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PREFACE

The penalty function method (PFM) has long been one of very
few techniques which were successful in solving nonlinear mathe-
matical programs. Its main advantage is that it helps to obtain
a rough approximation to a solution very quickly and requires
almost no additional memory.

However, when applied to linear programs, it has proved to
be incompatible with direct methods, such as the Simplex-Method,
with respect to speed and accuracy. It is not surprising, how-
ever, for unlike the Simplex-Method, no effort was made to try
to deeply understand the structure of unconstrained semi-quadra-
tic optimization problems arising when PFM is applied.

In this paper, it is shown that the traditional PFM, with
quadratic penalty function, is, in fact, finite and when applied
together with matrix factorization schemes, possesses some nice
features, which allow us to solve large-scale problems.

The application of the proposed algorithm to structured

linear programs, especially to dynamic linear programs, which
arise in different IIASA areas, is described.
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ABSTRACT

An algorithm converging to an optimal solution of a linear
program in a finite number of steps is proposed. The algorithm
is based on the use of smooth penalty functions as well as on
matrix factorization techniques. It consists of finding corner
points of the piece-wise linear unconstrained minima trajectory.

The application of the algorithm to dynamic linear programs
and block-angular programs is described.
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On The Use of Matrix Factorization Technigues in Penalty

Function Methods for Structured Linear Programs

1. INTRODUCTION

Since the very beginning of linear programming applications,
direct numerical methods such as the Simplex-Method and its dif-
ferent modifications became most popular in both theoretical and
applied research. The use of triangular factorization schemes in
the Simplex-Method together with different "tricks" in pivoting
strategies have led to very efficient direct algorithms for lin-
ear programming. A review of such methods is given in [1]. It
would not be a big mistake to say, that now the main steps of the
Simplex-Method are carried out in an almost optimal way, so the
main direction of current research activity in this field is the
modification of general-purpose direct algorithms for solving
specially structured linear programs.

On the other hand, many books and articles are devoted to
iterative schemes for linear programs solutions, and many of them
deal with penalty function techniques. The main reason for their
development is that, in principal, these technigues provide an
approximate solution to the problem much faster than any one of
the direct methods. Unfortunately, the refinement of the approx-
imate solution takes such a long time that it turns out to be
only a waste of time and money.

However, recently a number of articles have been published,
which describe methods using the modified Lagrange functions, and
in principal, provide exact solutions to linear programs, (see,
i.g., [2]). A review of such methods is given in [1].

The main purpose of this paper, however, is to show that a
traditional quadratic penalty function scheme reinforced by the
use of triangular factorization also gives the exact solution to
linear programs, and is free of known penalty~function drawbacks,
such as poor convergence in the vicinity of an optimal solution,

which it usually was supposed to have.




Although being somewhat inferior to the Simplex-Method when
solving general LP problems, the algorithm proposed here seems
to be more effective in the case of so-called "staircase" prob-
lems. So the main field of application of the algorithm is in
solving dynamic linear problems. Another class of LP problems
where the algorithm has proved to be effective is block-angular

linear programs with coupling columns.

2. A SUFFICIENT CONDITION FOR UNIQUENESS OF THE UNCONSTRAINED
MINIMA TRAJECTORY

Let A be an mxn matrix, and let b and p be column vectors
with m and n components respectively. We consider the linear

programming (LP) problem in the canonical form

min pTx =f , (1)
X
subject to
Ax = b , (2)
x>0 . (3)

where "T" denotes the transpose.
In what follows it is supposed that m<n, and that there

exists a unique solution x to the problem (1)-(3). Let us in-

troduce the function F(q,x) as follows:
F(q,x) = qp-x + %(Ax-b) T (Ax-b) + %¥x 68(-x)x (4)

where g >0 is an arbitrary scalar and the elements of the diago--

nal matrix 6(-x) are defined by»the relation

1, if x, < 0
e.i(—x) = (5)
1 0, otherwise .



