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PREFACE

This is a translation of a paper originally published
in Russian as "Volterra's System and the Michaelis-Menten
Equation", (op. 103-142), in V.A. Ratner (ed.) 1974.

Problems in Mathematical Genetics. USSR Acad. Sci.,

Novosibirsk. The paper was presented, and the translation
prepared, in connection with the IIASA Workshop on Analysis
and Computation of Equilibria and Regions of Stability,

July 21 - August 1, 1975, published as CP-75-8.
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ABSTRACT

A modified set of Volterra's differential equations
for dynamics of prey and predator populations is analysed.
This modification takes three effects into consideration:
1) Satiation of predator resulting in the inability of
either predation rate or predator reproduction rate to
‘increase infinitely with growth of prey numbers;

2) Limited resources of prey, as a result of which prey
populations cannot increase infinitely even in the absence
of predators;

3) Limited external resources (unrelated to prey) of
predators, as a result of which predator populations cannot

grow infinitely even when there is an excess of prey; 1i.e.

: bx 2
X ax FGLX €X

v = - dxy = _ 42
Y = 7Y Y Teax Y

Anaiysis of this set of equations gives many different be-
havioural regimes depending on the values of parameters.

This model as a whole can be used to demonstrate a
number of situations: situations in which the behaviour of
a predator-prey system is adequately described by Volterra's
equations; situations in which these equations cannot de-
scribe the dynamics of prey-predator interactions; situations
in which the system behaves similarly to Volterra's under

certain initial conditions but not under other conditions.
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1. Introduction

Growing environmental pollution caused by man's
activity, rapid increase in population, and realization
of the scarcity of natural resources raise enormous and
pressing problems in ecology. Of primary importance is
the problem of qualitative and quantitative prediction of
the consequences of man's impact on natural communities.
Particular problems involve determining the character and
dntensity of impacts which destroy stability of communities,
‘elaborating optimum criteria and determining optimal modes
of community exploitation and, finally, creating efficient
methods for controlling community activity. It is obvious
that observing natural phenomena alone is not enough to
solve these problems and that it is necessary to build
theoretical and experimental models of the processes oper-
ating in communities. These must be models on the basis
of which one could frame, test, verify and refute hypothe-
ses regarding functioning mechanisms of communities and
the separate units within them.

Trophic interrelations do not encompass all the community
processes but, according to present viewpoints, they
are decisive factors in determining the structure and
function of communities. It therefore seems expedient to
make trophic interrelations the object of modelling in the
first place. In the present case, the elementary modelling

object must be the population pair "prey-predator" and



the elementary behavioural phenomenom is the abundance
dynamics (stable regimes in the first approximation) of

such a system,.

The first models of population dynamics in the
prey-predator system were suggested by Volterra and
Lotka [1-2]. Later, the ideas conveyed in these works
were developed both in investigations on gqualitative
analysis of Volterra's generalized systems [3-6], and in
studies where the main emphasis was placed on concrete
biological mechanisms of population interrelations [7-9].
In the present paper a prey-predator model is developed
in which central attention is focussed on studying two
factors which seem to be of principal importance. First
is presented the analysis of a concrete mechanism of prey
and predator interrelations under which the predator is
satiated (prey being available in abundance), and therefore
neither the rate of prey consumption, nor that of predator
reproduction increase infinitely with the growth of the
prey number. Second, the analysis takes into account that
the number of prey is not the only external factor which
affects the dynamics of the predator number. The predator
population, even if prey is abundant, can be limited by
some other factors which are independent of prey resources,

e.g., by scarcity of suitable habitat.



2. The Michaelis-Menton Equation and a Prey-Predator System

The classical Volterra model assumes that the rate of
predator population growth increases, and that of prey de-

creases, linearly with the growth of both predator and prey:

X = ax - bxy
(1)
-cy + dxy

L<Q
n

where x is the number of prey, y is the number of predators,
and a, b, ¢, d are positive coefficients.

In such a system there are always fluctuations in the
number of predators and prey around the values (x0 = %, Yo
= %), with the amplitudes and period determined by the
initial conditions (Fig. I).

This model has two major disadvantages, one of which
is of a biological character and the other of a mathematical
one. From the biological viewpoint, linear dependence of
the rate of predation and predator reproduction on the num-
ber of prey is considered by many authors to be a very
crude approximation of reality which is true only within
some very narrow limits. From the mathematical viewpoint,
the main drawback of the Volterra system is the fact that
this system is not "robust." That is, the account of any
factors or effects not taken into consideration when build-
ing the model, results in qualitative modifications of

the system's behaviour. In particular, under such changes



there are no longer oscillations of numbers with arbitrary,
constant amplitudes and frequency depending only

on the initial conditions. Thus, contrary to its wide-
spread popularity, the Volterra model cannot explain

the interrelated oscillations of the number of prey and
predators with constant amplitudes and frequency which
are sometimes present in natural and experimental commu-
nities. If the actual nature of prey and predator inter-
relations really corresponded to the Volterra model, then
observed amplitudes and frequencies of oscillation should
change within unbounded limits bec;use of inevitable ran-
dom external impacts. In order to explain oscillations
of a stable character, one needs a model with a limit
cycle, that is, a model describing the dynamics under
which a system comes to the regime of stable oscillations
with constant amplitudes and frequencies from any initial
conditions.

