T Metadata, citation and similar papers at core.ac.uk

« CORE

Provided by International Institute for Applied Systems Analysis (IIASA)

’ g International Institute for
- Applied Systems Analysis

[TASA wwwiiasa.ac.at

Dilos Reference Manual: Part |

Briabrin, V.M.

IIASA Research Memorandum
July 1976

https://core.ac.uk/display/33892104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Briabrin, V.M. (1976) Dilos Reference Manual: Part I. IASA Research Memorandum. Copyright © July 1976 by
the author(s). http://pure.iiasa.ac.at/632/ All rights reserved. Permission to make digital or hard copies of all or

part of this work for personal or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage. All copies must bear this notice and the full citation on the first
page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by

contacting repository@iiasa.ac.at

mailto:repository@iiasa.ac.at

RM-76-52

DILOS REFERENCE MANUAL: PART I

V.M. Briabrin

July 1976

Research Memoranda are interim reports on research being con-
ducted by the International Institute for Applied Systems Analysis,
and as such receive only limited scientific review. Views or opin-
ions contained herein do not necessarily represent those of the
Institute or of the National Member Organizations supporting the
Institute.

I |

ABSTRACT

This paper decribes the special programming system intended
for the Data Base Management. The system is written in the LISP
language, and provides manipulation of objects that represent
specific knowledge on applied problem areas. Three basic func-
tions are provided by the system:

1) Information storage and retrieval, using an associative

search mechanism;

2) Initiating application programs and extracting (filling)

of application data sets;

3) Organization of logical control for particular problem

solving processes.

The system will be used as an intelligent interprocessor
between the end-users, and the application programs and data sets.
A linguistic processor and deductive inference mechanism will
extend the sytem's and the end users' capabilities, providing
natural langquage access, automatic planning, the realization of

problem-solving algorithms, etc.

-iii-

PREFACE

From the outsider's point of view, the first years of
ITASA's activities in most research areas were devoted to
theoretical studies, to the establishment of international
contacts, and to the search for sources of appropriate informa-
tion. Some mathematical models were developed and implemented
in the form of computer programs. However, until now these
models and their implementation remained separate entities
unable to communicate with one another except by being passed
physically.

A new period seems to have arrived, when an appeal for
integrating different models and data sets becomes essential.
This integration should appear both in the mental activities
of IIASA scientists as well as in theoretical and programming
products developed by them.

These considerations, together with the general trend in
systems analysis and computer science, led the Director of IIASA
and the Computer Science Project to initiate a new task: the
installation of a Data Base Management System (DBMS) on IIASA's
PDP 11/45 computer. As a first step, the Computer Science
Project organized in June 1975 the Workshop on the Question-
Answering Systems. The Workshop discussed several proposals for
IIASA-DBMS. Since then, members of the Computer Science Project
carried out a study of available DBMS and the practical develop-
ment of intelligent DBMS was started in 1IASA's National Member
Organizations (NMOs). The participants at the Workshop agreed
that the system should be developed by some NMOs, for example,
the USSR, the GDR, the USA, and Italy, with the possibility of
eventually extending it toward a sophisticated, artificial
intelligence programming complex.

This paper describes a part of the Dialog Information
Logical System (DILOS) being developed at the Computing Center
of the Academy of Sciences in Moscow. It was programmed in LISP
language for BESM-6, the basic Soviet scientific computer. The
transfer of LISP programs from one computer to another is a

technical task; therefore, the implementation of DILOS on the

PDP-11/45 was done with relatively little manpower: the author
accomplished this during a two-month visit to IIASA.

Part I of the DILOS Reference Manual contains instructional
information relating to the use of DILOS in a UNIX environment
for the PDP-11/45.

It is planned to transfer the remainder of the system during
1976-1977, and to produce additional publications concerning:

1) Recommendations to systems analysts for creating

problem-oriented data bases;

2) Information about system structure and maintenance;

3) Description of a linguistic processor, to be attached

as a front-end part of DILOS.

I would like to express my gratitude to my colleagues in
Moscow who have participated in this system's development, in
particular, Dimitrii Pospelov, Grigorii Senin, Vladimir Abramov,
Evgenii Veselov, Ludmila Litvinzeva, and Vladimir Masurik, I
am also grateful to those at IIASA who helped me with my work in
the computer section and in the preparation of this manual; in
particular, Jim Curry, Bernhard Schweeger, and Mark Pearson.

A series of discussions with many other IIASA scientists in the
Computer Science, the Water Resources and the Energy Projects
influenced and encouraged my work at IIASA and contributed to

the successful installation of the system.