As is well-known [1, Chapter 9], the following relation holds
lim [min F(q,x)] = £ , (6)
g~>+0 X

provided that the minimum exists for any g > 0. This relation
allows us to find an approximate solution to the problem (1)-(3)
by solving a sequence of unconstrained optimization problems.
Each of the problems consists of minimization of the nonlinear
function F(qg,x) for a fixed value of g. Usually the rate of con-
vergence depends very much on the choice of the sequence {qk}.
One can find the discussion of the guestion and references in the
chapter written by D.M. Ryan in [1].

If g varies continuously then there is a trajectory of min-
imizers of F(q,x) which terminates at the solution x of the prob-
lem (1)-(3). 1In what foilows we suppose that the trajectory is
unique, i.e. that F(g,x) has a unique minimizer x(g) for any
g >0. A sufficient condition for uniqueness, which reminds me of
the Haar condition, is given in Theorem 1 below.

It is evident that x(g) satisfies the eguation
gp + AT(Ax—b) + 0(-x)x = 0 . (7)
Using the notation
o (x) = %(Ax-b) T (Ax-b)

the function F(q,x) may be written in the form

F(q,x) = qp'x + ¢(x) + %x 0(-%)x
Let an arbitrary g> 0 be given. Suppose, also, that there
are two minimizers of F(g,x): x{ and xé;fx%. Since F(g,x) is

convex, any point of the segment [x%,xé] also minimizes F (q,x).

It is evident that one may choose a segment [x1,x2] x1;£x2 em-

bedded 1in [x%,xé] and such that the corresponding coordinates

of x1 and x2 have the same signs, i.e. the vectors X4 and x

belong to the same orthant in the euclidean space E".
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Lemma 1. Let xs:[x1,x2], and the set of indices J be de-

fined by J=={i/xi<0}. Let y1,y27fy1 be two arbitrary vectors

1 .2 . .
such that y ,y e[x1,x2]. Then y1:=yi for i e€J, i.e. the segment

[x1,x2] lies on a hyperplane orthogonal to the unit vectors e,

ied.

Proof: Suppose the contrary. Let xi<i0, and the hyper-
plane containing [x1,x2] is not orthogonal to e, - Then F(qg,x)

takes the form

F(g,x) = qux + o(x) + %) x?@(—x.) + %x? . (8)
TR 3 i
Jj#1
The first three terms in (8) constitute a convex function while
the last one describes a strictly convex function with respect
to any direction not orthogonal to e.. Hence F(x,q) is strictly
convex with respect to such directions, which implies the unique-

ness of the minimizer: a contradiction. |

Lemma 2. Suppose that any m columns of A are linearly in-
dependent. Then the number of nonnegative coordinates of
xst[x1,x2] is less than or equal to n-m-1.

Proof: Denote the number of negative coordinates of

xs:[x1,x2] by |J|. As was shown in Lemma 1, y1:=y§ for y1,

yze [x1,x2] and i€ J. Hence the function F(g,x) equals

A

£(q,x) = gp % + %(A%-b) T (Ak-b)

to within an additive constant. Here the matrix A is the re-
striction of A to the columns Ai, ig3J, ﬁT and X are the analo-
gous restrictions of pT and x respectively. If |J| >n-m then,
since any m columns of A (and consequently of A) are linearly
)t

independent, the function (A%-b)~ (A%-b) is strictly convex,

which again contradicts the nonuniqueness assumption. |

Let us add the row pT to A and denote the new matrix by XA.

Now we may state a theorem.



Theorem 1. The function F(X,q) has a unique minimizer for

any q>0 2f any m+ 1 columns of R are linearly independent.

Proof: Let xs:[x1,x2]. Let also x, ﬁ and A be defined as

in the proof of Lemma 2. Then x is the solution to
~ AT A s
gp + A" (A%-b) =0 ,

hence

A /\T b_ﬁs\(
= A
b - a7(2%)

Making use of the notation o = (b-A%)/q we get @==ATu. If a=0
for all £E2[£1,£2] then it means (from Lemma 1) that the solu-
tion is unique. Else there is a 20 such that (b—ﬁio)/qsﬁo, so
p is a linear combination of columns of ﬁT, i.e. ﬁT is a linear
combination of rows of A.