The Volterra system is constructed similarly to the
equations of chemical kinetics. The processes of prey
reproduction and the natural mortality of predators are
considered as monomolecular reactions or, in other words,
as first order reactions the rate of which is proportional
to a reagent concentration (in the given case, proportional
to the prey or predator populations). Similarly, prey and
predator interrelations are considered as second order
reactions where prey are annihilated (and predators increase

their number) at a rate proportional to the number of each



of the interrelated populations.

Obviously, such an analogy between the processes of
predation and bimolecular reactions is very crude. In
fact, the kinetics of predation remind one not so much of
bimolecular reactions proceeding according to the law of
reacting masses, but rather of the mechanism of enzyme
reactions. Let us consider the situation in more detail.

In such a scheme the predator performs the role of an
enzyme which catalyses transformation of a substrate (prey)
into a product (excrements of a predator). The analog of
an enzyme is a hungry predator in this process, the analog
of an enzyme-substrate complex is a predator hunting for a
prey and a satiated predator, the analog of a dissociation
reaction of an enzyme-substrate complex is a prey's escap-
ing from a pursuing predator. On the whole, the process
looks as follows in the suggested scheme: the predator finds randomly
wandering prey and starts to pursue it (in chemical terms,
it binds a substrate). The predator then either lets the
prey escape or eats it, thus transforming the latter into a
reaction product, and itself reverting into an initial state
of hunger. At first sight, it does not seem right to
consider a predator pursuing a prey and a satiated predator
as being in the same state, but such an approach seems
justified in the first approximation and as a very rough

scheme (though still more subtle than that of Volterra).




According to this assumption a predation process is
completely similar to the mechanism of enzyme reaction
S + E <« [ES] -+ E + P, where S is substrate, E the
enzyme, ES the enzyme-substrate complex and P the reaction
product. Kinetics of this reaction comply with the
Michaelis-Menton equation, whose derivation can be found

in any chemical kinetics text (for example [10]).

y = -PNXY (2)

where in our case x means concentration of prey, y is the
concentration of predators, N is the analog of the Michaelis
constant (in this particular case a concentration of

prey where half of the predators would be permanently
hungry), bN is the maximum rate of predation per predator
concentration unit, b is a constant relating to frequency

of predator-prey collision, that is the same constant as in

the classical Volterra equation (1)*.

Assuming that the prey population in the absence of

predators increases8 exponentially, we obtain an equation

* In chemical kinetics the Michaelis-Menton equation is based
on the assumption that concentration of free substrate is
always higher than concentration of bound substrate, or,
equivalently, higher than the concentration of enzyme-sub-
strate complex. In terms of ecology it means that at any

given moment a relatively small proportion of a prey population
is pursued by predators. This assumption seems to be justified.



for the dynamics of prey numbers in the prey-predator

model:

Y = _ bN x y
X ax N + X or
) (3)
x = ax - PxXY
1 + ax

where o = 1/N.

For low concentrations of prey ( x << N), this
equation approximates the corresponding Volterra equation,
whereas for higher values of x, it differs favourably from
Volterra's in that it reflects the impossibility of infi-
nite increase of the predation rate with growth of the prey
population. In particular, equation (3) shows that at very
high prey population densities the rate of predation is

determined exclusively by the number of predators.

X = aXx - bNy = ax - By ( x >> N) . (4)

Let us consider now the dynamics of the predator
population. Based on Volterra's assumption that, first,
predator populations in the absence of prey undergo expo-
nential decay and, second, that a certain constant part
of the consumed prey biomass is converted into predator
biomass (it is not important whether it happens due to
growth or reproduction), one obtains the following equa-

tion for dynamics of predator population size



g = - dxy

Here, d/b is a ratio of conversion of prey biomass into
predator biomass.

When a prey population is small, this equation
corresponds to the Volterra equation. But when the value of
x is higher, the equation differs favourably from Volterra's
equation because it reflects the impossibility of
unlimited increase of predator reproduction rate with the
growth of prey population size. In particular, when the
number of prey is big enough (x >> N), the rate of growth
of the predator population will be determined exclusively

by its own magnitude
& % - cy + dNy = Dy (6)

where D is a biotic potential of predator, i.e., a speci-
fic rate of growth of predator population, taking into
account natural death rate when prey are in excess.

Thus we cbtain a system of equations describing the
dynamics of the interacting prey and predator populations

which is free from one of the main faults of Volterra's

system

;( = ax - b_XL (‘7)



y = -oy+ S (7)

In the obtained model, contrary to Volterra's system,
neither rate of predation nor growth rate of predator
population increase infinitely with the growth of prey
population, but rather are determined exclusively by the
quantity of predators when the number of prey is large
enough. *

