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PREFACE

To forecast observations from a time series provides an
important basis for planning and control. The problem of how
to make good forecasts arises in many areas of application at
ITIASA, and is dealt within the System and Decision Sciences
area.

Forecasters who use models which are specified and esti-
mated from past data are concerned whether structure and param-
eters of the models change over time. The stability (or ad-
aptivity) of forecasts from time series models with respect to
interventions such as step changes or outliers is discussed in
this paper. Furthermore a statistical test to assess parameter
changes in the model is described.
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ABSTRACT

The effect of interventions on economic variables in the
presence of a time dependent noise structure is modelled in
this paper. Forecasts from such models are derived and it is
discussed whether forecasts from ARIMA time series models are
adaptive with respect to interventions such as changes in the
level or outliers.

An overall criterion to test the stability of the param-
eters in ARIMA models is derived and applied to three Austrian
macroeconomic sequences.






ADAPTIVITY AND STABILITY OF TIME SERIES MODELS

Introduction and Summary

Economic forecasters who use models which are specified and
estimated from past data are always concerned whether the struc-
ture and the parameters of their models change over time. Since
predictions are usually obtained under the assumption of con-
stant parameters, time changing parameters can seriously affect

the forecasts.

Stability of the structure and parameters of the model over
time is important both for forecasts from econometric models
(simultaneous equation models which represent relationships among
economic variables) as well as for forecasts which are derived
from univariate time series models, commonly known under the name
of Box—Jenkins (or ARIMA) models.

In this paper we focus on time series models and consider
various aspects of parameter changes in such models. 1In partic-
ular we discuss how the effect of an intervention on a given
economic variable can be modelled in the presence of a time de-
pendent noise structure. Examples for intervention effects on
economic variables are the effects of a preannounced introduction
of an additional car sales tax on car sales, the effects of the
introduction of value added tax on consumption, the effects of
a recession on main economic indicators, the effects of a wage
price freeze on the consumer price index, etc. We introduce
difference equation models to represent the possible dynamic
characteristics of the intervention and the noise. Furthermore
we discuss the adaptivity (or sensitivity) of forecasts from
time series models with respect to such interventions. It is
investigated whether forecasts from ARIMA time series models can
be expected to be adaptive with respect to an intervention such

as a change in the level of the series.




The detection of parameter changes and a test for stability
of the model is discussed in the last section of the paper. Such
an analysis is only possible if observations after the supposed
intervention are available. An overall criterion is given which
uses the forecast errors to test whether the model has signifi-
cantly changed after the intervention took place. This overall
test criterion has the advantage of being not specific with re-

spect to the feared discrepancy.

It is illustrated on three quarterly Austrian economic
series (gross national product, total private consumption, total
gross investment in fixed assets; all in real terms). It is
tested whether the time series models which are estimated using
data up to 1974/3 still adequately describe the period 1974/4
to 1976/4. Such an analysis is useful since it can indicate
whether the last economic crisis changed the dynamics of the

model.

If one concludes that a given model is not a valid descrip-
tion of the most recent data one has to examine the forecast
errors and suggest theoretical explanations for the model change.
Patterns in the forecast errors can be used to speculate on how

the model has changed.

1. The Model

Let us denote the time series, which is observed at equal

intervals, by The model which is con-

Sy qrZpaZ g
sidered in this paper is given by

z, = f£(8,0,x,t) + ng (1.1)

where

(a) the noise n,_ follows a stochastic difference equation

t
(ARIMA) model of the form

6 (B)

(1.2)
T opm t




{at} is a sequence of independent normally distributed random
variables with mean zero and constant variance. B is the back-
shift operator i.e., Bma.t = ay_o - 6(B) = 1-0,B-...- quq is
the moving average operator and it is assumed that its roots lie
outside the unit circle (invertibility condition). ¥(B) =

1- ?1B-...-?po is the autoregressive operator and its roots
are assumed to lie on or outside the unit circle. Roots of

P(B) = 0 on the unit circle (i.e. terms like 1 - B, 1-—Bu,

1 - f?B-sz, etc.) are able to represent certain kinds of stable

non stationary processes.

The class of autoregressive integrated moving average mod-
els (1.2) (integrated because of difference operators 1 - B) was
originally introduced by Box and Jenkins [1]. A detailed de-
scription and application of these mcdels to Austrian economic

data can be found in Ledolter, Schebeck and Thury [6].