So we have shown that if there are two different minimizers
then a vector p is a linear combination of rows of A. Using
Lemma 2, we can construct the contradictory statement which com-

pletes the proof. | |

In what follows it is supposed that this unigqueness condi-

tion is satisfied.

3. THE OUTLINE OF THE ALGORITHM

In [3] it was shown that this trajectory is piece-wise lin-
ear and is linear in each orthant of the euclidean space E".
This property is used in the following algorithm, which consists
of finding the "corner" points of the trajectory.

Suppose that an initial point xOZEx(QO), Q0 >0 of the tra-

T 0

jectory is known.1 Let C,=A"A+diag [6(-x")] and d==ATb. Evi-

0
dently x0 satisfies the equation

Cox = d - gp (9)

1)The solution process is described in the next section.




with

Note that x0 is unique, hence C0 is nonsingular.

Solve the equation
Coy =d (10)

for an auxiliary vectory y, and compute

a{t) = 50 . i=1,...m . (1)

}l) is the value of param-

for such is that yiifxg. In fact, g
eter g with which the ith component of the solution of (9) be-
came zero. So Q1

i)y (k) (12)

= - -
0, = max {O,q1 = q

‘11(1) < Q

defines the value of g corresponding to the first (with respect
to xo) angular point of the trajectory x(gq). This point is de-
fined by the relation

0
x' 2 x(0) =y - 5 (yx") . (13)

This completes the first iteration of the algorithm. The
next segment of the trajectory corresponds to the matrix C1

for x

which differs from CO in only one element, namely Ckk’ K

has changed its sign at q==Q1.2 So,

2)If k is not unique, we have to take an arbitrary Qz,

0 < sz_Q1 and find x(Qz) using x1 as an initial approximation.



1l
o

(C (14)

J(co)kk + sign (x), if i = 3
115 L

(CO) , otherwise

ij
Now we have to solve

C1y = d

for y. Then compute

qél)= 11Q1 ] i=1,...,n
yi_xl
_ (1), _ (1)
Q, = max {O,qz } d,
qél) <

and so on.

The algorithm terminates at Q=0 in a finite number of steps
and when it is so, y is the exact solution to (1)-(3). The proof
is given in [2].

For the implementation of the algorithm we need a method
for evaluation of the initial point x0 and an efficient proce-
dure for solving systems such as (9) which take into account the
slight modification of the matrices CO’ qre-- at each step of the
algorithm.

The next section describes the iterative procedure for min-
imizing F(g,x) for a fixed value of q==Q0:>0, i.e. for calcula-

tion of the initial point x0




4. DETERMINATION OF THE INITIAL POINT

The minimizing x of F(Qo,x) satisfies the equation
T T
AAX + O0(-x)x = Ab - Qop (15)

which, being nonlinear in the large, is linear in every orthant
of ET. This property allows us to construct an effective com-
putational procedure using a matrix factorization technique.
Let an arbitrary QO be chosen. In what follows we will
make use of the notations: d ==ATb-Q0p, E==I-+ATA where I de-

0
notes the nxn unity matrix. Now (15) may be rewritten as

Cx = o(x)x + d (16)

0

where o(x) 1is a diagonal matrix such that

5 (x) = 0, if X, < 0
ii 1, if Xy > o ,
Suppose that we have a vector xke:EE, where EE is an or-

thant in E". Let the vector xk+1 be defined by

= k+1 _ k

Cx = 0 X" + 4, (17}
where

o, = o(x%) . (18)

The formulas (17)-(18) define the linear autononous itera-

tive process for which the following theorem holds:

Theorem 2. The process (17)-(18) converges to the solution

of (15) for any inittial approximation.

Proof: For the proof of the theorem it is sufficient [3,
P- ] to show that (i) the process (17)-(18) is monotonic, (ii)
the sequence {xk} is compact, and (iii) the algorithmic map from

k k+1 . .
X to x 1s continuous.



