model and the multiregional 

cohort-survival model take the form of a system of homogeneous 

first order difference equations. They describe the dynamics 

of a closed multiregional system. The transformation of these 

models to open systems is straightforward. We add to the 

system (1.1) a vector s (t) : 

which then describes the exogenous contributions to population 

growth, such as external migration. The inclusion of socio- 

economic policy variables affecting population growth in the 

models, needs some more discussion. This is the topic of the 

next section. 

1 . b .  The Complete State Equation: Addition of 

Control Variables 

In the components-of-change model and the cohort-survival 

model, population at time t and its regional and/or age distri- 

bution depends only on the population distribution in the 

previous time period. They are pure demographic models, since 

they do not include other socio-economic variables. In this 

closed system, the predetermined variables consist of lagged 

endogenous variables. The growth path of the system is com- 

pletely determined by the growth matrix G and the initial 

condition. 

To make the models more realistic, we extend the set of 

predetermined variables to include economic variables such as 

income, employment, housing stock, accessibility, several types 

of government expenditures, and so on. Some of the predeter- 

mined variables are controllable by the policy-maker, and are 

labeled policy variables, control variabres, or instrument 

variables. Others are uncontrollable but are exogenously given. 



The complete policy model may therefore be written, assum- 

ing linearity. 
1 

where x(t) and s(t) are as in (1.1), (l-la), 

u(t) is the vector of controllable variables, 

w(t) is the vector of uncontrollable predetermined 

socio-economic variables, 

D (t) and E(t) are matrix multipliers. 

For simplicity, and without loss of generality, we delete again 

the uncontrollable predetermined variables. The model (1.7) 

then .reduces to 

The control vector u(t) consists of socio-economic instru- 

ment variables affecting the distribution of the population. 

The matrix multiplier D(t) is important in this setting. An 

element dij(t) denotes the impact on the population in region- 

age combination i of a unit change in the j-th instrument at 

the step t. In many cases the elements of this matrix are also 

assumed constant over time: D(t) = D. This implies that the 

effects of certain policies on the population distribution are 

independent of the time period when the policies are implemented. 

This is consistent with the Markovian assumption of time- 

homogeneity. The linearity of (1.8) implies that the effects 

of the various policies are additive. 

Equation (1.8) i.s the state equation of a state-space model. 

How it may be derived from linear demometric models, describing 

the interdependence between demographic and socio-economic 

 he fact that (1.7) is a f irst-order difference equation 
is by no means restrictive. Higher-order difference equations 
may be converted into a system of first-order difference equa- 
tions, (Zadeh and Desoer, 1963). 



v a r i a b l e s ,  i s  d e s c r i b e d  i n  'Wil lekens (1  97633) . The r a t i o n a l e  

f o r  us ing  t h e  s t a t e - s p a c e  model (1 .8 )  a s  t h e  a n a l y t i c a l  o r  

numer ica l  t o o l  f o r  p o p u l a t i o n  p o l i c y  a n a l y s i s ,  i s  t h a t  t h e  

homogeneous p a r t  o f  (1 .8 )  i s  e x a c t l y  t h e  demographic growth 

model (components-of-change o r  c o h o r t - s u r v i v a l ) ,  t h a t  d e s c r i b e s  

t h e  p o p u l a t i o n  growth w i t h o u t  i n t e r v e n t i o n .  The l o g i c a l  ex ten-  

s i o n  o f  p o p u l a t i o n  growth models t o  p o l i c y  models i s  t h e r e f o r e  

t h e  a d d i t i ~ n  o f  a  he te rogenous  p a r t  t o  t h e  growth model (see 

a l s o  Rogers,  1966; 1968, Chapter  6; 1971, pp. 98-108). The 

r e s u l t i n g  model i s  a  heterogenous system o f  l i n e a r  f i r s t - o r d e r  

d i f f e r e n c e  e q u a t i o n s .  

1 .2  C o n s t r a i n t s  

P o l i c y  making i s  s u b j e c t  t o  c o n s t r a i n t s .  The v a l u e s  t h a t  

t h e  c o n t r o l  and s t a t e  v e c t o r s  u ( t )  and x ( t )  i n  (1 .8 )  can  t a k e  on 

a r e  r e s t r i c t e d  by p o l i t i c a l ,  economic and s o c i a l  c o n s i d e r a t i o n s .  