(b) f(w,8,x,t) is a dynamic difference equation model re-

presenting the additional effect of an exogenous variable Xy

over the noise;

w(B) o (1.3)

Elosdoxst) = v = By ¥

w(B) and &§(B) are polynomials in B of degree r and s, respectively;

_ _ _ _ r
w(B) = wg ~ wyB=... er
§(B) = 1-6,B-...-§_B°
1 cen s .
The roots of §(B) = 0 are assumed to lie outside the unit circle.
Xy is an exogenous time series whose effect needs to be taken
into account. 1In this paper x, will be an indicator variable

t
taking the values 0 and 1 to describe the nonoccurrence and oc-

currence of an intervention.

Especially useful indicator variables are the indicator

variable representing a step




(xés); xés) = 1 for t>T and xés) = 0 for t<T)

and the indicator variable representing a pulse

(xép); xép) = 1 for t = T and xép) = 0 otherwise).

These simple indicator variables, together with the trans-

fer function w(B)/6(B), are capable of representing many differ-

ent forms of interventions. Several simple cases are given
below:
(i) change in level o000 O
y = w x(s) —0-0-8-¢
t 07t T
(i1) instantaneous change (outlier)
[
(p) “o
T
3
(iii) exponentially decreasing effect
[
w
t 1-6B 't LI
—o-eeo -
(iv) dynamic first order model effect
(gradually increasing effect, : e®®
e
converging to a constant) °®
w ° —9
y = 0 X(S) 1—J
t 1-6p ¢t “o
—9-00—
T
(v) linearly increasing effect
W [
- 0 (s) °
Y 1-B *t °
[
o000 $o




(vi) anticipatory effect

-w,B w
1 2 (p)
= _ 4+ VY— I X 1.4
Ye [1-53 1 - 6. F| t (1.4)
1 2
B _ 2 3 2 2_2 (p)
= [... w161 B w161B w1B + Wy + w262F + wzdzf‘ +...] X,
where F = B_1 is the forward shiftoperator, i.e., Bm>ﬂ¥ﬂ = xéf&.
o
() o
2 . °
29
T o?®
o
) “4
o

The effects of interventions such as the preannounced introduc-
tion of new taxes (for example the special sales tax on new cars

in Austria in 1969, or the value added tax in 1973) can be mod-
elled by (1.4).

(vii) The intervention model can be extended to cover the

additional effeect of several exogenous variables (or indicators)

Xg = (XqeXop - o0 Xpy)

where wi(B) and ai(B) (1 <i<m) are polynomials in B as dis-
cussed before. Detailed description of intervention models
and their application to environmental problems is given by

Box and Tiao ([2,3]), Tiao, Box and Hamming [7].




2. Effect of interventions on time series forecasts

In this section optimal forecasts for future observations
from model (1.1) are derived. Furthermore the bias introduced
by ignoring the deterministic intervention part of the model is
computed. The results are interpreted and the adaptivity (sen-
sitivity) of forecasts from ARIMA models to step changes and

outliers is discussed.

Theorem: Assume that the observations follow the model

discussed in the previous section

z, = V(B)xt + w(B)at (2.1)
where

v(B) = w(B)/S(B)
and

y(B) = 6(B)/¥(B)

{xt} is a deterministic indicator sequence known for all t
(such as step or pulse indicator), {at} is a white noise se-

guence.

Then it can be shown that the #-step ahead minimum mean

square error (MMSE) forecast of Z 4o is given by

5 (2) (%) '
) = T ) B - T . 2.2
zn( ) ng j+1zn—j + vl )[xn+2 igo j+1xn—J ( )
where
-1
(L) _ (2-k)
™ = Mypgoq * k§1 T 5 (2.3)

and the ﬂj-weights are the coefficients in
m(B) = 1- ) TerJ

and given by

T (B) P(B)/6(B) = I[y(B)] | . (2.14)



Proof: Model (2.1) can be written as

= v(B)m(B) x + a (2.5)

m(B) z n+e ¥ 2nsg

n+4%
It is easily shown (see for example Box and Jenkins [1], page
126) that the minimum mean square error forecast of Z g given

observations up to time n, is the conditional expectation

E(zn+2|zn’zn—1"")" For 2£=1, (2.5) is given by
Zn+t Jgoﬂj+4 Zn-9 * V(B)[xn+1_ ) TTj+1 n- j] * ansq-

Since the expectation of a future shock is zero, the one step

ahead forecast is given by

2 (1) = J m..,2z__. + v(B)|x -} ] (2.6)
n 350 j+1 “n~j n+1 330 j+1 *n- j-'

The proof of the theorem is completed by induction. Assuming

that (2.2) holds for 2-1, we show it is true for %.