Let us prove at first that the process (17)-(18) generates
a strictly decreasing sequence {F(QO,XK)}. Denote F(Qo,x) by

Fo(x), and introduce the function

k

Fo(x) = %(Ax-b) " (Ax-b) + QP x + x70(-x ) x
% (Ax=b) T

(Ax-b) + QopTx + %XT(I—Ok)x .

So Fg(x)==F0(x) when xe:En

k-
Suppose that xk and xk+1 are as in (17). Fg(x) is convex

with respect to x, hence

Fo(xk) _ FO(xk+1) S (Xk_xk+1)TvFO(Xk+1) (19)

k k = k

0, k+1, . . 0 .

where VFk(x ) 1is the gradient of Fk(x) evaluated at the point
xk+1. It follows from (17) that

(Xk_xk+1)T _ (xk)T _ (Xk)TOka—1 _ dgé—1 ] (20)
On the other hand

0, k+1, _ = k+1 k+1 _ k ==1_k ==1

Fk(x ) =Cx - 0 X -4y = ok[x € qx-C do] . (271)

Substituting (20) and (21) into (19) and using the symmetry of

C and O we obtain

Fox) - FR M s -t ok g "
—=1 |k _ =~
= R T KT o (22)

Let us introduce four sets of indices

J1 = 11/x§20,xt+1>0}
J, = {i/xiio,x§+1<0}
3, = {i/x<0,x5t 503
3, = {i/x?<0,x§+1<0}
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It is easy to see that

£0 (k1) - FO(xk+1) PR T (x

l€J2 1€J3

(x; ) (23)

k+1,2 k+1, 2
- %) (x

Using (22) and (23) we obtain

0( ) > FO( k+1) + z (x k_ k+1)2 0 k+1 - 5 (xk+1)2
ieJ VUJ i ieg, *t
1772 2
+ i z (XE+1)2 + z ( t §+1)2 0(xk+1) -y Z (xk+1)2
ied ieJ U ieg, *t
3 1772 2
+ ) 2 4y ) xth2 ) (2 (24)
. i7i . i . i1
1eJ 1eJ ied
2 3 1
If J1LJJ2L)J3 is empty then by (17)-(18)
xk+1 - E—1d <0
0
and
x = E—1d0 = xk+1, for all v > k + 1

that is xk+1is a stationary point of the process. 1If J2 is non-

empty, we obtain that

k
) (x?-x§+1)2 - %) (x *he ¥ (x}i{H)2 - %7 (x}i<+1)2 >0
ieJ2 ier ieJ2 ieJ2

by definition of J,. Hence

Fc(xk) S FO( k+1)

So suppose J2 is empty. If J3 is non-empty then it is evident

from (24 that this inequality also holds if there exists
x]i<+1 >0, 1 €J3. If x]i<+1 =0 for all ie J3 then consider the fol-

lowing possible cases.



-11=-

If J1UJu is empty, then xt 0, x§+1==0 for all i. If fol-
1
lows from (16) that ka q and hence C dg=0. But then
xk+2-6_1dk+1xk+1-+c dq C~ so, x¥*t1 is a stationary

point of the process.

If J 4 is empty but Jy is not, then again by definition of
k+2 _ =-1 k+1  =-1 =-1 k+1 k+1

o, we obtain x =C O 41X +C d0=C d0=x ;s SO X is
a stationary point.
If J1 is non-empty then consider the term iEJ1(xE-x§+1)2
from (24). If this term equals zero, then it means that XE=
k+1 >0 f 11 iedg h h k+2—C 10 k+1+c—:—c1 _
X > or a l1¢€ 1° Then we have x k+1 0
z1 kxk+6-u%)—xk 1b] definition of o, and by (17). So, in this
case as well, xk + is a stationary point of the process.
' Consider now the case when J2L1J3 is empty. In this case,
J1UJ, is non-empt and ¢ =0 hence Fo( k+1) 0 (x k+1)
1=y Pty k+1 7~ %k’ k Fr+1
FO (xkT1). Now we may rewrite (22) in the form
Fo(xk) _ Fo(xk+1) > (xk-xk+1)To (xk-xk+1) >0

k

If the last inequality satisfies as an equality, then it fol-
k+1 k

lows that X xi for i €J1. Since 0k+1:=0k we obtain
k+2 _ =-1 Ik+1 -=1 _==1__k == _ _k+1
X = C okx + C d0 = C okx + C d0 = X
, k+1 . . \
that is x is a stationary point of (17)-(18).

