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INTRODUCTORY REMARKS ON THE STATE SPACE MODELING 

OF WATER RESOURCE SYSTEMS 

O c t o b e r  1 9 7 6  

Research Memoranda are interim reports on research being con- 
ducted by the International Ins t i t~ te  for Applied Systcnts Analysis, 
and as such receive only limited scientifir review. Views or opin- 
ions contained herein do  not necessarily represent those of the 
Institute or o f  the National Member Organizations supporting the 
Institute. 





P r e f a c e  

I n  t h e  day-to-day management o f  r i v e r  b a s i n s  one o f  
t h e  c r u c i a l  i s s u e s  i s  t h e  d e r i v a t i o n  o f  r e a l - t i m e  o p e r a t i n g  
p o l i c i e s ,  which a r e  t o  be  op t ima l  i n  a  c e r t a i n  s e n s e ,  f o r  
t h e  w a t e r  r e s o u r c e  sys tems.  A s  t e l e m e t e r e d  sys tems a r e  
g r a d u a l l y  coming i n t o  use  t h i s  problem i s  becoming more 
and more i n p o r t a n t  f o r  d e c i s i o n  makers o p e r a t i n g  such  
sys tems.  I n  view o f  t h e  i n h e r e n t  random n a t u r e  o f  w a t e r  
r e s o u r c e  sys tems t h e r e  is a  l o t  o f  room f o r  methodo log ica l  
r e s e a r c h  a s  w e l l ,  t h e r e f o r e  t h e  IIASA Research P l a n  f o r  1976  
p r o v i d e s  a  t a s k  on t h e  Methodology o f  Real-Time F o r e c a s t i n g  
and C o n t r o l  o f  Water Resource Systems; t h e  aim o f  which i s  
t o  c o n t r i b u t e  t o  t h e  s o l u t i o n  o f  t h e  a fo rement ioned problems.  

A s  it t u r n e d  o u t  i n  t h e  p a s t  few y e a r s  t h e  s t a t e  s p a c e  
model ing t e c h n i q u e s  a r e  p a r t i c u l a r l y  w e l l  s u i t e d  f o r  s tudy-  
i n g  t h e  problems o f  r e a l - t i m e  f o r e c a s t i n g / c o n t r o l  i n  w a t e r  
r e s o u r c e  sys tems.  Q u i t e  a  number o f  pape rs  have been pub- 
l i s h e d  on t h i s  s u b j e c t ,  n e v e r t h e l e s s  w a t e r  r e s o u r c e  
e n g i n e e r s  w e r e  and s t i l l  a r e  r e l u c t a n t  t o  use  i n  t h e  c o u r s e  
o f  t h e i r  e v e r y  day p r a c t i c e  t h e  t e c h n i q u e s  advocated .  One 
p r o b a b l e  reason  f o r  t h a t  i s  t h a t  t h e  p a p e r s  ment ioned assume 
a  c e r t a i n  amount o f  knowledge on t h e  s t a t e  space  t e c h n i q u e s ,  
an assumpt ion  which sometimes does  n o t  r e a l l y  ho ld .  There- 
f o r e ,  s t i m u l a t e d  by needs o f  many p r a c t i t i o n e r s ,  t h i s  paper  
aims t o  g i v e  a  s h o r t  i n t r o d u c t i o n  t o  s t a t e  space  model ing 
w i t h  p a r t i c u l a r  r e f e r e n c e  t o  w a t e r  r e s o u r c e s  sys tems.  
Through a  number o f  examples t h e  n o t i o n  and s t r u c t u r a l  pro-  
p e r t i e s  o f  s t a t e s  o f  w a t e r  r e s o u r c e  sys tems a r e  d i s c u s s e d ,  
b o t h  f o r  t h e  d e t e r m i n i s t i c  and s t o c h a s t i c  c a s e s ,  s i n c e ,  a s  
Yev jev ich  ( 1 9 7 4 )  s t a t e s ,  "on ly  an  i n t e g r a t i o n  o f  b o t h  d e t e r -  
m i n i s t i c  and s t o c h a s t i c  approaches  promises  t h e  b e s t  math- 
e m a t i c a l - p h y s i c a l  unde rs tand ing  and d e s c r i p t i o n  o f  h y d r o l o g i c  
p r o c e s s e s  and env i ronment " .  I t  w i l l  b e  s e e n  t h a t  t h e  s t a t e  
s p a c e  t e c h n i q u e s  a r e  i ndeed  c a p a b l e  o f  o f f e r i n g  such  an 
i n t e g r a t e d  approach.  

A s  t h e  purpose o f  t h i s  p a p e r  is  merely  t o  g i v e  an 
i n s i g h t  i n t o  t h e  a p p l i c a b i l i t y  o f  modern sys tems t h e o r y  t o  
w a t e r  r e s o u r c e  s y s t e n s ,  t h e  mathemat ics  w i l l  be  k e p t  on a  
lower  l e v e l ,  however, w e  w i l l  f o l l o w  E i n s t e i n ' s  d ic tum - t h a t  
" a n  e x p l a n a t i o n  shou ld  be a s  s imp le  a s  p o s s i b l e  b u t  no 
s i m p l e r " .  The r e c u r s i v e  f i l t e r i n g  and p r e d i c t i o n  a l g o r i t h m s  
a r e  n o t  d i s c u s s e d  h e r e ;  t h e y  a r e  l e f t  f o r  a n o t h e r  p a p e r  
where t h e  f i n a l  r e s u l t s  o f  t h e  a fo rement ioned IIASA t a s k  
w i l l  a l s o  b e  r e p o r t e d .  



F i n a l l y ,  a  t e c h n i c a l i t y .  The equa t i ons  and examples i n  
each of t h e  f o u r  s e c t i o n s  a r e  numbered independent ly .  I f  a  
r e f e r e n c e  i s  made from one s e c t i o n  t o  an equa t i on  i n  ano the r  
s e c t i o n ,  t h e  number o f  t h e  s e e t i o n  s t a n d s  f i r s t  fo l lowed by 
t h e  number o f  t h e  p a r t i c u l a r  equa t i on  r e f e r r e d  t o ,  e . g . ,  
equa t i on  (10)  i n  s e c t i o n  1  i s  r e f e r r e d  a s  (1-10) i n  any sec- 
t i o n  excep t  s e c t i o n  1 ,  where it i s  r e f e r r e d  s imply a s  ( 1 ) .  
The same ho lds  t r u e  f o r  t he  examples. 



A b s t r a c t  

I n  s e c t i o n  1 t h e  n o t i o n  o f  s t a t e  and s t a t e  e q u a t i o n s  
f o r  w a t e r  r e s o u r c e  s y s t e m s  a r e  d i s c u s s e d  b o t h  f o r  c o n t i n u o u s  
and  d i s c r e t e  dynamics .  S e c t i o n  2 p r e s e n t s  t h e  s o l u t i o n  o f  
s t a t e  e q u a t i o n  f o r  l i n e a r  s y s t e m s  i n c l u d i n g  t h e  d e r i v a t i o n  
o f  s t a t e  t r a n s i t i o n  and  impu l se  r e s p o n s e  m a t r i c e s .  I n  
s e c t i o n  3 t h e  s t r u c t u r a l  p r o p e r t i e s  such  a s  o b s e r v a b i l i t y ,  
c o n t r o l l a b i l i t y ,  i n d e n t i f i a b i l i t y  and min imal  r e a l i z a t i o n s  
are d i s c u s s e d .  F i n a l l y ,  i n  s e c t i o n  4 t h e  s t a t e  c o n c e p t  
f o r  s t o c h a s t i c  s y s t e m s  i s  reexamined .  The s t a t e  and  
measurement d i s t u r b a n c e s  are c o n s i d e r e d  a s  b e i n g  w h i t e  
Gauss ian  n o i s e  p r o c e s s e s  and it is  showed how t h e  case o f  
o f  s e q u e n t i a l l y  c o r r e l a t e d  u n c e r t a i n t i e s  can  b e  r e d u c e d  
t o  a n  augmented sys tem model h a v i n g  w h i t e  Gauss ian  s t a t e  
d i s t u r b a n c e  o n l y .  The p a p e r  c o n c l u d e s  w i t h  t h e  g e n e r a l i z a -  
t i o n  o f  s t r u c t u r a l  p r o p e r t i e s  f o r  s t o c h a s t i c  sys tems .  To 
i l l u s t r a t e  t h e  u n d e r l y i n g  c o n c e p t s  examples  t a k e n  f rom a  
b r o a d  r a n g e  o f  water r e s o u r c e s  p rob lems ,  s u c h  as r a i n f a l l  
a n a l y s i s ,  r a i n f a l l / r u n o f f  r e l a t i o n ,  r e s e r v o i r  and  l a k e /  
a q u i f e r  p rob lems ,  w a t e r  q u a l i t y  c o n t r o l  e t c . ,  are p r e s e n t e d .  





