brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk
provided by International Institute for Applied Systems Analysis (IIASA)

’ g International Institute for
- Applied Systems Analysis

Use of Kalman Filtering
Techniques when the
Parameters of a Regression
Relationship are Changing over

Time According to a Multivariate
ARIMA Process

Ledolter, ).



https://core.ac.uk/display/33892112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ledolter, J. (1976) Use of Kalman Filtering Techniques when the Parameters of a Regression Relationship are
Changing over Time According to a Multivariate ARIMA Process. IIASA Research Memorandum. Copyright ©
June 1976 by the author(s). http://pure.iiasa.ac.at/640/ All rights reserved. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage. All copies must bear this notice and the full citation
on the first page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be
sought by contacting repository@iiasa.ac.at


mailto:repository@iiasa.ac.at

RM-76-44

USE OF KALMAN FILTERING TECHNIQUES WHEN THE PARAMETERS OF
A REGRESSION RELATIONSHIP ARE CHANGING OVER TIME ACCORDING
TO A MULTIVARIATE ARIMA PROCESS

Johannes Ledolter

June 1976

Research Memoranda are interim reports on research being con-
ducted by the International Institute for Applied Systems Analysis,
and as such receive only limited scientific review. Views or opin-
ions contained herein do not necessarily rcpresent those of the
Institute or of the National Member Organizations supporting the
Institute.







Preface

In many areas of applied research at IIASA regression
models are entertained to explain the relationship among
variables. Assuming that the parameters are not changing
over time, least squares methods provide minimum square
error (MMSE) estimates. In some cases, however, the
assumption of constant parameters is restrictive, and ways
of incorporating parameter changes have to be found.
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Use of Kalman filtering techniques when the parameters of a

regression relationship are changing over time according to

a multivariate ARIMA process.

Abstract

It is shown how Kalman filtering methodology can be
applied to the estimation of the parameters in a regression
model, when the parameters are subject to change over time.
A multivariate ARIMA model for the parameters of the re-
gression relationship is entertained and it is shown how
this mocdel can be brought into the state variable form.
Furthermore it is shown how this procedure specializes to

various cases already discussed in the literature.

1. State variable representation of dynamic and stochastic

systems - Kalman filtering

A dynamic system with stochastic disturbances may be

modelled in a state variable form

Xppq = BXL + Gue + Wy

(1.1)

Ye = Hxp + v,

where x, is a vector state variable which should be considered

~t
as an abstract quantity and which does not necessarily have a

physical interpretation such as the input vector u, and the

output vector Yeo Wt and v, are uncrosscorrelated Normal white




noise sequences with

_— 1 —
Ew, =0 Ew. w, = R4
— ] —_—
Eve =0 Bvive = Ry .

The parameter matrices A, G and H may be either constant or

time varying.

Given the dynamic stochastic model with known dynamic and
stochastic parameters, Kalman [3,4,5] obtains an estimate for
the state vector Xy given the observations on the input and

cutput variables up toc time t. He shows that the conditional

distribution of Xy given observations up to time t is a Normal

with mean gt|t and variance Pt}t where
Bele = Fepe-1 T Repe-1 W 7 B8 o) (1.2)
Peie T Pele-1 7 Fee-1"Pe |-t (1.3)
and
Berrle - Mye O (1.4
Peprle - PPejed’ + Ry (1.5)

where the Kalman gain is given by

H' (HP '+ Ry . (1.6)

RKele-1 = Pele-1 g]t-18

This set of recursive equations, together with specified
initial conditions, provide the estimates and their updating
equations for the state variables and their covariance matrix.

An excellent description of the state variable approach



to dynamic and stochastic systems is given by MacGregor [6].

2. State variable representation of a regression model when

its parameters change according to a multivariate ARIMA

model.

Kalman's approach can be used to estimate the parameters
in regression models where it is assumed that the parameters

follow a general multivariate ARIMA process:

¢ (B) 0(B) q

§t+1 ~t+1

Ve = r!8, + a (2.1)

Ye is the dependent variable

r, is a (kx 1) vector of predetermined variables

§t is a (kx 1) vector of parameters
_ _ _ _ p+d

$(B) =TI ¢1B ‘e ®p+dB
= - - - q

O(B) =1 @1B ... OqB

where the ¢, (1 < i < p+d) and the Oj(1 < j £ g) are known (k Xk)

matrices. B is the backshift operator Bm§t = gt—m' a, is a
white noise sequence with Eat = 0 and Eai = og. A is a rulti-
variate white noise sequence with Ea, = 0O and Eataé = Za. It is

assumed that the zeros of det{¢®(B)} lie on or outside the unit
circle. The zeros of det{0(B)} are assumed to lie outside the

unit circle and det{®(B)} and det{©(B)} do not have common roots.