The conditional expectation of z is given by

n+2%

Qn(l) = E ﬂk.zn(z_k) + j§0’n2+j Zn-j + v(B)T(B) S (2.7)
Substitution of (2.2) for 2n(1),...,2n(2—1) into equation (2.7)
gives
2-1 (2-k)
(2-k)
Z (L) = ) yom z .+ v(B)|x_ ., .- ) 7, X .
n k=1 k 350 j+1 n-j n+l-k 330 j+1 n-j
(2.8)
+ Y m,, .z _. + v(B)m(B)x
350 2+3 "n-3 n+
rearranging terms
(2 k)
2 () = ) |7, Z L z__ .
n 330 j+2 k341 n-j
(2.9)

221 (g-k)
+ v(B){x - + X .
n+ 9 ]%0[ j+ 9 kZ k"9+1 n-j




Using the relation in (2.3) leads to

A (2) (L)
= . . - . . . .1
2 () jgp'nj+1 2oy * v(B)[xn+2 jgp LB Xn-j] (2.10)

g.e.d.

Bias introduced by ignoring the intervention

If the intervention part of the model is ignored future
observations are predicted according to
z

L)y = ) i) :

* z
n 550 j+1 "n-j

and the bias in the prediction is given by

~ ~ ‘ [
B _(2) = z (&) -z¥(L) = v(B)[xn+R—-jgoﬂé+q Xn—j] . (2.11)

Expression (2.11) will help to illustrate the adaptivity of
forecasts from stochastic difference equation (ARIMA) models

with respect to interventions. First, we consider a

Change in level

at time T (i.e. v(B) = CPN and Xy = 1 for t>T and X = 0 for
t <T). Predictions are derived from time n (i.e. n-T >0 periods
after the change in level took place). We are interested how

the intervention n-T time periods ago affects the current pre-

dictions.
From (2.11) it follows that

_ ) () ()
B (%) ﬁvw0[1 T4 Ty “e ﬂn_T+1] . (2.12)

The following lemma will help in the interpretation of this

result.



Lemma: For nonstationary models (i.e. models which have
at least one root of ¢(B) = 0 on the unit circle) it can be
shown that

1 - 3 LA
j>1

Proof: By induction

for & = 1, m(B) = 1- J§ w.B) = ¢(B)/6(B)
.5, 1
1z
Since at least one root of ¥(B) = 0 is on the unit circle, it
follows that
Tm™(1) = 1- Z m = 0
j>1 J

-1
(2) (2-k)
1- 7 . = 1- ) [ﬂ IPEE SN B ]
-1
(2-k)
= 1= ) M., . .= 1y ™ yoom.
j31 I 2 kg5
-1 Z
= 1- ) T.,,_ o= 1- m. =0
51 3T oy K 551 )

Equation (2.12) and the result of the lemma show that non-
stationary difference equation (ARIMA) models adapt themselves
with respect to changes in the level; in the sense that even if
the intervention is ignored the forecast bias will eventually
approach zero if the intervention occurred some time before the

prediction is made.

Since the common model form for macroeconomic quarterly

series includes regular and seasonal differences (i.e. operators




_‘]0_.

(1 -B) and (1-Bu)) the predictions from such models will be
adaptive to changes in the level; the speed with which the fore-
casts adapt to the new level depends on the w~-weights of the

model.

0 has all its roots

1- ) 7. # 0)
j>1

ignoring the intervention will lead to a forecast bias which

If the model is stationary (i.e. ¥ (B)

outside the unit circle and therefore 7 (1)

even in the limit is non zero.

Sensitivity of model forecasts with regpect to outliers

If we consider the model for an outlier (zt = WwoX, + n, .
where X, = 1 for t = T and zero otherwise) the forecast bias
(2.11) for forecasts derived from time n (n-T >0 periods after

the outlier occurred) is given by

- (2)
B (&) = Wt Zpe1 C (2.13)
The effect of the outlier on the forecasts depends on how fast
(£)

the =

convergence of the m-weights depends on how close the roots of

-weights approach zero. Since w(B) = Y (B)/6(B), the

8(B) = 0 are to the unit circle. For invertible models (roots
of 8(B) = 0 outside the unit circle) the m-weights converge

fairly rapidly.