Thus we have proved that if xk is not a stationary point

of (17)-(18) then
O(Xk) N Fo(xk+1) .

The compactness of {x¥} is evident. sSince F°(x) is convex
and by the assumption has a unique minimizer, the set Q(a) =
{x/FO(x)ia} is compact. Let a==F0(x0) where x0 is an initial
approximation. Then xkE:Q(a) because the process is monotonic.

We have to prove now that the algorithmic map M :xk—+xk+1
is continuous. Let us suppose that we have two vectors (xk)1

and (xk)z. Without loss of generality we may consider them as
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belonging to the same orthant of En, EE. Suppose that (xk+1)1
and (ka)2 have been evaluated in accordance with (17), i.e.,
(Xk+1)1 _ 6-1Ok(xk)1 + 6—1do
(Xk+1)2 _ E_1Ok(Xk)2 + 6—1d0 .
Then
IR R e R [ R A S N e R B
<HE - ol = e = o2
<ETHE - e T e )
For any € >0, having let ||(xk)1-(xk)2H <8 = ﬂ—ééTﬂ we have
||(Xk+1)1 _ (xk+1)2!| <e. II

5. FACTORIZATION AND THE UPDATING PROCEDURE

The implementation of the iterative procedure involves the
LOD0 g——factorization of C where Ly is a lower triangular ma-

trix with a unit main diagonal, and D,--a diagonal matrix. With

0
this factorization at hand, the computation of xk+1 satisfying

(17) consists of forward and backward substitution which is very

easy to implement.

The structure of C is used explicitly in computinag the

LODOLg factorization. It is easy to see that
m
C=1+A"Aa=T71+ N afa, , (25)
j=1j:|

where Aj is the —jth row of A. So we may use a procedure for

updating the factors of a modified matrix with a rank-one modi-

fication. 1In other words, starting with the unit matrix I, we

compute factors for the matrix
=1

_ T I
c =1+ A1A1 = LODOL

1T
0
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Then we repeat the procedure and obtain

=2 =1 T 2227
= 4+ ATA = I, .
c =c 282 7 FoPolo
In m steps we will have the desired factorization:
-m _ = _ .m.mml _ T
C = C = LODOLO LOQOLU
For the factor updating it is convenient to use Bennett's

method [5], which in the case of rani-one modification can be
described as follows:
Let §:=B-+YuuT, where B ig a symmetric n xn matrix, y-is

m

a scalar, and u - n-vector. Tf LDL® - factorization of B is known

B = LDLT

then LDL® factorization of B is generated by the following re-

currence relations:

1) Set Yy = Yr u(1) =u, i=1,

2) Dy =Dy vy tuy

3) If i=n, then go to (8) clse 3 =1.

(i+1) _ (1) _ (13
4) uj -uj+1 Li+j,iu1
- ) ) i) .
R R S TR PL P /Diird=3+T

N

6) If j<n-1+1, then go to {4).

- . (1),2 . .
7) Yip1 = Vi~ (,viu1 ) /Di;’ i=1+1; go to (2).
8) Stop.
Here u(l) denotes the first component of the vector u(l).

1
5
This procedure reguires ~n“ + 0(n) multiplications while

the direct factorization of B requires some n3/3 multiplica-

. . . - = . 2 Coq s .
tions. So, factorization of C recuires ~mn~ multiplications.
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The same procedure is used for calculation of the LDLT fac-
torization of CO' Namely, when x0 is defined, we know which co-

, 0 o
ordinates of x are positive, so we can compute C0 as

c, = C - zeief , (26)

th unit n-vector, and summation in (26) is

where e. is the i ;
taken over all i's such that X >0. The number of positive co-
ordinates of xo defines how many times we have to use the up-
dating procedure to compute the factorization of Co-

If, at - say the kth step of the algorithm - a certain coor-

dinate of x, e.g. Xy changes its sign, then we will use the

T

k+1
Clearly, vector u now takes

same updating procedure for calculation of the Lk+1Dk+1L
factorization of the matrix Ck+1'
the form u=e,, where ei-i unit vector.