1 .  THE NOTION OF STATE AND STATE EOUATIONS FOR 

WATER Rl3SOURCE SYSTEMS 

The concep t  of s ta te  h a s  i t s  r o o t s  i n  t h e  c a u s e - e f f e c t  

r e l a t i o n  of c lass ica l  mechanics  and i n  f a c t  is  n o t  a n  e n t i r e l y  

new concep t  b u t  r a t h e r  a  u n i f y i n g  framework i n  which t h e  re la-  

t i v e l y  e a s y  hand l i n g  of complex sys tems w i t h  many i n t e r a c t i o n s  

and /o r  i n p u t / o u t p u t  v a r i a b l e s  becomes p o s s i b l e .  The s ta te  

s p a c e  approach  i s  based upon t h e  i n t e r n a l  d e s c r i p t i o n  of t h e  

sys tems as opposed t o  t h e  c lass ica l  i n t e r n a l  d e s c r i p t i o n  which 

c o n s i d e r s  t h e  i n p u t / o u t p u t  r e l a t i o n s  on l y .  

The concep t  o f  t h e  s t a t e  o f  t h e  system C (which is  a c t u a l l y  

t h e  sys tem model of  t h e  rea l  s y s t e m  and t h e  word "system" i s  

u n f o r t u n a t e l y  used  f o r  t h e  s a k e  of  s h o r t n e s s  even though it 

m igh t  b e  ambiguous) i s  a ma themat i ca l  e n t i t y  which m e d i a t e s  

between t h e  i n p u t s  and t h e  o u t p u t s ,  i .e .  t h e  i n p u t s  a c t  on t h e  

s ta te  which,  i n  t u r n ,  g e n e r a t e s  t h e  o u t p u t s .  A s  C a s t i  (1976) 

states,  it is  i m p o r t a n t  t o  emphas ize t h a t  t h e  s ta te,  i n  g e n e r a l ,  

h a s  no  i n t r i n s i c  meaning and is  i n t r o d u c e d  s o l e l y  as a mathe- 

matical  conven ience  i n  o r d e r  t o  i n j e c t  t h e  n o t i o n s  o f  c a u s a l i t y  

and i n t e r n a l  s t r u c t u r e  i n t o  t h e  d e s c r i p t i o n  of C .  The o n l y  

q u a n t i t i e s  which have  p h y s i c a l  meaning are t h o s e  which can  

g e n e r a t e  o r  o b s e r v e ,  namely t h e  i n p u t s  and o u t p u t s .  I t  shou ld  

b e  s t r e s s e d ,  however, t h a t  it is  d e s i r a b l e  f o r  t h e  model  t o  

r e f l e c t  and u s e  as much p h y s i c a l  i n f o r m a t i o n  as p o s s i b l e ,  i .e .  

t h e  s ta te  v a r i a b l e s ,  i f  p o s s i b l e ,  shou ld  have  p h y s i c a l  meaning.  

T h i s  i s  t h e  p r i n c i p l e  of  p h y s i c a l i t y .  

Ano ther ,  more i n t u i t i v e ,  i n t e r p r e t a t i o n  o f  t h e  s ta te is  

t h a t  it is t h e  l eas t  amount of  i n f o r m a t i o n  which,  t o g e t h e r  w i t h  

t h e  c u r r e n t  i n p u t ,  u n i q u e l y  d e t e r m i n e s  t h e  s ta te  a t  t h e  n e x t  

moment of  t i m e ;  i n  o t h e r  words it is  t h e  min imal  amount of  

i n f o r m a t i o n  a b o u t  t h e  p a s t  h i s t o r y  of  t h e  sys tem which is  

r e q u i r e d  t o  p r e d i c t  i t s  f u t u r e  behav io r  (fistrijrn, 1 9 7 0 ) .  Of 

c o u r s e ,  t h i s  is  a somewhat c i r c u l a r  d e f i n i t i o n ,  b u t  it d o e s  



convey t h e  i n t u i t i v e  f l a v o r  of t h e  s t a t e  concep t .  

Cont inuous  Systems 

G e n e r a l l y ,  sys tems a r e  d i s t r i b u t e d  ove r  space  and t i m e  and can 

be  d e s c r i b e d  by p a r t i a l  d i f f e r e n t i a l  e q u a t i o n s  (Butkovsky,  1 9 6 9 ) .  

Our d i s c u s s i o n  h e r e  w i l l  be r e s t r i c t e d  t o  lumped sys tems d e s -  

c r i b e d  by o r d i n a r y  d i f f e r e n t i a l  o r  d i f f e r e n c e  e q u a t i b n s .  F i r s t ,  

c o n s i d e r  t h e  con t i nuous  case where t h e  system dynamics i s  g i v e n  

by a  se t  of d i f f e r e n t i a l  e q u a t i o n s .  Thus, i f  

are t h e  s t a t e  v a r i a b l e s  ( o r  s imp ly  t h e  states) of t h e  p r o c e s s  

a t  t i m e  t ,  and 

are t h e  i n p u t  o r  c o n t r o l  v a r i a b l e s  t o  t h e  p r o c e s s  a t  t i m e  t ,  

t h e n  t h e  system may be d e s c r i b e d  by n  f i r s t - o r d e r  d i f f e r e n t i a l  

e q u a t i o n s  

Z1 ( t )  = £1 [ X I  ( t )  1x2 ( t)  1 .  - , x , ( t )  I U I  ( t )  I U Z  ( t )  ,.. . , u p ( t )  r t l  

where Zi ( t )  i s  i n  g e n e r a l  a  n o n l i n e a r  t i m e  v a r y i n g  f u n c t i o n  f  

of t h e  s t a t e s ,  t h e  i n p u t s  and t i m e .  The n  state v a r i a b l e s  may 

be a s s o c i a t e d  w i t h  s e p a r a t e  a x e s  i n  an  n-d imensional  ( E u c l i d i a n )  

s p a c e  c a l l e d  t h e  s ta te  space  and deno ted  by X .  The p a t h  or 

mot ion o f  a  s y s t e m ' s  states i n  t h e i r  state s p a c e  is c a l l e d  t h e  

s t a t e  t r a j e c t o r y  which,  i n  o t h e r  words,  d e s c r i b e s  t h e  h i s t o r y  

of state v a l u e s  i n  a g i v e n  t i m e  i n t e r v a l .  By d e f i n i n g  



a s  t h e  s t a t e  v e c t o r  of t h e  sys tem,  and 

a s  t h e  i n p u t  v e c t o r ,  t h e  s t a t e  o r  sys tem e q u a t i o n  c a n  b e  w r i t t e n  

where t h e  d e f i n i t i o n  o f  f  i s  a p p a r e n t  by compar ison w i t h  (1) . 
I f  t h e  i n p u t  v e c t o r  i s  m i s s i n g  f rom ( 2 )  t h e  sys tem i s  s a i d  t o  be  

f r e e ;  o t h e r w i s e  it i s  f o r c e d .  A s  a m a t t e r  o f  f a c t  ( 2 )  g i v e s  

t h e  r e l a t i o n  how t h e  i n p u t s  a c t s  on t h e  s t a t e s  which i n  t u r n  

g e n e r a t e  t h e  o u t p u t s  a c c o r d i n g  t o  t h e  a l g e b r a i c  r e l a t i o n  

where y ( t )  i s  an m-vector of  t h e  o u t p u t  v a r i a b l e s  and h t  i s  a 

n o n l i n e a r  v e c t o r  f u n c t i o n .  I n  t h e  l i t e r a t u r e  ( 3 )  i s  c a l l e d  

o u t p u t  e q u a t i o n .  Obvious ly  m 6 n ,  i n d i c a t i n g  t h a t  sometimes 

n o t  a l l  t h e  s t a t e  v a r i a b l e s  a r e  connec ted  d i r e c t l y  t o  t h e  o u t p u t .  

