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PREFACE 

L q - s c a l e  optimization models yise in manv area of application at IL4S.A. For 
example. juch models are useful for estimaang the economic value of introducing solar 
and wind generated elecmcd energ into an exiSting power grid and ior tieterm- 
eqrulrbrium prices for agricultural commodities in international trade as a function ot' 
nationai policies. Certain metho& of decomposition for solving juch optimization 
problems require the solution of a relativelv j m d  problem whose objective function 
is not everywhere differentiable. This paper gves an implementable dgorithm that 
can be used to ~olve such nonsmooth optimization problems. 





We pment an implcmentable algorithm for solving constrained optimization 
problems defined by functions that are not everywhen diifenntilhle. The method is 
based on combirung, modifylnq and extendiq the nonamooth optimization work of 
Wolfe. Lemarechd. Feuer, Poljak m d  Memll. It can be thought of as a generalized 
nset conjugate gradient algorithm. 

We &o introduce the class of weakly upper jemismooth functions. These 
functions are locally Lipschitz and have a jemicontinuous relationship between their 
generalized gradient jeu and their directional derivatives. The algorithm is shown to 
converge to stationary points oi the optimization problem if the objective and constraint 
functions are weakly upper 3emismooth. Such poinu are optimal points i f the problem 
functions are also iemiconvex and a constraint qualiiication is jatisfied. Under stronger 
convexity aslarmptiona. bounds on the deviation from optimality o i  the a@orithm 
iterates are given. 





.An Algorithm for Constrained 

Optimization with Senismoth Functions 

1. INTRODUCTION 

In this paper we ?resent an implementable algorit.hm for solv- 

ing very general constrained optimization problems of the follow- 

ing type : 

minimize f (X I  

subject to h ( x )  0 

where x c_ R" and f and i.l are real-valued functions that are "locally 

Lipschitz", i.2. Lipschitz continuous on aach Sounded subset of 

R". These problems are "nonsmooth" in the sense that the ?roblem 

functions f and h need not Se differentiable everywhere. Xowever, 

locally Lipschitz functions do have "generalized qradiencs" (Clarke 

[ 2,31 ) and a necessary optinality condition [ 31 is that che zero 

vector is 3 certain convex combination of generalized gradients 

of f and h. This "stationarity" condition is sufficient for op- 

timality if f and n are " semiconvex" [ 271 and a constraint qualifi- 

cation is satisfied. 

Our algorit,* combines, extends and inodilies ideas contained 

in Wolfe [19] , Feuer [ 10, I:], Poljak [31] and Yerrill (361 and, by 

means of a map defined in g61, deals with "corners" arising from 

constraints in the same manner as it handles discontinu~tics of 

the problem function gradients. It has accumulation ?oints tbat 

satisfy the above stationarity condition if f and h are "weakly l~p- 

per semismooth" as defined in section 2. Such functions have a 

semicontinuous relationship between their generalized gradients 2nd 

directional derivatives where this relationsh~p is sroperly weaker 

than the corresponding one for "semismooth" functions introduced 

in [L71 . 



The d i f f i c u l t i e s  i n  minimizing a  nonsmooth f unc t i on  a r e  w e l l  

d iscussed i n  [39] and [ l o ] ,  where implementable descen t  a lgor i thms 

a r e  g iven .  Wol fe 's  method [39] i s  f o r  a  convex f unc t i on  and Feuer 

(10,111 has  extended i t  f o r  f i nd ing  a  s t a t i o n a r y  p o i n t  of a  f unc t i on  

t h a t  is  t h e  pointwise maximum o r  minimum of a  fami ly  of con t inuous ly  

d i f f e r e n t i a b l e  func t ions .  In  [17] we snow t h a t  such func t i ons  a r e  

p roper ly  conta ined i n  t h e  c l a s s  of semismooth f unc t i ons .  The a l -  

gor i thm i n  [39] i s  c l o s e l y  r e l a t e d  t o  t h a t  of Lemarecfial (211 and f o r  

a  quad ra t i c  f unc t i on  t hese  both co inc ide  wi th  t h e  method of con- 

juga te  g r a d i e n t s  [I71 and ,  hence, have f i n i t e  t e rm ina t i on  i n  t h i s  

c a s e ,  a s  does an a lgor i thm of Shor [35 ,36 ,37 ]  . 
The descent  approach f o r  convex f unc t i ons  of Ber tsekas  and 

f l i t t e r  i l ]  has been made implementable by Lemarechal [ 191 and has 

been extended i n  theory t o  l o c a l l y  L i psch i t z  f unc t i ons  by Go lds te in  

[ 1 4 1  . Descent a l g o r i t A h s  f o r  min-max o b j e c t i v e s ,  which a r e  a l s o  
d i f f i c u l t  t o  implement, a r e  g iven  i n  Demjanov i51 and Go lds tz in  [I31 . 

Lemarechal [Z f ) ]  has a l s o  suggested a  method f o r  cons t ra ined  

convex programming problems which d e a l s  wi th  non l i nea r  c o n s t r a i n t  

f unc t i ons  by means of an exac t  pena l t y  f unc t i on  approach [U,9,  

28,401 . 
S h o r t s  [34] nondescent "subgrad ien t  algorit,hm" f o r  unconstra ined 

convex problems was extended t o  cons t ra ined  problems by Po l jak  [31] ,  

who developed a  method t h a t  uses  subgrad ien ts  of t he  o b j e c t i v e  func- 

t i o n  a t  f e a s i b l e  po in t s  and subgrad ien ts  of t h e  c o n s t r a i n t  f unc t i ons  

a t  i n f e a s i b l e  p o i n t s .  Th is  i d e a  is  r e l a t e d  t o  a  concept  employed 

by H e r r i l l  [36] f o r  so l v i ng  cons t ra ined  problems by means of a  f i xed  

p o i n t  a lgor i thm.  S im i l a r  ideas  were a l s o  developed by Hansen 1151, 

Hansen and Scar f  [16]  and Eaves [ 6 ]  f o r  so l v i ng  convex ?rogramming 

problems by f i xed  point - type a lgor i thms [7 ,33 ] .  These methods a r e  

cornbinator ia l  i n  na tu re  and ab le  t o  soL:re equ i l i b r i um problems t h a t  

a r e  more gene ra l  than convex programming problems. Our algorithm 

d i f f e r s  from t h e s e ,  because i t  i s  a  f e a s i b l e  p o i n t  method which de- 

?ends s i g n i f i c a n t l y  on t he  cons t ra ined  op t im iza t i on  na tu re  of t h e  

groblern. The method nay use in format ion from i n f e a s i b l e  p o i n t s ,  
bu t  t h e  o b j e c t i v e  f unc t i on  f  need no t  be eva lua ted  a t  such po in t s .  

Our -a lgor i thm employs a  l i n e  search  3rocedure a long d i r e c t i o n s  

t h a t  may be i n f e a s i b l e ,  and, hence, t he  method i s  no t  a  f e a s l b l e  



direction (IJl] algorithm. However, it is related to the similar 

feasible direction methods of Mangasarian [241 (see also [I21 ) and 

Pironneau and Polak [29] for continuously differentiable functions. 