For example, l e t  u ( t )  deno te  t h e  number o f  i n m i g r a n t s  from 

o u t s i d e  t h e  system, t h a t  have t o  move i n ,  i n  o r d e r  t o  ach ieve  

c e r t a i n  p o p u l a t i o n  d i s t r i b u t i ~ n  o b j e c t i v e s .  I t  i s  p o l i t i c a l l y  

and s o c i a l l y  unaccep tab le  t o  r e l o c a t e  a  ve ry  l a r g e  number o f  

peop le  d u r i n g  a  s h o r t  t i m e  p e r i o d .  T h e r e f o r e ,  t h e r e  i s  an 

upper  bound t o  t h e  number of i nm ig ran ts  d u r i n g  a  u n i t  t i m e  

p e r i o d  (Evtushenko and MacKinnon, 1975, p.  5 ) :  

where t h e  s c a l a r , u ( t )  i s  t h e  t o t a l  i n m i g r a t i o n  poo l  a v a i l a b l e  

i n  t h e  t - t h  t i m e  p e r i o d .  

I n s t e a d  of  r e s t r i c t i n g  t h e  c o n t r o l  v e c t o r  by d e f i n i n g  a  

t o t a l  i n m i g r a t i o n  p o o l ,  each  e lement  o f  u ( t )  may he  r e q u i r e d  

t o  l i e  w i t h i n  a  lower and an  upper bound: 



Popu la t i on  r e d i s t r i b u t i o n  p o l i c y  is  n o t  f r e e .  Imposing 

c o n t r o l s  i m p l i e s  t h e  i n c u r r e n c e  o f  c o s t s .  I t  i s  t h e r e f o r e  

n a t ~  r a l  t o  assume a budget  c o n s t r a i n t  l i m i t i n g  t h e  a c t i o n  span 

o f  t h e  p o l i c y  maker. W e  d i s t i n g u i s h  between a budget  c o n s t r a i n t  

f o r  each pe r iod :  

and a g l o b a l  budget  c o n s t r a i n t :  

An e lement  ci (t) of  t h e  c o s t  v e c t o r  c ( t )  deno tes  t h e  c o s t  o f  

t r a n s f e r r i n g  a person t o  r e g i o n  i i n  t h e  t - t h  t i m e  p e r i o d .  

The t o t a l  budget  a v a i l a b l e  d u r i n g  pe r iod  t is  C ( t ) .  The 

g l o b a l  budget  i s  C. 

Frequen t l y ,  t h e  popu la t i on  d i s t r i b u t i o n  i t s e l f  is  con- 

s t r a i n e d  i n  a d d i t i o n  t o  t h e  c o n t r o l  v e c t o r .  For,example, i n  a 

pure  r e d i s t r i b u t i o n  p o l i c y ,  t h e  t o t a l  popu la t i on  o f  t h e  system 

i s  h e l d  c o n s t a n t  

n n 
1 x j  (t) = X = 1 x j  (0)  , t = 1 , 2 , .  . . , T  . (1 .13)  

j=1 j = l  

A s  i n  t h e  c a s e  o f  t h e  c o n t r o l  v e c t o r ,  t h e  p o l i c y  maker may 

want t o  p u t  lower and upper  bounds on t h e  popu la t i on  i n  each 

r e g i o n .  Th is  would avo id  t h e  e x c e s s i v e  growth o f  some. reg ions  

and t h e  depopu la t i on  o f  o t h e r s :  

x . ( t )  < x .  (t) < x. (t) , 
3 - I 

t = 1 ,2  ,..., T . 
- 3 

A c o n s t r a i n t  r e c e i v i n g  c o n s i d e r a b l e  a t t e n t i o n  i n  r e c e n t  y e a r s  

i s  t h e  r e s o u r c e  c o n s t r a i n t .  Not o n l y  c a p i t a l ,  b u t  a l s o  raw 

m a t e r i a l s ,  w a t e r ,  and environment a l l  a r e  s c a r c e  r e s o u r c e s .  A s  



mentioned i n  t h e  i n t r oduc t i on  t o  t h i s  paper ,  human se t t l emen t  

p o l i c i e s  i n  most c o u n t r i e s  a r e  d i r e c t e d  toward t h e  conserva t ion  

of  t hose  resources .  Th i s  commitment must be r e f l e c t e d  i n  t h e  

p lanning model. There fore ,  w e  i n t roduce  t h e  resource  c o n s t r a i n t :  

R ( t )  x ( t )  + Q(t)  u ( t )  5 f  (t) , t = 0 ,1 , .  . . ,T (1.15) 

where f ( t )  i s  t h e  vec to r  of  a v a i l a b l e  resources  i n  t h e  t - t h  

t i m e  per iod .  The ma t r i ces  R and Q a r e  rec tangu la r  ma t r i ces .  

An element r ( t ) ,  f o r  example, denotes  t h e  amount of resource  
k j 

k requ i red  by an i n d i v i d u a l  i n  reg ion  j dur ing  t i m e  pe r iod  t. 