-vi-

DILOS REFERENCE MANUAL: PART I

I. HOW TO GET IN AND OUT

DILOS is a LISP-program running under the UNIX operating
system for PDP 11/45 computers. All UNIX facilities are
available to the user outside DILOS. Later, we shall see that
it is easy to "freeze" DILOS almost at any point, and to "dive"
into the UNIX-SHELL for purposes of some extra editing, fortran-
compiling, etc., and then to bubble back to DILOS, restoring
its current state.

To better understand the system, the reader is recommended
to study LISP, a very powerful and elegant programming language
now being widely used for artificial intelligence research.
Language descriptions are given in Weissman (1967), and Teitelman
et al. (1974); a manual for running LISP on the PDP 11 is presen-
ted in Howard (1975).

The following sequence of commands brings the user inside
DILOS at the initial stage; the system's prompts and replies have

been omitted in the following examples:

Example 1.1

:login: victor Login with the account "victor";
after this action the user 1is
under UNIX control.

@ Lllo Call L110 which is Harvard-LISP
implementation for PDP 11 (see
Howard, 1975).

AM110 LISP 5/25/75

—> (load 'dilos) The file with DILOS programs is

opened, and all function definitior.;

nil are evaluated.
—2 (start) This function performs some
preparatory actions, after which
(dilos is ready) the user can start normal inter-

action with DILOS.

Function "start" can have an argument, handles as a calling

pattern for some application area.

Example 1.2

(start "development game") Besides normal (start) operation,
thilis call 1nitiates a special
function associated with the
"development game" pattern. An
error message will be returned to
the user's terminal if a wrong
calling pattern is used.

After starting, a long session of user's conversation with
DILOS can take place until the user decides to quit. There are

two functions available for this purpose: (stop), and {exit).

Example 1.3

(stop) This function closes all opened
files, preserving the changes that
were made to data base objects
during the session. The protocol
of the session is automatically
written to the file "L110 protocol”
in the current directory. Control
is returned to UNIX.

(exit) This function does not make file
closing and protocol preservation,
but returns control to UNIX. 1If
you want to preserve the protocol
then call (unprotocol) before (exit).

In Examples 1.1 to 1.3, the user's and some of the system's typing

on the terminal are given in lower case letters as in actual

terminal sessions. In other examples given in this manual,
capital letters are used to represent actual texts to be typed

or stored in the data base, whereas lower case letters represent

metavariables. After coming back to UNIX, you can do many other

things, as for example, listing the contents of your files updated
by DILOS. For final quit, type "bye" command and check that UNIX

prompts with :login: for another user.

I1. RECOVERY FROM ERRORS

List of recovery actions:

DEL delete one character from unfinished line;
1U delete current line;

] compensate all " (" in the current message;
(reset) Restore from L110 error message;

’0 suppress output;

40 suppress DILOS-LISP executilon.

If one made a mistake in typing but noticed it before
pushing "cr" (carriage return), then "DEL" and "4U" (CTRL - U)
are used as elsewhere in‘UNIX for character and line deletion.

If one typed in several lines, but there is no reaction
from DILOS, then the general explanation is that DILOS considers

the message unfinished, for example, because there are not

enough ")" to compensate " (" in your text. The simplest way
L0 Obtain an explanation is to type "]", which compensates for
all still unbalanced "(". It can work for the best but an error

could also emerge because of an inconsistency somewhere in the
message.

An error message from L110 will give some hint as to the
reason for the mistake. It is followed by the prompt : >
The easiest way to recover is to call (reset), after which should
be repeated the enquiry more carefully.

"40" and "4c suppress output and DILOS-LISP executions,
respectively. It could be used when there is a suspicion of
an endless loop in some function, but it is unlikely that such
a loop can be created 1if a "structured programming" style,

encouraged by LISP, is used for function definitions.

ITI. UNIX FILES AND MDB-OBJECTS

A1l information related to DILOS functioning as well as to
problem-oriented data base contents is stored in the ordinary
UNIX files, which reside in one or several directories.

DILOS is oriented toward the manipulation of Model Data
Bases (MDB) which could represent complicated hierarchical
structures; it is obvious that a special representation should
be c¢hosen for MDB-objects.

The general structure of MDB-objects is:
(objname (pl vl ... pk vk))
where objname atom (identifier, number or any double quoted set

of characters) represents the name of the object in some file.

All objects in the same file have different names.

The pairs {pl wvl1}, {p2 w2}, ...,{pk vk} represent properties,
where pl,...,pk are indicators and vl,...,vk are property values,

which could be "terminal"”, or in their turn, have some structure.