Again, equation (10) is solved by use of forward and back-

ward substitutions.

6. ANOTHER APPROACH TO FACTORIZATION

The factorization scheme described above suffers one heavy
drawback, namely, when it is applied, it causes tremendous fill-
in in the matrix L. To remedy this problem, one can exploit

the special structure of C. Consider the following problem

-

min p X
subject to
Ax < b
x >0

m

where xe¢ EV™ and A is mx (n-m)-matrix or adding slack variables

we get the constraints:

il
o

y + AX

YeX

|V
o
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Using the notation xT==(y,>_<)T and A= [E,A] where E is unit
m x m-matrix, we reduce this problem to the form (1)-(3). Now
ATA takes the form

It is evident that the matrix

_ E A
C =
AT I + ATA

where I-unit (n-m) x (n-m)-matrix is nonsingular, for

E 0 3
&= | oA ot (27)
A I 0

L.et us rewrite (15) in the form

H

Cx = vy(x)x + d0 (28)

where y(x) is a diagonal matrix such that

-1 if X <0and i <m
_ 0 if x, < 0 and i > m
Yl(xi) = 1
1 if X5 >0 and i > m
0 if xi > 0 and i <m .

Evidently the systems (15) and (28) are equivalent, hence we
may solve (28) using the process (17)-(21) with obvious modifi-
cations.

So, in this case, the triangular factorization of C is
known in advance, and we save memory and CPU time.

Triangular factorization of matrix C, (see (9)) may easily

0
be obtained from (27) using Forrest-Tomlin (FT) updating proce-

dure [(s].
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Consider y and X parts of vector x separately. Suppose
that first r coordinates of vector [y0,§0]==x0 are negative,
and its last coordinates are nonnegative. It is clear that a

general case can be reduced to this situation using permutations.
To construct the matrix CO, we now have to add unity to

the first r diagonal elements of C and subtract unity from the

last s ones. The factorization (27) now takes the form:
r n-m
—— s A =
2E 0 —
0 E
Co= Z;/ =LH (29
: Aé 0 0 o |}s

where all E's and I's denote unity matrices of appropriate size,
and the shaded area represents first r columns of KT taken with
the opposite sign. Note that r > s, for, if not, then H is sin-
gular.

Let us now describe the process of reduction of H to upper
triangular form. First of all, note that the right-lower part
of H corresponds to those coordinates of xO which during the
iterative process were supposed to be negative. So at the first
step we have to permute the columns of A so that all n-m of the
last columns of A correspond to the negative coordinates of xo.
In other words, we have to exchange s last columns with s of

the r first columns, so the permuted matrix pA takes the form

r-s
~—
EL (oL _ _ _ _ 19
PP= o [of "~ e}
o [e 0
=

So now the first r-s and the last n-m columns of _A corre-
spond to negative coordinates of xO while the others--to the

non-negative ones.
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The equality constraints of the original problem become

now

Premultiplying this equality by
-1

e VAo
EFL 0 Q’
‘o’ E |

we reduce it to the form

Ax = Db
where
a=[E] A ,
™ n-m
and A=BA.

(30)

Naturally we don't need to perform explicit multiplication

because we may keep B_1 in Product Form of the Inverse (PFI) or

in Elimination Form of the Inverse (FFI).

(30) now takes the form

2E | O

)

Al oaa

The matrix C0 for




or
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—_— . m
2E R
A A a
C E 0 E - LH
0= (31)
AT
A I 0 1
\—'—— L.
n-m n-"m

where the shaded
umns of ﬁT taken

Now we have
upper triangular

umn permutations

where P is the column permutation matrix.

matrix by

we get

area in H coincides with the first r - s col-

with the opposite signs.

to operate on these columns to reduce B to an

form. Applying FT-procedure we first use col-
t> change H to the form

X 0 A 2E

HP = E 0
0 i&-s

r-s

m

p—

E

'Ar-s }5

Am—r+s

Premultiplying this
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where

_ A /\T
o =E+4 A . (32)

Premultiplying (32) by PT we get

E Knrhs 0
- pl _ -
U-PrLHP- 0 1 AT
r-s
o . 0 &

This matrix is almost upper triangular except the block ¢ which
beiné of a rather small size can be easily LDL -factorized with
the help of (32) and Bennett procedure described above.