A s  a n  i l l u s t r a t i o n  o f  t h e s e  concep ts  i n  a  h y d r o l o g i c a l  

c o n t e x t  c o n s i d e r  t h e  f o l l o w i n g  

E x a m p 1 e 1 d i s c u s s e d  i n  d e t a i l  by Duong e t  a 1  (1975) . -- 
A s  i s  well-known, d i r e c t  runo f f  may b e  c o n s i d e r e d  a s  

t h e  r e s u l t  of  t h e  t r a n s f o r m a t i o n  of  r a i n f a l l  e x c e s s  by 

t h e  b a s i n .  The p h y s i c a l  p r o c e s s  of  t h i s  t r a n s f o r m a t i o n  

is v e r y  complex, depend ing  ma in l y  upon t h e  s t o r a g e  



e f f e c t s  i n  t h e  bas in .  (The r e a d e r  i n t e r e s t e d  i n  t h e  

d e t a i l s  and i n t e r connec t i ons  between t h e  p rocesses  

involved i s  r e f e r r e d  t o  Dooge' s (1973) comprehensive 

rev iew. )  To t a k e  i n t o  account  t h e s e  e f f e c t s  Kulandai- 

swamy (1964) de r i ved  t h e  fo l l ow ing  g e n e r a l  exp ress ion  

where S is  t h e  s t o r a g e ,  t i s  t ime ,  N ahd M a r e  i n t e g e r s ,  

and a n ( q , u )  and &(q ,u )  a r e  pa ramet r i c  f u n c t i o n s  of t h e  

d i r e c t  runof f  q  and t h e  excess  r a i n f a l l  u.  To app ly  

t h e  above s t o r a g e  r e l a t i o n s  t o  t h e  s tudy  of t h e  

r a i n f  a l l - r uno f f  p rocesses  i n  a  p a r t i c u l a r  watershed,  

t h e  va lues  of N and M ,  and t h e  form of an ( ) and bm ( ) , 
r e s p e c t i v e l y  must be determined.  Un fo r tuna te ly ,  some- 

t i m e s  it i s  n o t  f e a s i b l e  i n  p r a c t i c e .  There fo re  Prasad 

(1967) suggested t h e  u s e  of a  s i m p l i f i e d  s t o r a g e  equa t ion  

i n  t h e  form of 

where K 1 ,  K 2  and N a r e  t h e  unknown parameters  t o  be 

es t ima ted .  I n  h i s  s tudy ,  Prasad assumed t h a t  t h e s e  

parameters  a r e  c o n s t a n t  f o r  a  p a r t i c u l a r  hydrograph. 

Using t h e  c o n t i n u i t y  equa t ion  t h e  fo l l ow ing  d i f f e r e n t i a l  

equa t ion  i s  obta ined f o r  t h e  r a i n f  a l l - runo f f  p rocess  

T h i s  can be w r i t t e n  a s  

N-1 3 - = -[$]KINq d t  [&I ;). + [ I u  . ( E l  -1 ) 
d t 2  

BY d e f i n i n g  t h e  fo l lowing s e t  of s t a t e  v a r i a b l e s  
V 



1  
X q  ( t )  = - 

K2 

and assuming t h a t  t h e  m o d e l  c o e f f i c i e n t s  are t i m e  i n v a r i a n t ,  

t h e  P r a s a d  m o d e l  ( E l  -1 ) becomes 

or ,  i n  a b b r e v i a t e d  n o t a t i o n ,  

a ( t )  = f t [ x ( t ) ,  ~ . ( t )  I , (EI  -3) 

wh ich ,  l i k e  ( 2 ) ,  i s  a n o n l i n e a r  s ta te  e q u a t i o n  of t i m e  

i n v a r i a n t  t y p e .  A s  f o r  t h e  o u t p u t  e q u a t i o n ,  one  c a n  

immed ia te ly  r e a l i z e  t h a t  by choos ing  t h e  o u t p u t  p r o c e s s  

q ( t )  as b e i n g  a s ta te  v a r i a b l e  i t s e l f ,  it i s  i n  t h e  fo rm 

of  

or ,  l i k e  ( 3 )  , i n  a b b r e v i a t e d  n o t a t i o n  as 



I n  f a c t ,  t h e  o u t p u t  e q u a t i o n  f o r  t h e  Prasad model i s  a 

l i n e a r  one and t h e  o u t p u t  p r o c e s s  i s  s c a l a r .  The conc lu-  

s i o n s  of t h i s  example a r e :  

I t  i s  n o t  a t  a l l  n e c e s s a r y  t h a t  n o n l i n e a r  o u t p u t  

e q u a t i o n  be a t t a c h e d  t o  a  n o n l i n e a r  s t a t e  equa t i on ;  

V a r i a b l e s  w i t h  no d i r e c t  p h y s i c a l  meaning can a l s o  

be chosen a s  be ing  s t a t e  v a r i a b l e s .  

W e  mention t h a t  i n  a  r e c e n t  work by Maidrnent (1976) t h e  

l i n e a r i z e d  form of  t h e  Kulandaiswamy model i s  i l l u s t r a t e d  

i n  a  s t a t e  space  f a s h i o n .  

Discrete Svstems 

U n t i l  now w e  have been d i s c u s s i n g  systems which evo l ve  on a  

con t i nuous  t i m e  set Tc = i t :  to .< t .< t f } ,  to and tf be ing  t h e  

s t a r t i n g  and f i n i s h i n g  t i m e s  r e s p e c t i v e l y  of t h e  p r o c e s s e s .  

From now on w e  set  to = 0  and tf may be e i t h e r  f i n i t e ,  N ,  o r  

i n f i n i t e .  W e  can d e f i n e ,  s i m i l a r l y ,  a d i s c r e t e  t i m e  set  

Td = I t :  t = 0 , 1 , 2 , .  . . I ,  and w e  are i n t e r e s t e d  i n  t h e  s t a t e  

space  model ing of p r o c e s s e s  evo lv ing  on such a  d i s c r e t e  t i m e  set. 

By ana logy  w i t h  (2 )  and ( 3 )  t h e  f o l l o w i n g  n o n l i n e a r  d i f f e r e n c e  

e q u a t i o n s  can  be d e r i v e d  f o r  d i s c r e t e  time systems: 

f o r  t h e  s t a t e s  and 

f o r  t h e  o u t p u t  p r o c e s s .  For  t h e  sake  of i l l u s t r a t i o n  c o n s i d e r  

t h e  f o l l o w i n g  example. 



E x a m p l e  2. In the hydrological literature many 

papers (Amorocho, 1963; Hino et al., 1971; Amorocho 

and Brandstatter, 1971; Bidwell, 1971; Diskin and 

Boneh, 1972; Diskin and Boneh, 1973; Zand and Harder, 

1973; Quimpo, 1975) deal with the Volterra series 

representation of the nonlinear rainfall-runoff system. 

Such a representation has the form 

where p is the highest index in the truncated representa- 

tion, u(t) is the input to the nonlinear system and 

hl, h2, ... are the Volterra kernels. The problem is 

that of determining these kernel functions. To do that 

Amorocho and Brandstetter (1971) used Laguerre poly- 

nomials, Bidwell (1971) regression analysis, and Hino p et 

a1 (1971) and Quimpo (1975) a technique developed by Lee - 
and Schetzen which is based upon white noise input 

process. Here, it is assumed that the nonlinear system 

can be separated into cascaded blocks of linear dynamic 

system and a zero memory non-linear system as shown in 

Fig. 1. The linear subsystem has an impulse rcsponse 

g(t) and the nonlinear subsystem has a power representa- 

tion given by 

~ ( t )  = b1 yE(t) + b2 y;(t) + . - .  + b yi(t) , 
ll 

(E2-2) 

where y (t) is the output and yE (t) is the input to the 

nonlinear subsystem; in fact the latter is the output of 

the linear subsystem at the same time. So, the problem 

is that neither the impulse response g(t) of the linear 

subsystem nor the coefficients bl, b2, ..., b,, of the 



nonlinear subsystem are known. As a matter of fact the 

Volterra series for y(t) of this particular system can be 

expressed in terms of g(t) and the coefficients of the 

nonlinear part. To show this, it is to be noted that the 

output yk(t) of the linear subsystem is given by the 

convolution integral 

Yk(t) = g(r)u(t- r ) d ~  . (E2-3) 

0 

Substituting this into (E2-2) the output y(t) can be 

written as 

Comparing this expression with (E2-1) one concludes that 

the Volterra kernels for the system concerned are given by 

Now, let us assume that the input is an impulse function. 

Then, by definition, the output y2(t) of the linear sub- 

system is equal to the impulse response g(t). Consider 

a truncated series approximation of g(t) 

where ai are some yet unknown constant and Oi(t) are a 

set of chosen orthogonal polynomials, for example 

Languerre polynomials. Substituting this series 



approx imat ion  i n t o  (E2-2) t h e  fo l l ow ing  e x p r e s s i o n  i s  

o b t a i n e d :  

By d e f i n i n g  a  v e c t o r  o f  unknown c o e f f i c i e n t s  

(E2-7) can  be  r e w r i t t e n  a s  

where h [ - ]  is a  n o n l i n e a r  f u n c t i o n .  Comparing t h i s  

e x p r e s s i o n  w i t h  ( 5 )  it becomes a p p a r e n t  t h a t  it i s  an 

o u t p u t  e q u a t i o n  a c t i n g  on d i s c r e t e  s t a t e s  which a r e ,  i n  

f a c t ,  t h e  pa ramete rs .  A s  t h e  c o e f f i c i e n t s  a l , a z ,  ..., a p  

and b l , b 2 , . . . , b P  a r e  a l l  c o n s t a n t  one can  c o n s t r u c t  a  

l i n e a r  s t a t e  e q u a t i o n  i n  t h e  form 

where t E T d .  The c o n c l u s i o n s  o f  t h i s  example a r e :  

I t  i s  n o t  a t  a l l  n e c e s s a r y  t h a t  a  n o n l i n e a r  s t a t e  e q u a t i o n  

be  a t t a c h e d  t o  a  n o n l i n e a r  o u t p u t  e q u a t i o n ,  and r e v e r s e l y  

a s  it was shown i n  Example 1; Again,  v a r i a b l e s  w i t h  no 

p h y s i c a l  meaning can b e  chosen a s  be ing  s t a t e  v a r i a b l e s .  

