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PREFACE

Modelling of economic systems is an important task in the
research program of the System and Decision Sciences area at
IIASA (Task 1 of the Research Plan for System and Decision
Sciences area for 1977).

The classical econometric approach to modelling and pre-
diction of economic systems uses single and simultaneous equa-
tion models to represent the relationships among economic vari-
ables which are postulated by economic theory. The present
paper explores an alternative approach and investigates whether
multivariate time series methodology can provide useful tools
for the assessment of economic relationships and the short term
prediction of economic variables.
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ABSTRACT

In this paper we discuss a multivariate generalization of
autoregressive integrated moving average models. A methodology
for constructing multivariate time series models is developed
and the derivation of forecasts from such models is considered.
A bivariate model for Austrian macroeconomic sequences is con-
structed. Furthermore it is discussed whether multivariate
time series methods can be expected to lead to a significant
increase in prediction accuracy for macroeconomic series.
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A Multivariate Time Series Approach

To Modelling Macroeconomic Seguences

1. Introduction

Since 1976 the Austrian Institute of Economic Research
(Osterreichisches Institut flir Wirtschaftsforschung) has been
using univariate time series methods, commonly known under the
name of Box-Jenkins analysis, to derive short term predictions
of macroeconomic series {(Ledolter, Schebeck and Thury [19],
[28]). The experience with these techniques over the last year
has been excellent and confirms the results of many empirical
comparisons which show that simple univariate Box-Jenkins fore-
casts are quite accurate and compare very favourably with pre-
dictions from econometric models (Christ [7], Cooper [8],
Narasimham and Singpurwalla [20], Naylor, Seaks and Wichern
[21], Nelson [22], Prothero and Wallis [25]).

It is not the objective of this paper to add a further
study to this long list of empirical comparisons and to estab-
lish a priority of one method over the other. Both methods,
the relatively simple univariate Box-Jenkins models which use
information only from the past history and the elaborate more
time consuming econometric models which incorporate latest
economic theory, are not seen in competition but as complement-

ing each other.

It is nevertheless surprising how well univariate Box-
Jenkins procedures perform considering their relative simplicity
and considering that they utilize information only of their own
past and do not incorporate the information from other, possibly

related series.

Univariate methodology provides the building block for
multivariate modelling which considers more series at the same
time. A guestion which arises and which is addressed in this

paper is to what extent the predictions from the univariate



time series models can be improved by enlarging the information

set and considering several series jointly.

The paper consists of several parts. In the second section
univariate seasonal and non seasonal ARIMA models are reviewed.
In the third section a multivariate generalization of the class
of ARIMA model is considered and illustrated with simple examples.
The model building methodology for multivariate time series
models, in particular their specification, estimation and vali-
dation, is discussed. An example using Austrian total private
consumption and disposable personal income data is considered in
the fourth section of the paper and univariate and bivariate models
are given. The last section consists of concluding remarks and
a discussion whether multivariate time series methods can be ex-
pected to lead to a significant increase in the prediction accur-

acy for macro-economic series.

2. Univariate time series models

For the analysis of univariate nonseasonal time series z, Box
and Jenkins [3] use the class of autoregressive integrated moving
average (ARIMA) models of the form

a .
o (B) (1 - B) z, = 60 + e(B)at (2.1)
where
_ - - - P
¢(B) =1 ¢4B- ... ¢pB
= - - - q
6(B) = 1 61B e qu
B is the backshift operator; Bz, =2z

t t-m

{at} is a sequence of independent random variables
(white noise sequence)

02 for k = 0

E(a,) =0 ; E(a,a ) =~{ .
t etk 0 for k #0



Tt is assumed that the roots of ¢(B) = 0 and 8(B) = 0 lie
outside the unit circle (stationarity and invertibility condition)
and that they have no common roots. The differencing operator
(1-B) is used to represent non stationary processes (i.e.:
series which do not have a fixed level, slope etc., but which
apart from this exhibit stationary behavior). The polynomial
$(B) which includes the parameters ¢1,...,¢p is called autore-
gressive operator; the polynomial 6(B) with parameters 81,...,6q
is called moving average operator. When d = 0 (no differencing)
the original series is stationary and 60 allows for a nonzero
mean; for 4 > 1 the parameter 60 is capable of representing a

deterministic trend in the form of a polynomial of degree 4 - 1.