It should be mentioned that the dependence of the
predation rate on the number of prey, which is apparent
from the proposed model, reminds one very much of the

dependence determined empirically by Ivlev [13]:

r = R (1 - e’EP

) (8)
where r is the predator's ration, i.e. biomass of prey
eaten by a predator per time unit; R is the limit ration,
i.e. ration when prey are in excess, P is the prey popula-

tion density. In both models the rate of predation

* The existence of a similarity between the dependence of
bacterial population growth rate on culture medium concen-
tration and the dependence described by the Michaelis-
Menten equation was mentioned by Monod [11], Noviek and
Szilard [12], and others. This is important, because it
suggests that in a phenomenological sense the process of
predation and growth of "predator" population could be
properly expressed also in those cases when the intimate
mechanism of interaction essentially differs from the
previously described one on which kinetics of enzyme reac-
tions or its "ecological" variant is based.
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when prey numbers are small is proportional to the product
of number of prey and predators. But when prey numbers
are larger, the predation rate is determined exclusively
by the quantity of predators. This assumption allows us
to assume that the properties of the system (7) considered
below, and the results obtained relate in considerable
part or even as a whole to the predator-prey system based

on Ivlev's equation. The latter, however, requires special

verification.
3. Study of the System
Let us study the system (7). We begin by finding the

equilibrium points of the system, i.e. the values of preda-
tor and prey population which, in the absence of external
effects, are constant. Then we determine the nature of
stability of these equilibrium points.
Out of the algebraic system:

a (l4ax) x - bxy = 0

-c (l+ax) vy - dxy = 0
one finds coordinates of two equilibrium points of the sys-

tem: o0 and a, where

_cC _ a d
0}; A{lx==—, y = B - d-ca}‘

o {x=0,vY
Point 0, similar to Volterra's system, is a saddle point
(See Fig. II). This is apparent without any special veri-
fication, since it is clear that predators in the absence

of prey are decreasing (i.e. the trajectory, coaxial
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with the ordinate axis, intersects the origin), and
reproduction of prey in the absence of predators is unlim-
ited (i.e. the trajectory, coaxial with the abscissa
axis, starts at the origin). To discover the stability
properties of point A, one linearises system (7) in the

vicinity of point a. Let

In that case:

- abxoy0 bx0

¢ = T3 t- n
(l+ax0) l+ax0
d¥, X

n o= .. .2 £
(l+ax0)

The characteristic equation of the system is:

abx.y -bx

040 - 0 agc - A —bc
(1+axy) L+ax, d

= =0
dy, ., a(d-ac)
U —Y A
(1+axg) b
2 _ ac ac(d-oac) _
or A a—g r o+ —g = 0.

The real part of the roots of the characteristic equation is
always positive and, therefore, the point 2 is always unstable.
It is not difficult to show that under 0 < o < 2% (V1 + % -1,

A is a focal point (Fig.II(i),II (ii)), but
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under 2% Vi + % - 1) < a < %, A is a node point (Fig.II (iii)).
Under o > %, the coordinates of point A become negative
having .no ecological significance (Fig.II(iv)).*

Since under o + 0 the system (7) is transferred into
the classic Volterra system (1) in which a corresponding
singular point is a center, it could be said that satiation
of predators in Volterra's system results in instability
of the nontrivial equilibrium point. That means that if in
Volterra's system oscillation in numbers of both predators
and prey could take place in the absence of external effects
for an indefinite period of time with an amplitude depending
on initial conditions, then in the system considered num-
bers of both populations in the vicinity of the equilibrium
point would fluctuate with ever growing amplitudes. To
understand the outcome it is necessary to consider the behav-
iour of system (7) under large values of x.

Under x >> 1/a system (7) has the following form:

X = ax - By
(9)

y = Dy

where B is the maximum rate of predation per unit of

* The latter inequality simply means that the maximum rate
of predator reproduction, when prey are in excess (d/a), is
less than its natural death rate. It is clear that under
these conditions reproduction of prey is alway unlimited,
but the predators die out.
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predator or, in other words, the maximum ration of the
predator; and D is the maximum net rate of predator
population growth with natural death rate or biotic
potential of the predator taken into account.

In order to determine the nature of the behaviour of
system (9), one finds the sign of the trajectories' curva-
ture on the phase plane, i.e. the sign of dzy/dxz. This
allows us to predict whether trajectories always return to
the region of low population numbers (x<x0, y<y0) passing
the focal point repeatedly, or whether under certain initial

conditions they go to infinity. We obtain:
dzy/dx2 =0 y = a-b X.

It is not difficult to see that the latter equation
means that a phase portrait of system (7) under a < D has
a shape seen in Figure II (i); and under 2% (1 + % -1l) > a
and a > D has a shape seen in Figure II (ii). The obtained
result may be interpreted in the following way: if the
biotic potential of a predator is less than the potential
of prey (Fig.II(ii)) it appears that the prey population
escapes from predator control, and the number of prey after
several oscillations begins to increase unlimitedly and
monotonically. The number of predators increases corre-
spondingly in an unlimited and monotonic manner, but at a
smaller rate. All phase trajectories go to infinity under

a-»>n

the line y = —5 — % It is worth mentioning that a simi-

lar effect of escape of prey from predator (or parasite)
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control is well known [1]. If the biotic potential of
the predator is greater than the potential of prey
(Fig.II(i)), prey could not escape from the predator and,
formally, in the model system there would be fluctuations
of predators' and prey's numbers for a long period of time
and with ever-growing amplitude. Actually that means that
in some sequential cycle of the unwinding spiral the tra-
jectory of the system will come so close to one of the
coordinate axes that due to random stochastic fluctuation
it will contact the axis and be absorbed by the latter.
This outcome is inevitable because with each cycle of the
spiral the trajectory will be more tightly pressed to the
coordinate axes. In terms of ecology, that means that in
a real situation corresponding to the proposed model, the
amplitude of fluctuations of predator and prey numbgrs
will increase so that with a minimum number of prey, either
the predator eventually dies out due to scarcity of prey
and the surviving part of the prey population reproduces
itself unlimitedly (the trajectory contacts the abscissa
axis), or the predator eliminates the entire prey popula-
tion and then, naturally, dies out itself (trajectory contacts

the ordinate axis).