An element q k R ( t )  deno tes  t h e  use of resource  k p e r  u n i t  of  

con t ro l  R dur ing  pe r iod  t. Note t h a t  (1.11) i s  a s p e c i a l  case  

o f  (1.15) i n  which a s i n g l e  resource ,  c a p i t a l ,  i s  cons idered 

assoc ia ted  w i th  t h e  con t ro l .  

Another c o n s t r a i n t  r e l a t e s  t o  t h e  q u a l i t y  of  l i f e  o r  income 

l eve l s .  Le t  g ( t )  be t h e  vec to r  denot ing  t h e  reg iona l  d i s t r i b u -  

t i o n  of  requ i red  q u a l i t y  of l i f e - l e v e l s .  The q u a l i t y  of l i f e  

c o n s t r a i n t  i s  t hen  

M ( t )  x ( t )  + N ( t )  u (t) - > g ( t )  . (1.16) 

An element mij  (t) of M (t) denotes t h e  p e r  c a p i t a  l e v e l  o f  t h e  

q u a l i t y  of l i f e  index i i n  reg ion  j a t  t i m e  t. An element  

niR (t) of N (t) r e p r e s e n t s  t h e  impact of  po l i c y  v a r i a b l e  R on 

t h e  l e v e l  of  t h e  q u a l i t y  of  l i f e  index i. 

A f i n a l  r e s t r i c t i o n  on t h e  a c t i o n  span of t h e  p o l i c y  maker 

i s  rep resen ted  by t h e  boundary cond i t i ons .  Since t h e  p lann ing 

of se t t l emen t  systems starts from t h e  c u r r e n t  popu la t ion  d i s t r i -  

bu t ion ,  we have t h e  i n i t i a l  cond i t i on  

On t h e  o t h e r  hand, t h e  popu la t ion  d i s t r i b u t i o n  a t  t h e  p lann ing 

hor izon x(T)  may be f i xed  

x (T) = XT 

o r  may be  kep t  f r e e .  



1.3 Performance Indices 

The ultimate goal of national settlement system planning 

is to increase the quality of life. There is no agreement on 

the factors determining the quality of life, and even less on 

its quantitative measurement. For practical reasons, the 

quality of life goal is replaced by a single objective, involv- 

ing monetary costs and benefits only. Such an objective func- 

tion is given in (1.19). It is necessary to maximize the total 

benefit J(u): 

where a(t) is the vector of unit benefit associated with the 

regional population levels at step t, and 

B(t) is the vector of unit benefit associated with the 

controls. 

A performance index involving costs is shown in (1.20). 

The problem is to minimize 

where y(t) is the vector of unit costs associated with the 

regional population levels at step t, and - 

b(t) is the vector of unit costs associated with the 

controls. 

In some instances, the policy maker may not want to mini- 

mize the costs associated with the settlement system and with 

the intervention in this system. Instead he may just want to 

bring the population distribution as close as possible to a 

desired distribution :(TI at the planning horizon. This 

problem has been treated by Willekens (1976b, pp. 66-85) for 



cases where explicit analytical solutions could be derived: 

the initial period control, and the linear feedback control 

problems. 

In the case of DLP approach the performance index can 

be formulated as 

J(u) = (x('T) - ;(T) I -t min (1.21) 

where 1 . 1  denotes the absolute value. 

The goal of obtaining a desired population distribution at 

the end of the planning horizon can be formulated also in the 

following way. Given the positive numbers k maximize the value 
j ' 

J(u) = min 
l<j<u - - 

where numbers k define the desired proportions of the'terminal 
j 

distribution. It can be shown, that in this case the optimal 

distribution Ix. (T)) possesses the following property 
7 

(Kantorovitch, 1965) : 

In some other cases the numerical analysis of the policy 

may be of interest which maximizes the performance index 

where a.(T) is the weighting coefficient of a population group 
7 

xj (T) 



2. DYNAMIC LINEAR PROGRAMMING THEORY AND I4ETHODS 

The purpose of this part is to describe the DLP theory and 

methods in relation to problems of national settlement system 

planning. 

The impact of lin,ear programming models and methods on the 

practice of decision making is well known. (Dantzig, 1963; Kan- 

torovitch, 1965). However, both the LP theory itself and the ba- 

sic range of its applications are of one-stage, static nature. 

When the system to be optimized is developing, and its develop- 

ment is to be planned, a static approach is inadequate, and the 

problem of optimization becomes a dynamic multistage one. 

It can be seen from the above, that the principal feature of 

settlement planning problems is their dynamic character. On the 

other hand, the basic relations and conditions in these problems 

are linear. Hence, DLP might be a very efficient approach for 

elaborating optimal policies in large-scale national settlement 

planning systems. 