W e  ment ion t h a t  Laguerre po lynomia ls ,  due  t o  t h e  f a c t  t h a t  

t h e y  can  be computed r e c u r s i v e ' l y ,  a r e  p a r t i c u l a r l y  w e l l  

s u i t e d  f o r  such  an  a n a l y s i s .  For  d e t a i l s ,  see Dooge 

(1965) and Arnorocho and B r a n d s t a t t e r  (1971 ) .  



2. STATE EQUATIONS FOR LINEAR SYSTEMS 

Continuous Case 

The state equations for linear systems can be obtained as a 

special case of (1-2). The dynamic behaviour of such a system 

can be modeled by a set of first order linear differential 

equations 

where t E T c ,  x(t) is an n-vector of states of the system, u(t) 

is a p-vector of input variables, F(t) is an n x n  matrix, and 

G(t) is an n xp matrix. These latter matrices, commonly 

called the system matrices, are assumed to be continuous in t. 

The initial state is given by x(0). 

It is assumed that the output equation (1-3) is degenerated to 

the following linear relation: 

where y(t) is an m-vector of output variables, and H(t) is a 

continuous m x n matrix which relates the states to the outputs. 

The above model, from (1) and ( 2 ) ,  is of time-varying type. 

Clearly when F, G and H are constant we obtain a time-invariant 

description. The system is thus specified by the triplet 

(F,G,H) , which will be denoted as C = (F,G,H) . 

~llustrating the above concepts through a series of examples, 

first a simple catchment model is considered. 

E x a m p 1 e 1. Figure 2 shows a simple hydrological 

system in which ul (t) and us (C )  are the rainfall inputs 



(say at different locations); the states are defined as 

the surface storages xl (t) , x2 (t) and x3 (t) and the 

groundwater storage as x~+(t) respectively. The constants 

in each case are: k's for surface water flow, R 1  and R 2  

for infiltration. The expression R 3  [x4 (t) - x3 (t) ] 

signifies the exchange between the groundwater and the 

stream. The outputs are yl(t) and y2(t), the streamflow 

output and the contribution of groundwater to streamflow, 

respectively. The continuity equations for this problem 

are 

k2 (t) = -(k2 + R 2 1 ~ 2  (t) + ~2 (t) 

(El-1) 

k3 (t) = k l ~ l  (t) + k 2 ~ 2  (t) + R 3  [ ~ 4  (t)-~g (t)] - k 3 x 3  (t) 

In vector-matrix form we have the following time invariant 

continuous state equation, with the initial condition 

x(0) = C. 

where 



The o u t p u t  e q u a t i o n  becomes 

y ( t )  = H x ( t )  , 

where 

I n  t h e  above example t h e  s t a t e s  were be ing  d e f i n e d  a s  

s t o r a g e s ,  i - e .  a  d i s c r e t e  p h y s i c a l  meaning can be  a t t a c h e d  

t o  them. One might  a rgue  t h a t ,  though t h i s  f o r m u l a t i o n  

i s  c o n c e p t u a l l y  s imp le  and e l e g a n t  it is n o t  a p p l i c a b l e  t o  

p r a c t i c a l  problems, s imply  due t o  t h e  f a c t  t h a t  t h e  

pa ramete rs  i n  t h e  m a t r i c e s  F,  G and H are v e r y  much 

u n c e r t a i n ,  i f  n o t  unknown comple te ly .  To surmount t h e s e  

d i f f u c l t i e s  t h e  a d a p t i v e  parameter  e s t i m a t i o n  t e c h n i q u e ,  

d i s c u s s e d  i n  d e t a i l  i n  Sz6l l t)si-Nagy (1976) ,  c a n  be  used. 

E x  a  m p 1 e 2 .  Ducks te in  and K i s i e l  (1972) i n v e s t i g a t e d  

t h e  r o l e  o f  l i n e a r  c o n t r o l  t h e o r y  a s  an a i d  t o  t h e  

i n t e g r a l  c o n t r o l  o f  hyd ro log i c  sys tems f o r  t h e  c a s e  o f  

a  combined l a k e  and a q u i f e r  s t o r a g e  sys tem t h a t  s u p p l i e s  

w a t e r  demand. For  i l l u s t r a t i v e  purposes  t h e y  demon- 

s t r a t e d  t h e  c a s e  o f  Lake K innere t  i n  I s r a e l .  The sys tem 

shown i n  F ig .  3 h a s  a  s i n g l e  o u t p u t  y ( t )  and t w o  s t a t e  

v a r i a b l e s  xl ( t )  and x;! (t) t h a t  d e f i n e  t h e  lumped l i n e a r  

s t o r a g e  i n  t h e  l a k e  and a q u i f e r  r e s p e c t i v e l y .  By 

c o n t i n u i t y ,  t h e  sys tem o u t p u t  i s  

where u ( t )  is  t h e  f low,  and a , b  and f  , g  a r e  c o n s t a n t s  

t h a t  may b e  s u b j e c t e d  t o  c o n t r o l  a l s o .  Now t h e y  are 



considered as being given fixed numbers. (E2-1) can 

be written in the fa~iliar form of output equations as 

where H =  [(l-c)b,(l-g)f], L = (1-a) and 

x(t) = [xl(t), x2(t)lT. Similarly, by continuity, the 

state equations for each of the lumped elements are, 

respectively, 

k2 (t) = C ~ X ~  (t) - f ~ ~ ( t )  . 

In vector-matrix form these coupled differential equations 

are 

where 

To investigate stability form the following determinant 

equation in A 

where I is the identity matrix. Expanding the above 

determinant one obtains the characteristic equation 



whose d isc r im inan t  

i s  always g r e a t e r  than  zero.  Hence, t h e  e igenva lues X 1  

and X 2  a r e  always r e a l  

Also, ( b + f )  > A because ( b + f I 2  > A 2  = ( b + f ) ' - 4 b f ( l - ~ g ) .  

Hence X 1  and A 2  a r e  always less than zero,  and t h e  system 

i s  h igh ly  damped. Both t h e  lake  and t h e  a q u i f e r  a c t  as  

f i l t e r s  o r  dampers so long a s  no energy ( o r  water  head) 

is added t o  t h e  system from another  source; o therwise 

t h e  system may become o s c i l l a t o r y .  The reade r  i n t e r e s t e d  

i n  s t a b i l i t y  problems is r e f e r r e d  t o  W i l l e m s  (1970) f o r  

f u r t h e r  d e t a i l s .  

Another i l l u s t r a t i o n  of t h e  use of cont inuous s t a t e  space 

modeling a s  app l ied  t o  hydrau l i cs  can be found i n  Muzik (19741, 

where a  model i s  developed descr ib ing  t h e  unsteady non-uniform 

f low i n  terms of a  set of  f i r s t  o rde r  o rd inary  d i f f e r e n t i a l  

equa t ions .  Conceptual ly t h e  model c o n s i s t s  of a  series of 

i n t e r a c t i n g  reaches wi th  unsteady uniform flow sub jec ted  t o  

impulse inpu t .  

D i sc re te  Case 

A s  i n  t h e  foregoing,  r e l a t i n g  t o  t he  cont inuous case ,  

s t a t e  space models can e a s i l y  be def ined f o r  d i s c r e t e  processes.  

By analogy wi th  (1) and ( 2 )  t h e  s t a t e  equat ion is def ined  as 



where @(t+l,t) is called the state transition matrix, which 

in the case of free systems maps the state at time t to the 

new state at time t+ l .  The control transition matrix r(t) 

is similar to G(t) but it is denoted by r to emphasize that 

it stands for a discrete system. As in (2) the output equation 

is given by 

The matrix block diagram of this discrete linear system is 

shown in Fig. 4. To differentiate from scalar block diagrams 

the signal flow is depicted by fat arrows. 