As with ours, these methods have search direction finding subprob- 

lems that are quadratic programming problems involving convex com- 

binations of problem function gradients. Our method differs, be- 

cause there is no linear term in the subproblem objective related 

to complementary slackness and not all of the subproblem data need 

be changed from iteration to iteration. Because we do not assume 

differentiability, our subproblems may include more than one gen- 

eralized gradient from the same problem function. This can be a 

good idea even in the case of differentiable functions, because it 

can bring curvature information about the functions into search 

direction determination and, thas, have the potential for better 

than linear convergence. There are tests in our algorithm which 

attempt to smooth or balance the process of retaining or dropping 

accumulated gradient information, and hopefully allow the method 

to behave like a reset conjugate gradient [?2,151 algorithm when 

applied to smooth unconstrained problems. This process is flexi- 

ble and gives the algorithm the potential for a good rate of con- 

veryence. 

The algorithm is defined in section 3 where we also discuss 

how it compares to and differs from the methods in [I9 1 , [ 211 and 

p?] when applied to unconstrained problems. 

In section 4, under the assumption that f and h are weakly 

upper semismooth, we show that either our line search procedure 

is finite or f is unbounded from below on the set of feasible 

points. 

In section 5 we show stationarity of the algorithm's accumula- 

tion points. Under convexity assumptions, we give bounds on the 

deviation from o~timality of the iterates for a version of the 

algorithm which uses a gradient deletion rule that is especially 

designed for convex problems. 

Throughout this paper we mostly adhere to the notation in 

[:j2] and [ j 9 ]  . For example, conv (5) denotes the convex hull of a 



n P s e t  s c R , i. e .  x  3 conv (S )  i f  and on ly  i f  x  = 3 A .  xi where g  is  a 
i= 1 1 

D 
> O  and x i e S  f o r  i = 1 , 2  ,..., p and 4 .  =l. p o s i t i v e  i n t e g e r ,  X i  = 

i = l  

The s c a l a r  g roduc t  of x  = ( x ,  , x2 ,  . . . , xn)  and y  = (y  , y 2 ,  . . . , y n )  i n  
n - - 

n 
R , de f i ned  by 1 xiy i ,  is  denoted < x , y >  and t h e  Eucl idean no ra  

i= 1 

of x ,  de f i ned  by ( < x , x > ' / ~ ~ ,  is denoted 1 x 1 .  

2 .  DEFINITIONS AND PRELIMINARY RESULTS 

2a. Loca l l y  L i psch i t z  and Semismooth Func t ions  

Let  B be an open subse t  of R" and F  : R" - R be L i p s c h i t z  on a, 
i . e .  t h e r e  e x i s t s  a  g o s i t i v e  number K such t h a t  

J F ( ~ )  - F ( z )  2 ~ / y - z /  f o r  a l l  y , z  z B . 

I f  F  is  L i p s c h i t z  on each bounded s u b s e t  of Rn then  F  is c a l l e d  

i o c a l i y  i i ? s c h i t z .  

Let  x  E B and d  E Rn. A s  i n  C la rke  [ 3 ] ,  l e t  

P O  ( x ; d )  = l i m  sup [F (x+h+td) - F (x+h) 1 /t 
h- 0  
t + O  

and l e t  3F (x )  denote t h e  qene rcz l i zed  g r a d i z n t  of F  a t  x  de f i ned  

by 

aF (x )  = . ~ q  E R" : < q , d >  2 F0 ( x ; d )  f o r  a l l  d  E R"! . 

The fo l low ing  p ropos i t i on  c o l l e c t s  t o g e t h e r  u s e f u l  p r o p e r t i e s  of  

r"' and 3F. 

?reposition i . 
( a )  2F ( x )  1s a nonernpty convex compact s u b s e t  of R" [ 3 ]  . 

(b )  F 3 ( x ; d )  =max [ < q , d > : g ~ 3 F ( x ) ]  [ 3 1  . 



(c )  I f  {xk 1 c B converges t o  x  and gk E aF (xk)  f o r  each k  

then lgk(  ;K and each accumulation po in t  g  of {gk} 

s a t i s f i e s  g  E a F ( x ) ,  i . e .  aF i s  bounded on bounded sub- 

s e t s  of B and i s  uppersemicontinuous on B [31 . 
(dl Let y  and z be i n  a  convex subset  of B. Then the re  

e x i s t s  X E ( 0 , l )  and g~  aF(y+X(z-y)) such t h a t  

i. e.  a  mean value r e s u l t  holds [ I  81 . 
(e l  Let { tk l  + 0, (hk l  + 0  E Rn and F* be any accumulation 

0 f 

Then the re  e x i s t s  g  E aF (x )  such t h a t  

I f  l i m  [F (x+td)  - F ( x )  ] / t  e x i s t s  it i s  denoted by F' (x ;d)  and 
t+ 0 

c a l l e d  t h e  directional derivative of F  a t  x i n  the  d i rec t ion  d. 

Note t h a t  i f  F' (x ;d)  e x i s t s  then, by (e) above, the re  e x i s t s  

g  E aF (x)  such t h a t  

Def in i t ion  1 and Proposi t ion 2 to  follow a r e  given in  [27 I 
along with o ther  p roper t i es  and examples of semismooth funct ions.  

3ejinition I .  F : R n + R  i s  semismooth a t  x E Rn i f  

( a )  F  is Lipschi tz  on a  b a l l  about x 

and 



n  ( b )  f o r  each d  z R and f o r  any sequences C t k l c  R+, Z R "  

and igk} C R" such t h a t  

< t k )  4 0,  { 3  / 1 - 0  s R" and gk E 3F(x+tkd+ak)  , k  tk 

t h e  sequence [ < g k , d > )  has e x a c t l y  one accumulat ion po in t .  

I f  F  is semismooth a t  x  then  f o r  each d  E Rn, F '  ( x ; d )  e x i s t s  

and equa l s  l i r n  <gk ld>  where [gk }  is any sequence a s  i n  D e f i n i t i o n  1 .  
k+- 

9z f in : : ; i on  2 .  F  : R n + R  i s  weakly u p p e r  semismooth a t  x  t 3 n  

i f  

( a )  F  i s  L ipsch i t z  on a  b a l l  about x  

and 

( 5 )  f o r  each d  t 2" and f o r  any sequences { t 'i z R+ and k  
i g k i C  Rn such t h a t  [ t k l '  0  and gk 5 3F(x+ tkd)  it fo l lows  

t h a t  

l i r n  i n f  <gk ld>  2 l i r n  sup [ F ( x + t d )  - F  ( x )  ] / t  . 
k+- t ~ 0  

2 r o p o s 2 t i o n  3 .  

I f  F i s  weak ly  xppsr semiarnooth a t  x  then f o r  each d  : Rn, 

F' (x:d) e x i s t s  and t h e r e  e x i s t  sequences i r ,  ; C R+ and !gk: c R" 
L 

such t h a t  : r  1 + 0,  gk E 3F (x+r l<d) and k 

l i r n  < g  ,d>  = F '  (x :d )  . 
:c +a 

k 

r o o f :  Suppose i r k )  i 0 is a  sequence such t h a t  

l i r n  [F ( x + ~ ~ d )  - F  ( x )  ]/rk = l i m  i n f  [ r " (x+ td )  - F ( x )  ] / t  
:< -a t r O  

By ( d )  of P ropos i t i on  1 ,  t h e r e  e x i s t s  t, r (O , r ,  ) and g, s 3F(x+ tkd)  .< .< X 
such t h a t  



Then, by Definition 2, since {tk} + 0,  we have 

Lkn [F (x+-rkd) - F (x) I /fk = Lkn cgkf& - 2 l h  sup [F (x+td) - F (x) 1 /t . 
k +- k- tSO 

So. 

l h  inf [F (x+td) - F (x) ] /t = lim <gkf& 2 l h  sup [F (x+td) - F (x) 1 /t 
t+ O k- t$O 

and the desired results follow ~nunediate1y.o 

It is clear from the above definitions and propositions that 

the following holds : 

P r o p o s i t i o n  4 .  