With a new quality of DLP, new problems arise. While for 

the static LP problems the basic rquestion consists of determining 

the optimal decision, the realization of this decision (related 

to the questions of the feedback control of the optimal system, 

stability and sensitivity analysis of the optimal system, etc) is 

no less important for the dynamic problems. 

This part consists of four sections. In the first section it 

is shown how demographic DLP problems can be reduced to a canoni- 

cal form. This enables the development of a unified approach for 

a whole range of national settlement planning problems arising 

in practice. 

The DLP theory is a base for obtaining the important proper- 

ties of optimal demographic systems and for the development of com- 

putational methods for determining optimal policy in such systems. 

The DLP theory with emphasis on duality relations is given in the 

second section. The third section describes the DLP computational 

methods. 

As has been mentioned before, the problems of realization of 

the optimal policy are very important for dynamic systems. These 

questions will be considered in the fourth section. 



2.1 The DLP Canonical Form 

Analysing models of multiregional population policy, which 

have been described in the first part, we can see, that all of them 

can be reduced to some canonical form. Before formulating DLP 

problems in a canonical form it is useful to single out and consid- 

er separately: 

(i) state (development) equations of the systems with 

the distinct separation of state and control vari- 

ables. 

(ii) constraints imposed on these variables; 

(iii) planning period T-the number of stages during which 

the system is considered; 

(iv) performance index (objective function) which quan- 

tifies the quality of a control. 

2.1.a. State Equations 

State equations have the following form: 

where the vector x(t) = x t , . . . , x t 1 defines the state of the 

system at stage t in the state space X ,  which is supposed to be the 
r n-dimension euclidean space; the vector u(t) = Cul (t) , . . . ,ur(t) 1 E E 

(r-dimensional euclidean space) specifies the controlling action 

at stage t; the vector s(t) = s t  . s t  defines the exo- 

genous uncontrolled variable (known a priori in the deterministic 

models), for example, the exogenous part of equation (1.7) is 

E(t)w(t) + s(t). G(t) is the state transformmatrix (nxn)  (in the 

majority of demographic problems G(t) = G is the growth matrix); 

D(t) is the control transform matrix (nxr), which defines the in- 

fluence of a control to the state of the system. 

2.1.b. Constraints 

In rather general form, constraints imposed on the state and 

control variables may be written as 



where f(t) = {fl(t), ..., fm(t)) is given vector, ~ ( t )  and Q(t) are 

(m x n) and (m x r) matrices. 

2.l.c. Planning Period 

The planning period T is supposed to be fixed. It is also 

assumed that the initial state of the system is given: 

2.l.d. Performance Index 

The performance index (which is to be maximized) has the 

following form 

where a(t) (t=0,1, ..., T) and B(t) (t=O,l,...,T-1) are given 

weight coefficients (unit benefits, associated with x(t) and u(t)). 

2.l.e. Definitions 

(i) The vector sequence u = .{u (0) , . . . ,u (T - 1 ) ) is a control 

(policy) of the system; 

(ii) The vector sequence x = {x(o), ..., x(T)), which corre- 

sponds to control u from the state equations (2.1) with 

the initial state x(O), is the system's trajectory; 

(iii) The process {u,x), which satisfies all the constraints 

of the problem (i.e. 2 1 ) - 2 4) in this case) is - fea- 

sible; 

(iv) The feasible process {u*,x*) maximizing the performance 

index (2.5) is optimal. 

Hence, the DLP problem in its canonical form is formulated as 

follows. 

Problem 1: Given the initial vopulation distribution 

and the state equations: 



where 

x(t) is the population distribution at time t (state of the 

systems) ; 

G(t) is the population growth matrix (usually constant over 

time) ; 

D(t) = d t 1 i = 1 . . . m ;  j = 1 . . . r denotes the impact 

on the population distribution xi(t) in region i by the con- 
/ 

trol instrument u.(t); 
I 

s(t) describes the exogenous contributions to population 

growth; 

and the constraints 

where 

f (t) = {f (t) , . . . ,fra(k) 1 is the vector of available resources 

at time t; 

the matrix R(t) = {rki(t)) ( k=  l,.. .,m; i =  1 ,..., n) denotes 

the amount of resource k requiired per individual in region 

i at step t; 

the matrix Q(t) = {qki (t) 1 (k = 1 ,. . . ,m; i = I , .  . . ,r) denotes 

the consumption of resource k per unit of control i at step t, 

find a control (policy) 

and corresponding state trajectory 

which maximize the performance index 

T- 1 
J, (u) = a' (T)x(T) + [a' (t)x(t) + B '  (t)u(t) I (2.10) 

t=O 



where 

a(t)(t=O, ..., T) is the n-vector of unit benefit, associated 

with the regional population distribution x(t); 

and B(t) ( t=O,T-  1) is the r-vector of unit benefit associ- 

ated with the control u(t). 