Example 3.1

("CYBER-74" (* COMPUTER
0S "SCOPE 3.4.3"
SOFTWARE (LANGUAGES (, ALGOL FORTRAN COBOL
BASIC) "APPL-PACKAGES" (, MATH-LIB
CERN-LIB BMD EISPACK))

HARDWARE (MEM "98K"
WSIZE "60B"
TAPES ("9TR" 4 "7TR" 1)
PAP-TAPE 1)

ACCESS (BATCH "REM-JOB-ENTRY"
INTER "12 TERMINALS")))

In this example, object "CYBER-74" at the topmost level has
five properties with indicators: *; 0S; SOFTWARE; HARDWARE; and
ACCESS. The values of * and 0OS properties are atoms, whereas
other properties have structured values represented by lists.

For example, the property HARDWARE has four subproperties with
indicators: MEM; WSIZE; TAPES; and PAP-TAPE. The property TAPES
in turn, have two sub-properties: "9TR"; and "7TR". Thus an
arbitrary hierarchy of sub...subproperties could be represented
in this way.

Property values could be represented as follows:

atom: COMPUTER; "SCOPE 3.4.3;" Y98K;" 4; "1l2
TERMINALS";
set: (, ALGOL FORTRAN COBOL BASIC); or

list: to be considered as a sub-structure or as a terminal
value.
The set-value (represented by a list with a comma-sign as

a first element) contains one or more partial values and it is

subject to set operations: union; intersection; difference.

The list-value could be handled in the same way as an
atomic terminal value, if it is not considered a substructure.
Interpretation of the list-value depends on the external program

(or on the user) manipulating the given object.

Example 3.2

("MATRIX 1" (1 (95 120 0)
2 (70 0 790)
3 (0 35 1))) .

In this example, object "MATRIX 1" has three properties
with numerical indicators 1, 2, 3, and list-values containing
numbers.

Two additional property values proved to be useful in
.different applications:

range-value;

executable-value.

Example 3.3

(CITY (POPUL (: 0.2 20.0)
AREA (: 10 1000)
DENSITY (+ (QUOTIENT POPUL AREA)) 1)) .

In this example, object CITY has properties POPUL and AREA,
with the corresponding range-values: (POPUL min = 0.2 ,
POPUL max = 20.0); and (AREA min = 10 , AREA max = 1000). Thus
a property with a range-value is supposed to have an actual
numerical value varying from the given minimum to the given
maximum.

Property DENSITY in our example has an executable-value
(+ (QUOTIENT POPUL AREA)) implying execution of function
QUOTIENT with the arguments, POPUL and AREA.

Both types of property values are represented by the lists:

(: min max); and

(+ function-call).

All MDB~-objects are stored in UNIX files in textual form,
even if they have numerical property values. It provides ease
of file (and MDB contents), amendment, independence from the

hardware, availability of symbol manipulation procedures, etc.

If an application program requires binary representation of data,
then a special transformation procedure should be invoked after
the extraction of textual data and before passing it to applica-

tion program.

IV. INTERPRETATION OF MDB-OBJECTS

There are three basic interpretations of MDB-objects that

could be considered:

A. Containers of numerical or textual data, to be manipu-
lated by the user or by applied programs;

B. Descriptors of other objects allocated elsewhere in
the data base;

C. Process descriptors (theorems) defining the sequences
of actions to be performed by the system when certain
circumstances occur.

We shall refer to these categories as A-objects, B-objects and
C-objects and, in the following sections, consider their repre-
sentation in MDB as well as the basic functions applicable to
their manipulation.

Our first concern is with A-objects, considered as carriers

of applied data and processed by DILOS functions analogous to

those available in conventional DBMSs. The basic functions are:

FIND - for searching and extracting objects and/or
their properties;

ADD - for putting new objects or adding (changing)
their properties;

DEL - for deleting objects or their properties.,

The examples given below illustrate usage of the function,
and are followed by formalized syntax description; however, for
simplicity, I do not pretend to give exact syntax definitions.
Each of the examples begins with a verbal expression representing
the meaning of the user's or the applied program's inquiry. It
should be noted here that another part of the DILOS system (now
in the debugging stage) will perform a linguistic translation
of the user's natural language expressions into the formal

expressions decribed on the following page.

V. FUNCTION OPEN

After the user has accomplished the initial actions
(illustrated in Examples 1.1 and 1.2), he comes into contact
with the current MDB division which usually corresponds to the
same UNIX file. If the "start" function was called without an
argument (Example 1.1), then the current division is called
ROOT. Otherwise, the system could open another division implied
by the processing of the calling pattern (Example 1.2).

Changing the current division name is performed by the function:
(OPEN 'divname). In most cases, this is implicitly evaltated by
the system, although the user could make an explicit call of
this function at any moment. Besides establishing the current
division name, this function transfers the contents of the UNIX
file into the LISP-core memory, if not done so earlier.

