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PREFACE

As human interventions increase into natural hydro-
logical processes and the world water demands continue
to grow, tools of systems analysis are required to design
and operate economically and socially efficient water
resources systems. The IIASA Water Resources Project,
therefore, seeks to integrate experts of different discip-
lines to attack water problems of world-wide concern.
Floods are still menacing a great number of countries all
over the world and the immense economic and social losses
caused by floods call for protective measures which seem
to be in a sense (e.g. economic) at least - optimal.

This interim report is a joint effort of the IIASA
methodological and water resources projects as well as
the Hungarian National Water Authority. Hungary is a
flat land country where half of the population and one
third of the country's area must be protected against
floods. Methods elaborated to cope with flood problems
there, however, can be transferred to the situation in
a number of other countries, e.g. India, Pakistan, Japan,
Rumania, etc.
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ABSTRACT

An economic optimal development of a levee system
along a river is investigated and a dynamic programming
(DP) approach is used to find the optima under various
conditions. The system consists of a number of levee
reaches or stages. A random input of flood wave is
regarded at the upstream point of the system. There
are two failure modes considered and, consequently,
two parameters of the flood wave (state variables) to
trigger failure modes in every stages. Stochastic DP
is used since the state transition functions (flood
routing along the stages) are random functions. Three
methods are discussed. In Method I, the expected value
of the objective function is taken first, then DP is
used as a numerical technique. In Method II, a fixed
design flood is chosen as an input under which both
optimum cost and policy is determined. 1In Method III,
the value of the expected optimum objective function
is calculated. It is shown that the full power of DP
cannot be used if Method I is applied. Future research
involves comparing the solutions of the three methods.







I. INTRODUCTION
The purpose of this paper is to discuss various methodologies

for solving levee design problems under random flood input. Flood
protection by means of levees is just one alternative for flood
protection measures (Yevjevich, 1974) but it is very commonly used
in flat-land rivers such as the Tisza in Hungary (Szidarovszky

et al, 1976), the Vistula in Poland, the Loire in France, or the
Mississippi in the USA.

Generally, a river section is divided into stages or reaches,
then flood protection is examined stage by stage. The flood input
into the upstream stage is to be routed so as to satisfy continuity
equations. One stage consists generally of a levee stretch of
10-60 km; one gaging station within the stage characterizes flood
conditions for that stage.

Flood protection, that is, the reliability of the levee
within the reach, can be analyzed by regarding the stage itself
as a stochastic system (Bogardi et al, 1975). The systems ap-
proach is warranted since:

- there are various failure modes (overtopping, boiling,
slope sliding, wind-wave attack) along the stage;

- the resistances against failure modes are uncertain; and

- there are different flood-wave parameters (peak flow,
volume, duration, etc.) of random character that may trigger
failure modes.

A present limitation of the above approach is that subse-
quent stages along the river are considered separately while in
reality the reliability of subsequent stages are not indepen-
dent; e.g. an upstream levee failure results in greater safety
for a downstream stage.

In this paper, several stages along a river form a system
where safeties of the individual stages are not independent.

For each stage, various failure modes are considered which can
be triggered by different random flood parameters, but resistances

against failure modes are assumed to be known with certainty.




The methodologies examined herein are based on economics:
construction costs and flood losses are traded off. Furthermore,
since the problem becomes unwieldy by calculus when more than a
few stages are considered, dynamic programming is used to decompose
the problem.

In the next section, the problem is described in mathematical
terms; that is, flood routing equations and loss functions are
given. Method I, which minimizes the expected loss, may be solved
by standard dynamic programming. Then, a dynamic programming
formulation with stochastic input is described, leading to methods
II and III. Finally, a numerical example of method II is presented
and the necessity of developing further the methodology to solve

levee design problems is pointed out.

II. Problem Statement
Physically, the situation we consider is that of a river 1levee

system composed of M reaches. The system is to be designed to
balance optimally the cost of construction against the losses due
to flooding, should a flow of sufficient magnitude breech some part
of the system. Since the prospect of flooding is a direct conse-
quence of the unknown rainfall input to the system, the situation
is treated as a control process with stochastic input in which the
resistances of each reach against different failure mcdecs are the
design (control) variables, selected to minimize the total expect-
ed loss. In the following, two common failure modes--overtopping
and slope sliding--are considered; the flood parameters triggering
these modes are the height, h of the flood and the so-called
flood exposure, w (the area of the stage hydrograph above bankful
capacity) (Bogardi, 1968).