Economic series frequently have non stationary variance and
in particular the variation often depends on the level of the
series. If the variation is proportional to the level then the
logarithmic transformation will stabilize the variance. 1In other
cases, however, the logarithmic transformation might not be suit-
able and other transformations have to be tried. A particularly
useful class of transformations is the class of power transfor-
mations introduced by Box and Cox [2]. Use of this parametric
class, which includes the logarithmic transformation as a special
case, in an economic time series context is, for example, made

by Box and Jenkins (4], Tintner and Kadekodi [27].

For observations with a seasonal pattern the model in (2.1)
has to be extended. Box and Jenkins [3] introduce multiplicative

seasonal models

S

5(B) o, (B%) (1-8)9(1-8%Pz =0 + e(®)o_(8%a (2.2)

t 0 t

where ¢(B) and 6(B) are as defined above and

¢S(BS) =1 - 1 SBS-...-¢P SBPS is a polynomigl of
! ! degree P in B
S, _ _ S _ _ Qs . .
GS(B ) =1 61,SB GQ,SB is a polynomial of

degree Q in B~.




Since most quarterly economic series show a distinct seasonal
pattern (s = 4) this class is important for the modelling of

macroeconomic series.

Past experience in many fields shows that the class of
ARIMA models (2.1) and their seasonal extension (2.2) are cap-
able of representing many series observed in practice, both

stationary and non stationary.

Predictions from ARIMA models

Given the model and the value of the parameters optimal
forecasts (optimal in the minimum mean square error sense, i.e.,
providing unbiased forecasts which minimize the variance of the
forecast error) are readily derived. It can be shown [3] that
the minimum mean square error forecast of a future observation
Z it given all the information up to time n, is given by the
conditional expectation

2, (1) = E(z (2.3)

n+2|zn’zn—1"")

The predictions are easily interpreted considering the inverted

form of model (2.1) (to simplify the discussion we assume that
6g = 0)
d
¢ (B) (1 -B) -
5(8) z, a, - (2.4)
Defining n(B) = 1-7m,B- 1 B2— = Q(B)(1-_B)d one can write
g 1 2 6 (B)
Zn+e T L TTjzn+2—j T Anss ot
321

Since the conditional expectation of any future an+2(2>0) is

zero, the one step ahead prediction error (2=1) is given by

z +

n-1 ﬂ3zn—2-+"'

= M,.2 +

zn(1) = Z Trj+1zn—j 1"n 2

320
(2.5)



For general 2

A _ (2) - - (2) (2) (2)
z (2) = .Z ﬂj+1zn—j =My, vy 2 b mgz St
320
(2) (2.6)
where Wj are functions of the original m-weights,
2-1
(2) _ (2-k)
ﬂj = ﬂj+2_1 WL ﬂkﬂj .

The m-weights which depend on the structure of the model and on
the values of the autoregressive and moving average parameters

provide a weight function which discounts past information.

Philosophy of model building

For a given model the forecasts are readily derived. In
practice, however, the form of the process is rarely, if ever,
known and one has to use past observations to derive adequate

models and to estimate their parameters.

Box and Jenkins [3] develop a three stage iterative proce-
dure consisting of model specification, model fitting and model
diagnostic checking to find members of the class of ARIMA models
which are parsimonious in their parameters, but adequate for the

description of the correlation structure of the data.

Since the class of ARIMA models is too extensive to be fitted
directly to the data, model specification procedures employ the
data (in terms of sample autocorrelations and sample partial
autocorrelations) to suggest an appropriate parsimonious subclass
of models which may be tentatively entertained. At the estimation
stage the parameters of the tentatively entertained model are
estimated (the programs which are used for the examples in this
paper calculate maximum likelihood estimates conditional on zero
starting values). At the third stage, the model validation stage,
diagnostic checks are applied with the intent to reveal possible
model inadequacies and to achieve improvement. The residuals

(observed minus fitted wvalues) contain the information about the




adequacy of the fitted model. The sample autocorrelation func-
tion of the residuals indicates whether the entertained model
is adequately describing the correlation structure of the data
or if, and how, the model should be revised. After the model
passes the diagnostic checks it can be used for interpretation

and prediction.