If F is semismooth at x then F and -F are weakly upper semi- 

smooth at x. 

We say that F is weakly upper semismooth (semismooth) on XCR" 

if F .is weakly upper semismooth (semismooth) at each x E X. 

An example of a locally Lipschitz function F(x) for x E R  that 

is weakly upper semismooth on R but not semismooth at x =  0 is the 

following: 

and for each integer n = 1,2, ... 

It can be verified that F1(O;l) = 0  and aF(0) =conv {0,1) is the 

set of possible accumulation points of Cgkl where gk E 2F(xk) and 

{xkj + 0. Note also that the locally Lipschitz function -F(x) is 
not weakly upper semismooth at x = 0 .  

From [27, Proposition 31 and Proposition 4 we have the follow- 

ing : 

F ( x )  = 

P r o p o s i t i o n  5 .  

1 1 1 1 2  1 
(1 +,$ ( x - ~ )  n+ for -[I n - (T) n+ ] 2 x 2 z 

I 

1 1 2  1 
-(X- (-) ) for - 1 1 2  

. n n+ 1 + X 2 1 - (-1 n+ 1 1 . 

If F : R" - R is convex, then F is locally Lipschi tz, 



n n 
3F (x) = ig s R : F (y) 2 F(x) 7 <g, ;I-x> tor all y 5 8 1 for a& x R" , 

F is semismooth on Rn and, hence, F is weakly upper semismooth on 

R" . 
,?emark: 3F in Proposition 5 is called the ~ubdiffersnital 

[32] of the convex function ?.  We refer to the inequality in the 

expression for 3F as the subgradiznt inequality. 

2b. Stationarity 

Corresponding to the locally Lipschitz ontimization problem 

funct~ons f and 5 ,  define :4 : R"-zdn by 

This map was introduced and used by Merrill r36, Chapter 121 for 

problems with differentiable and/or convex functions. .. - n .  we say that x E R" is feasi3Lz if h (x) 5 0 and that x : R 1s - 
q z i r n a L  if is feasible and f (E) 5 f (x) for all fessible x. We - 
call ; c R" s : a z i o n a ~ y  if 2 is feasible and 0 5 1\1(;). The following 

necessary optirnality result is proved directly in [271 and follows 

from a nore general result in [3 1 : 

I 

If x is optimal then x is stationary. 

X(x) = 

From parts (a) and (c) of Proposition 1 ,  the definition of 

N and Caratheodory's theorem [32, Theorem 17.11 one can derive ths 

following result useful for establishing convergence of our algor- 

ithm: 

3f (x) if h(x) < 0 

1 conv I3f (x) U 3h(x) !, n for x c R  . 

!4 is bounded on bounded subsets of R", ?4 is uppersenicontin- 

uous on Rn, and for each x z R" !4(x) is convex. 

ah (x) 



3.  THE ALGORITHM 

For x  E Rn,  d E Rn and paramete rs  m l  and in2 s a t i s f y i n g  

0  c m 2  < m l  < 1 w e  d e f i n e  

LT = ( t l O  - : f ( x + t d ) - f i x )  r - m 2 t d 2 1  - h (x+ td l  2 0 )  - 

and 

where g  ( t )  f o r  t 2 0 is an element of  M(x+td) r e t u r n e d  by a  user -  

s u p p l i e d  sub rou t i ne .  For e a s e  of  e x p o s i t i o n ,  w e  assume t h a t  

g ( t )  E af (x+ td )  i f  h ( x + t d )  = 0 and w e  deno te  g ( 0 )  by gx. 

G i s  a set of  g e n e r a l i z e d  g r a d i e n t s .  A t y p i c a l  e lement  o f  G 

is denoted g  and a s s o c i a t e d  w i t h  each g .  E G t h e r e  i s  - a  y E R" such 
j  I j  

t h a t  g .  E M(y.1.  The a l go r i t hm  r e q u i r e s  t h e  s o l u t i o n  of  t h e  prob- 
3 3 n 2 

l e r n o f  minimizing I E / ~ = ~ ~ ~  zi  s u b j e c t  t o  3 -  & A . g . ,  5 i . 1 ,  
g,cG 1 1 3 1 

J 

A .  0 f o r  a l l  j .  The minimizing z  is denoted  by N r (G ) ,  i - e .  N r ( G )  
3 - 

i s  t h e  n-vector  i n  conv ( G )  n e a r e s t  t o  t h e  o r i g i n  w i t h  r e s p e c t  t o  

Euc l idean  d i s t a n c e .  S ince  t h i s  problem i s  a q u a d r a t i c  programming 

problem hav ing a  ve ry  s p e c i a l  s t r u c t u r e ,  e s p e c i a l l y  e f f i c i e n t  f i -  

n i t e  a l go r i t hms  such a s  i n  [38] can be des igned  f o r  i ts  s o l u t i o n .  

The a l go r i t hm  r e q u i r e s  a  s t a r t i n g  f e a s i b l e  p o i n t ,  i . e .  an 

xO 5 Rn ouch t h a t  h  ( x o )  2 0. I f  such a  p o i n t  i s  no t  immediately 

a v a i l a b l e ,  w e  may app ly  t h e  a l go r i t hm  t o  t h e  uncons t ra ined  prob- 

lem of minimizing h over  R". Under c e r t a i n  assumpt ions (see 

Theorem 5 . 2 ,  Coro l l a r y  5 . 3  and Theorem 5 . 5  below) t h i s  a l go r i t hm  

w i l l  f i n d  a  f e a s i b l e  p o i n t .  

I n  a d d i t i o n  t o  assuming h ( x o )  2 0,  w e  assume t h a t  go # 0 where 

go E a f ( x o ) .  Bes ides inl and m 2 ,  t h e  a l go r i t hm  r e q u i r e s  3 0 s i t i v e  

paramete rs  a l , ~ 2 , B 1 , s 2  and q  s a t i s f v i n g  a 2  < a l ,  q~ 1 and 
- 

s 2  5 e l  < I /  1 g O l q - l .  Given t he  above d a t a  and d e c i n i t i o n s  t h e  a l -  

g o r i t k !  is a s  fo l lows :  

S t e p  0  ( I n i t i a l i z a t i o n ) .  S e t x = x  G = C g O l ,  d = - g o  and : ' = g o .  0 '  



Step  1 (L ine Search)  . S e t  tL = 0 ,  s = + m  and t = + m  and choose R 
t > 0 .  

Loop: I f  t E LT s e t  t = t .  Otherwise s e t  tx = t .  
L 

I f  t E RT s e t  tR = t. 