The choice of a canonical form of the problem is to some ex- 

tent arbitrary, various modifications and particular cases of Prob- 

lem 1 being possible. Some of them have been considered in the 

first part of this paper, a classification of these modifications 

is given in Table 1. In the table, state equations, for example, 

may include matrices A, B and/or vector s not depending on the 

number of stage t (1.2) or external disturbance s(t) may vanish. 

(See (1.2) - (1.5) . Equations (I. 3) are obtained, for example, 

from considering the difference approximation of the continuous 

analog of Problem 1. 

An important class of DLP are the systems with delays in state 

and/or control variables I .  4 )  , where n . . . n , {ml,. . . ,m 1 are 
LJ 

the sets of integers. They reflect the fact, that in a demograph- 

ic system the state x(t+l) at the step t + 1 may depend on cer- 

tain previous states x (t - nl x (t - n2) , . . . , x (t - nv) and certain 
previous control actions u(t - ml) , u  (t - n2) , . . . , u(t - mu) . In par- 
ticular, when {nl,...,nvl = {01,  PI,,...^^^^ 1 = {Ol, a conventional 

LJ 
system (I. 1) is obtained. 

Constraints on the state and control variables can have the 

form of equalities (11.21, (see for example (1.13)) or be separ- 

ate (11.3) , (II.4), (examples are (1.9)- (1.14) ) . These variables 

can have additional restrictions on its sign (II.5), (11.6) , (for 

example, the number of people cannot be negative). In some cases, 

the constraints should be considered in the summarized form (11.7) 

or (11.8) .(see (1.12)). 

It is useful to single out the constraints on the left and/or 

right side of the trajectory (boundary conditions). For example, 

the left and/or right side of the trajectory can be fixed (III.1), 

(111.3) or free 111.2,  (111.4). 

The number of steps T of the planning period can be fixed 

(IV.1) or may be defined by some conditions on the terminal state 

(i.e. (11.31, (11.5) for t=T). (Typical problem here: to bring 

a demographic system to a desired population distribution for mini- 

mal number of steps T). 



The value of the performance index can depend only on the 

trajectory {x(t)) (V.4) or on the control sequence {u(t)) (V.3) or 

be even determined only by the terminal state x(T) of the trajec- 

tory (V.2) (for example, see (1.19)- (1.22) ) . 
In connection with Table 1, we can consider the patterns of 

Problem 1 modifications. 

Problem la: (with terminal performance indices (1.19) - (1.22) ) . 
In this problem, the performance index (V.1) should be changed to 

(V. 2) . 
Problem Ib: (with equality constraints). For this problem, 

the variable constraints are of equality form (11.2). 

Problem Ic: (without state constraints). For this case, the 

problem has no constraints, or they (see (11.6)) may be imposed 

on1.y on control variable (e.g. ( 1 . 9 ) - 2  In case of a linear 

performance index, the problem is trivial. It is however of a sig- 

nificant interest, when the objective function is concave (in par- 

ticular, nonpositive quadratic (Willekens, 1976b)). 

Problem Id: (nonfixed planning period). In this case, the 

number of stages T is not fixed but determined by the condition 

(111.3): x(T) = xT. 

Problem le: For this problem variable constraints are of the 

form (11.8) (e.g. budget constraint (1.12)). 

Of course, Table 1 'doesn't present the whole variety of modi- 

fications for Problem 1 and, naturally, Problems 1-le do not pre- 

sent the total set of the possible DLP problems. 

It should be noted that any problem stated above can be trans- 

ferred into the other. For example, let us cons+der the Problems 1 

and la with performance index (2.5) . ~ntroducing a new additional 

variable xo(t) ( t = 0  subject to xo(t+ 1 )  = xo(t) + cxl(t)x(t) 

+ B(t)u(t); xo(0) = 0 one can see that 

So Problem 1 will have a form of Problem la with the performance 

index 



and the state equations 

z(t + 1) = 'E(t)j7(~) + F(t)u(t) + ~ ( t )  , 

where 

Similarily performance indices (1.19) , (1.20) can be reduced 

to (1.22). For example, the performance index (1.20) can be re- 

placed by the problem 

J(U) = a + max 

wi7-h additional terminal state constraints 

If we consider Problem le with constraints (1.12) and intro- 

dul-e a variable x ~ + ~  (t) , subject to state equation: 

then we obtain Problem 1 with equations 

where 



and only one terminal condition 

where 

N c = to, ..., 0,c) . 

Here 0 and I are the zero and identity matrices of proper di- 

mensions. 

These reasonings show that it is sufficient to develop solu- 

tion methods only for Problem 1 in order to obtain the solution 

methods for the whole set of DLP problems arising in case studies. 