As it follows from the above in this approach, we need no
calculation at all to get the triangular factors of 6, for they
are explicitly defined by (27) in terms of and only of the ele-
ments of A. So no extra memory or CPU time is needed.

For LU-factorization of C, we need extra memory to store ¢

matrix from (32) in factorizedoform. The amount required is
approximately %(r—s)z. The number of multiplications needed

for LDLT factorization of ¢ amounts to ~(n—m)(r—s)2 which is
relatively small. On the other hand, the other non-zeros of n
and U coincides with those of A& to within the sign. So, use of
the FT-procedure saves a great deal of storage and CPU time when
computing the triangular factorization of Co-
The same scheme is used for calculation of triangular fac-

tors of matrices C1 greeee

7. APPLICATION OF DYNAMIC LINEAR PROGRAMMING

Consider now so-called dynamic linear programs, which some-
times are referred to as "staircase" programs. Evidently, in
this case, fill-in in L matrix grows linearly with the dimension
of the problem. This class of problems now attracts many re-
searchers, but what should be done in this field outweighs heavi-

ly what has been done. For a short review see, e.g. [7].
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The problem is

. (1) .0 (1) k, (2)_k (2)
min ¢y Tu 4 k£1 (ck +cp ) + c " x (33)
subject to
k k _
ka + Dku = bk (34)
k X k+1 _
Akx + Bku bl = sp (35)
£ >0 , WKso , k=0,...,8-1 (36)

where x0 is known initial state vector, xk,uk—unknown n- and rk
m r
k . (2) n (1) k
keE ,ck ,skEE ,ck € E
and Gk,Dk,Ak,Bk~—constant matrices of appropriate sizes.

-dimensional vectors respectively, b

14

In static formulation, the constraints matrix A of (35)-(36)

in the case when N =2 takes the form

since x0 is known and GOXO and AOXO can be be subtracted. Ma-
trice ATA takes the form
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On this figure, the heavy line engulfs the matrix L where

T . . . . .
I-+ATA==LDL‘ and D is a diagconal matrix. The matrix L 1in turn

consists of N- 1 trapezoidal blocks LO,L1,...,LN—1. It is easy
to show that block-triangular shape with a variable band-width
doesn't change with change of diagonal elements provided L re-
mains positive definite.

The triangular factorization of I-+ATA is carried out in
the following way. First, we transform blocks of A correspond-
ing to k=0 to matrices LO,D0 and upper triangle of L1 shaded
in Fig. 1. Then blocks of A corresponding to k=1 are trans-
formed to matrices L1,D1 and upper shaded triangle of L2 and so

on. The number of operations needed for determination of L and
N-1

X +
wZo (n+r

D is-of order [m 2-*n(2n+rk2)] and grows linearlv with

k k)

N.
When L and D are constructed, the algorithm continues as in

the general case. The important idea here is the storage scheme
for L and D. The elements of D are represented as diagonal ele-
ments of L which in turn are stored in two arrays [8]: VE(Values
of Elements) and PD(Positions of the Diagonal elements in VE).
Array VE{k) contains all the non-zero elements of Lk writ-
ten calumn by column.
Array PD(k) 1is defined by the recurrence relations:

PD(k, 1) 1

PD(k,j+1) = PD(k,3) + 2n + 1, - j + 1

j = 2,...,(n+rk)
An element l?j of the matrix L can be recovered from the

above storage scheme as follows:

lij = VE(k,PD(k,J)+i-3) .

This storage scheme for Lk and Dk allcws us to recover l?j

from a one-dimensional array without multiplications or divi-

sions, and thus reduces the CPU time.