I f  t x -  t < 3 ; / d l  go t o  End. Otherwise r e p l a c e  t by 2 t  i f  
L =  2 

+ = +m o r  by $ ( tL + \ )  i f  tN i s  f i n i t e  and go t o  Loop. -x 
End: S e t  y L = x +  t , d ,  

.A 
q L = q ( t L ) ,  y R = x + t  R d and q R = q ( t R ) .  

S tep  2  (Update x , G 1 6  and d ) .  

a .  Replace x  by yL.  

b. Replace G by G U{qL,qR) .  

c .  De le te  a l l  p o s s i b l e  q .  from G accord ing  t o  d e l e t i o n  
I 

r u l e s  I  o r  I 1  g iven  below s o  t h a t  i f  q  . z M ( y  . ) i s  
I I 

d e l e t e d  then  [ x  - y j  > 2 1 .  
d.  Compute N r  ( G )  . 
a .  I f  ~r ( G )  1 < 325q re? lace  6 by a l  jq and go t o  St?? 2c'. 

Otherwise s e t  d  = - N r  ( G )  , r e p l a c e  5 by min [ t  , d 1 ] and 

go t o  S tep  1 .  

Dele t ion  Rules. De le te  q .  5 M ( y . )  from G i f  
I 3 

I I a .  h ( y . )  > 0 
1 

and 

and 
. , f ( ; , . )  - f ( x )  + < q . , x - Y j >  < - Q 1 . : g x - q j l  

I I 

where 



Using the Cauchy-Schwartz i nequa l i t y  it i s  not d i f f i c u l t  t o  

e s t a b l i s h  the  following r e s u l t  t h a t  shows t h a t  t n e  delet ion- re- 

quirement of Step 2c i s  s a t i s f i e d :  

Lemma 3.1. I f  (3.2)  holds,  o r  i f  (3 .3)  and (3.41 hold,  then 

( 3 . 1 )  holds. 

u s :  Some insp i ra t i on  f o r  r u l e  I I a  cane from Elzinga and 

Moore's [ 81 c e n t r a l  cu t t i ng  plane method. 

I t  is  c l e a r  t h a t  (3.3) i s  s a t i s f i e d  i f  f  is  convex on a  convex 

s e t  contain ing x  and y  Thus, ( 3.3) need n o t  be checked i f  i t i s  
1 -  

known t h a t  f  is convex. The advantage of r u l e  I1 over r u l e  I ,  when 

appl ied t o  convex problems, is t h a t  the  former requ i res  s torage of 

two s c a l a r s ,  h ( y . )  and < g .  > i f  h ( y . )  > 0  o r  [ < g j , y j >  - f ( y j ) ]  i f  I I lY1 I 
h  (y ) 6 0 ,  ins tead of the  n-vector y  . Rule I I b  a l s o  has a  good 

I ' 
f e a t u r e  f o r  t h e  case when f  is p o ~ y h e d r a ~ ,  i . e .  , the  maximum of a  

f i n i t e  number of a f f i n e  funct ions.  In t h i s  case i f  x  and y .  a r e  on 
I 

t he  same polyhedral p iece,  i . e .  , f  ( x )  = f  (y . )  + < g j  ,x-y. > , then 
3 I 

r u l e  I I b  w i l l  not  drop g .  no matter how f a r  y .  i s  away from x .  Use 
3 3 

of t h i s  r u l e  causes the  polyhedral example due t o  M . J . D .  Powell m [391 

t o  be solved i n  a  f i n i t e  number of s t e p s ,  i f  t he  l i n e  search proce- 

dure i s  modified t o  f i nd  the  exact  minimum of f ( x + t d )  over t >  0 ,  

which i s  poss ib le  i n  the  polyhedral case.  ' 

These de le t i on  t e s t s  which a r e  appl ied before each N r ( G )  ca l -  

cu la t ion  cause s e l e c t i v e  dropping of o ld  general ized grad ients .  

When appl ied t o  unconstrained problems, t h i s  makes our method s ig-  

n i f i c a n t l y  d i f f e r e n t  from the  methods i n  [10,21,391, because these 

l a t t e r  algori thms accumulate grad ient  information u n t i l  Certa in 

d is tances a r e  too la rge  and then drop a l l  but the  most recent ly  

generated grad ient .  Our method a l s o  d i f f e r s  from those in  [10,21,39] 

because of the  way i t incorporates a  convergence va r iab le  5 t h a t  is 

automat ical ly  generated and forced t o  zero by t e s t s  involving user- 

suppl ied parameters. 

For the  case of quadra t ic  f  and no cons t ra in t  h the  f i n i t e l y  

terminat ing conjugate gradient  property i n  [39, Sect ion 6 1  is re- 

ta ined i f  our l i n e  search is modified t o  be exact  and a ,  happens 

t o  be so l a r g e  t h a t  no de le t i on  a t  Step 2c occurs. 



Our line search subroutine is a modification of the 

bisection-type procedure in [ 3 9 ]  which was modelled on the 

differentiable case. The idea of using two points from the line 

search rather than one appears to be new and is crucial in deal- 

ing with constraints. Our procedure has a stopping criterion 

depending on the convergence variable 6 and different decision 

rules from those in [39] due to the fact we work on nonconvex 

and/or constrained problems and LTnRT may have an empty interior 

4. LINE: SEARCH CONVERGENCE AND ASSOCIATED RESULTS 

Throughout the remainder of this paper we assume that f and 

h are weakly upper semrsmooth functions on S CR" where S 1s the set 

of all points in Rn lylng within a Euclidean distance of L.2 : g o  of  

In this section we discuss convergence of the line search 

procedure in Step 1 of the algorithm and give some implications 

of this procedure's termination conditions. This discussion de- 

pends on our parameter choices satisfying 0 < m2 < m < 1 .  
1 

Theorem 4 . 1 .  Suppose x E S o ,  I dl # 0 znd  6 > 0 .  Then t h e  

Zine s e u r c n  procedure  o f  S t o p  1 o t t h e r  

(rr l  r e r m i n a t e s  v i t h  tL, yL, y R  222 g sat is'^ T' 

R J ,J ang 

a n d  

, , - .  
9 ,  g e n e n ~ s e s  7 s ~ c i i e n s e  it. I - +m s u c h  : h a :  

. . if ( x +  tkd) l - - m  zrld h ( x  + tkd) 2 3 f g n  ;:_ k .  



?roo j: I f  every t generated by the  sea rch  s a t i s f i e s  t z LT 

and t # XT then 5 and tR remain +-, t h e  procedure does not  termin- 

a t e  and doubl ing causes t -  +-. In  t h i s  case  the  d e f i n i t i o n  of LT 

shows t h a t  h (x+ td )  5 0  f o r  a l l  t and f ( x+ td )  ---, s i n c e  -m21dI2 < 0 ,  

so ( b )  holds.  

Suppose ( b )  does not hold. Then some t e i t h e r  s a t i s f i e s  t f LT 

o r  t a RT. In  t he  former case ,  '% becomes f i n i t e ,  doubl ing ceases  

and b i s e c t i o n  beg ins ,  un less  the  procedure te rm ina tes ,  because 

t - t L = t 4 - \ i a 2 S / l d l .  I f  the  former case does not  hold,  i . 2 .  

t E LT, then t e LT n RT and t h e  sea rch  te rmina tes .  I f  t he  search  does 

not  t e rm ina te ,  then b i s e c t i o n  causes  - t L  t o  approach zero ,  because 

e i t h e r  5 o r  5 is rep laced by 4 ( \  + t) i n  each loop. 

