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Preface

Latent variables, though not observed, are considerably
useful in explaining relationships among observable variables
and are frequently used in econometrics and psychometrics.
This paper discusses the general multiple indicator - multiple

cause model with several latent variables.
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The Multiple Indicator - Multiple Cause Model

With Several Latent Variables

Abstract

A model in which one observes multiple indicators and
multiple causes of several latent variables is considered.
The parameters of this model are estimated by maximum like-
lihood and restricted rank regression approaches. Also a
likelihood ratio test statistic for testing the validity of
the restrictions in the above model is derived.

1. Introduction

Latent variables, though not observed, are useful in
explaining relationships among observable variables. Jbreskog
and Goldberger (1975) utilize maximum likelihood and various
other procedures for estimation of a model in which one observes
multiple indicators and multiple causes of a single latent vari-
able. In this paper we extend their analysis to cover the case

of several latent variables.

In its most general form, our model is specified as follows:

The structural equations are

y = By* + I'z +u

{ (1.1)
Y

¥ = A'x + ¢

where
y = (y],...,ym)' observable endogenous indicators,
x = (x1,...,xk)' observable exogenous causes of
latent variables,
z = (z1,...,zs)' observable additional exogenous

variables directly affecting the
indicators,




latent variables,
and

u = (u1,...,u ) € = (61,...,Er)

are the disturbances (error variables). The coefficient matrices

are: B = {B..} , r = {vy..} , A = {o..}
[mxr] +J [mxs] +J [kxr] +J

We make the following assumptions about the disturbances:
E(gg') = A , E(gg') = 62 diagonal , E(gg') =0 .
The diagonal elements of 62 are displayed in the vector
6 = (64,...,6)"

Hence the reduced form of the model is given by

y = B(A'X + €) + 'z + u

H'§ + Tz +v , (1.2)
where

I' = BA' and v = Be + u .

Then

E(vv') = BAB' + @2

I
2

Several special cases of this general model have already
been discussed in the literature: Zellner (1970) considers the
generalized and modified least square estimation of a model with
one latent variable (r=1), two observable endogenous indicators
(m=2) and no observable exogenous variables directly affecting

the indicators (I'=0). Furthermore he assumes that the exogenous



causes are not subject to stochastic errors. With m > 2,
Goldberger (1972) and Jbreskog and Goldberger (1975) discuss; the
maximum likelihood (ML) estimation of a model where I' = 0, r = 1
and the exogenous causes are subject to stochastic errors.

Hauser (1972) extends the analysis to cover the situation whe're
additional causal variables directly affect the indicators (T $¥0) .

. 2 . , .
With 07 not restricted to be diagonal, Hauser discusses the ca'se

of one latent variable (r=1). He shows that the observable ad--
ditional exogenous variables directly affecting the indicators can
be swept out by replacing y and x by the residuals from the re-
gression of y on z and x on z respectively. Robinson (1974) covers

the case of several latent variables {(r > 1) with @2 not restricted

to be diagonal.

Since the reduced form of the general model remains unchanged
when B is postmultiplied by a nonsingular r x r matrix H and A' is
premultiplied by H_1, we have an indeterminancy of the structural
parameters. To remove this indeterminancy we adopt the normaliza-
tion A = I. Furthermore, following Hauser (1972) and Robinson
(1974) , we see that if T is unrestricted, the additional causal
variables which directly affect the indicators can be reduced by
sweeping out. Hence for unrestricted I' there is no loss of gen-

erality in dropping z from the general model.

A graphical interpretation of the model is given in the

figure below. Furthermore we illustrate the model by way of two

conceptual examples:




observable latent observable
exogenous — variables —» endogenous
causes (can not be indicators

observed)

Example 1: Relationship between social status and social partic-
ipation (J¥Breskog and Goldberger (1975)).

y1,y2,...,ym (church attendance, membership, friends seen,...)
are viewed as indicators of a latent variable y* (social partic-
ipation) which is linearly determined by the observable exogenous
Causes X X,s--. Xy measuring social status {(income, occupation,

education,...).