The elements of this problem, cast in system theoretical
terms so that a dynamic programming approach may be used, are

as follows: .

Stage: river reach k€ (1,M), where 1 is the initial
(downstream) stage and M the final one; a distinc-

tion is made between left (L) and right (R) banks.



State (at stage k): a vector Xy = (hk,wk), in which hy is
the flood stage height and Wy is the flood exposure.

In this problem the final (upstream) state Xy is
random.

Decision variable: a vector Vi = (Hk,Wk) in which Hk is the

design levee height against overtopping and Wk is
the design flood exposure against slope sliding.
Since right and left banks are assumed to be differ-

ent, H, and Wk are decomposed into HRk’HLk and WRk,

k
WLk’ respectively.

State transition function: a flood routing equation to be

specified later, written in a general form as

Xpp1 = ¢k(xk,vk) . (1)

Loss function: (1) at stage k: Gk(xk,vk), which 1is the sum
of construction costs and

flood losses.
(2) overaly: Z = EE Gk(xk,vk) , k=1,...,M .(2)
The problem is to minimize the expected value of Z; the
expectation is to be taken with respect to the random variable Xy -
Throughout the remainder of the levee system, there are no
external inputs from either underground sources or rainfall.

) To describe the evolution of the variables h,w, as we pass
through the levee system, eéuations of "motion", corresponding to
a linear routing of flood waves are postulated (Lengyel and Horkai,
1974) . These equations give the vector (hk+1’wk+1) as a function
of (hk,wk). Two cases are distinguished: either the levee holds
or it fails.

Let H3Rk, H3Lk be the river stages below which flood ex-

posure cannot cause damage. Then the levee does not fail either

if the river stage hy is below the smallest of H3R,, H3L, (for




any value of flood exposure) or if both hk and W, are below

their threshold values. Using the logical symbols = "or"

and ~ = "and", we can write:

The levee

hk < min {H3Rk,H3Lk} \/[hk-<min{HRk,HLk}/\
/\wk < min {WRk,WLk}] (3)

fails if (3) does not hold, that is, if an event ARk

occurs on

Note that
numerical

equations

the right side (or ALk on the left bank) such that

ARy = (hy >H3Ry) N (w, >WR,) v (hy >HR)
ARk and AL, are truth-valued logic variables, and not
quantities. The equations of motion or state transition

may thus be written as:

akhk + bk , 1if (1) holds

Brer = (4)
ckhk + dk , otherwise, if (ARk) xf(ALk) occurs
ey + fk , if (1) holds

W1 T (5)
Wy otherwise.

Here a,, bk’ Cpr dk, e ﬁk' g, are parameters characterizing the

system.

Equations (4) and (5) describe the manner in which the flood

height and

flood exposure are influenced by a choice of the

decision variables HRk; HLk’ WRk’ and WLk' Simple linear relation-

ships can be used to express state transitions between neighboring

stages (Linsley et al, 1958).



The final ingredient needed to characterize the control
version of the levee design problem is the specification of a
cost function. As mentioned, costs are incurred in two separate
ways: i) the losses associated with flooding land behind the
levee, ii) costs associated with building a reach of a given
height and strength. Clearly, the optimal design is a balance
between theée two costs.

As a measure of loss due to flooding at reach k, we use the

function (Horkai, 1975):

o , Xk,R A Xk,L ,
wiIRy o Ay g N B
Lk(hk, w, HR,, WR,, HL,, WL,) = 1 W Il Xk,R Nag L (6)
Lmax {wkILk, wkIRk} , Ak,R A Ak,L

where IRk’ ILk are given parameters. It is assumed that there is
no simultaneous loss on both sides of the reach, but rather the
loss is taken to be the greater of the two losses in- such instances;

also, that loss in one reach is independent of losses in adjacent
reaches.