4, Competition in Volterra's Model

The obvious weakness of the model considered is due

to the fact that it contains regimes responding to unlimited
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reproduction of either prey alone or prey and predators.
Thus, the behaviour of the system under great numbers of
predators and, particularly, of prey is obviously not
realistic because in fact neither predators nor prey can
increase their numbers indefinitely. To improve the situa-
tion, in addition to the previously described interactions
between predators and prey, it is necessary to take into
account effects restricting the unlimited reproduction of
populations, i.e. to put terms describing the effect of
intraspecific competition among prey and among predators,
respectively, into equations for the dynamics of numbers.

Competition here means decreasing reproduction or
increasing death rate with growth of density of the cor-
responding population. Mechanisms of competition could be
quite different and, respectively, terms describing effects
of competition could have various forms. Let us confine
ourselves to a simple assumption, often used in mathematical
ecology, that with growth of population numbers, reproduc-
tion linearly decreases or, alternatively, death rate
linearly increases. In other words, let us assume that com-
petition among prey in system (7) brings us to the following
system:

. _bxy 2

X = aAX- = €X

l+ax (10)
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Yy = -cy + Tqi— (10)

x = ax-—-2X
l+ax
(11)
- dx 2
y = -cy + I+ax _ MY -

It is worth noting that competition, expressed by the
term uy2 in system (11), is competition among predators not
for prey, because number of prey is hot included in the
term, but rather for any other resources unrelated to prey
but required by the predator (i.e. simple competition for
a territory).

Before considering systems (10) and (11), it is
necessary to recall the result one obtains when the term of
competition among prey is put into Volterra's model in the

same way:

X = ax - bxy - ex2
(12)

-cy + dxy ,

~
'I

and when the term of competition among predators is put

into it:

ax - bxy

b
N

(13)

y = =-cy + dxy - uyz-
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It is not difficult to show [15] that in the first
case when ¢ is small, the "center" type singular point a
in Volterra's system (1) is transformed into a stable focal
point. Moreover, the "saddle" type {x = a/e, y = 0} sinqgu-
lar point B, which expresses equilibrium number of prey in
the absence of a predator, appears on the abscissa axis.
Now the number of prey could not increase indefinitely
(Fig. Iv(i)). If € grows, the stable focal point first is
transformed into a stable node point (Fig.IV(ii)) and then,
under € = ad/c, it unites with the saddle point (Fig.Iv(iii)).
This latter combination of parameter values means that a
stable coexistence of predators and prey is impossible be-
cause the number of prey, due to limitation by external
resources, 1is so small that it can not support predators.

When competition between predators is taken into account
(13), the center of Volterra's system is also trans-~
formed into a stable focal point and, for y large enough,
into a stable node point, but no new equilibrium points
appear.

Competition between both predators and prey, taken into

account simultaneously, gives the system:

ax - bxy - ex2

b
n

(14)
2
Yy = -cy +dxy - uy .

The nature of behaviour of this system does not

differ from the behaviour of system (12) in a gualitative
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7
way under various combinations of values of parameters

e and p (Fig. III). Representative behaviours are shown

in Fig. IV.

5. Summary Effect of Predator's Satiation and Competition
among Prey

Let us now consider system (10)

Y = _bxy _ _.2
X aX l+ax EX
(10)
© - - dxy
Yy = cy + 1+ax

in which effects of predators' satiation and competition
among prey are taken into account. This system, similar to

system (12), has two equilibrium points:

c d a(d-ac) —eC}. _ a,
A X = o==/—— , ¥y = . ; B X ==y = 0.
{ d-ac b (d—ac)2 { € }

Let us consider the nature of the behaviour of the

system in detail under various parameter values. First note
that a point a2 has a biological meaning only if it lies in
the region of positive values of variables,

< a(d - ac) . (15)
c

Otherwise, point A departs from the first quadrant and chanées
from a saddle point to a stable node (Fig.VI(iii)). By
studying inequality (15), we can see that point B is always

a saddle and the condition necessary for stability of point a

consists of satisfying the inequality
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bay0
€ > —— .
2

(l+ax0)
This could be easily shown by linearizing the system
in the vicinity of this point. The stability condition of
point A attains the most obvious and easily interpreted
form in that interesting case when o is small (i.e. effects
associated with satiation of the predator are weaker than
effects of interaction of predators and prey, and terms of

higher order than the first one can be ignored along a).

Then the stability condition will be
€ > aa.

