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Abstract

The paper presentsbasic ideas of three of
the possible structuresof hierarchical control
for a dynamic system. All these structuresare
closed-loop, that is, they make use of feedback
in form of the statemeasuredin the controlled
system. Local decision units and a supremaI
unit (coordinator) exist in each of the hier-
archical structures,but they differ in the
tasks assignedto each level. The price co-
ordination method allows for relative autonomy
of the local units, which are being asked to
solve appropriateshort-horizon,dynamic prob-
lems in a repetitive way. In the other two
structuresthe local problems are non-dynamical,
but would be much less natural for a human
decision maker.

- iii -





r1ultilevel StructuresFor On-Line Dynamic Control

W. Findeisen

1. Introduction

Structuresof on-line dynamic control using decomposition

presentdifficulties unknown to static systems. The problem

lies in the use of feedback from the system in operation. In

steady-statecontrol it could be enough to use feedback in

form of measuredinputs or outputs of the systemelements

and to provide for an extremum of a current or "instantaneous"

performanceindex (Ref. 2,S,6,17). The dynamic optimization

needsconsideringat time t the future behavior of the system,

that is to consider an "optimization horizon". Since the

future behavior dependson both control and the initial state,

we cannot determineoptimal control input unless we know the

presentstateof the system. It means that if we wish to have

a control structurewith feedback from the reality this feed-

back must contain information on the statex(t}, (see Ref. 1,3,

7,13) .

We should not be misled by a possibility to obtain dynamic

optimization solution by iterations on the real system, for

example determining the best price trajectoriesp(t}, t L (O,T),

using a searchprocedure. Iterations could apply only to con-

secutive runs of a batch process (Ref. 9,1S). A certain class

of processesonly would allow such an optimization and even in

that case we would still be interestedin having a feedback

control structure in the course of a single run of the process.

As opposedto on-line control problems as they are con-

sidered in this paper, there exists an excellent coverageof

dynamic optimization methods using decomposition (see Ref. 8,

10,12,14,16). The two things should not be confused.
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2. Dynamic price coordination

In this section one of possible structuresfor dynamic

optimal control using both decompositionand feedback is pre-

sented (Ref. 7). Its distinctive feature is the use of

prices on inputs and on outputs of the system elementswith

the aim to achieve coordinationof the local decisions.

(i) The gLobal problem

Assume the optimal control problem of interconnected

system to be as follows

sUbject to

.
X. = f. (x. ,m. ,u.), i = 1, ••• ,N (state equations)

l. l. l. l. l.

y. = g. (x. ,m. ,u.), i = 1, .•. ,N (output equations)
l. l. l. l. l.

u = Hy (interconnections)

with x(O) given, x(tf ) free or specified.

(ii) Decomposition

Consider that in solving the problem we incorporatethe

interaction equation into the following Lagrangian:

L
N

= I
i=1

t
f

f . (x. ,m. ,u.)dt + f
ol. l. l. l.

o
< p,U - By > dt

where
dim u

< p,U - Hy > means I
j=1

p. (u-Hy) .
J J
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Assume the solution to the global problem using this

Lagrangianhas been found and it has provided for

x. , i = 1 , ••• , N optimal state trajectories
J.

A

i optimal controlsm. , = 1 , ••• , N
J.

U. , i = 1 , ••• , N optimal inputs
J.

A

i 1 , ••• , N optimal outputsy. , =J.

P solving value of Lagrangianmultipliers.

[f .(x.,m.,u.) + <p.,u. > - <q.,y.>]dtoJ. J. J. J. J. J. J. J.Q. =
J.minimize

Note that now our Lagrangiancan be split into additive

parts, thus allowing to form a kind of local problems:

If
o

(2)

where

y. = g. (x. , m. , u. )
J. J. J. J. J.

and optimization is subject to

x. = f.(x.,m.,u.)J. J. J. J. J.

xi(o) given, xi(t f ) free or specified,as in the original problem.

T "
H .. p.

J J. J.q. =J.

In the local problem the price vector p. is an appropriateJ.
part of p and qi is also given by p as

N

l.
i=1

Notice that we have put optimal value of price vector p

into the local problems, which meanswe have solved the global

problem before. Thanks to it the solutions of local problems

will be strictly optimal. There is little sense,however, in

solving the local problems if the global was solved before,
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becausethe global solution would provide not only p but also

x,m for the whole system.

To make the thing practical let us try to shorten the

local horizons and to use feedback there.