3. Multivariate time series models

It was pointed out before that univariate time series
models frequently face the criticism that they use information
only of its own past and do not use the information from other

sources.

For example, let us suppose that data on a pair of time
series, Z4 and Z5s is available and we have to make a prediction
of future values of z,. One could use the past history of z,
only and build a univariate model predicting future values of Z,
from its own past. Alternatively, one could use the larger
1n—j’22n—j;j =0,1,2,... } and build a multi-
variate model. One would hope that in this case superior fore-

information set {2z

casts can be obtained (superior in terms of Granger's [12] con-
cept of predictability i.e., smaller variance of the forecast
error).

If future values of z, are better forecast with an informa-
tion set extended to include both present and past values of z,
and Zyy but the forecast of z, is not improved by the addition
of current and past Zqs then the series are said to exhibit no
feedback. (Other terminologies such as unidirectional causality
from z, to z;, Or 2, being exogeneous relative to z, are some-
times used in the literature.) In this case transfer function
models (dynamic regression models, distributed lag models) as
discussed by Box and Jenkins [3] can be used.

z = v(B)z + n

1t 2t (3.1)

-

t

where v (B) = (wo - w1B-u..-wsBS)|(1— §,B=-c..- 6rBr) and where

both Z5¢ and n

1

£ have ARIMA representations and where Zot is



independent of n {(for all k).

t+k

If future values of z, as well as z, are better predicted
by using the extended information set, the pair of series is

said to exhibit feedback and multivariate models have to be used.

The m—-dimensional time series generalization of univariate
stationary autoregressive moving average models was first in-
troduced by Quenouille [26], and further discussed by Hannan
[15]

®(B)z, = 8, + O(B)a, (3.2)

where

[ - . - ‘s .,
z{ = (Z1t22t"‘ zmt) is a m-dimensional

vector of realizations at time t

(a ) is a m-dimensional

' =
%t 1t%2t " %mt
crosscorrelated white noise sequence

_ . ' _ <k
E(ay) =0 ; E(§t§t+k) = 602 where

k
0

1 if k=0
sk =-{

0 0 otherwise

8. is the Kronecker delta function

and z is a symmetric, positive definite

[m xm] matrix.

8o = (9108052 -+ Oop)

¥(B) = 1 - ¢1B-...-¢po is the autoregressive
operator with autoregressive [m xm] matrix
parameters ¢1,...,®p.

O(B) =1 - G1B-...-Oqu is the moving average
operator with moving average [mxm] matrix
parameters @1,...,Oq.

I is the [m xm] identity matrix.



It is assumed that the roots of detd(B) = 0 lie outside the
unit circle (stationarity condition) and that the roots of
det®(B) = 0 lie on or outside the unit circle. Furthermore
it i1s assumed that detd®(B) = 0 has no common roots with
det0(B) = 0. This condition, together with nonsingularity

of ®p and @q’ will lead to an identified (unigue) model. The
above condition is further relaxed by Hannan [14&] who gives

necessary and sufficient conditions for the unigueness of the

parameters.

It is instructive to consider special cases of this gen-
eral class of models.

(1) Bivariate first order autoregressive model

(I - ¢B)z, = a, (3.3)
where

ze = (24425¢) ag = (aqpagy)
0 0
q):l: 11 12] nd
921 %22
g

11 %12
E(a,a/ ) = akZ with J =
~tit+k 0 012 955

The model can be written as

(1=091B)2q¢ = d92Z5¢9 = 3¢

. (3.4)
(1= 0,5B)25¢ = 9592449 = 35¢
The univariate first order autoregressive process is character-
ized by an exponentially decreasing autocovariance function. A
similar pattern also holds for the multivariate AR(1) process,
except that the dimensionality (now matrices instead of scalars)

makes it more difficult to recognize the pattern.
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T(k) = T(k-1)d" k > 1
(3.5)
-1
(o) =) + T(1)'[T(0)] T(1)
where T (k) = E(§t5£+k) is the lag k autocovariance matrix (note

that here and in the following we assume that z_ are already

t
deviations from their means).