Let  us suppose b i s e c t i o n  has begun, i. e . ,  f ( x+ td )  /--, and 

assume, f o r  con t rad i c t i on  purposes,  t h a t  t he  search  does not  t e r -  

minate. In  t h i s  case  Lhe i n t e r v a l  [ t L ,  51 converges t o  some t 2 0 .  
A 

Since tL : t  and f and n a r e  cont inuous on S,  Lhe d e f i n i t i o n  of LT 

shows t h a t  E LT, i . 2 .  

and 

A 

Since 5 f LT, t e LT and ty t ,  5! must take on an i n f i n i t e  number 

o f  d i s t i n c t  va lues g r e a t e r  than t .  I f  t z RT i n f i n i t e l y  o f t e n  then 

( $  - tL) = (5 - ti) - 0 f o r  these 5 and the  sea rch  must s t o p ,  be- 

cause a 2 j /  1 dl is 9 o s i t i v e .  So, suppose 4 r 2T f o r  only  f i n i t e l y  

many b i s e c t i o n s .  Then f o r  i n f i n i t e l y  many b i s e c t i o n s  we have 

There a r e  two cases  t o  cons ider  depending sn whether o r  not  x + +  d 
3 

is f e a s ~ b l e  in f  Fn i t e l y  o f t cn .  



Case I. Suppose for infinitely many tN we have 

Then g(tx) s ;h(x+t d) and combining (4.6) and ( Q .  8) with the fact ?.I 
that tN > ^t gives 

Thus, since h is weakly upper senismoot5 and g ( 5 J  E jh(x+id+ ($q-e)d), 

lin +nf cg(t ) ,d> 2 lia 5up 
4 >!I . 

N - - 
t 7+ t  t,] t t:J-t 

Bu .~  this contradicts (4.7) , because -m, d 1 L < O .  

Case 11. Suppose for infinitely many 5 (4.8) does not hold. 

Then g (%) E 3f ( x+hd )  and, since tX ,? LT, 

2 f (:c+hd) - f (x) > -m2tx (dl , 

which combined with (4.5) gives 

Thus, since f is weakly upper semismooth and g (t) 5 3 f (x+td+ ( t -z)d)  , 

f (x+tyd) -f (x+td) 
lim _inf <g(t ) ,d;. 2 lim sup -- 

2 
2 - m 2 ; d J  . N - tNCt tN+t 5-t 

aut this also contradicts (4.7) , because m2 < m, and 1 dl # 0. 

Therefore neither case occurs and the search terminates. From 

various definitions and rules of tile algorithm it is easy to 

show that (4.1 ) through (1.4) hold at tarminati0n.o 



From the assumptions that h (xo) 2 0, 1 go 1 # 0 and 0 < B 2  
0 ,  < l/lgO1q-l. Theorem 4.1 and the rules of the algorithm it is 

easy to establish inductively that the following holds: 

Lemma 4 . 2 .  All values assigned to x, d,  6, yL and yR by 

the algorithm satisfy X E  So, Id( # 0, 0 < 6 (gO1, yLc So and 

YRE S-  

The next result shows that in the case of a convex problem 

we do not need the variable tN in the line search procedure, be- 

cause it may be replaced by tR wherever it appears, since if 

t f! LT then t E RT. 

Theorem 4 . 3 .  I f  f and h a r e  c o n v e z  f u n c t i o n s  on Rn t h e n  

e v e r y  v a l u e  o f  t g e n e r a t e d  b y  t h e  l i n e  s e a r c h  p rocedure  s a t i s -  

f i e s  t E LT URT. 

P r o o f :  If t E LT we are done. So, suppose t g! LT. Then either 

If (4.9) holds then g(t) E af (x+td) and, by the convexity of 

h, the subgradient inequality and the feasibility of x, we have 

Combining (4.9) and (4.1 1 ) yields 

If (c.9) does not hold then (4.10) holds and g(t) E af(x+td). 

By the convexity of f and the subgradient inequality we have 



Combining (4 .10)  and (b . :3 )  g i ves  

E i t h e r  by ( 4 . 1 2 )  o r  by ( 4 . 1 4 )  and t h e  f a c t  t h a t  m2 < m, we 

have 

2 2 
<g  ( t )  , d >  2 -m2 Id1 > -in, d 1 , 

In  o r d e r  t o  d e r i v e  convergence r e s u l t s  f o r  t h e  a l go r i t hm i n  

t h e  nex t  s e c t i o n  we need t h e  fo l lowing lemma, which does n o t  de- 

pend on t h e  convergence assumptions o f  s e c t i o n  5. It g i v e s  t h e  

reason f o r  augmenting G wi th  a gR  s a t i s f y i n g  ( 4 . 4 )  where m, < 1 .  

A s i m i l a r  r e s u l t  f o r  m, 2 1 / 2  is g iven  i n  [391 . 

Lzmma 4 . 4 .  Let  d = - N r ( G )  be a sea rch  d i r e c t i o n  used a t  S tep  1 

t o  gene ra te  a g t h a t  is added t o  G a t  S t e p  2 5  t o  form G+ = G U I gL ,gR j  B 
and suppose no g .  is d e l e t e d  from G+ a t  S tep  2c. Le t  d+ = - N r ( G + )  

I 
be computed a t  S tep  2d and suppose c z m a x  ( g . 1  : g .  z G + } .  Then I I 

P r o o f :  By assumption 

SO, 

and 



Recall t h a t  0  < m l  < 1 and Id1 #O,  so  by ( 4 . 4 ) ,  ( 4 . 1 6 )  and (4 .17)  

w e  have 

and 

a  + b  = l g R + d I 2  > o . ( 4 .  ~ 9 )  

SO, f o r  u E R ,  

2  - 2 a u  + (a+b)u 
2 

(u(-d) + ( l - u ) g R I  ' lgRl 

is a  s t r i c t l y  convex f unc t i on  of 2 with a g l o b a l  ninimum a t  

and, t he re f  o r e ,  by ~ 4 . 1 8  1 and (4.19) , wi=h a  cons t ra ined  ninimum 

f o r  ;r [O, 11 a t  

So, i f  a: 0 ,  t hen ,  by (4 .16)  and ( 4 . 3 ) ,  

Supgose a >  0. Then 

From ( 4 . 1 6 )  and (4.171 w e  have 

2 2 
a  - b =  kRl - d l  1 



~ f i u s ,  from (4.18) and (4 .19 ) ,  

By assumption czmax I : / d l , l g R l l r  SO,  by ( " . 1 6 ) ,  ( 4 . 1 7 )  and t h e  

Cauchy-Schwartz inequa l i ty  , 

Combining ( 4 . 2 1 ) ,  ( 1 . 2 2 )  and (4.23) g ives 

2 2 2 2  
rnin p ( - d )  + (1-u)gRl2 1 - d l  ( 1  - [ ( l -m , )  Id1 /4c 1 ) .  ( 1 . 2 4 )  

0 1 ~ 5 1  - - 

The des i red  r e s u l t  then follows from (4.15) , ( 4 . 2 0 )  and ( 4 . 2 4 )  . 0 

'qemarks: Lemma 4 .  4 a l s o  holds i f  any gi is dele ted from G, f o r  

which .\ = O  where -d=Yr(G)  - i h i q i  L A i = !  and i i 1 0  f o r  a l l  i. 
j - 

gi eG i 

Thus, such g may a l s o  be de le ted  a t  Step 2c and t h i s  devrce can 
j 

be used t o  keep the  number of elements in G bounded, because, by 

Caratheodory's Theorem, N r ( G )  can be ex?ressed a s  a convex combina- 

t i o n  of n + 1 o r  l e s s  elements of G. 