To illustrate the concept and solution of discrete state space 

equations in water resources systems, the simplified storage 

process of a reservoir is discussed below as 

E x a m p l e  3. The volume x (t + 1) of stored water 

at time t + l  in a reservoir with capacity V can be 

calculated as follows: 

where c(t) means the inflow to the reservoir at time t 

and D(t) is the water demand ~t the same time. (For 

simplicity both are regarded as being deterministic 

variables.) @ is a reducing factor to account for 

losses due to evaporation, seepage, etc. The volume 

of stored water is chosen as being the (scalar) state 

variable. Introducing a new variable u (t) = 5 (t) - D (t) , 
which might be called 'net inflow', the storage equation 



(E3-1) can be written as 

with the initial conditions x(O),u(O) given. It is clear 

that the state 'space' X is bounded by 0 and V. Equation 

(E3-2) can easily be solved by recursive substitutions: 

The last one is the solution itself and is composed of 

two parts, firstly the free or transient response, which 

depends only on the initial state and in practice contains 

all the information about the past of the system, and 

secondly the forced response, which depends upon the input 

(i.e. the net inflow). Using this example it might be 

interesting to investigate the stability of the system. 

Assilme that the input is identically equal to one: u(t)Z 1. 

It might be thought of as an outflow from a regulated 

reservoir located on an upper reach of the river, with an 

outflow of 2D(t) . Then (E3-3) becomes 

which has a solution 

I 1 - p $tx(o) + - for Q + 1 

x(t) = 
1 -  9 

( X(O) + t , for 9 = 1 . 

If we introduce x* = 1/ (1 - 9) , then 



The possible transient parts of this solution are 

depicted in Fig. 5, from which one concludes that the 

necessary condition for stability is that the absolute 

value of the reducing factor must be less than one, 

$ 1  < 1. Otherwise the system either 'blows up' or 

does not damp to an equilibrium state. 

Solution of the time invariant discrete vector state 

equation can be carried out along the same lines as in the 

above example and is 

When the $ and r matrices are time de~endent, which is the case 

in ( 3 ) ,  the solution is 

t-1 t-2 t-l 
~ ( t )  = ~ @ ( T + ~ I T ) ~ ( O )  + 1 1 o(-r+l,-r)r(-r)~(-r) + r(t-l)~(t-l) 

-r=O u=O ~ = u + l  
(6) 

Again, this is obtained by recursive substitutions. 

TO further amplify the applicability of the state space 

approach in hydrology, the free discrete state equation model 

of the rainfall process is given below as 

E x a m p l e  4. Gabriel and Neumann (1962) found that 

a two-state Markov chain gives a good description of wet 

and dry days. If denotes the probability that a dry 

day is followed by a wet day, then 1 -  $ 1  means the 

probability of the event that a dry day is followed by 

another dry day. Similarly, if $ 2  denotes the probability 



t h a t  a  w e t  day i s  fo l lowed by a  d r y  day e t c . ,  t hen  t h e  

f o l l ow ing  t r a n s i t i o n  p r o b a b i l i t y  m a t r i x  can  be cons t ruc ted :  

Ac tua l  Day 

Dry W e t  
(S tage  0)  (S tage  1) 

Dry (Stage 0) $ 1  

Preced ing  Day ] = a ,  
W e t  (S tage  1) 1 - $2 ( E 4 - 1 )  

which w i l l  h e r e  p l a y  t h e  r o l e  o f  s t a t e  t r a n s i t i o n  m a t r i x  

and i s  assumed t o  be t ime - i nva r i an t .  Of cou rse ,  

0 .< $ 1  s 1 and 0 s $2 .< 1. L e t  t h e  v e c t o r  

x  (t + 1) = [ X O  ( t + l )  , X I  (t+l) 1 denote  t h e  p r o b a b i l i t y  of  

f i n d i n g  t h e  system i n  s t a g e  0 ( d r y  day)  o r  i n  s t a g e  1 ( w e t  

day) a t  t i m e  t +  1. L e t  t h e  i n i t i a l  c o n d i t i o n ,  t = O ,  for  

t h i s  v e c t o r  be x ( 0 )  = [ xo  (0) , x l  (0) l T .  F i r s t ,  c o n s i d e r  

t h e  e v e n t  o f  be ing  i n  s t a g e  0 a t  t i m e  t + l .  Th is  e v e n t  

can  occu r  i n  two mutua l l y  e x c l u s i v e  ways: 

(1) s t a g e  0 p r e v a i l s  a t  t i m e  t and no t r a n s i t i o n  o u t  

of  s t a g e  0 o c c u r s  a t  t i m e  t + l .  Th is  h a s  a  

p r o b a b i l i t y  of  xo (t) (1 - ; 

( 2 )  a l t e r n a t i v e l y ,  s t a g e  1 p r e v a i l s  a t  t i m e  t and 

a  t r a n s i t i o n  from s t a g e  1 t o  s t a g e  0 o c c u r s  

a t  t i m e  t + l .  T h i s  has  a  p r o b a b i l i t y  of  xl  ( t ) $ 2 .  

The p r o b a b i l i t y  of  be ing  i n  s t a g e  1 a t  t i m e  t + l  cou ld  

be o b t a i n e d  s i m i l a r l y .  The p r o b a b i l i t i e s  a t  t i m e  t + l  

a r e  g i ven  by t h e  recu r rence  r e l a t i o n s  

o r ,  i n  vec to r -mat r i x  form, 



which is, cf. (3), an unforced or free state equation 

with the solution 

according to ( 5 ) ,  t€Td. In fact, the related output 

equation has the form 

where H = I is the identity matrix; i.e. the states 

themselves are the output variables. The power t of the 

state transition matrix in (E4-3) can easily be calculated. 

e.g. by the use of the Cayley-Hamilton theorem, and has 

the form 

provided $1+$2 # O .  Since A l = l a n d  A2=1-$1-$2 are 

eigenvalues of 0, and taking into consideration the fact 

that xo (0) = 1-x1 (0) , the final results for the probabili- 

ties in (E4-3) are 

One question that arises is whether after a sufficiently 

long period of time the system settles down to a condition 

of statistical equilibrium in which the stage occupation 

probabilities are independent of the initial conditions. 



If this is so then there is an equilibrium probability 

distribution x* = [xg ,xT] and, on letting t + in (E4-2) , 
x* will clearly satisfy 

which will have non-zero solutions if the determinant 

( I  - a )  vanishes. With this and with the condition 

x; + x': = 1 

in mind one obtains the equilibrium probabilities 

which are indeed independent of the initial condition 

x(0). To gain further interesting insight substitute 

(E4-8) into (E4-6). The conclusions are left to the 

reader. The equilibrium probabilities might in fact be 

obtained by taking limits, t + a ,  in (E4-5) or (E4-6) , 
since 1 1 2  1 < 1. Finally, for the sake of completeness, 

consider the degenerate cases. It means that if 

= $ 2  =0  then 

i.e. the system remains forever in its initial state. 

This follows from (E4-1) , (E4-2) and (E4-3). On the 

other hand, if $ 1  = $ 2  = 1  then 

i.e. the system oscillates deterministically between two 



s t a g e s ,  and i f  t h e  i n i t i a l  s t a t e  i s  g i ven ,  t h e  behav io r  

o f  t h e  sys tem i s  non-random. See t h e  remarks a b o u t  

e q u i l i b r i u m  s t a t e s  i n  Example 3 .  

S t a t e  T r a n s i t i o n  Mat r i x  

Now l e t  u s  t u r n  t o  t h e  con t i nuous  c a s e  and c o n s i d e r  t h e  

s o l u t i o n  o f  t h e  con t i nuous  s t a t e  e q u a t i o n ,  g i ven  by (1). 

F i r s t  w e  d e a l  w i t h  t h e  un forced c a s e ,  u ( t )  = 0. For  such  a  

c a s e  t h e  s t a t e  e q u a t i o n  i s  t h e  homogeneous v e c t o r  d i f f e r e n t i a l  

e q u a t i o n  

Assume t h a t  t h e  s o l u t i o n  of  ( 7 )  i s  known i n  t h e  f o r n  

where a g a i n  x ( 0 )  is t h e  v e c t o r  o f  i n i t i a l  s t a t e s  a t  to = O  

and @ ( t , O )  i s  a  s t a t e  t r a n s i t i o n  m a t r i x  s i n c e  it maps t h e  

i n i t i a l  s t a t e  i n t o  a  s t a t e  a t  any l a t e r  t i m e  t > O .  Obvious ly ,  

i .e .  a t  t h e  i n i t i a l  t i m e  t h e  s t a t e  t r a n s i t i o n  m a t r i x  i s  t h e  

i d e n t i t y  m a t r i x  i t s e l f .  Tak ing d e r i v a t i v e s  of  t h e  assumed 

s o l u t i o n  ( 8 )  , one o b t a i n s  

On t h e  o t h e r  hand, p r e m u l t i p l y i n g  ( 8 )  by F ( t )  shows t h a t  ( 7 )  

becomes 



which combined with (10) gives 

Since (11) must hold for all possible initial states it yields 

That is, one concludes that the state transition matrix 

satisfies a matrix differential equation, given by (12), and 

the solution is unique. 