If all elements in ¢ are different from zero the two series
exhibit feedback and multivariate techniques have to be applied.
In the case when one off diagonal element, let us take ¢21, is
zero, the second series z, influences Zq but in turn is not in-

fluenced by z, (no feedback from z4 to 22)

(1-¢49B) 2 = 942B2z,p = a4y
(3.6)
(1-9¢,,B)zy, = a5y

aq, and a,, are in general correlated (012=+0). However, it is
possible to express

2t
%12
where ¢ = —= and where a¥*, and a are uncorrelated. Substi-
022 1t 2t

tuting for a, in (3.6) gives

t

(1= ¢99B)2qp — 94pB 2y, - c(1-9,,B)zy, = af,

(1-¢59B) 25 = 354
oY

i e 3.7
10 T 706, 5 OF (9127 e0p)Blze Ty o7

where z is independent of a* for all k.

2t T1t+k
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Model (3.7) is a transfer function (dynamic regression, distrib-

uted lag) model of the form (3.1) where z can be considered

2t

input for z and where the input is independent of the noise.

1t

(ii) Bivariate first order moving average model

z, - (T - GB)? (3.8)

911 %12
where 0O = and z, and a, as above. The model can
921 %22 ~t ~t

be written as

Zyp = (1-044Blag = 08yp85¢ 4
(3.9)
[ ]
Zyp = (1= 0,5B)ay = 051809
It can be shown that

r(o) =) + 0} o (3.10)
Tr(1) =- 750"
'ik) =0 for k > 2 .

The autocovariances of z and z, as well as the cross covari-
ances between z,; and z, are zero from lag 2 onwards, a fact
which is helpful in the specification stage of modelling.
Similar to (i), it can be shown that there is no feedback from

z1 to 22 iff 621 = 0.

(iii) Bivariate first order autoregressive moving

average model

(I--@B)gt = (I--@B)at (3.11)

$19 492

]
(O
]

where ¢
®21 22 21 Y22
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It can be shown that

T'(0) = ¢I'(1) + J - 0}7¢' + 0} 0 (3.12)
(1) = T(0)o' - J O
'(k) = I'(k-1) %" for k > 2 .

In (3.11) we assume that the roots of det ¢(B) = 0 lie outside

the unit circle (stationarity condition) and that the roots of

det 0(B) = 0 lie on or outside the unit circle.

These conditions, however, are not enough to identify the
model parameters (i.e., there may be other values of ¢ and O
which lead to the same covariance structure and forecast weights).
Simple cases for nonidentified models are, for example, given
when ¢ = 0 or more general when there exists a matrix A for which
Ad = A0 = 0.

If the model is not identified, not all parameters are
estimable. For example, when ¢ = 0, only the difference of the
elements of & and © is estimable, but not ¢ and © individually.
In practice, non identified models (near non identified models)
will lead to an ill defined estimation problem resulting in high

correlations among the parameter estimates.

If the model is used for prediction purposes the question
of identifiability is not a critical one, since any &(=0) will
lead to the same prediction weights.

(iv) Extension to seasonal and non stationary models

Multiplicative seasonal models in m-dimensions can be
written as

®(B)o_(B%)z, = 6, + 0(B)o_(B%)a, (3.13)

where ¢(B) and 0(B) are as in (3.2) and where
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I_

©
os]
l

s _ s _ _ Os
OS(B ) I 0 sB «.e.=0 B

1 Q,s

In Section 2 it was shown how simplifying operators such
as ordinary differences (1-B)d, seasonal differences (1-BS)D,
or in general operators with roots on the unit circle can be

used to transform non stationary into stationary sequences.

(v) An interesting observation is originally due to
Quenouille [26]. He shows that in general individual series
from a multivariate autoregressive model do not follow univari-
ate autoregressive, but ARMA, models. For example, individual
series from a bivariate first order autoregressive model follow

a second order autoregressive model with correlated residuals.

Individual series from a multivariate moving average model,
however, can be shown to follow again univariate moving average

models of the same (or lower) order.