Example 2: Relationship between income distribution and hunger.
In this example hunger is viewed as latent variable and YqrY¥oresey

y _are the indicators of this latent variable, such as occurrence

m
of malnutrition diseases, protein and calorie intake below standard
levels. The latent variable y* is linearly determined by the ob-
servable exogenous causes XqrXpreeo Xy reflecting the income dis-

tribution of a country (percentage of people below average income,

percentage of farms below average farm size,...).



2. Specification of the model

Thus, our reduced specification is

y = By*¥ + u
- v - (2.1)
yro=ATx e
where
B = (B 16 ’ IB) ’ B (B -,B -’oo-rB ')' ’
[mxr] <1722 ~r ~]J 1377275 m]j
A = (Q. O lo-ol(l) ’ . = (a ’ ’ F3e’ ')' ’
[kxr] <1722 ~r ~J 13723 kj
with
E(ec') =TI , E(eu') =0 , E(uu') = 92 (diagonal)
Hence the reduced form is
y = H'§ +v o, (2.2)
where
n' = BA' , v=Be +u , E(vv') = BB' + 62 = Q

We notice two kinds of restrictions on the parameters of the

reduced form:

(1) The matrix @I has rank r; the km elements of II are

expressed in terms of r (k+m) elements of A and B.:

This

is the type of restriction one encounters in the reduced

form of conventional simultaneous equation models.




(i1) The m(m+1)/2 distinct elements of 2 are expressed in
terms of the m(r+1) elements of B and 92. This is the
type of restriction which arises in conventional factor
analysis models. It is also to be noted that the same

matrix B appears both in 1 and Q.

We observe that there is an infinity of choices for B:
The reduced form II' = BA' and © = BB' + 92 will remain unchanged

if we replace y* by My*, B by BM', and A by AM', where M is any

orthogonal matrix. In the terminology of factor analysis this
corresponds to a rotation of factors. Hence, following Lawley
and Maxwell (1971), without loss of generality we choose B such
that B'O_ZB = G_z, say, 1s diagonal. Then

QB =0 “B(I+G ) ' (2.3)

We consider two alternative specifications concerning the

stochastic nature of x. 1In case 1, x is taken as fixed and y
has a multivariate normal distribution, whereas in case 2, (§,¥)
are jointly multivariate normal. 1In both cases successive ob-
servations are assumed to be independent.
3. Maximum Likelihood Estimation

Now consider a sample of T joint observations x(t), y(t)

generated for t = 1,2,...,T by



y(t) = I'x(t) + v(t) , v(t) are NID(O,Q) , x(t) fixed.

Here NI' = BA', Q = BB' + 62. The log likelihood L, of the sample

can be written as

1 1

L, = -5 Tllog|Q] + tr(2 W] (3.1)
where
W= (Y-XI)"'(Y-xI)
x = 7 Hx(1), ..., x(T)"
-1
Y =1T 2(1~/(1),---,1~/(T))'

We define the usual multivariate regression statistics:

-1

P = (X'X) X'Y , Q=Y'XP , S = (Y-XP)'(Y-XP) ’

o)
1l

Y'Y =S +0Q . (3.2)

To maximize the likelihood, it suffices to minimize

F = (=) L, = log|Q| + er (@ W) (3.3)

The general formula for derivatives of a function of the form of

F, as given in JWreskog and Goldberger (1975), is

=1 -1 oW

——=tr[Q_1(Q—W)Q ﬁ]+tr[§z —1 ,
u U

Bui
where My denotes any of the elements in A, B and 6.