Thus, if competition is intense enough, point 4 is
stable (Fig.VI(i)) and the phase portrait of system (10)
is in a qualitative way, similar to the por;rait of system
(12) (Fig.Iv(i)). On the other hand, if competition is
not intense enough, point 4 is not stable. Nevertheless,
it is not difficult to see that trajectories could not go
into infinity: neither prey nor predators could reproduce
themselves unlimitedly because the number of prey is
limited by external resources and the number of predators
by the number of prey. Therefore, the existence of a
limit cycle is inevitable. 1In particular, the separatrix
line, which goes out from the saddle point B (Fig.VI(ii)),

will spiral into the cycle from the outside.
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Thus, with the fixed a,b,c,d, numerous Ppossible
values of parameters {e,o} are separated into three regions
(Fig.V), according to the three possible types of
behaviour of system (10). Under values of o and ¢ asso-
ciated with the region (iii) in system (10) a stable coexis<
tence predator and prey is impossible. The predator
always dies out and the number of prey is limited by the
external resources.

In region (i) a situation arises where with any

initial condition, the system undergoes damped oscillations

and comes to a stable coexistence of predato;-and.
prey (Fig.vI(i)). In region (ii) there are no points of
stable equilibrium at all, but there is a regime of
stable oscillations with constant frequencies and amplitudes.
The system also comes to this regime from any initial
condition (Fig.VI(ii)).*

The possibility of existence of a limit cycle in such
a simple and easily interpreted model is of. great interest
in itself. I would like to note that in Kilmer's work [7]

an ecologically interpreted stable limit cycle was obtained

* In order not to complicate the picture, we do not now

make a distinction between a focal point and a node point

and pay attention only to the fact of stability and instabil-
ity of a point. Actually, behaviour of the system in the
right lower angle of the region (i) and in the left upper
angle of the region (ii) will somewhat differ from the ones
shown (Fig.VI(i) and (ii), respectively). In the first case,
a trajectory will meet not a focal point, but a stable node
point. In the second case, an unstable node point (but not

a focal point) will be inside the stable limit cycle.
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only after introduction of many terms of high order into
the model and before that, according to Kilmer, there were
no concrete ecological models with meaningful stable limit
cycles.

As was mentioned above, the occurrence in nature or in
an experiment of stable interrelated oscillations of preda-
tors and prey numbers can be explained only if there is a
limit cycle in a corresponding differential equation. Probably,
some of the mutual oscillations of predator and prey numbers
which are observed in nature could be interpreted with
model (10).

On the other hand, it is necessary to make it clear
that system (10) could not explain all the situations where
correlated oscillations of predator and prey numbers are
observed. For example, it is quite clear that the stable
oscillations of Paramecium and Didinium laboratory populations
observed in the experiments of Gause [1l6] (when artificial
predation refuges and periodic reintroductions of prey were
employed) were not stabilized by the factor of competition

between prey for living space or other resources.

6. Effect of Predator Satiation and Intraspecific
Competition among Predators

Let us now consider the situation when there is no
competition in the prey population and when the size of the
predator population, even with an excess of prey, is limited

by a competition factor, such as living space.
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Let us consider system (11)

v = _ _bxy

X ax l1+ox

;= - dxy _ 2 (11)
Yy cy + l+ax HY®.

By setting expressions for x and y to zero we find

coordinates of specific points of the system:

b(d-ac) - 2 yaa -~ Q

X
1 2 uaa2
_ b(d-ac) - Q
¥y 2 pab
(16)
b(d-ac) - 2 yad + Q
X, 5
2 paa
_ b(d-ac) + Q
Y2 - — ’
2 uab
where
/., 2 2
Q =—\/b (d-ac)® - 4abdau (17)

First of all, it is necessary to note that the
necessary and sufficient condition for existence of two

positive equilibrium points is the inequality:

2
b (d-ac)
* “Zasd . (18)
Outside the regions determined by this inequality
system (11) has no singular points at all, because the
radicand in (16) and (17) is negative.

Consider system (1ll) under condition (18). With
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a + 0, and then with p + 0, it is not difficult to ascer-
tain that the point {xl,yl} in both cases corresponds to:
point A of the systems (13) and (7) respectively. Simi-
larly, the point ¢: {x3,y2} in both cases goes to infinity
along both coordinates. The stability test shows that
point ¢ is always a saddle point and an arm of a separatrix
line going to the right from the saddle point and asymp-
totically converging to y = D/u.

Proceeding from that, one imagines a phase portrait of
the system with ¢« > > p (Fig.VIII(i)) and u > > o (Fig.VIII(ii)).
[The inequality (18) of course, is retained; this stipulation
will no longer be repeated]. Consideration of these phase
portraits makes it clear that they differ‘from one another in
a qualitative way due to two peculiarities: First, by stability
of point a4, and, second, by behaviour of specific trajectories,
passing from the saddle point c¢. For example, the trajectory
going to the left from the saddle point passes to infinity
(Fig.VIII(i)) or does not (Fig.VIII(iii)). It is clear that
with a given o there must be some value of p such that an arm
of a separatrix line, going to the left from the saddle point,
returns to the saddle point from underneath. In other words,
in the space of the parameters {o,u} there must be two
separatrix lines: while crossing one of them the stability
of point A changes, while crossing the other there is a change
in behaviour of the specific trajectories passing from the
saddle point. To find the first separatrix line is not diffi- -

cult. It is enough to linearise system (1l1l) in the vicinity
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of point 2 and to obtain the expression of its stability:
u > abx;/(l+ax;)?2.