3. Stability analysis for selected Austrian economic variables

In this section we consider the following guarterly series:

gross national product (QWSSMR ... Bruttonationalprodukt zu
Marktpreisen)
total private consumption (CINSGR ... privater Konsum, insgesamt)

total gross investment in fixed assets (ITSSGR ... Bruttoanlage-

investitionen, inSgesamt).*

Time series models for these series are given in Ledolter,

Schebeck and Thury [5].

*
QWSSMR, CINSGR, ITSSGR correspond to databank labels of
the Austrian Institute of Economic Research. -
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In this part of the paper we discuss the stability of the
fitted time series models. 1In particular we address the question
if and how the last recession (from the fourth quarter 1974 on-
wards) affected the form of the models as estimated from empir-

ical data over the period 1954/1 to 1974/3.

To detect model changes we compare the forecasts made from
the model built on data prior to the suspected change (in this
case data up to and including 1974/3) with data actually occur-
ring. An overall test criterion which can be used to assess the
statistical significance of the differences between actual data

and forecasts is described below.

The f-step ahead forecast error from ARIMA models "P(B)zt =
e(B)at is given by
en(l) =z

neg " Zn R =an e Fvga gty Ay GO

where the yY-weights are given by the expansion Y (B) = 6 (B)/¥(B)

and {at} is the white noise sequence (sequence of random shocks)

with variance 02. The forecast errors made by predicting
Zn+1'zn+2""’zn+k with information up to time n, are denoted
by e' = (en(1)en(2)... e, (k)) and are given by

e = Wil (3.2)

where Y is the lower triangular matrix

r1 b
¢1 1
Yo ¥gop o0 1
and
9' = (an+1an+2 et an+k)
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Under the usual assumption of normally distributed shocks and
under the null hypothesis that the model up to time n is still

valid for t > n, the distribution of e is a multivariate normal

with mean zero and covariance matrix OZW‘P'. Thus, the statis-
tic
1 -1 1 -1 -1 1 K 2
_ ' ' - ' ot - ' —
Q= e = e W e=-7a'a L lag,y/017 (3.3)

follows a X2 distribution with k degrees of freedom. Expression
(3.3) shows that Q is the standardized sum of squares of the one
(1).

step ahead forecast errors an+j = Zn+j-_zn+j—1

The test criterion in (3.3) which has been used by Box and
Tiao [U4], Tiao, Box and Hamming [7] is an overall test criterion.
It is a "catch all" criterion which looks at discrepancies in a
general way and is not specific about the nature of the feared

discrepancy (alternative hypothesis).

We illustrate the use of this test statistic on the follow-

ing three economic series:
(a) QWSSMR

The model for the period 1954/1 to 1974/3 is given by
4 4
(1-B)(1-B )loqzt_= (1-.25B)(1-.43B )at; o= .0163 (3.4)

The predictions for the period 1974/4 to 1976/4 (9 predictions),
using the data up to and including 1974/3 and the model (3.4)
are given in Figure 1. The Q statistic is given by 18.24 which
compared to a X2 distribution with 9 degrees of freedom is sig-
nificant at the a = .05 level ‘XZ table value for a = .05 is
16.92). Both Figure 1 and the Q statistic show that model (3.4)
does not adequately represent the observations over the last 9

quarters.
(b) CINSGR

The model for the period 1954/1 to 1974/3 is given by



_‘]3_

(1—.6OB)(1+.24B3)(1—.56B4)at (3.5)

(1-B) (1~ Bu) log z,

0]

.0206

The Q statistic which incorporates the information from the next
9 predictions is 6.87. Compared to a X2 distribution with 9
degrees of freedom there is no reason to reject the null hypoth-
esis (i.e. to doubt the validity of model (3.5) for the last 9

observations).
(c) ITSSGR

The model for the period 1954/1 to 1974/3 is given by

(1—B)(1-Bu)logzt= (1-.66B+.33B3—.70Bu) a, (3.6)
c = .0579 .
The Q statistic is 3.74. Again there is no reason to doubt the

validity of the model for the period 1974/4 - 1976/4.