Lemma 4 . 4  a l s o  holds i f  G+ = ~ y l g ~ ) ,  SO gL need not be 

added t o  G a t  Step Zb, but in  order t o  implement de le t i on  r u l e  

IIb gL s u s t  be saved, because it rep laces gx when .\ rep laces x .  

'rJe conclude from Lennna 4 . 1  t h a t  i d ,  is l e s s  than a f r a c t i o n  

of ( d l  and t h a t  i f  there  is an i n f i n i t e  number of consecutive i ter-  

a t ions  where each - N r ( G )  computed a t  Step 2d is a search d i r e c t i o n  



d ,  no s i g n i f i c a n t  g  is dele ted from G and a l l  Ig.1 a re  uniformly 
j I 

bounded then Id ( + 0.  This idea is  used i n  the next sec t ion  t o  

show t h a t  5  4 0 when f  ( x )  and g  cM(y) a r e  uniformly bounded f o r  a l l  

x  and y  generated by the  algori thm. 

5. CONVERGENCE OF T I E  ALGORITHM 

Throughout t h i s  sec t ion  we assume t h a t  each execution of t h e  

l i n e  search procedure of Step 1 terminates and t h a t  the  following 

boundedness assumption holds: 

There e x i s t s  a  pos i t i ve  number C such t h a t  

l g (  2, C f o r  a l l  y E S and g  E M ( Y )  . (5.1) 

Note t h a t  i f  S i s  bounded then a  value f o r  C is sup { lgl : g E M(y), 

y  E s which is  f i n i t e ,  because, by Proposi t ion 7 ,  M is bounded on 

bounded subsets  of R". Under t h i s  assumption Lemma 4..2 impl ies 

t h a t  a l l  g .  generated by the  a lgor i thm s a t i s f y  I g .  1 I C. 
I 3 

The next  r e s u l t  is t h e  p r inc ipa l  lemma from which t h e  var ious 

convergence theorems deal ing wi th s t a t i o n a r i t y  and opt imal i ty  

follow. I t  is t h e  only r e s u l t  i n  t h i s  sec t ion  t h a t  does not  de- 

pend on which de le t i on  r u l e  is used by t h e  algorithm. 

Lemma 5 . 1 .  Suppose (5.1 ) holds. Then e i t h e r  6 + 0 o r  f  (x)  +-a. 

Proof :  There e x i s t s  a number b 2 0 such t h a t  6 + r ,  because 

the  sukcessive values of 6 a r e  pos i t i ve  and form a monotone non- 

increas ing sequence. 

Suppose > 0. We must show t h a t  f  (x) + -a. Define sequences 

{xkl and Cdk) by s e t t i n g  k  = -1 a t  Step 0 and, a t  en t ry  t o  Step 1 

replacing k  by kc1 and then s e t t i n g  xk = x and 6k = 5. Note t h a t  

t h e  loop cons is t i ng  of Steps 2c-2d-2e-2c cannot be executed in- 

f i n i t e l y  o f t e n ,  because, s ince e l  6q-1 2 e l  lgO I q - '  < 1 ,  t he  5-change 

a t  Step 2e would imply t h a t  6 + 0 ,  a cont rad ic t ion .  

Thus, t h e  sequences !xk) and E6k1 a r e  i n f i n i t e ,  /dk l  + ?i and 

we may assume without l o s s  of genera l i t y  t h a t  a l l  e x i t s  from Step 

2e a r e  t o  Step 1 .  Now w e  show, by cont rad ic t ion ,  t h a t  { f ( x k ) ) +  --. 



Suppose { f  (xk)  ) is bounded from below. From ( 4 . 2 )  with x ~ + ~  = xL 

and xk = x we have t h a t  

where, by S tep  ? e  and t h e  monotonici ty of { 6 ) ,  

Thus, { f ( x k ) )  is monotone nonincreasing.  So,  t h e r e  e x i s t s  a r e a l  

number f such t h a t  { f ( x k ) } + P .  By (5.2)  and (5.31,  f o r  i < L we 

have 

There fore ,  by t he  d e f i n i t i o n  of and t h e  t r i a n g l e  i n e q u a l i t y  we 

have f o r  i 2 2 

Since ;r2 < a ,  , w e  may choose rl such t h a t  ( a 2 / a  ) < r\ < 1 . Then, s i n c e  

{Skj  + 3 > 0 and { f  ( x k ) j  + ?, t he re  e x i s t s  an i n t e g e r  I such t h a t  f o r  

a l l  i > I 

and 

So, by (5 .4 )  and C5.6), f o r  L i > I 

Consider any g . t h a t  e n t e r s  G a f t e r  t h e  d e f i n i t i o n  of x I ,  i. e. 
3 

t he re  is an i 2 I + 1 such t h a t  xi- = X ,  6 i-, = 6 ,  xi = yL  and 

t h e  y . assoc ia ted  wi th g equa ls  yL  o r  yR. By ( 4 . 3 )  and ( 5 . 5 )  , 
3 j 

w e  have 



I f  such a g is dele ted from G then,  by Step 2c, the re  e x i s t s  an 
j 

I. 2 i such t h a t  

But, by the  t r i ang le  inequal i ty ,  (5.7) and (5.8) , we have 

which is a cont rad ic t ion.  Thus, no such g .  is deleted from G I  so 
3 

the only candidates f o r  de le t ion  from G a r e  the  f i n i t e  number of 

g j  
' s  t h a t  entered G a t  o r  before the de f i n i t i on  of xI. Therefore, 

the re  a r e  an i n f i n i t e  number of consecutive i t e r a t i o n s  where G i s  

replaced by G U{gL,gR), no g j  i s  deleted from G and, hence, by 

Lemma 4.4, s ince (g.1 2 C f o r  a l l  j ,  
3 

But t h i s  con t rad ic ts  (5.3 ) . So, {f (xk) 1 + -- when 6 > 0. 

From here on we assume f ( x )  j--, SO, by Lemma 5 . 1 ,  6 -r 0 and, 

thus,  f o r  i n f i n i t e l y  many algori thm var iab le  t r i p l e s  (x ,  G I  6 )  a t  

Step 2e we have ( N r  (GI  1 < 6 .  Each time ( N r  ( G )  1 < 6 occurs l e t  an 

in teger  sequence index k be increased by 1 and def ine sequence 

quan t i t i e s  xk = x, Gk = G and 6 k  6 .  Note t h a t  C I ~r ( G k )  1 } -r 0, s ince  
k !6 + O .  Also, note t h a t  these sequences do not necessar i ly  cor- 

respond t o  the  ones defined i n  t he  previous proof. 