For time invariant systems F(t) =F. The state transition 

matrix depends only on the lag t - t o ,  i.e. in our case on t 

only, @ (t,O) = @ (t) . For this case the solution of (12) is 

readily obtained as 

@(t) = exp (Ft) , (13 

which is known as the matrix exponential. 

The state transition matrix has some interesting properties. 

The first, namely (9) , has already been mentioned. For 

realizing the second property consider the expressions 

since (8) holds for any initial state. Here, to give a more 

general flavour we used to to indicate the initial time. 

That is, by substitution 

BY definition of the state transition matrix, on the other 



hand, 

Taking into account that x(to) is arbitrary, by combining the 

above two expressions we have 

for any to ,  tl and t2, independently of the order of them. 

It is clear from (14) that the state transition matrix is never 

singular 

and does have an inverse. To examine the third property 

consider the expressions 

Premultiplying the latter by the inverse state transition 

matrix 

and comparing this with the former, we have the relationship 

for any tl and t2 in any order. That is to say to change 

subscripts the state transition matrix must be inverted. A 

diagrammatic representation of these properties is shown in 

Fig. 6. In summary, the state transition matrix has the 

following properties in continuous case: 



Other relationships involving the determinant of the state 

transition matrix are 

and 

Time invariant systems 

exp [F(to -to) I = I 

exp [F (tt-to) I 
= exp [ F ( ~ ~ - ~ I ) I ~ X P [ F ( ~ I - ~ O ) I  

exp [-F(t1-tz)I = exp[F(tz-tl)] 

( 1  

(11) 

(111) 

Time varying systems 

@(to ,to) = I 

@(t2rt0) 

= @(t2rtl)@(tl ,to) 

@ - '  (tl rt2) = @(t2rtl) 

where tr denotes the trace of the transition matrix, i.e. the 

sum of its elements along the main diagonal. The proof is 

simple; for details consult Meditch (1969) 

t 

Solution for Continuous Systems 

I ~(t , to)  I = exp I j tr F(r) dr 

Now, we can turn to the solution of the state equation 

of forced linear dynamic systems given by (1). Here the 

Lagrangean method of variation of constants will be used. In 

this method a function is to be constructed which, upon multi- 

plication with the homogeneous solution, satisfies the given 

state equations. It is assumed that the initial condition, 

say c, in the solution 

, 
to 



of the homogeneous equation is also a function of time which is 

to be determined. Derivation of (16) gives- 

Substitution of (12) into the above expression gives 

On the other hand, by substituting the assumed solution (16) 

into the original differential equation (1) one obtains 

which, combined with (171, yields 

Premultiplying this expression by the inverse of the state 

transition matrix the following differential equation is 

obtained: 

Integrating over [to ,tI and considering that by (8) and (16) 

c(to) = x(ta), the function c(t) is 

which, if substituted into (161, gives the solution of the 

state equation (1) as 

where the relations (14) and (15) respectively have been applied. 



According t o  t h e  o u t p u t  equa t i on  (2 )  t h e  o u t p u t  i s  t hen  g iven  

by 

y ( t )  = ~ ( t )  O ( t , t o )  x ( t 0 )  + H ( t )  @ ( t , r )  G ( r )  u ( r )d - r  (19) I' 
t o  

For t ime i n v a r i a n t  systems,  by cons ide r i nq  (13)  one can 

immediately o b t a i n  t h e  s o l u t i o n  f o r  t h e  s t a t e s  a s  

and f o r  t h e  o u t p u t  a s  

I n  f a c t  t h e  s o l u t i o n s  i n  bo th  c a s e s  can be s p l i t  i n t o  

two p a r t s  

where t h e  f i r s t  p a r t  i s  t h e  f r e e  response which depends on ly  on 

t h e  i n i t i a l  s t a t e  and i n  p r a c t i c e  con ta i ns  a l l  t h e  in fo rmat ion  

about  t h e  p a s t  of  t h e  system, wh i le  t h e  second p a r t  i s  t h e  

fo rced  response which depends upon t h e  i n p u t  segment 

9? = ' { u ( T ) : T  = t ~ , t l ,  ... , t } ;  and of course  bo th  o f  them 
0 I t )  

depend upon t h e  s t r u c t u r e  of  t h e  system rep resen ted  by t h e  

ma t r i ces  @ ( a )  and G ( * ) .  To emphasize t h e  s i m i l a r i t i e s  between 

t h e  cont inuous ( 2 0 )  and d i s c r e t e  ( 5 )  s o l u t i o n s ,  a  t a b l e  is 

p resen ted  below f o r  t h e  t ime i n v a r i a n t  system. A s i m i l a r  one 

can of course  be set up f o r  t i m e  vary ing  systems. To make 

t h e  s i m i l a r i t i e s  even more apparen t ,  (13) is used.  



Continuous Time 

E x a m p l e  5. As an example the Nash model of the 

rainfall-runoff process is discussed here. Nash (1960) 

modeled the surface runoff by a series of n reservoirs 

each of which has the same storage coefficient K which 

is a dimensionless constant. It is assumed that the 

outflow from one reservoir is proportional by k to the 

content of the reservoir in question (Fig. 7). Let the 

content of the ith reservoir at time t, xi(t), be the 

ith state variable. Then by continuity, the state 

equation is 

Discrete Time 

Free Component 

Forced Component 

or, in vector-matrix form, 

Since the outflow from the last reservoir is the output of 

the system, the output equation becomes 

@(t) x(O) 

dt--r)G u(-r)d-r r 
t 0 

Q~ x(O) 

t-1 
1 @t-T-l r U(T) 

-r=o 



where H = [ O ,  0 ,  ..., k l .  I f  t h e  sys tem is  i n i t i a l l y  

r e l a x e d  and t h e  i n p u t  is a  D i rac  f u n c t i o n ,  u ( t )  = 6 ( t ) ,  

t h e n  t h e  o u t p u t  is  t h e  impulse r e s p o n s e  o f  t h e  sys tem,  

y ( t )  = h ( t ) ,  which is  i n  f a c ,  t h e  i n s t a n t a n e o u s  u n i t  

hydrograph.  Cons ide r ing  t h a t  t h e  i n p u t  i s  an  impulse 

f u n c t i o n ,  (E5-1) can be s o l v e d  s u c c e s s i v e l y  i n s t e a d  o f  

by t h e  g e n e r a l  s o l u t i o n  ( 2 0 ) .  Thus 

21 ( t )  + kx l  (t) = 6 ( t )  -+ x l  ( t )  - - e - k t  

-kt -+ x 2 ( t )  = k t  e - k t  ;C2 ( t )  + kx2 ( t )  = k  e 

x i  (t) = 
( k t I i - l  - k t  e (i - 1) ! 

T h a t  i s ,  acco rd ing  t o  (E5-3) ,  t h e  impu lse  response  i s  

which,  by l e t t i n g  k  = 1 / K ,  g i v e s  t h e  well-known Nash I U H  

I t  i s  i n t e r e s t i n g  t o  n o t e  t h a t  t h e  same e x p r e s s i o n  f o r  t h e  

u s e  o f  s u c c e s s i v e  r o u t i n g  th rough a  c h a r a c t e r i s t i c  r e a c h  

f o r  channe l  r o u t i n g  h a s  been d e r i v e d  by K a l i n i n  and 

Milyukov (1957) .  T h e i r  p rocedure  i s  based upon t h e  

l i n e a r i z a t i o n  o f  t h e  uns teady  f low e q u a t i o n .  The 

s i m i l a r i t i e s  w i t h  Muzik 's  approach (1974) a r e  a p p a r e n t .  



I m ~ u l s e  R ~ S D O ~ S ~  Mat r i x  

When t h e  system i s  i n i t i a l l y  r e l a x e d ,  x ( t o )  = 0 ,  t h e n  t h e  

impulse response  m a t r i x  o f  t h e  system i s  g i ven  by 

s i n c e  (18)  becomes 

y ( t )  = y(t,~) u ( r )  d~  . 1 
t o  

The name o f  t h e  impulse response  m a t r i x  d e r i v e s  from t h e  f a c t  

t h a t  each  e lement  h i j  ( t ,  r )  o f  P(t, T )  i s  t h e  response  o f  t h e  

i t h  component o f  y ( t )  f o r  a  u n i t  impulse i n p u t  i n  t h e  j t h  

component o f  u ( - )  a p p l i e d  a t  t i m e  T .  The use  o f  t h e  system 

impulse m a t r i x  i s  conven ien t  when one w ishes  on l y  an  i n p u t -  

o u t p u t  r e l a t i o n  and i s  n o t  concerned w i t h  t h e  s y s t e m ' s  s t a t e  

v a r i a b l e s .  