The conclusion from the overall test criterion is that the
model for QWSSMR has changed while the models for CINSGR and
ITSSGR remained the same for the period 1974/4 to 1976/4.

In speculating how the model for QWSSMR has changed we have
to examine the data, in particular the forecast errors. The
standardized one step ahead forecast errors for the observations

1974/4 to 1976/4 using model (3.4) are given in Figure 2a.

A possible explanation for consistently higher & step ahead
forecast errors (Figure 1) is an intervention occurring after
1974/3. In this case the model for t > 1974/4 would be given by

(1-6,8) (1-9,8")
2z, = v(B)xt + m a
(1-8) (1-8")

¢ (3.7)

with 81 = .25, eu = .43 and V(B)xt of the form (1.3). Eqguation
(3.7) can equivalently be written as
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T(B)z, = V(B)T(B)x  + ag (3.8)
where
T(B) = (1-B)(1-Bu)/(T-61B)(1— euB”)
Furthermore, Tr(B)zt = ag where ag are the one step ahead fore-
cast errors for model (3.4) given in Figure 2a.
Thus, equation (3.8) can be written
al = vB)T(B)x, + a t > 1974 /4 (3.9)

t t t

(3.9) is in the form of a regression model. Parsimonious models

for the intervention effect have to be specified.

(a) A simple model describing the effect of the recession

is a change (decrease) in the level at period 1974/4 (compare
with case (i) of Section 1; w<0); i.e., v(B)xt = woxés) where

xés)= 1 for t > 1974/4 and zero otherwise. The equation

0o _ (s) _
ag = wo[n(B)xt 1 + ap t = 1974/4,...,1976/4 (3.10)
is fitted by least squares and the estimate of Wy is given by
by = -.0433 .

és) with ag indicates,

however, that the change in the level model (3.10) does not adequa-

A comparison of the fitted values &ON(B)X

tely describe the pattern of the one step ahead forecast errors.

(b) Model (3.10) implies that the impact of the recession
on gross national product is felt immediately in its full strength.
A more plausible assumption, however, is that the change in the
level is not sudden, but follows a first order dynamic model;
thus decreasing exponentially at first and then reaching a new
equilibrium level after a few steps (compare with case (iv) of

Section 1; w<0); i.e.,

W
_ . _ 0 (s) (s) _ i
V(B)xt = 7758 %t where Xy = 1 for t > 1974/4 and zero otherwise.
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The eqguation

_ 0 (s) -
ay = 7-gg ["Bx.] + a t = 1974/4,...,1976/4

(3.11)

is fitted by nonlinear least squarss and the estimates of wg

and § are given by

0
Comparing the fitted values T3 [ﬂ(B)XéS)] with the one step
B

ahead forecast errors shows good agreement.

The standardized residual sum of squares

;  1976/4 S R
— ) al = —~— X = 1.824
o t=1974/4 1-6B

Thus, the intervention model (3.11) accounts for (18.24-1.824)/
18.24 = 90 per cent of the Q statistic for QWSSMR.

4. Concluding remarks

The conclusions of this paper can be summarized:

(1) Simple difference equations and indicator variables such
as step or pulse indicators can be used to represent a

wide variety of different intervention effects.

(2) It is shown that the predictions from non-stationary time
series models, which usually provide a good description of
economic time series, will eventually adapt themselves to
the new level. The speed with which the forecasts adapt

themselves depends on the m-weights of the model.

(3) If data after the supposed intervention is available, an
overall criterion can be given which tests whether the

model has changed after the intervention took place. This



(4)

_.16....

criterion is applied to Austrian data and it is tested
whether the last recession changed the dynamics of the
estimated models. For total private consumption and
total gross investment in fixed assets no such change
can be found. For gross national product the hypothesis
of model stability, however, has to be rejected. A
simple first order intervention model can be shown to

explain most of the bias in the forecast errors.

If observations after the intervention are not available
one can sometimes use theoretical knowledge and incorpo-
rate it into the model. Forecasts for different scenarios
(i.e. assumptions about the expected effect of the inter-

vention) can be derived.
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Figure 1: B 2-step ahead forecasts of QWSSMR
from 74/3 for next 9 quarters (logarithm)

® observations (logarithm)
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Figure 2a: Standgrdized one step ahead

forecast errors a
t = 1974/4,...,197
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Figure 2b:

model (3.10)
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FPigure 2c:
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