Our f i r s t  convergence r e s u l t  shows s t a t i o n a r i t y  of accumulation 
k points of ( x  1, when de le t ion r u l e  I is used. Consider the fo l -  

lowing condi t ion : 

f is bounded from below on So and t he re  e x i s t s  an 

c So and an i n f i n i t e  s e t  K g C 1 , 2 , .  . . , } such t h a t  
k {x  lkEK + z.  (5.9) 

i?emark: By the cont inu i ty  of f and h, (5.9)  holds i f  So i s  

bounded, f o r  then So is a lso  closed and, hence, compact. Also 

note t h a t  the  cont inu i ty  of h impl ies h (G) 5 0. 



Theorsm 5.2. Suppose :ha t  (5.1) and (5.9) h o l d  2nd t h a t  t h e  

a2gor1;tit.m u s e s  d e l e t i o n  r x l e  I. Then h(x) 10 and 3 EM(;), C . z . ,  - 
x i s  s s a t i o n a r y .  

? r o o f :  For each k z K ,  by Caratneodory's theorem, tkere ex- 
k ists a positive integer p 2 n + 1 such that 

k 
P k  Pk ~r($) E con" i U (gL}) = conv i (J M(~:)) 
2= 1 2 =  1 

where for each 2 E I 1,2,. . . ,pk} , there is a j depending on 2 such 
k that gL = k k g j r  y t = y .  and g. cM(y.) f l ~  . Then there exists an in- 

3 I I k finite set K1 C K and an integer p s 1 1  ,2,. . . ,n+li such that p = p 

for all k E K,, and, thus, 

k P 
Nr(G ) E conv ( L J  ;Cl(yt)) for all k E K1 . (5.10) 

e= I 

ay assumption (5.1 ) and Froeosition 7, M is bounded and upnersemicon- 

tinuous on S, so, tie map T : sP + 2Rn defined by 

P 
T ( Z ~ ~ Z ~ , . . . ~ Z  P ) = conv ( u M ( z I ) )  for ( z ~ , z ~ ~ . . . ,  zp) i sP 

2- 1 (5.11) 

is uppersemicontinuous on sP. By deletion rule I 

~ x ~ - ~ t l  2 o,6* for each I z {1,2 ,.... pi and k E K1 . 

k k Thus, since {x } k E K + s ~ S I  ( 6  ] + O  and K 1 c K I  

+ 2 for each 2 E (1,21-..1P1 

Combining ( 5.10) , (5.1 1 ) and (5.12 1 with the facts that T is upper- 
k 

semicontinuous on S? and Xr (G ) I ! - 0 gives 

;F' 
9 E conv ( u ~ ( 2 ) )  = conv (M(:)) . 

2=1 

By definition , ?4(x) is convex, so 0 E M(:) .a 
Combining Theorem 5.2 with Theorem 9 of [27] glves the following: 



Coro l  t o r y  5 . 3 .  Suppose, i n  a d d i t i o n  t o  t h e  assumptions of Theorem 5 . 2 ,  

t h a t  f  and h  a r e  semiconvex [27] on Rn. Then a t  l e a s t  one of t h e  

fo l lowing ho lds  : 

( a )  ; is opt ima l .  

( b )  { z  E R~ : h ( z )  < 01 is empty. 

The  remaining convergence r e s u l t s  a r e  f o r  convex problems, 

and,.hence, assume t h e  fo l lowing cond i t ion :  

f  and h  a r e  convex func t ionb  on Rn . (5 .13)  

The f i r s t  such r e s u l t  shows how an x  genera ted  by t h e  a lgo r -  

i thm approximates s a t i s f a c t i o n  of  sadd le  p o i n t  o p t i m a l i t y  condi-  

t i o n s  i n  terms of H r ( G )  and 5 .  This  r e s u l t  p a r a l l e l s  Theorem 7 

i n  1391 f o r  uncons t ra ined  problems and depends on our  d e l e t i o n  

r u l e  11. 

Theorem 5 . 4 .  Suppose (5 .1 )  and (5.13) h o l d ,  t h e  a l g o r i t h m  

u s e s  d e l e t i o n  ruLe 11 and x, G and 6 a r e  a l g o r i t h m  v a r i a b l e s  a t  

t h e  end o f  S t e p  2d. Let ~ = { j : g . E G n M ( y . ) ,  h( .y j )  $01,  - I  1 
J = E j  : gi c G n M ( y j ) ,  h ( y j ) .  > 01, and 1 > O  f o r  j E J U J  s a t i s f y  

2 j = 
N r ( G )  = Z -Xjgj and Z - A j  = I .  Defsne X E [ 0 ,1 ]  by  X = Z X j .  

jEJUJ j  eJUJ I EJ 

Then for a l l  z E Rn 

( b )  x ( ~ ( x ) - ~ ( z ) )  6 / N T ( G ) I I z - x I  + 2 9 6  if h(z) 2 0  
and 

( c x = 1 i f  h(x) 2 . 

Proof :  :Joke t h a t  j may be empty, bu t  J is nonempty, because 

x  i s  f e a s i b l e  and g x ~ G n M ( x ) .  S ince  g  E G  f o r  j  E J  was n o t  de- 
j  

l e t e d  a t  S tep  2c by r u l e  I I b  and (3.3)  was s a t i s f i e d ,  because f  

is convex, w e  conclude t h a t  (3 .4 )  was no t  s a t i s f i e d .  There fo re ,  

s i n c e  X .  > 0,  w e  have 
3 = 

Xj(f(y.)  - f ( x ) )  + X <g.,x-y.> 2 -X.z,Slg 7.1 for j E J . (5.74) 
3 1 3  I -  I X I  



S i m i l a r l y  from (3 .2 )  of r u l e  I I a  w e  have 

\ . < q , x - y j >  2 - 1 . o  514.  f o r  j  r  j . 
3  3  3 1  3  

~ l s o ,  s i n c e  h ( y . )  > 0 f o r  j  ~j and h ( x )  5 0 ,  w e  have 
3  

X . ( h ( y . ) - h ( x ) )  2 0 f o r  j  E 5 . 
3  3  

(5 .16)  

Adding (5 .14)  summed over  j  E J to  (5 .15)  and (5.16 ) summed ove r  

j  E j and us i ng  t h e  f a c t  t h a t  ( 9 .  1 2 C  f o r  a l l  j  g i v e s  
3  

S ince  f  and h  a r e  convex, g .  ~ a f ( y . )  f o r  j  E J  and g .  ~ a h ( y . )  
3  3  3  3  

f o r  j E 2, t h e  subg rad ien t  i n e q u a l i t y  imp l i es  t h a t  f o r  any z 5 R" 

X . ( ~ ( Z )  3  - f ( y . ) )  3  2 X . [ < g j , z - x ~ + < g j r x - y , > ]  1 1 f o r  j  E J ( 5 .18 )  

and 

( h  - h 1 1 .  g z - x  + g .  x - y ]  0 j $7 . (5 .19)  
3  3 3  

Adding (5 .18)  and (5 .19)  over  j  r  J U ~  g i v e s  

Adding ( 5 . 1 7 )  and ( 5 . 2 0 ) ,  and n o t i n g  t h a t  A , =  L l .  = 1 -  1 and 
~ E J  3  Ej  j  

n N r ( G )  - 1 X , g ,  g i v e s  f o r  all Z E R ,  
j r ~ u j  1 3  



which i s  equ iva len t  t o  t h e  f i r s t  d e s i r e d  r e s u l t  ( a ) .  