In case where o and u are small enough to permit terms
of second and higher order to be ignored, stability of a is

determined by a quite simple and easily interpreted inequality:

p > abc/d.

In other words, point a4 is a stable focal point
when competition between predators is great enough in
comparison with the effect of predators' satiation; and it
is an unstable focal point when the relationship of these
effects is reversed.

At the present time, an analytical expression for the
second separatrix line has not been derived. The only
thing that can be said proceeding from general consider-
ations is that this line must pass through the origin of
coordinates in {a,u} parameter space. It is even unknown
whether it passes above or below the separatrix line divid-
ing regions of stability from regions of instability for
point A. Approximate numeral estimations suggest that
both variants are possible (Fig.VII(i),(ii)). Phase por-
traits of the system for the region of parameter values
lying between the two separatrix lines are given in both
possible variants (Fig.VIII(iii),(iv)). One easily can see
that in both cases there is necessarily a limit cycle in

the system: stable (Fig.VIII(iii)) and unstable (Fig.VIII(iv)).
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Let us now try to interpret the obtained regimes of
behaviour of the system, in sequence, for all possible
combinations of values of parameters a and u.

In the absence of competition between predators, as
we have already seen, the system has one equilibrium
point - an unstable focal point or a node point (Fig. II).
In this case the final result of interaction between pre-
dator and prey populations, regardless of initial conditions,
is unlimited reproduction of both prey and predators with
the prey escaping from predator control.*

With appearance of weak competition between predators,
besides the unstable focal point, the saddle point
¢ appears in the system (Fig.vIII(i)) and with that only
the gqualitative nature of dynamics of the processes re-
mains unchanged. But the final result is fhe same - both
predators and prey reproduce unlimitedly and prey escape
from predator control.

With growing competition the system can behave in two
ways depending on the values of other parameters. Let us
consider both possible ways of evolution of the phase por-
trait of the system with u increasing. In the first variant
the focal point A is transformed from unstable to stable

before the behaviour of the separatrix line changes in a

* Here and below we ignore the fact that passage of the
trajectory too close to one of the coordinate axes actually
means that the corresponding population dies out.
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qualitative way (Fig.VIII(iv)). An unstable limit cycle
appears with the separatrix line coming to the saddle point
¢ from below. That means that in the vicinity of point a
some closed region of its stability appears. If the initial
condition corresponds to the phase point inside the unstable
limit cycle, there will be transient oscillations of numbers
of predators and prey in the system, leading to a stable
equilibrium. Otherwise, prey, as before, will escape the
predator.

With a subsequent growth of u the region encircled by
the stable limit cycle grows and eventually the cycle be-
comes semistable, coinciding with a loop made by an arm of
the separatrix line going out to the left from the saddle
point ¢ and coming into the saddle point from below. With
a further increase of u, this loop "breaks" (Fig.VIII(ii)).
The region of stability of a is limited by a curve made of
the arms of the separatrix line, coming into the saddle
point. It is a curious thing that to the left of and below
this curve there is some kind of "corridor" - a region of
‘initial conditions for the system under which prey escape
from the predators. It would be interesting to find out
whether its width under plausible values of parameters is
so insignificant that points inside the corridor correspond
to the system with predator and prey essentially extinct.

The other possible mode of evolution of the phase portrait

of the system is the following. With increase of u
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the equilibrium point remains an unstable focal point,
while an arm of the separatrix line, going out to the

left from the saddle point, eventually coincides with an
arm coming into the saddle point from underneath. The
resul:ing loop becomes a semistable cycle (stable inside
and unstable outside). With further growth of p, a stable
limit cycle appears in the system (Fig.VIII(iii)). Tra-
jectories going out from the unstable focal point a spiral
out to the cycle from inside, and the separatrix line

going out to the left from the saddle point spirals in from
outside. The whole region inside the curve made by the
arms of the separatrix line coming into the saddle point is
a stability region for this limit cycle. In other words,
under any initial conditions corresponding to a point
inside this region, the system enters the regime of stable
oscillations of predators and prey with constant frequency and
amplitude.

With p further increasing, the region inside the limit
cycle diminishes and, correspondingly, the amplitude of the
stable oscillations of population numbers also diminishes.
And, at last, under u=obc/d the limit cycle becomes a stable

focal point (Fig.VIII(ii)).*

* Here as in the previous section, in order not to complicate
the picture, we do not consider the behaviour of the system
near point 4, and limit ourselves to the fact of stability or
instability. Actually, behaviour of the system in the right
lower "angle" of region (i) and in the left upper "angle" of
region (ii) (Fig. VII) differs somewhat from that shown in
Figure VIII and VIII(ii). 1In the first case an unstable focal
point is transformed into an unstable node point, and in the

second case a stable focal point into a stable node point.
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Thus, in system (12) the following regimes can be
realized under various parameter value combinations:

(1) Under any initial conditions of population numbers
the prey escape from predator control (Fig.VIII(i)).

(2) There is a comparatively small closed region such
that under initial conditions corresponding to a
phase point inside this region, attenuating oscil-
lations take place which result in a stable equilibrium.