But before discussing these methods let us consider some im- 

portant theoretical properties of the DLP problems: 

2.2 DLP Theory 

Problem 1 can be considered as an optimal control problem 

with Sate equation (2.6), initial condition (2.7), constraints on 

state and control variables (2.8), (2.9) and performance index 

(2.10). However, Problem 1 may be also considered as a certain 

"large" LP problem with constraints on variables in the form of 

equalities (2.6), (2.7) and inequalities (2.81, (2.9). In this 

case, Problem 1 turns out to be an LP problem with the staircase 

constraint matrix (Table 2). 

For the numerical solution of Problem 1 ,  one can therefore 

rely on a standard LP computer code. However, this straightfor- 

ward approach to solving DLP problems is inefficient for two rea- 

sons. First, the "static" LP problem thus arrived at are so large 

in real cases that they cannot be solved even by using the most 

up-to-date computers. 

The second reason is more important. Even if the optimal so- 

lution of the DLP Problem 1 should have been'found by conventional 

means, the problems of the realization of this solution would still 

exist. These reasons provide the rationale for the development of 

dynamic LP methods. The methods must include: a theory (duality 

and optimality relations), numerical algorithms, and methods for 

the implementation of the solution. 



The duality theory plays a key role in optimization methods. 

It permits the replacement of the original primal problem by some 

equivalent dual problem. It should be stressed that this equiva- 

lent dual problem can be interpreted in real terms for all real 

problems, thus enabling one to understand more deeply the original 

problem. 
L 

Analysing Problem 1, written in the form of Table 2, and 

applying to it LP duality theory, the following results can be 

obtained (Propoi, 1977). 

Problem 2 (Dual): Find the dual control 

and the associated dual trajectory 

satisfying the co-state (dual) equation 

with the boundary condition 

subject to the constraints 

and minimizing the performance index 

Here p(t) = p t . . . p t 1 , (t) = {A l  (t) 1 - - tArn(t) 1 
Xi(t) , 0 (i=l,...,m are Lagrange multipliers for constraints 

(2.6), (2.7) and (2.8), (2.9) respectively. 



The dual Problem 2 is also a control type problem as is the 

primal Problem 1.  Here the variable h(t) is a dual control and 

p(t) is a dual or a co-state of the system. Note, that we have 

reversed time in the dual Problem 2: t = T - 1, ..., 1,O. 

For the pair of dual Problems 1 and 2 the following duality 

relations hold: 

Theorem 1 .  ( T h e  DLP g l o b a l  d u a l i t y  c o n d i t i o n s ) .  I )  For any  

f e a s i b l e  c o n t r o l s  u  and A ,  t h e  i n e q u a l i t y  

h o l d s .  2 )  The s o l v a b i l i t y  o f  e i t h e r  o f  Prob lem 1  o r  Prob lem 2 i m -  

p l i e s  t h e  s o l v a b i l i t y  o f  t h e  o t h e r ,  w i t h  

where  u" and A* a r e  o p t i m a l  c o n t r o l s  o f  Prob lems  1  and  2 .  

The equality (2.16) shows, that the solution of the primal 

Problem 1 can be replaced by the solution of the dual Problem 2, 

while the inequality (2.15) gives the upper bound of the Problem 

1 performance index value. 

The solution of the dual Problem 2 may be preferable from com- 

putational point of view for some cases; more important, that the 

duality relations can be effectively used for realization of opti- 

mal policy. 

The duality relations can also be formulated in a decomposable 

way for each step t, t = 0,1, ..., T - 1.  For this purpose, let us 

introduce the Hamiltonian 

for the primary Problem 1 and 

H2 (X (t) , A (t) ) = A ' (t) f (t) - X ' (t) R(t) x (t) 

for the dual Problem 2. 



Theorem 2. (The D L P  local duality conditions). 1)  For any 

feasible processes Iu,x) and  IA,p) the fol lowing inequali t ies hold: 

2) For any feasible processes {u* ,x * )  o f  the primal and {X* ,p* )  

o f  the dual  to be opt imal  i t  is necessary and suff icient that  the 

va lues o f  Hamiltonians are equal: 

Theorem 2 shows that in order to investigate a pair of dual 

dynamic Problems 1 and 2 it is sufficient to consider a pair of 

dual "local" (static) problems of LP: 

and 

min H2 (x (t) ,A (t) ) 



So, any of the "static" duality relations or LP optimality 

conditions (Dantzig, 1963) for the pair of dual LP problems (2.19) 

and (2.20) linked by the state equations (2.6), (2.7) and (2.111, 

(2.12) determine the corresponding optimality conditions for the 

pair of dual DLP Problems 1 and 2. Such conditions have been for- 

mulated above; in a similar manner the following important opti- 

mality conditions are obtained (Propoi, 1977) . 