(iii) ｓ ｨ ｯ ｾ ｴ ｨ ｯ ｾ ｩ ｺ ｯ ｮ ｦ ｯ ｾ local ｰ ｾ ｯ ｢ ｬ ･ ｭ ｳ

Let us shorten the horizon from t f to ti' so that

(2) becomes

(3 )

t'
= Jf A Aminimize Q. [f . (x. ,m. ,u.) + < p. ,u. > - < q. ,y. > ]dt

J. oJ. J. J. J. J. J. J. J.

o

with x. (0) given as before, but the target state taken from
> J.

the global long-horizon solution, xi(t f ) = xi(ti).

For the local problem (3) we must of course supply the

price vectors p.,q .. It may be reasonableto use also ｾ Ｎ from
J. J. J.

the global solution, that is the "predicted" input value.

(iv) The use of feedbackat local level

The short horizon formulation (3) will payoff if we

will have to repeat the solving of (3) many times as opposed

to solving the global problem once only. Consult now Figure 1,

where the principle of the proposedcontrol structure is

presented.

Feedbackat the local level consists in solving the

short-horizonlocal problems at some intervals T 1 < t f and

using the actual value of measuredstatex*i(kT 1) as new

initial value for each repetition of the optimization problem.

This brings a new quality; we now have a truly on-line

control structureand can expect, in appropriatecases,to

get results better than those dependenton the models only.
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Xh-.-·ｾ

x.,

tlf

LOCAL LEVEL
(SHORT HORIZON)

H

Fig. , Structureof on-line dynamic
price coordination..

max Q.
J.

system

xi (T, )

system

What we do is more exactly as follows: at t= 0 solve
A

for [O,tf' ] with x. (O), apply control m. to the real
J. J.

for [O,T,], at t = T, solve max Qi fo: [T"ti] with

= x*i (T,) as measured,apply control mi to the real

for [T" 2T, J, etc. etc.

Note that we now have a gain from both decompositionand

shorteningthe horizon. The often repeatedlocal problems

are low-dimension and short-horizon.

The feedback algorithm just indicated would be referred

to as repetitive optimization scheme.
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We should mention disturbanceswhich act on the real

systemand were not yet shown explicitly in the formulations.

Disturbanceprediction would be used while solving (1) and

(3), that is the global and the local problems. And it is

indeed becauseof the disturbanceswhich in reality will

differ from their prediction that we are inclined to use

feedback structureof Figure 1.

(v) The use of feedback in coordination

The feedback introduced so far cannot compensatefor the

errors done by the coordination level in setting the prices p.

Another repetitive feedback can be introduced to overcome this

shortage, for example bringing to the coordinatoractual

values x*i at time ti, 2ti, ••• and asking the global problem

to be resolved for each new initial value. This structureof

control is presentedin Figure 1.

We should very well note that feeding back the actual

values of state achievedmakes senseif the models used in

computationdiffer from reality, for example becauseof
/

disturbances. Otherwise the actual state is exactly equal

to what the models have predictedand the feedback information

is irrelevant.

A doubt may exist whether the feedback to the coordinator

shown in Figure 1 makes sense,becausethe lower level problems

have to achievexi(ti) = xi(ti) as their goal and already use

feedback to secureit. It should be remembered,however, that
ｾ

the model-basedtarget value xi(ti) is not optimal for the real

systemand asking the local decision making to achieve exactly
ｾ

x*i(ti) = xi(ti) may be not advisableor even not feasible.

The coincidenceof feedback to coordination level with

times ti, 2ti is not essential. It might be advisableto

use this feedback and do the re-computationof the global prob-

lem prior to time ti, that is more often.
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(vi) Static eZementsin the ·system

The length of the global problem horizon t f has to be

matched to the slowest systemelement dynamics and the slowest

of the disturbances. The shortenedhorizon ti for the local

problems would in fact result from consideringrepetitive

optimization at the coordination level, for example as 1/10

of t f . It may then happen that the dynamics of a particular

systemelement are fast enough to be neglectedin its local

optimization problem within the horizon ti. This means, in

other words, that if we would take m. ,u. from the global opti-
J. J.

A

mization solution, the optimal state solution x. follows these
J.

with negligible effect of elementdynamics.

To make this assumptionmore formal let us consider that

the systemelement has been supplied with first-layer follow-up

controls of some appropriatelychosencontrolled ｶ ｡ ｾ ｩ ｡ ｢ ｬ ･ ｳ c.
J.