The reinforcement (building) costs on the right side of

reach k are given by the function (Horkai, 1975):

[ O, {HR < HRO } A {WR_ < WRO,}

(TR )VWR, + KR, {HR < HROL} A {WRy < WROy ]

(LR (HR)Z - (MR) (HR) + NR_, {HR_< HRO} A (WR_> WRO,}

(GRIVWER, + KR_+ (LR) (HR)Z
- (M%J(HRk)*'NRk

R ) =

, {HPk > HROk} A {WRk > WROk}




As above, the quantities JRk, LRk, KR, , MRk, NRk are parameters,

while HRO, and WRO, represent the current levee configurations

k k
(HROk = WR.Ok = 0 for the design case). An expression completely
analagous to Ci holds for the left side of reach k upon substitu-

tion of R by L in all quantities. The objective function Gy is
the sum of (6) and (7).
As described in Eg. (2), the total loss (%) for the systems

is taken to be the sum of all losses;

M
B R L
¥ = k; [Lk(hk,wk,HRk,WRk,HLk,WLk) + Cp (HR, ,WR) + Ck(HLk,WLk)] (8)

In this expression hM and Wy are random variables. For example,
let the final objective be to minimize the expected value of ,

i.e., the objective function is chosen as

J = E (¥ (9)
(hM,wM)

where E denotes the mathematical expectation; then method I,

described next can be used.

ITII. Methodology

By substituting equation (1) for k =1,2,...,M, into

equation (2), the objective function becomes

I = E® = E{]G (x;v})} = ] E[G (%,%)] (10)
k k

which may be solved by standard dynamic programming utilized as

a numerical technique, which becomes more efficient than calculus
whenever M 3, or 4; note that the number of independent variables
is 2M,

However, should a methodology be desired that can accommodate
random transition functions, formulation (10) would be inadequate;
in such a case, the dynamic programming (DP) formulation should be
carried out before taking expectations as it is done when Markov
transitions occur from one stage to the next. Let the optimal

value function be



Fk(hk’wk) = loss for a system which begins at reach
k in state (hk,wk) when an optimal decision
policy is employed throughout the remaining

reaches of the system, k = 1,2,...,M.

With a self evident deletion of indices, the recursion equation
is (Bellman, 1957)

Fi () = min {6 (xy,v) + Fyyqloy (xy, 01 (11)

Il
o

FM (xM)

As in Eq. (10), the objective function depends upon the random

initial state Xy s but in (11) it is carried throughout calculations

by means of the recurrence relationship. In the specific terms

of our case study, Eq. (11) is written as

[Ty (g R W L L)+
{ Ge R MR+ G M) +

LFk+1(hk+1’wk+1) o k<M,

F

(hy W) = mn
kUkYK) T HRHL WR WL,

(12)

gy Py g By W HI )+

M’ ! ! R C—i;

By iterating relation (12) using the initial function (13), an
optimal control for each state of each reach is produced.

For computational purposes, a DP table is constructed as a
function of the realization of x,, using Eg. (11), or (12) and (13).

M
The columns of this table are as follows (Larson and Casti, 1976) :

Stage M Stage M-1 see Stage 1

X | By | Vo) | Byq(xy) | Vg () Fllxy) | Vq(xy)




This DP table is the basis for two algorithms for solving
our levee design problem, which are labelled methods II and IIT,
respectively.

Method II uses the fact that the table cdntains the optimum
policy corresponding to any flood input; thus a deiign flood x;,
say the 99% one, is chosen and both optimum cost fa(xM) and
optimum policy can be determined. Note that no new ccmputation
is necessary if one decides to change the design flood. Also,
the optimum economic design (or control) is found, not just
the levee height that corresponds to the regulation flood; in
other works, methodII provides a mean to handle design floods
within an economic framework.

Method III consists of computing an expected optimum

objective function value
T = f daG
a(Xy) = 4 () (x)

where G(x) is the joint distribution function of the state

x = (h,w). Then, tracing back through the DP Table, the value
x; that pertains to fz(xM) is cal:ulated; and another tracing
"through the table starting with Xy leads to the corresponding
policy. This policy may thus be labelled "expected value of

minimum objective function" policy (EVMOF).