Multivariate model building

(1) Model specification:

One important problem in the analysis of time series is
the specification of a particular model within the class of
multivariate ARIMA models for further analysis. It was pointed
out in Section 2 that in the case of univariate time series the
sample autocorrelation function can suggest tentative models
for estimation. A similar approach can sometimes be applied for
multivariate time series data; however, due to increased dimen-
sionality (now matrices instead of scalars) it will be more dif-

ficult to recognize the covariance structure (see for example

equations (3.5), (3.10), (3.12)).
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Specifying a model for multivariate time series data is an
extremely difficult task and no simple solution exists. Various
approaches have been put forward in the literature. Parzen [23]
points out that for the tentative specification of the multivar-
iate model it is essential to first model each component sepa-'
rately. A similar strategy is adopted by Haugh and Box [6] who
suggest a two stage specification procedure. The basic idea
involved is to identify the relationship between the series by
first characterizing their univariate models and secondly model-
ling the relationship of the two residual series driving each
univariate model. The task at the second stage is made more
tractable by the fact that one is crosscorrelating two individ-
ually not autocorrelated (white noise) sequences and hence the
sample cross correlation function is easier to interpret. A
similar approach is adopted by Jenkins [18], Granger and Newbold
[13].

The approach which is used in this paper uses the informa-
tion from the univariate analysis. The multivariate model is
specified to be of the same form as the univariate models, but
now with matrices replacing scalar parameters. For example,
if the univariate series follow moving average models with max-
imum order g, the multivariate model is specified to be moving
average of the same order. If the individual series follow ARMA
models with maximum orders p and g, the initial model considered

for estimation is a multivariate ARMA (p,q) model.

For multivariate models the number of parameters increases
very rapidly and the suggested procedure will in general lead
to overspecification (i.e., including parameters which are not
necessary). Nevertheless the overspecified model provides valu-
able information since the parameter estimates together with
their standard errors and their correlation matrix indicate

which parameters can be deleted in the revised model.
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(ii) Estimation

After specifying the structure of the model one has to
estimate the parameters from past data. A procedure to derive
maximum likelihood estimates in the case of normally distributed

shocks a is discussed by Wilson [29] who uses an iterative

t
method to estimate the parameters in multivariate ARMA models.
This method is a generalization of the procedure suggested by
Box and Jenkins [3] for the univariate case and is outlined in

the Appendix of this paper.

Computer programs for the implementation of this estimation
procedure were written for the UNIVAC 1106 at the Austrian Insti-
tute of Economic Research. Implementation of the program re-
quires a nonlinear regression routine and matrix routines for
eigenvalues and eigenvectors of symmetric positive definite
matrices. In the context of iterative nonlinear regression
routines restrictions on the parameters such as setting certain
elements equal to a constant (for example zero or one) are

easily incorporated.
(iii) Diagnostic checks

After fitting the model diagnostic checks look at the re-
siduals to detect lack of fit. If both the model is correctly

specified and its parameters are known, the shocks a,_ are in-

dependently distributed with mean zero and covarian;: matrix J.
Then it can be shown (Box and Jenkins [3], Box and Pierce [6],
Jenkins [18]) that the estimated autocorrelations r,; (1),...,
rii(K) of ay and the estimated crosscorrelations rij(1),...,
rij(K) of a; and aj are asymptotically in?ipendent and normally
distributed with mean zero and variance n (where n is the

number of observations).

This above result can be used to assess the statistical
significance of departures of the estimated autocorrelations
and crosscorrelations from zero and thus detect lack of fit.

This can be achieved by plotting and comparing the correlations
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rij(1),...,rij(K) with confidence bands + 2n—%.

A useful yardstick for overall lack of fit (portmanteau
lack of fit test [3],[18]) computes

n
k

2 ..
: rij(k) for 1 <i,j <m .

I ~1R

Under the null hypothesis of no lack of fit this statistic is
approximately xz with K degrees of freedom.

Predictions from multivariate time series models

As in the univariate case predictions are best interpreted
from the inverted form of the model. The IlI-weights, which are

matrices now, are defined by

m() =1 - MI,B - n232— .= a1 e .
Then
Zneg = MiZneg- * MoZpig ot oee e Tante

and in general the vector of 2-step ahead predictions is given
by

- (2) ) (2)
2, (2) = jgo MiiiZnoy = M2y + D702 g+ . (3.14)
where
2=1
(2) _ (2-k)
My™ = Myyg g+ k£1 M1 .

Forecasts (3.14) are optimal in the sense that they have the
smallest possible covariance matrix of their f-step ahead fore-

cast errors gn(l) ﬁn(z). (1£ vy and V, are two real [mxm]

= z -
“n+f =
nositive definite matrices, then V1 is said to be smaller than

Vo, provided that d'v,d <d'v,d for every non zero (mx 1) vector 4.)