Theorem 3. (Maximum p r i n c i p l e  for  primary Problem I ) .  For 

a  c o n t r o l  u* t o  be  o p t i m a l  i n  t h e  primary Problem I ,  i t  i s  n e c e s s a r y  

and sufficient t h a t  t h e r e  e x i s t s  a  f e a s i b l e  process  CXA,p*) o f  t h e  

dual  Problem 2 ,  such t h a t  for  t = O , I , .  ..,T-1 t h e  e q u a l i t y :  

h o l d s ,  wlzere t h e  maximum i s  t a k e n  over  a l l  u ( t ) ,  s a t i s f y i n g  t h e  

c o n s t r a i n t s  ( 2 . 8 ) ,  ( 2 . 9 ) ,  and X * ( t )  i s  t h e  op t ima l  dua l  v a r i a b l e  

i n  t h e  L P  problem ( 2 . 2 0 ) .  

Theorem 4 .  (Minimum p r i n c i p l e  for  dual  Problem 2) .  For a  

c o n t r o l  A* t o  b e  o p t i m a l  i n  t h e  dual  Problem 2 i t  i s  neces sary  and 

s u f f i c i e n t ,  t h a t  t h e r e  e x i s t s  a  f e a s i b l e  process  Cu*,x*)  o f  t h e  

primary Problem I ,  such t h a t  for  t = O , I ,  ..., T - I  t h e  e q u a l i t y  

h o l d s ,  where t h e  minimum i s  t a k e n  over  a l l  X ( t ) ,  s a t i s f y i n g  t h e  

c o n s t r a i n t s  ( 2 . 1 3 ) ,  ( 2 .13a )  and u * ( t )  i s  t h e  o p t i m a l  primary v a r i -  

a b l e  i n  t h e  L P  problem ( 2 . 1 9 ) .  

These theorems can also be obtained by using the corresponding 

optimality conditions for discrete control systems (Propoi, 1973). 



2.3 DLP Computational Methods 

Simple DLP problems can be hadled by standard LP codes. 

DLP problems of a realistic size r,equire however, the development 

of special DLP methods. We shall distinguish finite and itera- 

tive methods. 

DLP finite methods allow the finding of an optimal solution 

for a finite number of steps and are a further development of 

large-scale LP methods to dynamic problems. First of all, we 

mention the extension of the well--known simplex-method to DLP 

problems (Krivonozhko and Propoi, 1976). The dynamic simplex- 

method permits the obtaining of e)iact optimal solutions of DLP 

problems for a finite number of steps by treating at each step 

only the set of T local bases of dimension m x m (m is the number 

of constraint rows in the (2.2)) instead of handling with global 

basis of dimension mT x mT at the straightforward approach. The 

dynamic simplex-method is proved to be closely connected with the 

most effective large-scale LP methods based on factorization of 

the constraint matrix. These methods can also be used for the 

solution of DLP problems (Winkler, 1974; Chebotarev and Krivonozhko, 

1976) . 
The second approach is based on decomposition methods of LP, 

especially on the Dantzig-Wolfe decomposition principle. For 

DLP problems this technique was used for example by Glassey (1970), 

Ho and Manne (1974) and Krivonozhko (1976). 

Iterative methods do not produce exact solutions in a finite 

number of iteratives. But in many cases the approximate solution 

is quite adequate. 

In addition, the iterative methods are characterized by 

simplicity of computer codinq, low demands on computer memory and 

low sensitivity to the disturbances. 

The most effective algorithms, however, combine the advan- 

tages of both the finite and the iterative methods. We mention 

here the finite-step algorithm, based on a penalty functions 

approach (Chebotarev, 1977) and the finite-step-algorithm, based 

on a Riccati equation solution (Propoi and Yadykin, 1975). 



2 . 4  ~mp lemen ta t i on  of  Optimal P o l i c i e s  and Re la ted  Quest ions  

Unl ike f o r  s t a t i c  LP, t h e  r e a l i z a t i o n  of an op t ima l  s o l u t i o n  

i n  dynamic problems i s  a s  impor tan t  a s  i t s  de te rm ina t ion .  One 

shou ld  mention h e r e  t h e  q u e s t i o n s  of r e a l i z a t i o n  o f  t h e  op t ima l  

s o l u t i o n  a s  a  program ( i . e . ,  i n  dependence o f  t h e  numbers o f  s t a t e :  

u * ( t )  ( t = O ,  ..., T-1))  o r  a s  a  feedback c o n t r o l  ( i . e . ,  i n  dependence 

on t h e  c u r r e n t  v a l u e  o f  s t a t e s :  u* ( t )  = u; ( x  ( t) ) ( t = O ,  . . . ,T-1) ; 

s t a b i l i t y  and s e n s i t i v i t y  o f  t h e  op t ima l  system, connect ion  of 

op t ima l  s o l u t i o n s  f o r  long- and sho r t - range  models, e t c .  These 

problems a r e  a  w a i t i n g  s o l u t i o n .  We s h a l l  mention o n l y  some of  

them here .  