Occasionally, and on the execution of the "stop" function
(Example 1.3), the system closes opened files, which means
transferring their core images onto the disk. File transference
in both directions is somewhat time consuming and can create
unexpected effects (for example, lack of core space).

The experience and the means to overcome the negative

effects should be derived from a wider use of this system.

VI. FUNCTION FIND

We now consider a series of examples which illustrate
searching in MDB and extracting objects and/or their properties.
The functions could be called directly by the user typing on the
terminal, or indirectly, through the execution of other functions,

as we shall see later.

Example 6.1

"Find all objects in COMPUTER division"
(a) (FIND *COMPUTER)
(b) (FIND *COMPUTER =X)

The system opens COMPUTER division and prints out all the objects
that have the property {* COMPUTER} as the one given in Example
3.1.

In the case of Example 6.1 (b), the system also creates a
pattern vartable X which 1is bound to a list of object names.

Any identifier can be used instead of X.

Example 6.2

"Find all objects in the current division"
(a) (FIND ALL)
(b) (FIND =X)

These functions have the same effect as in Examples 6.1 (a) and
6.1 (b), except that no opening takes place and the action is
performed over the current division.

The value of the pattern variable X could be used later in
another FIND, ADD or DEL function by typing +X ("value of X").
It could also be used in any regular LISP expression as a normal

variable name.

Example 6.3

"Find an object PDP-11/45 in COMPUTER division"

(FIND *COMPUTER PDP-11/45)
Only one object is looked for and printed out. This object
should have an internal representation:

(PDP-11/45 (* COMPUTER other properties)) .

Example 6.4

"Find an object PDP~11/45 in the current division"
(FIND PDP-11/45)

The result of this action is obvious.

Example 6.5

"Find all ohjects in COMPUTER division and extract their
SOFTWARE and HARDWARE properties"

(a) (FIND *COMPUTER : SOFTWARE ; HARDWARE)

{(b) (FIND *COMPUTER =X : SOFTWARE =Y ; HARDWARE =2Z)

The system acts as in Example 6.1, but only the values of
SOFTWARE and HARDWARE properties are extracted and printed out.

Pattern variables X, Y, Z in Example 6.1(b) are bound to

corresponding lists: X becomes a list of object names,

Y--a list of SOFTWARE values; Z --a list of HARDWARE values.

Example 6.6

"Find an object PDP-11/45 in the current division and extract
the value for SOFTWARE/LANGUAGES property"
(a) (FIND PDP~11/45 : (SOFTWARE LANGUAGES))
(b) (FIND PDP-11/45 : (SOFTWARE LANGUAGES) =X) .
In this case, the division name is omitted, but it could be
used as 1n Example 6.3.

The compound property name is represented by a list
(SOFTWARE LANGUAGES) that could have more elements if a deeper

subproperty structure is assumed.

Example 6.7

"Find all objects in the current division which have ALGOL as
a value of SOFTWARE/LANGUAGES property, and extract the values
of ACCESS and HARDWARE properties".
(a) (FIND ALL : (SOFTWARE LANGUAGES) ALGOL ; ACCESS ; HARDWARE)
(b) (FIND =X : (SCFTWARE LANGUAGES) ALGOL ; ACCESS =Y ; HARDWARE)
This enquiry implies a complicated search --only those objects
that contain ALGOL in its SOFTWARE/LANGUAGES property value are
considered, and from those objects ACCESS and HARDWARE property
values are extracted and printed out.

An object in Example 3.1 could satisfy the given search
criteria because it has a set-value (, ALGOL FORTRAN COBOL
BASIC) under the property SOFTWARE/LANGUAGES. Now, a general

syntax of FIND expression could be presented:

<find expr> :: = (FIND <pattern>)
<pattern> :: = <heading> | <heading> : <body>
<heading> :: = ALL | <divreference> <objreference>
<divreference> :: = *<divname> | <empty>
<objreference> :: = <objname> | =<pattvar> | t<pattvars> | <empty-
<body> :: = <propertyreference> | <propertyreference> ; <body>
<propertyreference> :: = <indicators | <indicator> =<pattvar>
| <indicator> +<pattvar> | <indicator>
value>

<indicator> :: = <atom> | <listofatoms>

-10~

Few comments could be made about this syntax.

A <pattern> consists of a <heading>, or a <heading:> and a
<body>, separated by a column (compare Examples 6.1 to 6.4 with
6.5 to 6.7).

A <heading> could be a special atom ALL implying searching
for all objects in the current division. It could also consist
of <divreference> and <objreference>, each of which could be empty.
Besides atomic <objname>, and <objreference> could be represented
by =<pattvar> which has the same effect on the search as an empty
<objname>. +<pattvar> is the same as an <objname> =
value [<pattvar>].