(Ref. 4,6). We are then allowed to assumethat c. determines
J.

both xi and mi of the original element and the optimization

problem becomes

(4 ) minimize Q.
J.

A A

[fa' . (c. , u.) + < p. , u. > - < q. , y. >] dt
J. J. J. J. J. . J. J.

where f Oi (·) is a reformulation of the function f oi due to

substitutingc. in place of x.,m.•
J. J. J.

Note well that although (4) will not be a dynamic problem

its results will be time functions. In particular c. will be
J.

time-varying control. This is due to time-varying prices
A A

p. ,q .•
J. J.

Let us repeat the essentialassumptionunder which the

dynamic local problem (3) reducesto the static problem (4):

the dynamic optimal solutions mi,ui,xi were assumedto be slow.
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(vii) The use of simpZified modeZs

In the describedstructureof on-line dynamic coordination

we have made no use till now of the possibility of having a

simplified model in the global problem which is being solved

at the coordination level at times 0, ti' 2 ti' etc.

The global problem may be simplified for at least two

reasons:the solution of the full problem may be too expensive

to be done, and the data on the real system, in particular

prediction of disturbances,may be too inaccurateto justify

a computationbasedon the exact model.

Simplification may concerndimension of statevector
c

(introduce aggregatedx insteadof x), dimension of control

vector (mc insteadof m) and dimensionsof inputs and outputs

(uc = HCyc insteadof u = Hy).

The global problem Lagrangianwill now be

i

N
=, 1 ft f foci c c c I tf

c c c cL = L (x. ,m. ,u. )dt + < P ,u - H Y > dt .1. 1. 1.
o 0

The simplified solution will yield optimal state trajectory
AC = (A C A C A c) d . I . f . ACx x 1-, X2 ' ••• , ｾ an opt1.ma pr1.ce unct1.on p. The

linking of those values to the local problems cannot be done

directly, becausethe local problems consider full vectors

x. ,u. and y ..
1. 1. 1.

We have to change the previous requirementxi (ti) = xi (ti)

into a new one

which incidentally is a more flexible constraint, and we also

have to generatea full price vector p:
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where R is an appropriate"price proportion matrix". The prices

composing the aggregatedpc may be termed "group prices".

We should note that functions y. and matrix R have to be
1.

appropriatelychosen. The choice may be made by model con-

siderations,but even with the best possiblechoice optimality

of overall solution will be affected, except for some special

cases.

(viii) Systeminteraonneationthrough storage elements

The system interconnectionsin Figure 1 were stiff, that

is an output was assumedto be connectedto an input in a

permanentway. The dynamic problem formulation gives an

opportunity to consideranother type of interconnection,a

"soft" constraintof integral type:

(u .. - Y1 )dt = 0
1.J r

which correspondsto taking input u .. from a store, with some
1.J

output Y1r connectedto the same store and causing its filling.

Asking for integral over [kt
b

, (k+1)tb ] to be zero means that

supply and drain have to be in balanceover each balancing

period t b .

A store may be supplied by severaloutputs and drained by

more than one subsysteminput. There may also be many stores,

for example for different products. If we assumethe same

balancingperiod for all of them the integral constraint

becomes

where u,y are parts of u, y connectedto the stores (thew w
stiffly interconnectedparts will be termed us'Ys).
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Matrices P,M show the way by which uw' Yw are connectedto

various stores. The number of stores is of course

dim My = dim Pu. A statevector w of the inventories canw w
also be introduced

w{kt
b

+ t)

ktb + t

f (Pu - My ) dT
W w

ktb

With both stiff and soft interconnectionspresent in the

system, the global problem Lagrangianbecomes

N
L = L

i=1

t f
f . {x. ,m. ,u. )dt + f

o
oJ. J. J. ].

< p,u - Hy > dt +
x x

+

t fk=--1
\'tb k
l. < n ,

k=O
{Pu - My )dt >w w

and we of coursecontinue to consider

x. = f. (x. , m. , u. ) ,
]. ].].].].

y. = g., (x.,m. , u. )
]. ]. ].].].

i = 1, ••• ,N

i = 1, .•• ,N

In comparisonwith the previous Lagrangiana new term has

now appeared,reflecting the new constraint. Note that prices
k

n associatedwith the integral constraintare constantover

periods t
b

. Note also, that if t
b

will tend to zero, the

integral constraintgets similar to the stiff one and the

stepwisechanging n will change continuously, like p does.