I t  i s  o f t e n  necessa ry  t o  determine i n  which way t h e  performance 

index and/or t h e  op t ima l  c o n t r o l  w i l l  behave when t h e  parameters  

of t h e  problem a r e  changing ( f o r  example, " p r i c s s "  a ( t ) ,  B ( t ) ,  

" resources "  f ( t ) ,  "exor~enous v a r i a b l e s "  s ( t )  (pa ramet r i c  DLP). 

S o l u t i o n  methods i n  t h i s  c a s e  can be developed on t h e  b a s i s  of  

s t a t i c  pa ramet r i c  LP (Dantz ig ,  1963) .  

I n  computing t h e  op t ima l  program, e s p e c i a l l y  f o r  a  l a r g e  T, 

it i s  ve ry  impor tan t  t o  know how t h e  i n a c c u r a c i e s  i n  t h e  c o e f f i -  

c i e n t s  of m a t r i c e s  G ( t ) ,  D ( t )  and i n  o t h e r  parameters  o f  t h e  

sys tem,  i n f l u e n c e  t h e  s t a b i l i t y  of t h e  o ~ t i m a l  program and t h e  

q u a l i t y  o f  c o n t r o l  ( s e n s i t i v i t y  problem).  

I n  many c a s e s  t h e  most a p p r o p r i a t e  way of r e a l i z i n g  an  o p t i -  

mal p o l i c y  can  be  reduced t o  t h e  problem o f  f i n d i n g  t h e  r e l a t i o n s :  

where 6x* ( t )  = x ( t )  - x* ( t )  is  t h e  d e v i a t i o n  of  t h e  c u r r e n t  s t a t e  

x ( t )  o f  t h e  system from op t ima l  s t a t e  x * ( t )  and i s  supposed t o  b e  

s u f f i c i e n t l y  sma l l ;  6 u * ( t )  = u ( t )  - u * ( t )  i s  a  r e q u i r e d  c o r r e c t i o n  

t o  t h e  op t ima l  program { u * ( t ) ) .  Th is  i s  t h e  l o c a l  feedback c o n t r o l  

of  t h e  op t ima l  system. 

N a t u r a l l y ,  a l l  t h e  p r a c t i c a l  n a t i o n a l  s e t t l e m e n t  p lann ing  

problems cannot  b e  k e p t  w i t h i n  t h e  format  o f  DLP. Here w e  shou ld  

ment ion some d i r e c t i o n s  o f  f u r t h e r  DLP development. ,  

I n  some c a s e s  t h e  performance index  i s  s t a t e d  a s  q u a d r a t i c  o r  

n o n l i n e a r  (convex) f u n c t i o n  of  s t a t e  and c o n t r o l  v a r i a b l e s ,  

(Wi l lekens ,  1976b) .  Ths e x t e n s i o n  o f  DLP methods t o  q u a d r a t i c  and 



convex DP problems can be developed in a way similar to the 

static methods (see, e . g .  Hadley, 1 9 6 4 ) .  

When the exogenous variables cannot be given a priori we 

come to DLP problems with uncertainty conditions. They can be 

formalized using stochastic optimization methods (Ermoljev, 1 9 7 2 )  

or max-min methods (Propoi and Yadykin, 1 9 7 4 ) .  The solution of 

max-min DLP problems is of considerable practical interest when 

guaranteed control quality is to be obtained under the conditions 

of uncertainty, as well as for sensitivity analysis and related 

problems. 

3. CONCLUSION 

In this introductory paper we sketched the basic idea of 

the DLP approach to national settlement system planning. The 

approach might be a very effective tool for deriving and imple- 

menting optimal policies in demographic systems. However, 

additional work is required. It includes: 

- development of a library of typical demographic policy 

models in DLP format; 

- interpretation of the basic dual relations in demographic 

terms and the use of the DLP theory and methods for 

obtaining "qualitative" relations in demographic systems; 

- numerical case studies of different DLP demographic 

models. 
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IV. Planning Period 

(CV.1) T is f xed 

(iV.2) T is free 

V. Performance Indexes 

T- 1 
(1,. 1 ) J, (u) = a' (TI x(T) + [a' (TI x (t) + B '  (t) u (t) 1 

t=O 

( ' - 2 )  J 1  (u) = a' (T) x(T) 

(J.3) a(t) = 0 (t = 0,. . . ,T) 

( v . 4 )  . @(t) = 0 (t = O f . .  . ,T-1) 
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