(3.14) shows that in general (full NI-matrices) the prediction

of a particular series utilizes the past history of all other

components.
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q. ExamEle

To illustrate the methodology we consider total private
consumptionh at current prices (CINSGN ... gesamter privater
Konsum, nominell) and disposable personal income at current
prices (EMNNQ9 ... Masseneinkommen, netto + verfligbares pers&dn-
liches Einkommen aus Besitz und Unternehmung, netto) for Austria
in the period from 1954/1 to 1976/2. First univariate analyses

are reported.

(1) Total private consumption

Plot of the data indicates nonstationary variance of the
series which can be stabilized by considering the natural loga-
rithm of the series. The original series shows a strong season-

al pattern and is nonstationary. The first regqular and first

seasonal (s = 4) difference, however, lead to a stationary
segquence.
Various models for Wi = (1-B)(1-Bu)logz1t:are specified

and estimated.

(1-B) (1-8") log z

_ _ _ 4
1t = (1 61B)(1 euB )a1t . (M11)

The parameter estimates are given by

61 = .53 and 62 = .52

The variance of the one step ahead forecast error* is

02 = .000487 .
a
1
The autocorrelation function of the residuals is calculated and
the x2 value (which is to be compared with 18 degrees of freedom)
is 19.5.

*The estimated variance of the one step ahead forecast
error is the sum of squares of residuals divided by the number
of residuals.



-17-

There is one rather large contribution at lag 3 (r3 = .22)
and this leads to consider the revised model
3

(1—B)(1—B4)logz1t = (1—81B)(1—63B )(1—6uBu)a1t. (M12)

Estimates of the parameters are significant and are given by

61 = .56 ; 0, = -.23

3 : eu = .52 .

The variance of the one step ahead forecast error is

2 = .000463
a

1

The X2 value of 13.8 (compared to 17 degrees of freedom) and

the plot of the autocorrelation of the residuals gives no in-

dication of departure from randomness in the residuals and leads

to acceptance of the fitted model.

(ii) Dpisposable personal income

Also in this case the logarithmic transformation and a
regular and seasonal difference is necessary to achieve a sta-

tionary sequence. Several models were entertained for Wor =

(1-B) (1 - Bu)log Zyy

(1-B)(1- Bu)log Zyy = (1- 61B)(1 - euBu)a2t (M21)

with estimates 91 = .33 and 62 = .26

The variance of the one step ahead forecast error is

2 = .000320
a

2

The autocorrelation function of the residuals has one particu-

larly large contribution at lag 10 (r10 = -,28 compared to

standard deviation of .12) and the x~ wvalue of 20.6 is rather

high (compared to a x2 distribution with 18 degrees of freedom).
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The large autocorrelation at lag 10 leads to a revised
model with one additional parameter

(1-8)(1-B") 1logz

e = (1-0.8)(1-6,8"(1-0,8"0a, M2
with estimates
6, = .26 ; 6, =.30 , 6, = .43
oiz = .000281 .

The x2—value is considerably lower, xz

13.4 and gives no

reason to doubt the adequacy of the model.

(iii) Bivariate model

The structure of (M11) and (M21)

multivariate model

is used to specify the

_ 4
w, = (I- O1B)(I-OuB a, % (M31)
where
_ i
Wi = (WigWae) Wig = (1-BY(1=-B)logz,
w.. = (1-B)(1-BY1ogz
2t 9Z¢

Using the multivariate estimation
in the Appendix, estimates of the

gether with their standard errors

.68 -.34
(.09) (.11)

i

=

-.16 .50
(.08) (.10)

procedure, which is described
elements in 91 and 94' to-

in brackets, are calculated

.47 .003
(.12) (.14)

-.14 .34
(.10) (.12)

* «
Instead of taking first regular and seasonal differences

a model with autoregressive operators was considered; W, =

(I - ¢1B)(I— QuBu)]nggt. The estimates of ¢1 and ¢u, however,

were close to I.
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[.000U65 .000148]

.000296

Since the off-diagonal elements in Oq are not significantly
different from zero, the model (M31) is respecified by setting

these two elements equal to zero.