A <body>, if present, consists of one or more <property-
references . separated by semicolons. Each of the <«property-
reference> contains an <indicator> and possibly a =<pattvars,
or +<pattvar>, or <value>; <divnames-and <objname:> are atoms;
<pattvar> could be any identifier; <value> is an atom or a list

with appropriate interpretation (Examples 3.1 to 3.3).

VII. FUNCTIONS ADD AND DEL

The syntax of the ADD and DEL expressions is almost the
same as that of the FIND expression except for some natural

restrictions.

Example 7.1

"Add new object SOLAR with the properties PROD 370 , CONSUMP 120
into the EN-SRS division"

(ADD *EN-SRS SOLAR : PROD 370 ; CONSUMP 120) .
A new object appears in the EN-SRS division if it did not exist
earlier and if it has the following representation:

(SOLAR (*EN-SRS PROD 370 CONSUMP 120)) .

Example 7.2

"Put the value 930 under the property RESOURCE/EXPLORED in the
object GAS of the current division™"

(ADD GAS : (RESOURCE EXPLORED) 930) .
The possible result of this action consists of adding the new

property to the existing object GAS so that the latter will have

-11-

the following structure:
(GAS (... RESOURCE (... EXPLORED 930 e) a))

Pattern variables of the form =X cannot be used in ADD
expressions because it is meaningless to add something undefined
to the data base. On the other hand, varZable values of the
form +X could be used more fregquently here than in FIND
expressions assuming that the added value is found in some
previous action. FExecutable property values are also used more

naturally in ADD expressions.

Example 7.3

"Find PROD property values in all objects of EN-SRS division;
put the arithmetic sum of these values under the property PROD
into the object TOTAL"

(FIND *EN-SRS : PROD =X)

(ADD TOTAL : PROD (+(SUM X))

The first expression provides searching in EN-SRS division
for all objects containing PROD property. The list of extracted
values becomes assigned to X variable. The second expression
puts a new property value to the object TOTAL under the PROD
indicator. This value is a result of evaluation of the LISP
expression: (SUM X), which assumes applying PLUS operation to

all numbers contained in the X list.

Example 7.4

"Delete COBOL from the property SOFTWARE/LANGUAGES of the object
CYBER-74"

(DEL CYBER-74 : (SOFTWARE LANGUAGES) COBOL)

If this expression is applied to the object CYBER-74 from
Example 3.1, then its original set-value (, ALGOL FORTRAN
COBOL BASIC) becomes (, ALGOL FORTRAN BASIC, i.e.,
COBOL value is deleted from the set.

-12-

VIII. MDB-OBJECTS USED AS DESCRIPTORS OF OTHER OBJECTS

Functions FIND,ADD, and DEL are intended first of all for

the manipulation of A-objects, although they are also applicable
to B- and C-objects, {(see Section IV},

We now consider B-objects
in more detail.

It is useful to distinguish between several kinds of B-objects.
At present, we are interested in the following:

(1) Descriptors of MDB-object types;
(2) Descriptors of applied program modules;

(3) Descriptors of applied data modules.

Example 8.1

Consider the structure of an object from Example 3.1. It

could be represented graphically as shown in Figure 1.

COMPUTER
I _
v N2 ¥ v ?
0s SOFTWARE HARDWARE ACCESS 1 Level
| sorfuams R _RCgESS
; | |
. : 1
LANGUAGES i Mg& BATCH
APPL-PACKAGES WSIZE INTER \ 2 Level
4
TAPES g
\2
PAP-TAPE .
s |
9TR 7TR j 3 Level
Figure 1.
The corresponding type descriptor has the following representation:

(COMPUTER (IS BC
BP (0s ()

-13-~

SOFTWARE (LANGUAGES ()
"APPL-PACKAGES" ())
HARDWARE (MEM ()

WSIZE ()
TAPES ("9TR" ()
"TTR" ()
PAP-TAPE ())
ACCESS (BATCH ()
INTER ()))))

The first property {IS BC} says that this object "is a
basic concept", and the second property {BP (...)!} contains,
under the BP ("Basic Properties") indicator, the description
of the whole structure. If such an object appears in MDB, then
more concise representation could be chosen for the object from

Example 3.1 as well as for other similar objects:

("CYBER 74" (* COMPUTER
VAL ("SCOPE 3.4.3"
((, ALGOL FORTRAN COBOL BASIC)
(, MATH-LIB CERN-LIB BMD EISPACK))
("98K" "60B" (4 1) 1)
("REM-JOB-ENTRY" "12 TERMINALS"))))

Most of the text in this representation is concerned with
property values and not with the indZicators. Only brackets
would be considered redundant characters, and they are needed
to preserve the object structure. The first property,

{* COMPUTER}, remains a pointer to the "superconcept", which
allows normal usage of functions FIND, ADD and DEL as in
Example 6.1 to 7.4.