For  t i m e  i n v a r i a n t  sys tems & F ( ~ , T )  = T(t--c), i . e .  

which i s  t h e  well-known convo lu t i on .  I t  i s  c l e a r  from (21 )  

t h a t  r(t - r )  = H exp F ( t  - T )  G .  Equa t ions  (24)  and (25 )  g i v e  

t h e  e x t e r n a l  d e s c r i p t i o n  of  a  l i n e a r  dynamic system. T h i s  

means t h a t  t h e  i n p u t - o u t p u t  behav io r  i s  d e s c r i b e d  by a  V o l t e r r a  

i n t e g r a l  e q u a t i o n .  

Discrete Formula t ion  

I n  p r a c t i c e  t h e  a fo rement ioned p rocedures  a r e  a p p l i e d  

ma in ly  f o r  d i g i t a l  computers  t h a t  work i n  a  d i s c r e t e  env i ronment .  

Care must be  e x e r c i s e d ,  however, when one w ishes  t o  set  up a  



discrete linear model for a system which has continuous linear 

dynamics in reality. 

Let a discrete time set ~ ~ = ~ t : t = t ~ , t ~ + l ,  ...,tk,tk+l,...) 

be given and consider the time interval tk<t<, tk+l  for some 

k=0,1,  ... We assume that x(tk) is given and u(t) =u(tk) is 

constant for tk 6 t i tk+l. Then it follows from (18) that 

= 0 (tk+lf tk) x(tk) + [ ;k::tk+l.~) G(T )~T  u(tk) I (26) 

tk 

Defining 

and 

we can write (26) as 

for t = 0, 1, . . . , which is identical to (3). It is important 

to emphasize that the above discrete system is described from a 

continuous system, therefore the invertibility of the state 

transition matrix is always assured and computational difficul- 

ties do not arise. The output equation is the same as in the 

pure discrete case. 

E x a m p l e  6. Here the discrete state space formulation 

of the continuous Streeter-Phelps model is discussed. 



Engineers used t h i s  model f o r  many years  t o  d e s c r i b e  t h e  

changes i n  water  q u a l i t y  of a  r i v e r .  Although t h e r e  a r e  

much more s o p h i s t i c a t e d  techn iques t h a t  have been developed 

i n  t h e  p a s t  few years  f o r  water  q u a l i t y  modeling, t h e  

S t ree te r -Phe lps  model i s  s t i l l  i n  use,  mainly because of  

i t s  s i m p l i c i t y .  I n  many cases  it s t i l l  g i ves  meaningful  

answers and e l e g a n t  r e s u l t s .  To prove t h i s  t h e  reade r  

i s  r e f e r r e d  t o  t h e  extremely r i c h  l i t e r a t u r e  on t h i s  

s u b j e c t  (Koivo and P h i l l i p s ,  1971; Young and Beck, 1974; 

Singh,  1975; S z z l l o s i - ~ a g y ,  1975; Gourishankar and 

Lawson, 1975) . 

The model assumes t h a t  t h e  water  q u a l i t y  of t h e  r i v e r  can 

be cha rac te r i zed  by t h e  dynamic i n t e r r e l a t i o n s h i p  between 

t h e  biochemical  oxygen demand (BOD) and t h e  d i sso l ved  

oxygen ( D O ) .  Fur ther ,  it assumes a  f i r s t  o rde r  r e a c t i o n  

k i n e t i c  f o r  t h e  BOD 

where B ( t )  is  t h e  BOD concen t ra t ion  i n  mg/R and K r  i s  

t h e  BOD removal o r  decay c o e f f i c i e n t  i n  day-' . By 

c o n t i n u i t y  

where D ( t )  i s  t h e  DO concen t ra t ion  i n  [mg/R], Ka i s  t h e  

re -ae ra t i on  c o e f f i c i e n t  i n  [day- ' ] ,  and Ds i s  t h e  s a t u r a -  

t i o n  l e v e l  of t h e  d i sso l ved  oxygen. Def in ing t h e  s t a t e  

v a r i a b l e s  a s  X I  ( t)  = B ( t )  and x2 (t) = D ( t )  - D, r e s p e c t i v e l y ,  

t h e  l a t t e r  being known a s  oxygen d e f i c i t  and h a v i n g ' d i r e c t  

phys i ca l  meaning, t h e  s t a t e  equa t ion  f o r  t h e  S t ree te r -Phe lps  

model i s  



where 

is c o n s i d e r e d  t o  be  c o n s t a n t .  A s  a m a t t e r  o f  f a c t  one o f  

t h e  o b j e c t i v e s  o f  s e t t i n g  up a  w a t e r  q u a l i t y  model i s  t o  

c o n t r o l  t h e  w a t e r  q u a l i t y  i t s e l f  i n  o r d e r  t o  a c h i e v e  a 

d e s i r a b l e  l e v e l  o f  q u a l i t y .  The w a t e r  q u a l i t y  o f  a  r i v e r  

might  f o r  e x a n p l e  be c o n t r o l l e d  by, amongst o t h e r  t h i n g s ,  

t r e a t m e n t  p l a n t s  and a r t i f i c i a l  a e r a t i o n  f a c i l i t i e s  l o c a t e d  

a l o n g  t h e  r i v e r .  W e  d e f i n e  t h e  c o n t r o l  v e c t o r  a s  

u ( t )  = [ u l  ( t )  ,up ( t)  l T ,  where u l  (t) i s  f o r  c o n t r o l  o f  

e f f l u e n t  dumping &om t h e  sewage t r e a t m e n t  p l a n t  and u 2 ( t )  

i s  f o r  a r t i f i c i a l  a e r a t i o n  c a r r i e d  o u t .  The f i r s t  c o n t r o l  

m igh t  mean, s a y ,  t h e  o p e r a t i o n  r u l e  f o r  a r e t e n t i o n  

r e s e r v o i r  s i t u a t e d  r i g h t  a f t e r  t h e  t r e a t m e n t  p l a n t ;  t h e  

second c o n t r o l  i s  t h e  t i m i n g  s c h e d u l e  f o r  t h e  a e r a t i o n  

f a c i l i t i e s .  So, c o n s i d e r i n g  (E6-3) ,  t h e  p r o c e s s  model 

becomes 

where 

The minus s i g n  r e f e r s  t o  t h e  f a c t  t h a t  t h e  more t h e  

a r t i f i c i a l  a e r a t i o n  t h e  less t h e  oxygen d e f i c i t ,  and  vice 

v e r s a .  And now w e  a r e  r e a d y  t o  d e r i v e  a d i s c r e t e  model 

f o r  t h e  c o n t i n u o u s  p r o c e s s  g i v e n  by (E6-4) .  Accord ing t o  

(13)  t h e  sta te  t r a n s i t i o n  between two d i s c r e t e  t i m e  epochs 

t and t + l ,  r e s p e c t i v e l y ,  i s  c h a r a c t e r i z e d  by t h e  

@(t + 1,t) = exp F (E6-5) 

m a t r i x  e x p o n e n t i a l .  S i n c e  t h e  e i g e n v a l u e s  o f  F are 



negatives, A 1 = -KT and A 2  = -Ka, the system ( E 6 - 4 )  is 

stable. Using the well-known Sylvester expansion theorem, 

the one-step state transition matrix is obtained as 

-Kr [exp (-K,) - exp (-K,)] exp ( -Ka) - J 
provided that Ka # K,. As for the determination of the 

control transition matrix I'(t), (27) is evaluated and, due 

to the special structure of G I  gives the same form as 

(~6-6) e'xcept that the matrix element in the lower right 

hand corner is negative. In fact both the state and 

control transition matrices are time invariant and hence 

the discrete state equation of the continuous process is 

As far as the output of the system is concerned, the 

situation is that the evaluation of BOD concentration 

usually needs several days in a laboratory and to determine 

real-time control policies DO measurements are available 

only. That is 

where H = [0,11. The system thus is specified by the 

triplet (@,  I', H) , which will be denoted as C = ( a ,  1', H) . 
The dynamics of this water quality control system is shown 

in Fig. 8. 



E x a m p l e  7. Here we determine the impulse responses of 

the water quality system discussed above. Let us assume 

that the system at to = O  is initially relaxed, i.e. 

X(O) = 0 (or it is transformed into an initially relaxed 

system by the transformation x' (0) = x(o) - x*, where x* is 

some equilibrium state). Then the state transition matrix 

is 

According to (23) the impulse response vector for the water 

quality system is 

and the output is given by (25) as 

Subsequently we deal with systems which are either discrete by 

nature or have been transformed from the continuous description 

into a discrete one. 