Furthermore at and gt are uncorrelated, i.e. Eatat = 0. Multi-

variate ARIMA processes are generalizations of the univariate




ARIMA processes discussed in great detail by Box and Jenkins

Extensive discussion of the rmultivariate extension,

is given in Hannan [2].

In order to apply the Kalman filtering technique

tions (1.2)

- (1.6)) we have to write equations

of state variables.

[1]1.

for exanmple,

(equa-

in form

The following theorem gives an equivalent

state variable form for system (2.1), thus identifying the

matrices H,

Theorem:

A, G,

R

1 and R2.

The model given in

(2.1) has the equivalent state

variable representation given below.

For ptd>qg:

§p+d—1,t+1

l§p+d,t+1

Y, = |

]
Te

¢,
?,
: Ty
cl>p+d-1
¢p+d Ok
* "T
' .
0...0" By ¢
8*
£2,¢
*
B

~

(R} [Res]
N * = %

p+d,t

e+



where I, is the [k(p+d-1) x k(p+d-1)] identity matrix and O,

is a [k x (p+d-=1)] matrix of zeros. O is a [k X k] matrix of

Zeros. O0' is a [1 x K] vector of zeros and I is the [k x k]

identity matrix.

For p+d<qg:
-, _ _ T, L
B1,t+1 2 B1,e 1
@2 . —@1
* = e "
Bord, t+1| = p+d Tax Bora,t| * Ye+1
o .
o* ) *
Sg+1,t+1 o O §q+1,t {:@q
= A '
Ye = [£gQ' - 0T By o |+ 3¢
*
§q+1,t

where I,, is the [kg X kqg] identity matrix

and O,, is a [k x kq] matrix of zeros.

The proof of this theorem follows by simple substitution

showing that

2(B)g], = 0(Ra, .




3. Several special cases discussed in the literature:

i.) Young [8] considers the case where the parameters

follow a first order autoregressive process

~t+1
(3.1)

Yy = L B, + a

In this case, the updating equations reduce to

-1

Bp = ®hpq * [TL(OP 40" + Tz, + Oi] (0P, @' + Z )1y vy - £p28, o)
(3.2)
and
5 =1
Py = (%P 40" + I)T - [cl (%P _ 0" + Z)r, + 0]] r.ri(®p _ 0" + 1)}
(3.3)

ii.) For the special case & = I and Za =0 (i.e. §t+1 = B¢
constant parameters) the updating relations in (3.2) and (3.3)
simplify to

-1

A A 2 Pal
— ' - '
By = Beoq * (TgPrqfp + o) ProqZe e = TeBey) (3.4)
P, =P - (r'p r, + 02)_1P r,r'pP (3.5)
t t-1 ~t t-1<t a t-1<t<t t-1 ° :

One recognizes the recursive updating formulae in (3.4) and
(3.5) as the recursive updating algorithm for the least squares

estimate @t and its covariance matrix Pt given by Plackett [7].



iii.) For the case k =1, ¢ = 1, Ea” = oi and Ea” = 02

the recursive algorithm is given by

2
(p + o)r
5 _ t-1 a’' "t 3
Be = Bq * 2 (p r 02) + o2 (ve = BeqTy¢) (3.6)
t-1 a a
2
o - oa(Pt_1 + Oa)
t = 2 2 2
rt(Pt_1 + Oa) + Oa (3.7)

We notice that in all these updating formulae the estimate of
the parameter at time t is a linear combination of the parameter
estimate at time t-1 and the one step ahead forecast error at
time t. In (3.4) the parameter is updated by giving equal
weights to all the observations. 1In (3.6) the introduction of

o is similar in effect to an exponential data weighting func-

o4

tion (Young [8]).

iv.) Box and Jenkins [1] consider a random walk model with
added noise (k =1, ¢ = 1, r, = 1 for all t)
Beer = Be * Opyq
. (3.8)

Ye = Bg + A

They show that this model is equivalent to the integrated first

order moving average model

Yt - yt_‘l = at - eat-1 (3-9)




with

B

41 is the one step ahead forecast 9t(1) and is given by an

exponential weighted sum of previous observations.

" _ 1o j
ge (1) (1 e)jgo he SRR (3.9)

and the forecasts are updated by

9. (1) = 9 (1) + (1-8)(y, - 9,_4(1)) .
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