The estimates of the remaining elements are given by

.65 =-.33 .53 0
(.10) (.11) (.10)
61 = @Al = (M32)
-.22 .52 .31
(.09) (.11) 0 (.10)

£~
I

[.ooou69 .000150]

.000300

The decrease in the one step ahead prediction errors of (M32)
compared with (M11) and (M21) is 4% for the private consumption
series (from .000487 to .000469) and 7% for personal income
(from .000320 to .000300).

We already noted that the univariate models (M11) and (M21)
showed some shortcomings and that they could be improved by an
additional parameter. The same shortcomings become evident
when the residuals from the multivariate model (M32) are ana-

lyzed.

For multivariate models we use the diagnostic checks dis-
cussed in Section 2. The X2 values for the residuals of model
(M32) which have to be compared with a x2 distribution with 20

degrees of freedom are for the

. . 2 . . .
first series: y = 18.7 with a large contribution
at lag 3 (r3 = .23 compared to standard deviation
of .11)
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. 2 .
second series: x~ = 23.6 with a large contribution

at lag 10 (r;, = -.33 compared to standard devia-
tion of .12)

crosscorrelations
17.9
10.5

with lag on series 2: ¥y

with lag on series 1: X2

The rather high values at lag 3 (for series 1) and lag 10

(for series 2) lead to the revised model

_ _ _ 4 _ 3 _ 10
w, = (I O1B)(I GUB ) (I ®3B @10B )a

W, a, (M33)

where 63 and 610 have only one nonzero element. The estimates

of the parameters are given by

.66 .34 .50 0
(.07) (.11) (.10)
@ = O =
1 -.27 .51 4 38
[ (.07) (.11) 0 (.10)]
[~.19 0 0
93 = -0 910 =
.53
0 0 0
i (.10) ]
000443  .000126
I = i
i .000240

All the parameters are significant and the diagnostic checks
give no reason to doubt the validity of the model. The x2
values are considerably lower. The residual auto- and cross-

correlations together with the xz—values, are plotted in Figure 1.

The improvement in the one step ahead prediction errors is

5% for the private consumption series and 17% for the personal

income series.
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Figure 1: Autocorrelations and crosscorrelations

of residuals; together with 2¢ limits;
model (M33)
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5. Interpretation of results and concluding remarks

The analysis in Section 4 shows that model (M33) and also
model (M32)

(i) represent a truly multivariate (feedback) relationship
between private consumption and disposable personal

income,

(ii) lead to a decrease in the variance of the one step
ahead prediction error which compared to the univariate

models is relatively small.

ad i. The two considered series are an example of a truly multi-

variate (feedback) relationship; i.e., a relationship where the
past of both series is needed for the prediction of future values.
A feedback relationship is concluded since both off-diagonal
elements in 91, 612 and 821, are significantly different from
zero (compared to their standard error). The signs of the co-
efficients 812 and 821 are both negative and are consistent with

economic theory. For example, model (M32) can be written
(5.1)

(1-8) (1-B")1og 2 (1-.65B) (1-.538")a, + .33(1-.318Y)a

1t 2t-1

(1-B)(1-B%)1logz (1 -.52B) (1 - .31B“)a2t+ .22(1-.538")a

2t 1t-1

(5.2)

An additional increase in todays income (variable 22) which is
measured by the increase of todays observed income compared to
its last prediction (a2t) will lead to an increase in tomorrow's

private consumption (variable z and vice versa. Eguations

)
1
(5.1) and (5.2) show that the additional change in today's income
(consumption) is always seen in relation to the income (consump-

tion) 4 guarters ago.

ad ii. The phenomenon that predictions of many economic time
series, once effective use of their own past has been made, can

be little improved by using, in addition, past values of other
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available series, has been discussed, for example, by Pierce
[24], Cramer and Miller [9], Feige and Pearce [11]. They con-
clude that in general the variance reduction is rather small.
Similar conclusions are reached with Austrian macroeconomic

series and they will be reported in the near future.

The above results which might be surprising to some econo-
mists must be reconciled with the information from regression
like analyses which traditionally have always shown strong re-
lationships among macroeconomic variables. Various explanations
which help in reconciling the time series results and the fact
that certain economic causes and effects are known to exist are

given below.