-22-~

8. APPLICATION TO BLOCK-AMNGULAR PROGRAMS

The other important class of specially structured LP pro-
grams where the proposed algorithm seems to be most effective
is the class of so-called block-angular problems with coupling
columns. These problems were, perhaps, most popular in litera-
ture on specially structured LP problems, because they have sim-
ple structure as well as meaningful economic interpretation [9].

Consider the problem of

N

T
min ] P X, + Pyxg
i=1
subject to
Bixi + @ixo = bi (37)
i=1,...,N

where xi—nonnegative ni—vector, Pi—known vector of the same di-
mension, and bi—known mi—vector for all i=1,...,N. Bi and @i
are known matrices of appropriate size.

Constraints (37) may be written as one matrix constraint

with the following matrix

By by
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The matrix C==ATA in this case takes the form

m Ng
T T
BB | B, %
1
™
\ T
ny|B2 By B %
C =
NN
nN T T N
BNBN BNq)N
N
T T bt N 1
P18 925 *NEN BT %

The matrix C=1I+A'A again may be factorized as C = LDLY

where D is a non-singular diagonal matrix and L-nonsingular

lower triangular matrix with the following structure
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The blocks of E,L and D are related by

T
Ii + BiBi

]
=
|_l.
)
=

o
t
I
-
o
3
"
I
-

« /N

(38)

It follows that the matrices Li,Di,i==1,...,N may be computed
independently, and when they are available we proceed to compu-
tation of Mi,i= 1,...,N and DO,LO.

It should be emphasized that we may use the FT-procedure
for computation of the triangular factors Li,i= 1,...,N, and
Bennett's procedure for factorization of the right-lower block
of C. Namely, the factors Li,i==1,...,N are easily obtainable
as in (27), and LO,D0 are computed in two steps using the formu-
la

N N
LoDoLg = [(Iy+ 121 270,) - 121 M.D.M1 .
Here the transformation of the expression in parentheses corre-
sponds to the first step while the transformation of the term
in brackets--to the second.

Note that at each step of the algorithm described above,
only one diagonal element of C changes. Suppose that at some
step a diagonal element of i-th block (i<N) changes. Then it
follows from (38) that only the elements of LO,Di,Mi,Do,L0
change while all the other blocks remain as before. When a di-
agonal element of 0-th block changes, only the elements of L0
and DO have to be modified.

The equation (10) may now be solved using the following re-

currence equations.

Forward transformation:

-1 .
Li bi R i=1,...,N

Z.
1

-1 N
Zo = L, (b= ) M.Z.)
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Backward transformation:

Y

I
-
o

0 0 70 °0
-7, -1 T .
= o - v =
Yo L, (D 2,-M;Y ), i N,eoeu,
Similar relations are used in solving (15). It is easy to see

that during the solution process we have to keep in core memory

at one time only blocks LiD.M. All the other blocks may be

stored in a drum or a disk.l éo this approach represents a type
of decomposition, for to compute the next "corner point" of the
trajectory (i.e. the next approximation to the solution) we, in
fact, have to solve successively 2(N+1) triangular systems of

linear equations.

9. CONCLUSION

The method described in this paper is based on two main
ideas: the use of penalty functions and application of matrix
factorization techniques. The main result is that the use of a
smooth penalty function allows us to find the exact solution to
the original problem in a finite number of steps. The method
differs from the usual implementation of penalty function methods
in that at each step we now have to solve only linear systems
of equations differing from each other in only one diagonal ele-
ment. Numerical experiments show that the gain in speed and
accuracy 1is tremendous in comparison with the usual implementa-
tion.

The number of steps depends very much on choice of the ini-
tial value of the penalty coefficient. The smaller QO the fewer
the number of steps. Ususally (for problems of medium size) the
number of steps is much smaller than that of the simplex method.

The number of operations required at.each step in the dy-
namic case grows linearly with the number of time periods. In
principle, it allows us to solve very large problems, for all
but one of the trapezoidal matrices may be stored on a disk or

a drum. The same conclusion is true for block-diagonal programs.
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