We now define di and e, respectively to be kx 1 and m x 1
vectors with 1 at the ith position and zeros at all other

positions. Then




LY v oW _
62 = 262(32?2 ; o 0 L =1,2,...,m
L
af oW
=0 ; = -B.4d!X'Y - ¥Y'XAd, B' + 2d!X'Xa.R.R!
Baij aaij <j<i ~1 <7 i Njgjgj
r
Tty 1 L} 1
+ Z. {gsgsx Xgigj + ?jgixlxgsgs}
S#J
i=1,2,...,k ; 3 =1,2,...,r
N
— = e, B! + B.e!
aBQj ~2~73 ~j~2
oW —e a'X'Y-Y'Xa.e! + a'X'Xa.(B.e!'+e R!))
9Bg5 ~2~7 BRI B RS R
)
+ {e a'X"Xa B' + B a'X'Xa.e'l}
s#5 ~2~7 ~8~8 ~8~S ~J~4
£ =1,2,...,m ; J=1,2,...,r . (3.4)
Hence we have
OF -1 W ’ - -1 T -1
= tr(Q ) = 2{-B!Q 'Y'X+ B!Q B.alX'X + )} B!Q B_alx'X}d.
o . o0, oy | b <j< bt Zs<s <1
1] 1] S#73

Setting the derivatives BF/aaij equal to zero, we obtain the
maximum likelihood (ML) estimate of A in terms of the ML estimates
of B and 6. The solutions we obtain are implicit and thus must be

iterative.

The ML estimate of A is given by



A 1/\ A A 1

A = PR B(B'Q 1

)1 . (3.5)

Here and in the following carets denote ML estimates so that
= 0 + BB'. We recall that B was chosen such that

B'6 “B =G 2 = diag (1/g?,...,1/g§), say. Then

2, -1 1 1

B'a B =c¢%(r+c Y = diag > , (3.6)
1+g1 1+g
Hence using (3.6) in (3.5) we obtain
A2 A—1A .
a = 1 + . )Pl . =1, ’ 3.7
i, = (1 +8HP0 By (3 r) (3.7)

Now

oF -1 -1 99 -1 OwW
= = tr|Q " (S-W)Q 1 + tr%l ]
"F13 [ i3 o3

Y
gre - W™y —atxtve  ratxtxal8t0 T 4 Y alX'Xa '
=3 43 237 2505 S

I
N
D

We set the derivatives BF/BBQj = O to obtain the ML estimates of

B. The resulting equation turns out to be

/\—1 ~ A AA—

Q" '[B(I+C) - (Y'XA+wWQ B)] =0 , (3.8)
where C is the ML estimate of

C = A'X'XA = {giX'ng} = {cij} . (3.9)

AN - A—1/\

It can be easily verified that WQ B = SQ 'B and using this and

(3.5) in equation (3.8) we obtain




_‘]O_

/\..1/\ A...‘]A ~ /\_‘l/\

sQ”'B + 007 'B(B'QT'B) = B(I+C) . (3.10)

The above equation can be rewritten as

1 -1

ye--s{SH+ (1+§§)Q}Q

[ e~D

[{s+ (1+82)018 8.1 =B(I+C) . (3.11

1

For the ML estimate of 62, the derivatives 8F/882, (2 =1,2,...,m)

are needed and these are given by

Also making use of (3.5) and (3.10) we obtain

6"V E-ma !l = 872 8% -r+B(T+O)B'1072 . (3.13)

Finally the ML estimate of 62 is obtained by setting aF/BGQ = 0

and using (3.13) in the resulting equation yields

’éi = [R] - [§(1+é)]§'] (2 =1,2,...,m) (3.14)

L9 Le !

where [M]22 denotes the ch diagonal element of the matrix M.

Thus we have the implicit solutions for the ML estimates of
A, B and 6 given by (3.5), (3.11) and (3.14).

If we further assume that C = A'X'XA is a diagonal matrix,

then the ML estimates of B and @2 are given respectively by

A2 a=1s A v 4 .
S+ (14850107 By = (1+2,,)8, (5 =1,...,0) (3.15)
52 = [R] . - § (1+&_ )32 (L = 1 ) (3.16)
9 22 L cSS %s = 4000, .