With two kinds of interconnectionsthe local problems

also changecorrespondinglyand they become
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[f .(x.,m.,u.) + < p.,u. >-<q.,y .]dt +
01 1 1 1 1 S1 1 S1

+

t
b

ｾｫ f< n ,
o

(P.u . - M.y .)dt >
1 W1 1 W1

where y . = g .(x.,m.,u.), y . = g . (x.,m.,u.) and optimization
S1 S1 1 1 1 W1 W1 1 1 1

is subject to'

.
x. = f.(x.,m.,u.)
11111

Xi (0) given, xi (t f ) free or specified.

A new quality has appearedin problem (5) in comparison

with (3): the inputs u . taken from the storesare now free
W1

control variables and can be shapedby the local decision

maker, who previously had only m. in his hand. The local

decisionswill be under the ｩ ｮ ｦ ｬ ｾ ･ ｮ ｣ ･ of prices p and n (nO ,n1, ••• ),
where both p and nhave to be set by the solution of the global

problem.

The local problem (5) has no practical importanceyet:

it will make sensewhen we introduce local feedback and shorten

the horizon, like it was in the previous stiff-interconnection

case.

We shall omit the details and show it only as a control

scheme (see Figure 2).

Thinking about how to improve action of the coordinatorwe

made previously a proposal to feed actual x.(ti) to his level.

We have now additional statevariables, the inventoriesw. If

the price nk is wrong, the storeswill not balanceover

[ktb , (k+1)tb ]. It is almost obvious that we can catch-upby

influencing the price for the next period nk+1 and that we should

condition the changeon the difference ｾ ｛ Ｈ ｫ Ｋ Ｑ Ｉ ｴ ｢ ｝ - w.[(k+1)tb ],
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where w.(o) is a value measuredin the real system. This kind

of feedback is also shown in Figure 2.

" " A (k I )p,n'X
N

tO f

LOCAL LEVEL
(SHORT HORIZON)

H

T 1

COORDINATION LEVEL'
(LONG HORIZON)

XNｲＺｴｾｉＭＢＧＢ
o T1

Iil. 1 'Uw1

I
I...

Fig. 2. ｏ ｮ Ｍ ｬ ｩ ｑ ｾ dynamic price coordination
in a system containing stores in
the interconnections.
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(ix) Conclusions on dynamic price coordination

Time-varying prices have been shown to be a possible

coordination instrument in a multilevel structureof on-line

control.

Although the local problems may be formulated as short-

horizon and each of them has low dimension, the coordination

level must solve the global problem for full horizon in order

to generateoptimal prices and the target statesfor the local

problems. Simplified global model may be used in appropriate

cases.

Price coordinationstructureapplies to systemswith stiff

interconnectionsand also to interconnectionsthrough storage

elements.

Analytical solutions of the dynamic problems involved are

not needed, thereforewe are by no means restrictedto linear-

quadraticproblems.

3. Multilevel control basedupon state-feedbackconcept

The literature on optimal control has paid considerable

attention to the structurewhere the control at time t, that

is m(t), would be determinedas a given function of current

statex(t). Comprehensivesolutions exist in this area for

the linear systemand quadraticperformancecase, where the

feedback function proved to be linear, that is

m(t) = R(t) x(t)

where R(t) is in general a time-varying matrix.

Trying to apply this approachto the complex systemwe

might implement for each local problem

(6) m. (t) + R.. (t) x. (t)
1. 1.1. 1.

where R.. is one of the diagonal blocks in the matrix R.
1.1.
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The result of such local controls, although all stateof

the system is measuredand used, is not optimal. Note that

for m. (t) we would rather have to use
1

m. (t) = R. (t) x (t)
1 1

that is we should make m. (t) dependenton the whole statex(t).
1

We can compensatefor the error commited in (6) by adding

a computedcorrection signal

(7)
ｾ

m. (t) = R. . (t) x. (t) + v. (t)
1 11 1 1

ｾ

The exact way to get vi(t) would be to generateit con-

tinuously basing-uponthe whole x(t). This would, however,

be equivalent to implementing state feedback for the whole

systemdirectly, with no advantagein having separatedthe

local problems.

Exactnesshas to be sacrificed. With this in mind we

may proposevarious solutions, for example (see also Figure 3).