Now suppose h ( x )  2 -CalG. W e  show ( c )  by showing t h a t  3 is 

empty. Suppose 5 i s  nonempty, i . e . ,  t h e r e  is a  y .  corresponding 
1 

t o  g  . E G such t h a t  h  (y  . ) > 0. Then, by d e l e t i o n  r u l e  I I a ,  
1 3 

S i n c e g . ~ a h ( y . ) ,  t h e c o n v e x i t y  of  h a n d  (5.21) imp l ies  . 
1. I 

Hence, h ( y j )  6 0 ,  but t h i s  c o n t r a d i c t s  t h e  suppos i t ion  t h a t  

h ( y j )  > 0. Thus, 5 is  empty, X = 1 ,  and ( c )  ho lds.  

To e s t a b l i s h  ( b )  , we note  t h a t  i f  h ( z )  2 0  then ,  by ( a )  and 

the  Cauchy-Schwarz i n e q u a l i t y  

I f  X = 1 ,  then ( b )  fo l lows immediately from 15.22). I f  X < 1 then ,  

by ( c )  , - h ( x )  < Cal 6 ,  which combined wi th (,5.22) g ives  ( b )  .o 
Returning t o  t h e  sequence ( x k } ,  w e  next  show t h a t  any accu- 

mulat ion po in t  x s a t i s f i e s  saddle-point  cond i t i ons  i f  t h e  prob- 

lem func t i ons  a r e  convex and t h e  a lgor i thm uses  d e l e t i o n  r u l e  11. 
k  k k k  Def ine the  sequence { X } C [O, 1 ] corresponding t o  (x , G  , 6  ) 1 

by l e t t i n g  Ak = X where X is  t he  m u l t i p l i e r  a s  i n  Theorem 5.4 cor-  
k k k  

responding t o  (x,G1 6 )  when the  l a t t e r  q u a n t i t y  equa ls  (x  ,G , 6  ) . 
Theorem 5.5. Suppoee (5 .  I ) ,  15.3) and (5.13) o l d  and t h e  

a l g o r i t h m  u s e s  d e l e t i o n  r u l e  11. Le t  1 E [ o ,  11 be any accumula-  
k  t i o n  p o i n t  o f  IX 1 

~ E K '  
Then 



(d) ( Z E R "  :h(z) < 01 is empty if X = 9 ,  

and 

(e) ; is optimal if 1 > 0 . 

P r o o f :  Part (a) follows from the remark following assumption 

(5.9). 

, .k 
Since (xkjkEK+xI - ilNr(G")(1+0, i . ,  l + O  and f and h are con- 

k Gk .k k 
tinuous, (a) of Theorem 5.4 with (x,G,b,i) = (x , ,o , A  ) implles 

(b) . 
'c .k 

By (c) of Theorem 5.4, if h(x $-Call then h k =  1 .  T ~ U S ,  
if h (i) < 0, since + { dk} + 0 and h is continuous, we have 
k - 

X = 1 for all k sufficiently large and, hence, A = 1 . Thus, (c) 

holds. 

Parts (d) and (el are well-known [23] consequences of (a) , 
(b) and (c) .o 

Theorem 5.4 shows that if x* is optimal and the multiplier 

is positive then 

I 

Under the stronger assumptions given below we can obtain upper 
I 

bounds on the quantities I x-x* 1 and 1 / X  in terms of ( Nr (GI 1 and 5. i 
Theorem 5. S .  I n  a d d i t i o n  t o  t h e  a s s u m p t i o n s  of Theorsm 5 . 4 ,  

suppose  t h a t  x* is o p t i m a l  and t h a t  f i s  s r r o n q l y  c o n v s z  [ 30 ]  

on So i . z . ,  t h e r e  s z i s t s  a  number 9 > 7 s u c h  Char 

1 1 1 
f(I(y+~) 2 ~ ( y )  + jiz) - f(y-zl2 for all y,z E S ~  . (5.23) 

Then 



-27- 

x* is the only optimaL point 

and 

Furtnermore, if there ezists 2 E R~ such that h(2) < 0 then 

where 

Proof: Note that, by the convexity of f and h, So is a 

convex set so if y, z E SO then f(y+z) cS0. Part (a) follows 
immediately from (5.231, by contradiction, if we suppose y 
and z to be two distinct optimal points. 

Since x* is optimal, (5.23) with y = x and z =x* implies 

that 

Thus, 

Combining (5.24 1 and (b) of Theorem 5.4 with z = x* gives 

which, when multiplied by (X/u) 2 0, yields - 

where t = X 1 x-x* / , u = I ~r (G) / u  and v = ZXCir, G/v. Considered as a 

function of t the right hand side of (5.25) is a strictly convex 

quadratic, so an upper bound on all t satisfying (5.25) is the 



2 t 2 r o o t  + [u  + ( u  +4v) 1 .  ~ h u s ,  t 2 f [u + ( U  +4v) 'I, which, by t h e  d e f i -  

n i t i o n s  of t ,  u and v ,  imp l ies  ( b )  , s i n c e  X 5 1 imp i res  v 5 2Cal 3/11. - 
:.low suppose h(2) < 0 and no te  t h a t  ( c )  ho lds ~f X = 1 ,  be- 

cause f  (;) - f  ( x * )  - h(G) , - h ( % )  > 0 imp l ies  t h a t  t h e  r i g h t  hand - 
s i d e  of ( c )  is bounded above by one.  So, suppose X < 1 ,  vh ich  

by ( c )  of Theorem 5.4 imp l ies  

From ( a )  o f  Theorem 5 . 4  wi th  z =; and t h e  Cauchy-Schwartz i n e q u a l i t y  

we have 

Combining C5.26) and C5.27) with t h e  f a c t  t h a t  f  (x* )  2 f  ( x )  g i ves  

which is equ i va len t  t o  ( c )  . 
I n  o rde r  t o  have a lower bound on X t h a t  does not  depend on 

x we need an upper bound on 

Combining (.5.28) and (5.241 w i th  t h e  f a c t  t h a t  f ( x )  ; f  ( x j )  g i v e s  

t h e  l a s t  d e s i r e d  r e s u l t  ( d )  .a 
Our f i n a l  r e s u l t  shows t h a t  under t he  s t rong  assumptions of 

Theorem5.6we have t h a t  t h e  accumu la t~on  o o i n t  e x i s t e n c e  cond i t i on  
k (5.91 f o r  Cx 1 ho lds  w i th  ~ = C 1 , 2 ,  ... i and G = x *  and t h a t  a l l  t h e  

accumulat ion po in t s  of {Xk] a r e  bounded below by a p o s i t i v e  number. 

C o r o l l a r y  5. 7 .  I f  a l l  t h e  assumptions of Theorem 5 . 6  nold then 

l i m  i n f  ;\k 2 ( - h ( % ) ) / ( f ( i ) - f ( x * )  - h ( % ) )  > 0 
k+m 



and ixk> -x*. 

Proof: The results follow immediately from ib) , (c) and (d) 
k of Theorem 5.6 with (x,G,S,X) = ( x ~ ~ G ~ ~ ~ ~ ~ A ~ )  , since C6 ? - 0  and 

c I N ~ ( G ~ )  ( 1  - 0.0 
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