(2 =1,2,...,m) . (3.12)
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Under the above assumption the ML estimate of §j is a character-
istic vector of the matrix on the left of (3.15), normalized such
that B'O—zB is diagonal. It can also be shown that this charac-
teristic vector is in fact the one corresponding to the largest
root. The assumption that C is diagonal can be interpreted as re-

quiring the latent variables to be uncorrelated.

When x is random, say normal with mean zero and dispersion
matrix ¢, the log likelihood of the sample is the sum of two parts.
This is because the joint distribution of y and x is the product

of the conditional distribution of y given X and the marginal
distribution of x. Since the joint distribution is multivariate
normal both the marginal and conditional distributions are multi-
variate normal. Hence the 1og likelihood is given by L = L1 + L2
where L, is given in (3.1) and L, = -iT[log|®| + tr(X'X®_1)]

Then the ML estimate of & is & = X'X, and the ML estimates of the

remaining parameters are unaffected.

Our results in (3.7), (3.15) and (3.16) are analogous to
those obtained by Jbreskog and Goldberger (1975) for the single

latent variable case (r = 1).

4. Testing for the Validity of Restrictions

We now derive an explicit expression for the likelihood-ratio

test of the model.

First we evaluate the function in (3.3) at the ML estimates

~

A, ﬁ and 62 to obtain I', the minimum of F. We have
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F o= log|h| + tr(d ) . (4.1)
Now
18] = |8%||1+8'07%8] = |8°%(|z+67%|
so that
‘ A2
R m "2 r 1+g.
log|Q| = ] 1log 0] + ) log -—31- . (4.2)
i=1 j=1 §j

From (3.1) and (3.2) it can be seen that

A_1A A—1

tr (87 = tr(Q7R) - tr(A'x'ys”

B)

A A -

- tr 307 'y xA) + tr(3 ]

BA'X'XA) . (4.3)

We can also show that

r
tr (A'x Y0 18) = tr(8'Q7 'y'xA) = (8L X'YQ 2 (4.4)
J=1 ~J ~]
and using (2.3)
AA—1AA ~ r /\2 N A
tr(B'Q BA'X'XA) = ) (1/(1+gZ))alX'Xa. (4.5)
3=1 J ~] ~]
From (3.7) it follows that
&.. = B'X'X6. = (1+§5)a.x'va ™8 jo=1,2 r
33 7 <30 04 73723 3
(4.6)
Hence from (4.3)-(4.6) we obtain
A=A A= T oA ~2
tr(Q W) = tr( R) - Y (c../(1+g3)) . (4.7)
J=1 J1] ]

Now using (2.3), (3.2) and (3.6) we obtain

ﬁ
R
=

|
z
N
ﬁ-
H
S
z
|
I K

2 2
g G . ¥(G5* ¥*)R¥ , (4.8
(65/(1+ 8 B3S* + 0¥ BF , (4.8)
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where

From (3.7) it can be shown that §j = §§P6—2§j (3 =1,2,...,r)
and hence that
BEIQ¥B* = &../8° , = 1,2,...,r (4.9)
~] ~] 11777
Using (2.3) in equation (3.10) and after tedious algebraic
manipulations we obtain
T 2 3 2
Y G5/ (1 +85))Bx's*¥Bx = ) (1/8%) . (4.10)
j=1 J 1°°~13 ~] j=1 ]

Therefore application of (4.8), (4.9) and (4.10) in (4.7) yields

A=1n ) t 2
tr(Q W) = tr(0 “R) - ) ((1+&..)/8%) (4.11)
3=1 1] J
It can, however, be shown from (3.16) that
- e 2
tr(0 “R) =m + ) (1+8&..)/§5 , (4.12)
i=1 J3J J
and hence (4.11) simplifies to
tr (W) = m . (4.13)
Therefore,
R m r 1+§%
F=m+ ) log 6; + ) 1log — (4.14)
i=1 J=1 g

Under the alternative hypothesis, I and Q@ are unconstrained,

and are estimated by P and S respectively. The minimum value of



_1u_

Foy = log|s| + m . (4.15)