(a) The empirical regression results which show strong re-
lationships among macroeconomic series may be ill-founded
due to carelessness about the effect of the time series
properties of the data. For example, not accounting for
the serial correlation among the observations tends to
find relationships which actually don't exist (Box and’
Newbold [5], Granger and Newbold [13]).

(b) The conclusion from time series studies should not neces-
sarily lead to doubt the existence of economic relation-
ships. It may be concluded that they are perhaps inher-
ently not verifiable. Reasons for not being able to
verify economic relations using empirical data over the

last 20 years are:

(1) economic data are happenstance data, as far as experi-
mental design is concerned, and usually subject to large

measurement error;

(2) any deterministic series can be perfectly predicted
from its own past and there is no room for improvement by
using another variable. 1If, for example, one series grows

by a constant percentage it will show up as unrelated to
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any other variable, regardless what its actual relation-

ship might be.

(3) The series may appear independent only because of a

common but opposite association with a third variable.
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Appendix

Parameter estimation in multivariate ARMA models

The multivariate (m-dimensional) ARMA model is given by

(I-6.B-...-& BP

= (- - - q
1 pB )2z = (I-0B-...-0.B")a (A.1)

1 q t

The unknown parameters ¢ /2,0

EARERA NI TEY
are arranged in a column vector B, and the elements of the co-

.,Oq, which for convenience

variance matrix of the white noise sequence ags ), have to be
estimated from the observations Zqreess2,-

Assuming joint normality for a, and neglecting the effect

t
of starting values for a_ (i.e., setting the starting values for
a, equal to zero-- for relaxing this condition see Hillmer [17]),

the likelihood of the parameters B and ) is given by

8 (B, Ylzqneeeiz ) | exp{-% L oall ‘i‘t} (A.2)
t=p+1

where a, is a function of g

t

a, =z, = ¢ Ziq T e T ¢p%t—p + @1§t_1+ ...+-@q§t_q (A.3)

for t > p+1, and a_ = 0 for t < p. The log likelihood function

~t
is given by
7| np [log |§) + 1§ ar i
L(Bl Z,oge0s, 2 )O: - — [log | +T al a} .(A.Ll)
~ <1 ~n 2 n-p t=pt1 ~t ~t

To derive maximum likelihood (ML) estimates we have to minimize
the function
1 n -1

F(B,)) =1log [}| + —= I al ]l a (A.5)
” P t=p+1 ~
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with respect to B and .

Conditional estimation of }

It can be shown (Wilson [29]) that the derivative of F(@,Z)

with respect to elements of 2-1 = {o'1} is proportional to

1 n
-0.. + — a., a,
1] n-p t=g+1 it "3t

Thus, for given values of B, the ML estimate of the elements of

) = {oij} is given by

n
1

0,. = — a,, a. A.6
1] n-p t=g+1 1t Jt ( )

Conditional estimation of R

In order to derive the conditional estimate of B given the

value of ) one has to minimize the second part in (A.5)

n n n m

] arl'a, = I mno= 7 @
t=p+1 "~ ~ t=p+1 7~ 7~ t=p+1 j=1 J
where
1 — ] ) —_
hy = aPp hy = (hyprbhopreeerhpy)
and
ppt = J | or p' Y7l = 1

It can be shown (for example Anderson [1], Appendix 1) that

where H is the matrix of normalized characteristic vectors of
-1 . . . . . . L
Z and D is a diagonal matrix with corresponding characteristic

roots in the diagonal.

A nonlinear regression routine is used to derive the

estimates in R such that expression (A.7) becomes as small as

~
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possible. A good introduction to nonlinear regression methods

is given in Draper and Smith [10].

Simultaneous estimation of 8 and }

~

The strategy to estimate the parameters B and z is to

apply the conditional estimation schemes alternately
I, = L)

§n+1 - §(Zn)
Since each of the steps is a conditional minimization the above
procedure will converge to the overall minimum. Furthermore,
as shown by Wilson [29], the estimates B8 and Z are consistent
and asymptotically uncorrelated. The asymptotic distribution

of B is normal.

~

Computer programs which implement this iterative estima-
tion procedure have been written and are available from the
author. As starting value for Z one usually chooses a diagonal
matrix with variance estimates from the univariate models in
its diagonal.