Under initial conditions which are beyond the region,
prey escape from the predator control (Fig.VIII(iv)).

(3) There is an open region of initial values such that
under conditions corresponding to the phase points
inside this region the system always comes to the
regime of stable fluctuations of numbers with per-
manent frequency and amplitude (Fig.VIII(iii)).

(4) There is an open region of initial values from which
the system, in a process of attenuating oscillations,
comes to the stable equilibrium condition (Fig.VIII(ii)).
In summary, in the system where the effects of

predator's satiation and of competition among predators

for any resource unrelated to prey and available in fixed

quantity are taken into consideration, there is always a

region of initial values under which the prey population

escapes from the predators and, moreover, under intense
enough competition there could be a region of initial values

from which the system comes either to a regime of

stable oscillations or to a stable equilibrium state.

7. Effect of Predator Satiation, And Intraspecific
Competition both among Predators and among Prey.

Now, in order to take into consideration the fact that
even when prey escape from the predators the unlimited re-

production of prey is impossible, we consider competition
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among prey. The corresponding system of equations is as

follows:
= ax-bxy _ 2
X ax- i £X
(19)
° _ _ dx - 2
y = cy + 1+ax 24 )

Setting x and y to zero, we obtain algebraic systems
of equations that define the coordinates of the equilibrium
points. This system leads to the cubic equation relative
to x or y, but expressions for its solution are bulky.
However, with known combinations of behaviour types of the
predator-prey system, and taking into account any pair of
the three effects [characterized by the parameters a (sa-
tiation of predator), u (competition between predators),
and ¢ (competition between prey)], one can qualitatively
visualize the separation of the three-dimensional space of
parameters {a,p,e} into regions (Fig. IX), and the nature
of behaviour of the system within each of these regions

(Fig.Xi).

Separation of planes of coordinates {a,u}, {a,e}, {n,c}

into regions, of course, precisely corresponds with Figures
ITI, V, and VII respectively. Referring to Fig. IX, the
area intersecting the planes of the coordinates along AB,
AC, and BF lines is the frontier of a region adjacent to
the origin of the coordinates, beyond which the system has
no entirely nontrivial equilibrium points and the point B

is a stable node point (Fig. IV(iii)).
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The region adjacent to the origin of the coordinates
and confined by the planes of coordinates and by the area
CABF, is separated, as shown in Figure IX, into six smaller
regions. Let us consider the behaviour of the system in
each of these regions. Here one should proceed from the
known, using phase portraits of the system for the portions
of planes of the coordinates confining these regions, as
well as from the fact that the system always has either one
or three nontrivial equilibrium points in region under
consideration.

Behaviour of the system in the region (i) (Fig.IX)
naturally coincides with its behaviour in the portions of
the planes of coordinates OJB (Fig.vi(i)) and EOBF (Fig.IV
(i) ,(ii)) confining this region. The system has one stable
point a.*

In the same manner, behaviour of the system in the
region AJKQO does not differ from its.behaviour on the frontier
AJO of this region (see Fig.VI(ii)). There is a stable
cycle and an unstable point inside this cycle. The separatrix
line, coming out from the saddle point B spirals into
the cycle from outside.

Unlike its behaviour in the regions (i) and (ii), behaviour

* Here and below as well as above we ignore the difference
between a focal point and a node point and consider only
the fact of stability.
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of the system inside the regions (iii), (iv) and (v) - (vi),
separated by the coordinate plane {a,u}, is not entirely
the same as the behavioqr of the system in the portions

of the coordinate plane separating the corresponding re-
gions. The fact is, that under any insignificant ¢ the
saddle point B appears in the system and, simultaneously,
the stable node point D appears. Behaviour of the system
in the regions (iii) and (iv) could be seen in Figure X(iii),
(iv). It is not difficult to see that the behaviour of the
system in the regions of small number of prey (x) does not
differ very much from behaviour of the system analysed
without taking into consideration the compétition among
prey. But the principal difference is the following: if
in the absence of competition among prey, escape of prey
from predators means unlimited reproduction of prey, with
such competition, escape means that the number of préy
tends to be a value determined by the limit of external
resources.

Behaviour of the system in the region GHLKO could be
dual (the same as on the frontier of the region QGH - (see
Fig.VIII(iii),(iv)) depending on relative position of the
separatrix lines, one of which separates the stability re-
gion of point A and the other separates regions with different
behaviour of the specific trajectories going through
the saddle point ¢ (Fig. VII).

Now it is clear that OAKLDE is a plane separating the

region of the existence of the stable node point p and the
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saddle point ¢. With growth of ¢, these points converge
and, at last, disappear.

Knowing this, one can make some deliberations about
the behaviour of the system in the region OGHLK - the only
region which has no frontier with any coordinate planes.
Behaviour of the system in this region could, naturally,
be dual, because it depends on the relative position of
the separatrix lines OJ and OG.

It is not difficult to see the following: if behaviour
in the region OGHLK is characterised by the presence
of the stable limit cycle, then with the disappearance of
points ¢ and D (when the frontier OKL is crossed), behav-
iour of the system in the region OJKL becomes qualitatively
the same as in the region OAJK -- in the system there is a
stable cycle with an unstable point A inside it.