Hence the likelihood ratio test statistic is given by

X2 = -2 log (likelihood ratio) = T(ﬁ-—FO)
~2
m ~D r 1+g.
=T| ] log 8. + 1 log = | = log|s|| . (4.16)
i=1 j=1 gj

Under the null hypothesis that the restrictions are valid, this
statistic is asymptotically distributed as a Chi-square with the

degrees of freedom equal to the number of restrictions, namely

mm- (2r + 1) ]
2

+ k(m~r1)

It is to be noted that the above test is valid only when

(1) m > r

m{m+ 2k - 1)

(11) > (m + K)

The condition (1) implies that the number of observable endogenous

indicators is larger than the number of latent variables.

5. Restricted Rank Regression Approach

In this section we ignore restrictions on © and make use of
restrictions on I only. This is the model analyzed by Robinson
(1974). The system is not identified but identification can be
achieved by making the normalization C = A'X'XA = I. 1In other

: - 1
words we are getting estimates of A* = AC ? and B* = BC’ where
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[NTE
ol

— ' .
C* = P1A P1,

of eigenvalues of A'X'XA are such that C = PiAP1.

the orthogonal matrix P1 and the diagonal matrix A

The estimates of A* and B* can be derived by a "limited in-

formation maximum likelihood" analysis of P, the unrestricted

estimator of M. This is achieved by minimizing F =

log|Q| +

tr(Q_1W) subject to Il = A*B*' with the normalization A*'X'XA* = I,

In this case, the minimum distance principle {(which minimizes

-1

tr(S 'W)) produces the same coefficient estimates as the maximum

likelihood principle; see Goldberger (1970), Robinson

(1974) .

These estimates, denoted by bars, are given by the eguations:

-1 -1 -1

- — — — _ I P
B*(B*'S B*¥) = QS B* , A* = pPS B*(B*'S 'B¥*)

Using the normalization

B*'s” 'B* = diag

1+§1 1+gr
we get from (5.1) that
-1 1 -
QS Br = ( 5 Bx ’ (] = 1121 Ir)
~J 1+g% / ~J
J
and
o¥ = (1+"2)PS—1§* (3 = 1,2 r)
oy gj ”j ’ J 1L gy

1 (5.1)

(5.2)

(5.3)

(5.4)

— . . -1
Here we see that the B; are the characteristic vectors of QS ,

and in fact it is easy to show that they correspond to the r

largest characteristic roots of this matrix. The estimates ob-

tained here are, apart from normalization, the same as those
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obtained by Robinson (1974). If we reintroduce the constraints

on @2, the estimates of 02 can be obtained by undertaking a common
factor analysis of S = (Y-XII)'(Y-XT).

6. Concluding Remarks

In this paper we studied a model with r latent variables,
combining restrictions which occur in econometrics and psycho-
metrics. We developed estimates using ML and restricted rank
regression approaches. The solutions obtained were implicit and
one needs to have some iterative scheme for the implementation
of these solutions. Fortunately, the present model fits into
Jbreskog's (1970) covariance structure model, for which the ML

algorithm is already programmed.

Jbreskog (1970) develops a general covariance structure model

for a multivariate normal vector z with

E(zz') = D(ADA" + w2)D‘ + F2 .

Elements of the parameter matrices D, A, ¢ (symmetric) anc ¢, T
(diagonal) may be fixed, constrained, or free. Taking z = (x

we have in the random case

¢ PAB'

E(zz') = 2
T RA'd B(I+C)B'+0

We choose
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Ty xk Op xr Ty xk
D = 7 A = ’
[ (k+m) x (k+r) ] Olixk B oy [ (k+r) xk] ALk
Ok xk Okxy Opxk  Ckxm
P o= , r =
[ (k+r) x (k+1r)] Orxk Irxr [ (m+k) x (m+k)] Omxk Gme

Then the covariance structure of z is specified in terms of

Jbreskog's model.
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