ｘ ｴ ｾ ｲ Ｍ Ｍ Ｍ
o t'f

COORDINATION LEVEL
(FULL HORIZON, DYNAMIC)

LOCAL LEVEL
(FEEDBACK GAIN)

H

Fig. 3. Dynamic multilevel control based
on feedbackgain concept.
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(i) v. will be generatedat t = 0 for the whole optimization
1.

horizon t f (open-loop compensation);

(ii) v. will be generatedat t = 0 as before but will be re-
1.

computed at t=tf < t f , using actual x(ti), etc. (repetitive

compensation);

(iii) v. will not be generatedat all, but we implement
1.

instead in the local problems

(8) '"m. (t) = R.. (t)x. (t)
1. 1.1. 1.

where R.. is adjustedso as to approachoptimality. This
1.1.

structuremay be referred to as decentralizedcontrol. We

could think of re-adjustingR.. at some time intervals, which
1.1.

could be looked upon as adaptation. This adaptationwould

presenta way of on-line coordinationof the local decisions.

/
It may be worthwhile to mention that local decision

making basedupon (6), (7) or (8) makes more sensefor a

mechanisticimplementationthan for a hierarchy of human

operators,where the previous approachbasedon "maximization

of local performancesubject to imposed prices" seemsto be

more adequate,to what really happensin the system.

We should also rememberthat the feedback gain solutions

to optimization problems are available for a restrictedclass

of theseproblems only.

4. Structuresusing conjugatevariables

It is conceivableto base on-line dynamic control upon

maximization of the current value of the Hamiltonian, thus

making a direct use of the Maximum Principle.

For the complex systemdescribedas (1) at the beginning

of this paper the Hamiltonian would be

N
L fO·(x.,m.,u.) + < lji,f(x,m,u) >
'11.1. 1. 1.
1.=
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The interconnectionequation

u - Hy = u - Hg(x,m,u) ｾ 0

provides for u to be a function of (x,m) in the interconnected

system

u = ｾＨｸＬｭＩ

Therefore

N
ｾ］ - I

ｩｾＱ

f ＮＨｸＮＬｭＮＬｾＮＨｸＬｭＩ + < ＱＯｊＬｦ｛ｸＬｭＬｾＨｸＬｭＩ｝＾
oJ. J. J. J.

Assume the global problem has been solved (model-based)

using the Hamiltonian and hence the optimal trajectoriesof
A

conjugatevariables 1/J are known.

We are going to use the values of 1/J in local problems.

First let us note that having ｾ we could re-determine

optimal control by performing at the current time t

(9)
N

maximize .f!t' = - I
i=1

f . (x. Ｌ ｭ Ｎ Ｌ ｾ Ｎ [x. (x,m)] +
oJ. J. J. J. J.

"-

+ < 1/J,f[x,m,cjl(s,m)] >

where the problem is an "instantaneousmaximization" and needs

no considerationof final state and future disturbances. This

information was of course used while solving the global problem

and determining ｾ Ｎ

For the (9) to be performedwe need the actual value of

statex. We could obtain it by simulating systembehavior

starting from the time t, when initial condition x(t1) was

given, that is by using equation
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.
x = ｦ｛ｸＬｭＬｾＨｸＬｭＩ｝

with x(t
1

) given and m=m known for [t 1 ,t] from the previous

solutions of (9).

We could also know x(t) by measuringit, in the real

system (note that a discussionof model-reality differences

would be necessary).

Problem (9) is static optimization, not a dynamic one.

We would now like to divide it into subproblems. It can be

done if we come back to treating u - Hy = 0 as a side condi-

tion and solve (9) by using the Lagrangian

(10) L =
N

I
i=1

f .(x.,m.,u.) + < 1/I,f(x,m,u) > + < p,u-Hy >
01. 1. 1. 1.

where y = g(x,m,u).

Before we get any further with this Lagrangianand its

decompositionlet us note the difference with' respectto

dynamic price coordinationpresentedso extensivelybefore.

We have had there

t f N

L =f I f .(x.,m.,u.)dt
'-1 01. 1. 1. 1.. 0 1.-

subject to

< p,u.- Hy > dt

x. = f.(x.,m.,u.),
1. 1. 1. 1. 1.

i = 1, ••• ,N

It was a dynamic problem.

In the presentcase there are no integrals in L(·) and the

dynamics are taken care of by the values of conjugatevariables 1/1.