It is quite another thing if behaviour of the system
in the region OGHLK is characterised by the presence of an
unstable limit cycle. In that case, with the disappearance
of points ¢ and D, the unstable cycle will continue to
exist but necessarily becomes surrounded by a stable limit
cycle to which the separatrix line, coming out of the saddle
point B, spirals in from outside (Fig.X(vii)). Thus,
one obtains an entirely new type of behaviour of the system.
Moreover, under any initial conditions which are beyond the
unstable limit cycle, the system enters a regime of stable

oscillations, and under the initial conditions which corre-

spond to the points inside the unstable cycle, the system
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comes to a state of stable equilibrium.

In summary, the provision of effects of satiation of
predators and competition among both predators and prey in
Volterra's system results in the following possible hehav-

ioural regimes:

(1) Predator dies out, number of prey is limited by external
resources;

(2) Under any initial conditions the system comes to a
state of stable equilibrium in which predator and prey
determine each other's numbers;

(3) Under any initial conditions the system enters a state
of stable oscillations;

(4) The system comes to a state of stable oscillations
under any initial conditions except a small region
around the state of equilibrium;

(5) The region of initial conditions is separated into
two regions: out of the first one the system reaches
a state of equilibrium in which number of prey is
limited by external resources. Out of the other gevel-

ops a state of stable equilibrium in which predator
and prey limit each other's number, or a state of

stable oscillations;
(6) Under any initial conditions the system reaches a

state of stable equilibrium in which the number of
prey is limited by external resources.

CONCLUSION -

A model of the predator-prey system has been analysed.
It is based on the following assumptions, some of which are
derived from the classic Lotka-Volterra model:

(1) A population of prey in absence of predators and other
factors limiting its number grows exponentially.
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(2) The rate of decrease in number of prey due to predation
is always proportional to the number of predators.

(3) The growth of the prey population, regardless of
predators and particularly in their absence, is limited
by the scarcity of some necessary resources in such a
way that with increasing numbers the death rate increases
(in a linear way) due to competition among prey
for these resources. In the absence of predators, the
dynamics of one prey population complies with a logis-
tic equation.

(4) The rate of decrease in the number of prey due to
predation is proportional to the number of prey when
there are few prey, and does not depend on the number
of prey when there is an excess of prey (effect of
predators' satiation). This set of rules is analogous
to the Michaelis-Menten equation:

x = Bxy
1+ax .
(5) In the absence of prey the number of predators decreases

exponentially as predators die out.

(6) The increase in number of predators is proportional
to the number of prey eaten. In other words, the
ratio of conversion of prey biomass into predator bio-
mass is constant.

(7) Even with an excess of prey, the increase in predators
is limited by scarcity of resources unrelated to prey
but necessary for the predator. Due to competition
among predators for these resources, their death rate
increases linearly with their growth in numbers. With
an excess of prey, the dynamics of the predator popu-
lation complies with a logistic equation.

Though all assumptions on which the model is based are
very crude approximations of reality (particularly for
small numbers of prey and predators), they allow us to de-
scribe and interpret the following situations from a single

point of view:

(1) There is one state of stable equilibrium b, in which



(2)

(3)

(4)

(5)
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the numbers of predators and prey are different from
zero and the number of prey is limited by a scarcity of
some resources, but not by a "pressure" from predators
(Fig.X(iii)).

There are two states of stable equilibrium. One of them
is the same as in the above point p. In the other state,
the numbers of predators and prey limit each other. The
region of stability of the second state could be both
closed and open (Fig.X(iv)). Numbers of predators and
prey approach this state in a form of attenuating
oscillations.

There is the state of stable equilibirum p and the state
of stable oscillations of numbers near state a (Fig.X(v)).

Near state A4 there is only the state of stable oscillations.
The nature of oscillation stimulation could be both smooth
(when stable oscillations with certain amplitudes of
oscillation in the number of predators and prey as well as
with a certain period could be arrived at under any initial
conditions (Fig.X(ii)) and drastic (Fig.X(vii)).

There is only one state of stable equilibrium A, when the
predator and prey populations limit each other (Fig.X(i)).




-36-

Figure I. Dynamics of population size of
predator (Y) and prev (X)
according to Volterra's classical
model: phase portrait of a
system.
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Figure III. Separation of the space of parameters {e, 1}
of the system (14).
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Figure IV. Phase portraits of the system (1l4) for
corresponding regions of the space of
parameters {e. u} (see Fig. III).
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Figure V. Separation of the space of parameters
{a,e}l of the system (10).
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Figure VI. Phase portraits of the system (10) for
corresponding regions of the space of
parameters {a,e} (see Figure V).
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Figure VII. Two possible variants of separation of the
parameter space of the system (11). O0OJ -
separatrix line between stability and
instability regions of point A; 0OG -
separatrix line between regions with
qualitative different behaviour of special
trajectories passing through the saddle
point B.
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Figure VIII. Phase portraits of the system (11l) for
corresponding regions of the space of
parameters {a,u} (see Figure VII).
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Figure IX. Separation of the space of parameters
{a,e,u} of the system (19).
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Figure X: Phase portraits of the system (19) for
corresponding regions of the space of
parameters (see Figure IX).
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