Any object can actually be stored in a normal or in a
typified representation (Examples 3.1 versus 8.1). The system
tries to handle each object as a normal one and, if there is
no success (no required properties), then the system switches

to handling the object as a typified one.

-4

Each of () in the type descriptor above could have been
substituted by a value-descriptor which can be a value (for
example, a specific number or text), or a predicate function
that determines some restriction over the corresponding sub...

sub-property value.

Example 8,2

Consider an object that will be used as a program module

descriptor:

(DEV-GAME (* PM
SYS (PDP-11/45 FORTRAN)
LOC (VALASEK GO)
ARG (PHASE-VAR STEP-NUMB CNTRL-VAR)
RES (VALUES (INT 2) COMMENT (CHA 22))
INP Wl
OUT W2))

The first property 1* PM!} serves as an indicator that
this is a "program module descriptor". Properties {SYS ...}
and {LOC ...} indicate that the corresponding program 1is
written in FORTRAN for the PDP-11/45 computer, and that it is
located under the name GO in the VALASEK directory. Note that
program name GO does not necessarily coincide with the pm-
descriptor name DEV-GAME.

Property {ARG ...} introduces the argument variables
PHASE-VAR, STEP-NUMB, CNTRL-VAR. Each of these variables has
to be bound to appropriate values prior to program execution.
The system will collect all the values in the input file W1,
as indicated by the property {INP W1},

During execution, the GO program will read the necessary
values from the input file, and return results to the output
file W2 from where they will be extracted by the system and
assigned to result variables VALUES (2 integers) and COMMENT
(22 characters).

Thus, the system handles the applied program module in

three stages, as illustrated in Figure 2:

-15-

(1) Initialization, i.e. preparation of input file
from argument variables;

(2) Execution, i.e. input/output transformation; and

(3) Finalization, i.e. separation of output file into

result variables.

Arguments Input Program Output Results
File file
\

N ,/f
-y . s
)%I PHASE-VAR| _ e

d \ VALUES]u

A Y

/s \ |
— — % [STEP-NUMB] -——}‘ Wlf-—->[co}k - —o _WT] / P

T

/ COMMENﬂ’
~ , 1 IS .

*x o .
7| CNTRL=VAR!
p i
/
\\¢//-~\/~_// \\‘_,“_-\
Initialization Execution Finalization
Figure 2.

Special functions in DILOS provide appropriate actions:

(INIT pm-descriptor)
(RUN prm~descriptor)
(FINISH pm-descriptor)

In the next section, an appropriate example will be presented,
providing more illustrations of the manipulation of arguments

and results,

16—

It should be noted that the process described here could
be applied to the program residing in any computer connected
to the PDP-11/45 through a network. The necessary provision
includes interface processors--special programs on the PDP-11/45
and connected computers--which allow file transferring and

program execution.

Example 8,3

The last type of B-object to be considered is a data module

descriptor.

(HM-COEFF (* DM
SYS (pPDP-11/45 TEXT)
LOC (LEO COEFF)))

The property {* DM} serves to indicate that this is a
"data module descriptor". Properties {SYS ...} and {LOC ...}
play the same role as in the previous example, except that the
reserved identifier TEXT shows that the data are stored in
textual form which is the normal representation for applied data.
BIN says that it is in a binary form; in this case, DILOS does
not have any responsibility for its compatibility with other data
participating in the process.

Data modules are used to contain large amounts of unstructured
data, for instance, matrixes of numerical coefficients. As opposed
to A-objects contained in MDB, data modules cannot be recognized
by associative search, i.e. functions FIND, ADD and DEL are
inapplicable to data modules themselves, although applicable to
dm-descriptors. In most cases, it is the responsibility of
applied programs to separate data modules into elements, or to
generate them by appropriate algorithms.

Since the main purpose of data modules is to pass to and
from program modules, DILOS provides binding of argument and
result variables to data modules contents. This is accomplished

by means of special functions:

-17-

(EXTR dm-descriptor arg-variable) ~ extract contents of
data module and make
it a value of the
argument-variable.

(FILL dm-descriptor res-variable) - take the value of the
result-variable and
pass it to data
module.

Concatenation of data module contents and other amending
operations should be performed outside DILOS by appropriate
commands.

In conclusion, it is worth stressing again that the
introduction of special descriptors in MDB allows the system
analysts to construct the program and data complexes from the
modules allocated on different computers. This approach leads
to the idea of distinguishing between two parts of the data
base: model data base (MDB), containing the structured knowledge
of problem domains; and conventional data base (CDB), represented
by normal file systems on different computers that contain the
terminal data and calculating procedures.