The differential equationsof the system are neededonly to

compute the current value of x in our new, "instantaneous"
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Lagrangian. No future disturbancesare to be known, no

optimization horizon considered- all theseare imbedded in ｾ Ｎ

Assume we have solved problem (10), using systemmodel

i.e., by computationand we have the current optimal value

of price p, that is p(t). We can then form the following

static local problems to be solved at time t

(11 ) maximize L. = - f .(x.,m.,u.) + < ｾＮＬｦＮＨｸＮＬｭＮＬｵＮＩ >
1 01 1 1 1 1 1 1 1 1m.u.

1 1

+ < p. ,u. > - < q. ,y. >
1 1 1 1

These goals could be used in a structureof decentralized

control, see Figure 4. The local decisionmakers are asked

here to maximize Li (·) in a model-basedfashion and apply

control mi to the systemelements. Current value xi is

neededin performing the task. The coordination level would

supply $. and the prices p.,q. for the local problem. They
1 1 1

would be different for each t.

Note that there is no hill-climbing searchon the system

itself.

Figure 4 would first imply that the local model-based

problems are solved immediately with no lag or delay. We

can therefore assume,conceptually, that the local decision

making is nothing else but implementationof a state feedback
A

loop, relating control mi (t) to the measuredxi (t). In an

appropriatecasewe could think of solving problem (10) analyt-

ically with ｾ Ｎ Ｌ p as parametersand the result would exactly
1

be the feedback formula (the feedbackdecision rule) •

If analytical solution of (10) is not the case we have to

implement a numerical algorithm of optimization and some time

will be neededto perform it. A discreteversion of our control

would have to be considered.
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COORDINATION LEVEL
(FULL HORIZON. DYNAMIC)

LOCAL LEVEL
max LN ( .) . (STATIC OPTIMIZATION)

H

Fig. 4.. Dynamic multilevel control using
conjugatevariables

Now let us think about feedback to the coordinator. We

might decide to let him know the stateof the systemat some

time intervals ti, that is x(kt f ). On this he could base
ｾ . ｾ

his solution ｾ for ail t ｾ kti and also the prices p for the

next interval [kti, (k+1)tf l. This policy would be very

similar to what we have proposedin the "dynamic price

coordination".

It might be worthwhile to make again some comparisons

betweendynamic price coordinationand the structureusing

both prices and conjugatevariables.

In the "maximum principle" structure the local problems

are static. The local goals are slightly less natural, as
ｾ . .

they involve < 1jJ.,x. > that ｾ ｳ the "worth of the trend".
ｾ ｾ

This would be difficult to explain economically and hence

difficult to implement in a human decision making hierarchy.

As the problem is static, no target state is prescribed.
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Note that both thesecasesavoid to prescribea state

trajectory. It is felt that in the dynamic control this

kind of direct coordinationwould be difficult to perform

if model-reality differencesare assumed.

5. Conclusions

There are severalpossibilities to structurea dynamic

multilevel control system, using feedback from the real

systemelementsin the courseof systemoperation. It is

not possibleat this,stageto evaluateadvantagesand draw-

backs of the alternatives. It may be easily predicted that

if the mathematicalmodels used do not differ from reality, all

structureswould give the same result - fully optimal control.

The clue is what will happen if models are inadr.quate. Quanti-

tative indications are essentiallymissing in this area.

Another feature of the structureswould concern their

use in a human decision making hierarchy. In that case it is

quite essentialwhat will be the local decision problem, con-

fined to an individual decisionmaker. He may feel uncomfort-

able for example, if asked to implement only a feedbackdecision

rule (as it happensin the "state feedback" structure), or to

account for the worth of the trend < ｾＮＬｸＮ > in his own calcu-
1 1

lations, as it is required in the structureusing conjugate

variables. For the human decision maker, the structurewith

price coordinationseemsto be most natural.

Table 1 shows a comparisonof structuresdiscussedin

this paper.



-21-

Table 1. Comparisonof dynamic coordinationstructures.

SYSTEM COORDINATOR LOCAL LOCAL
ITYPE PROBLEMS GOALS

DYNAMIC solves global problem, dynamic maximize performance,
PRICE ｳ･ｴｳｾｲｩ｣･ｳ p and tar- optimization achieve, target state
COORDINATION gets xi

STATE-FEEDBACK solves global problem, statefeed- '
CONCEPT supplies compensation back decision no goal

sigrial ｾ ｩ rule
, , ,

USING solves global problem, static maximize performance
CONJUGATE sets ｰ ｲ ｩ ｣ ｾ ｳ p andAcon- optimization inclusive of
VARIABLES

,
Jugatevariables 'l/J • < ｾＮ ,x. >

l. l. l.

-:J
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