IV. Numerical Experiments

A levee system consisting of three reaches was chosen for
the numerical experiments using method II. Hypothetical but
realistic values of the parameters in the cost, loss, and transi-
tion functions are given in Table I. The 99% design: flood parame-
ters are: h = 20.0 and w = 36.5.

There is insufficient space to reproduce the entire set of
optimal control tables produced from the dynamic programming here;
however, they are all following the same pattern. Keeping h or w con-
stant and increasing the other, the configuration was kept at the
original level until conditions for flooding were reached. Then

the levee was reinforced up to the level of the flow. Finally,



a point was reached where the building costs out-weighed the loss-
es. At that point the optimum fell back to the original level.

In most cases, building was even on right and left sides of
the reach. However, if the losses due to flooding were much
lower on one side of the reach and the cost of building high, the
optimal control was to reinforce the more costly side to force
any flooding to occur on the other side.

The levee configurations to minimize the expected loss are
given in Table II. It should be noted that the results should
not be taken at face value because the input data were in part

hyvpothetical.

DISCUSSION and CONCLUSIONS

The three methods proposed in this paper lead almost certain-

ly to different values of the goal function and different optimal
policies.

Method I is akin to standard benefit-risk analysis;ﬂthe
expected value of the objective function is taken first; then,
dynamic programming is used as a numerical technique for solution
instead of calculus, due to the potential dimensions of the de-
cision space and the non-differentiability of the goal functions.
However, in a sense the dynamics of the problem have disappeared.
It is an open-loop approach since the random flood is routed
through the levee system before starting the optimization
procedure. In contrast with method I,'methods IT and IITI corres-—
pond to a closed-loop approach, since the random flood is present
at least implicitly at every stage during the optimization.

Method II enables the decision-maker to mix the traditional con-
cept of design flood with the minimization of an economic goal
function. It may be noted that high uncertainties may be present
in the design flood (Davis et al, 1976) and/or the goal function
(Szidarovszky et al, 1976). Method III corresponds to choosing
policy for the expected value of the optimum goal function; its
implementation would necessitate a finer grid and better computing
capabilities than the ones available for the present study. Also,

the policy found by this method may not be unique in the case when
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the goal function is not monotone. This would not be a problem
in the present case, since Iy is an increasing function of
Ve = (hk' wk).
To summarize, the distinct advantages of DP to solve a
levee design problem are:
(1) Calculations can be made once and for all input values.
(2) Non-differentiable functions must be used to
describe loss functions for non-computational problems.

(3) A choice of approaches is given, i.e. optimize under a
design flood constraint or find an EVMOF policy; both
approaches are of a closed-loop nature.

The full power of DP as described in (1),(2), and (3) above
is not utilized if method I is used, since the expectation is
taken before the DP algorithm is applied.

Future research involves comparing the solutions provided

by methods I, II, and III.
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Table I. Levee Parameters

3R 3L 2R 2L 1R | ‘IL'
a .96 .77 | |
b .64 1.56
c .475 .448
d 3.45 3.53
e 1.21 .63
£ 2.23 .30
g .475 .448

12.6 17.35 5.67 27.57 14.81 23.98
J 2.69 2.04 2.84 2.77 2.12 1.26
K -9.88 -7.07 -10.43 -10.18 ~7.93 —4.&8
L 6.05 3.07 9.08 6.24 4.88 3.59
M 121.0 58.3 192.4 124.8 97.6 67.5
N 605.0 276.78 1,019.21 624.00 488.00 317.29
H3 8.5 8.4 8.5 8.5 9.3 8.2
HO 10.0 9.5 10.6 10.0 10.0 9.4
WO 13.5 12.0 13.5 13.5 14.0 11.0
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Table IT.

METHOD II - Building for 99% Flood

OPTIMAL CONTROL

h W HR WR HL WL
Reach 3 20.0 36.5 10.0 13.5 9.5 12.0
Reach 2 12.9 17.3 12.9 17.3 12.9 17.3

Reach 1 9.3 7.8 10.0 14.0 9.4 11.0
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