The complete picture of interactions between the end-user,

MDB and CDB in this case, is illustrated in Figure 3:

MDB-objects Applied
program

‘ and data
i end-user DILOS > \|: modules

MDB CDB

Figure 3.

IX. PROCESS DESCRIPTORS

So far, we have considered the representation and usage of
A- and B-objects. Now it is timely to show the way of organizing

the whole problem-oriented system. The essential role here is

-18-

played by theorems--special objects defining the sequences of
actions to be performed under certain conditions.

In general, each theorem contains two basic parts: pattern
and function. The theorem becomes initiated when a calling
pattern, generated somewhere in the system, matches the theorem's
pattern. Thus, the theorem's pattern and functional parts
correspond to a logical implication rule : <pattern> D <function>.
The origin of this notation and interpretation could be found in
the dissertation on PLANNER by Hewitt (1972) developed later by
several researchers in artificial intelligence including Briabrin
(1975a, 1975b).

We have already met a calling pattern when considering the
START function (Example 1.2). Another function that can be used
in different places for generating calling patterns is EX function:

(EX calling-pattern).

Example 9.1

Consider a hypothetical "development game", played by the
end-user against some program residing in the data base. The

first theorem defines the general skeleton of the game:

(Tl (* TH

PATT (, "DEVELOPMENT GAME" “DEV~-GAME" DG)

FUN (PROG ()
(PRLINE "DEVELOPMENT GAME IS STARTED")
(EX "PRELUDE")

LOOP (EX "MODEL ACTIVATION")

(ASK "WANT TO REPEAT?" =Q)
(COND ((EQ ©Q 'YES) (GO LOOP)))
(EX "“FINAL")
(PRLINE “THE GAME IS OVER. COME AGAIN"))))

Tl is the theorem's name. The first property {* TH} serves
as an indicator that this is a theorem. Two other properties
{pATT ...}, and {FUN ...} contain the theorem's pattern and

function parts as discussed earlier.

-19-

This theorem 1s initiated by one of the following calling
patterns: "DEVELOPMENT GAME", "DEV-GAME", DG. Other desirable
patterns could be added to this last.

The functional part of the theorem takes the form of a
LISP program containing seven function calls. Functions PRLINE
in the beginning and in the end of this program provide printing
messages on the user's terminal. Functions EX with different
calling patterns 1nitiate other theorems. Function ASK prints
the message "WANT TO REPEAT?" on the terminal and assigns the
end-user's reply to the variable Q. This reply is compared
with YES by the function EQ; the results of this comparison
causes function COND to repeat the loop or to pass control
toward the end of the game.

Thus, the main logical structure of the gaming process
appears clear in this theorem. However, further work is needed
to describe details of "prelude", "model activation”, and "final"

stages of the game. Appropriate theorems can do that.

T2 (* TH
PATT (, "PRELUDE" "MODEL PREPARATION")
FUN (PROG ()
(FIND INITIAL-VAL : TOTAL~PROD =Pl ; CAPIT-COST =P2)
(ASSIGN (LIST Pl P2) PHASE-VAR)
(PRLINE "PHASE VARIABLES ARE READY")))) .

This theorem could be initiated by the "PRELUDE" or "MODEL
PREPARATION" calling pattern, and this could be done during Tl
evaluation or by external call : (EX PRELUDE), which is useful
for debugging purposes.

Function FIND extracts the values of TOTAL-PROD and CAPIT-
COST properties from the object INITIAL-VAL; this object presu-
mably resides in the same MDB division where Tl and T2 are
stored.

Extracted values are assigned to Pl and P2 pattern variables,
and the next function ASSIGNS the list of Pl and P2 values to
a new variable PHASE-VAR.

-20-

Printing out the message "PHASE VARIABLES ARE READY"

completes the T2 evaluation.

(T3 (* TH

PATT "MODEL ACTIVATION"

FUN (PROG ()
(ASK "YOUR STEP NUMBER?" =STEP-NUMB)
(ASK "THE VALUE OF IMPORTED CAPITAL?" =Cl)
(ASK "THE VALUE OF EXPORTED CAPITAL?" =C2)
(ASSIGN (LIST Cl C2) CNTRL-VAR)
(INIT DEV-GAME)
(ASK "READY TO RUN?" =R)
(COND ((NEQ R 'YES) (RETURN 'WAITING)))
(RUN DEV-GAME)
(FINISH DEV-GAME)
(PRINT VALUES)
(PRINT COMMENT)
(ASSIGN VALUES PHASE-VAR)
(PRLINE "THE PHASE IS COMPLETE")))) .

The functional part of this theorem is built on the assumption
that there exists a program module descriptor DEV-GAME with the
properties as given in Example 8.2. The four functions at the
beginning provide the values of STEP-NUMB and the CNTRL-VAR
arguments for the main program. After this is done, all three
arguments have appropriate values, and (INIT DEV-GAME) prepares
an input file for the main program.

The system then asks the end-user whether he is ready to
run the main program. If he does not confirm this by typing
"YES", then the system responds by "WAITING" and this ends T3
evaluation.

Otherwise, the system executes the main program, separates
the output file into result variables, prints out the value of
VALUES (2 integers) and the value of COMMENT (22 characters).
Then, it ASSIGNS the value of VALUES to PHASE-VAR, and prints
the message "THE PHASE IS COMPLETE".

-21-

Looking back at the Tl theorem, we can see that after the
T3 evaluation, the system has a short conversation with the
end-user and either repeats the T3 evaluation with the new
value of PHASE-VAR, or proceeds to the last step--executing
the "final" stage of the game. A corresponding theorem could
be formulated for the "FINAL" calling pattern, but it will not
give the reader new information about the system.

We would conclude this lengthy example by depicting the
basic features of the illustrated approach.

Process descriptors, or theorems help the system analyst

to:

(a) Detach the logical structure of the constructed process

from the programmed implementation of internal calcula-

tion algorithms;

(b) Arrange a pleasant conversation between the end-user
and systems logical controller;

(c) Organize the internal system's access to MDB contents
by means of the same FIND, ADD and DEL functions
available to the end-user when he is working from the
terminal;

(d) Provide the possibility of deductive inference based
on the similarity of the theorem to logical rules of
implication.

The last feature becomes possible if the theorems' patterns

contain not only constants, as in Example 9.1, but also pattern
vartables which could obtain values from the calling patterns

and be used in functional parts of the same theorems.

In general, the DILOS approach to data base management could

be outlined as follows:

(1) Structured data representing the system analyst's
knowledge about specific problem domains are stored
separately from the terminal nonstructured data,
manipulated by applied programs.

(2) Applied programs are considered data base objects
similar to applied data modules, and they are
initiated through structured descriptors residing

in MDB rather than directly by the user.

~22-

Interaction between the users and the applied program
and data complexes is organized by means of special
process descriptors, allowing flexible logical control

of the problem-solving processes.

X. LIST OF BASIC FUNCTIONS

(1)

(2)

(6)

(7)

General functions for MDB-objects manipulation:
(OPEN 'divname)

(FIND pattern)

(ADD pattern)

(DEL pattern).

Functions for program modules initiation, execution
and finalization:

(INIT progr-module-descriptor)

(RUN progr-module~-descriptor)

(FINISH progr-module-descriptor).

Functions for extracting and filling data modules:
(EXTR data-module-descriptor arg-variable)
(FILL data-module~-descriptor res-variable).
Functions for interaction with the end-users:

(ASK message = variable)

(PRLINE message).

Functions for initiating theorems:

(START calling-pattern)

(EX calling-pattern).
General purpose LISP-functions:
(COND (predicatel exprll exprl2 ...)
(predicate2 exprl2 exprl22 ...)
:)
(GO label)

(RETURN expr)

(SETQ variable expr)

(PRINT expr).

Functions for manipulation of MDB-object properties:

(GETP 'objname 'propname)

-23-

(GETPV 'objname 'propname 'propvalue)
(DELP ‘'objname 'propname)
(DELPV 'objname 'propname ‘'propvalue)

(PUTPV 'objname 'propname 'propvalue).

-24-

References

Briabrin, V.M., (1975), Universal Semantic Memory, in Symbol
Inf. Processing, 2, Computing Center of the Academy of
Sciences, Moscow.

Briabrin, V.M., V.A. Serebryakov, and V.M. Yufa (1975),
LORD: LISP-Oriented Resolver and Data Base, U4th Intern.
Joint Conf. on Artificial Intelligence, Massachusetts
Institute of Technology, Cambridge, Mass.

Hewitt, C. (1972), Description and Theoretical Analysis of
PLANNER: a Language for Proving Theorems and Manipulating
Models in a Robot, AI-TR-258, AI Lab., Massachusetts
Institute of Technology, Cambridge, Mass.

Howard, F. (1975), L110 Frogrammers Manual, HRSTS Science
Center, Lynnfield, Mass.

Teitelman, W. et al. (1974),INTERLISP Reference Manual,
XEROX Palo Alto Research Center, Calif.

Weissman, C. (1967), LISP 1.5 Primer, Dickenson Publishing Co.,
Encino, Calif.