3 .  STRUCTURAL PROPERTIES FOR LINEAR DISCRETE SYSTEMS 

I n  t h i s  s e c t i o n  w e  c o n s i d e r  two fundamental  concep ts  o f  

l i n e a r  sys tem t h e o r y  which a r e  i n t i m a t e l y  r e l a t e d  t o  t h e  b a s i c  

i d e a s  o f  e s t i m a t i o n  and c o n t r o l .  These n o t i o n s ,  termed obse r -  

v a b i l i t y  and c o n t r o l l a b i l i t y  a r e  due t o  Kalman (1961) .  I f  

t h e s e  c o n d i t i o n s  a r e  n o t  m e t ,  op t ima l  c o n t r o l ,  e s t i m a t i o n ,  and 

i d e n t i f i c a t i o n  canno t  be  o b t a i n e d .  

P r e v i o u s l y  w e  have seen  t h a t  many sys tems have o n l y  one 

o u t p u t  v a r i a b l e  even  though many s t a t e  v a r i a b l e s  might be  neces-  

s a r y  t o  d e s c r i b e  t h e  i n t e r n a l  behav io r  o f  t h e  sys tems.  S i m i l a r -  

l y ,  t h e r e  may b e  o n l y  one o r  a  few i n p u t s  t o  t h e  sys tem and 

t h e r e  might b e  s t a t e s  which a r e  n o t  a f f e c t e d  by t h e  i n p u t ( s ) .  

The p e r t i n e n t  q u e s t i o n s  a r e :  

1 .  Under what c o n d i t i o n s  is  it p o s s i b l e  t o  e s t a b l i s h ,  

i n  a  f i n i t e  i n t e r v a l  o f  t i m e ,  t h e  t i m e  h i s t o r y  o f  

t h e  s t a t e  o f  a  dynamic sys tem g i v e n  t h e  t i m e  h i s t o r y  

o f  t h e  o u t p u t  o v e r  t h e  same i n t e r v a l ?  

2.  Under what c o n d i t i o n s  is  it p o s s i b l e  t o  t r a n s f e r  

t h e  s t a t e  o f  a  dynamic sys tem from a  g iven  s t a t e  

t o  a  d e s i r e d  s t a t e  i n  a  f i n i t e  i n t e r v a l  o f  t i m e  

u s i n g  a  c o n t r o l  u? 

To i l l u s t r a t e  t h e  problems r e l a t e d  t o  t h e s e  q u e s t i o n s  con- 

s i d e r  t h e  dynamic sys tem C shown i n  F ig .  9  (Medi tch,  1969) , 
where d  is  a  v e c t o r  whose components c o n s i s t s  o f  some o r  a l l  

o f  t h e  e lemen ts  ~ ~ , . . . , x ~ .  Because o f  t h e  s y s t e m ' s  s t r u c t u r e  

t h e r e  i s  no way t h a t  t h e  v a l u e s  X ~ + ~ , . . . , X  can  be  de termined n  
f rom t h e  o u t p u t  y ,  s i n c e  t h e s e  v a r i a b l e s  do n o t  a f f e c t  x  l t - - - t X k  

n o r  do t h e y  appear  i n  y .  Such a  sys tem i s  s a i d  t o  b e  unobser-  

vab le .  On t h e  o t h e r  hand, s i n c e  u  a f f e c t s  a l l  o f  t h e  e lemen ts  

o f  x t h e  system is  c o n t r o l l a b l e .  By chang ing  t h e  d i r e c t i o n  o f  



the vector d l  as shown in Fig. 10, an observable-uncontrollable 

system is obtained since u affects only the variables X~,...,X k 
but all of the state variables are observable. As Kalman (1962) 

showed in his canonical structure theorem any linear dynamic 

system can be decomposed into four subsystems: (1) a control- 

lable and observable subsystem; (2) a subsystem which is con- 

trollable but not observable; (3) a subsystem which is not 

controllable but observable; and finally, (4) a subsystem which 

is neither controllable nor observable. This decomposition is 

shown in Fig. 1 1 .  Note, that in Figs. 9,10, and 1 1  the sub- 

scripts c,$,o, and @ stand, respectively, for controllable, 

uncontrollable, observable and unobservable. 

Observability 

Consider the discrete linear dynamic systems given either 

by (2-3) and (2-4) or by (2-28) 

where t=0,1, ... . We assume that the input sequence 

{u(O) ,u(l) , . . . I  is given but x (0) is unknown. Now, the problem 

is, as posed by question 1, that we wish to determine x(t) from 

an examination of y(t) over some finite interval of time. Ob- 

viously if H (t) in nxn and nonsingular for all t>O, - then 

and the question of observability is resolved trivially. The 

same can be inferred if H(t) is nxn but nonsingular for only 

one value of t>O, say ti. - 

The real problems arise when either H(t) is nxn but singular 

for all t>O - or H(t) is mxn, mfn. For these cases it is not at 

all clear how x(t) can be determined from y ( ~ ) ,  O<T:N, - - for some 

finite N. 



With t h i s  i n  mind w e  d e f i n e  o b s e r v a b i l i t y  i n  t h e  f o l l o w i n g  

way. 

The d i s c r e t e  l i n e a r  dynamic system g i ven  by 

( 1 )  and ( 2 )  i s  obse rvab le  i f  x  (0 )  can  b e  

de termined from t h e  set  o f  o u t p u t s  y ( 1 )  ,..., 
{ y ( l )  ,.. . , y (N )  1 f o r  some f i n i t e  N. I f  

t h i s  is  t r u e  f o r  any i n i t i a l  t i m e ,  t h e  

system i s  s a i d  t o  be comple te ly  o b s e r v a b l e .  

S i n c e  u ( t )  i s  assumed known f o r  a l l  t > O ,  i t s  c o n t r i b u t i o n  t o  - 
x ( t ) ,  which i s  g i v e n  by t h e  second t e r m s  o f  e i t h e r  (2-6) o r  

(2 -26) ,  i s  e a s i l y  determined.  Hence, it i s  s u f f i c i e n t  t o  con- 

s i d e r  on l y  t h e  un forced system 

Cons ider  now t h e  sequence o f  o u t p u t s  { y  ( t)  , . . . , y  ( N )  1 begin-  

n i n g  w i t h  t = l .  From ( 3 )  and ( 4 )  w e  have,  by r e c u r s i v e  s u b s t i t u -  

t i o n s  

Def in ing  ( 5  

and 



for i=1,. . . ,N , it is clear that yN is an mN vector. Letting 

which is an mNxn matrix, we obtain for (5) that 

T Premultiplying this relation by HN we get 

From the definition (6) of HN we can realize that 

which is an nxn symetric matrix and is denoted by O(O,N) and 

called asobservability matrix. Then it follows from (8) that 

which shows that the system is completely observable if O(0,N) 

is positive definite for some N>O. This is the sufficient 

condition for observability. It can be easily shown (Desoer, 

1970) that it is a necessary condition at the same time. 

Criterion for observability for time invariant systems can 

be established along the same lines. That is, consider the 

unforced system 



and a sequence of outputs {y(O), ...,y (n-1)). Again, we have 

BY similar definitions as before 

If x(0) is to determined uniquely the matrix oT (or equivalentely 

0) must have an inverse, i.e., be nonsingular. This statement 

is the same as to requre that the nxmn observability matrix 0 

be of rank n, p(O)=n, since the rank of any matrix is the order 

of the largest square array in the matrix, formed by deleting 

rows and/or columns, that is nonsingular. 

E x a m p 1 e 1. Here we examine whether the rainfall system 

in Example 2.4 is observable. Since H in (2-E 4-4) is equal 
T T T  T to the identity matrix H =I and consequently @ H =@ . That 

is the observability matrix is 

which has a rank of 2 so the system is observable. 



E x  a  m p 1 e  2 .  Can we say  t h e  same about  t h e  wa te r  q u a l i t y  

system d i scussed  i n  Example 2.6? For  n o t a t i o n a l  s i m p l i c i t y  

l e t  (2 -E  6-6) be  

S ince  

t h e  o b s e r v a b i l i t y  m a t r i x  (14) f o r  t h i s  c a s e ,  n=2, becomes 

which has a  rank o f  2,  o r  i s  i n v e r t i b l e ,  on ly  i f  $21f0 ,  

i . e .  i f  

F i r s t ,  cons ide r  t h e  case  when Kr fKa.  Obviously 

and 

Consequent ly 



therefore if K,#K~, then $21#0. NOW consider the possibility 

that Ka=Kr. Then 

which is an indeterminate form. Thus let Ka-Kr=K and 

consider 

for which the L'Hospital' rule is applied giving 

Thus if Kr and Ka are non-zero and bounded the observability 

matrix is nonsingular. Consequently, the system is com- 

pletely observable. To gain more insight to the notion 

of observability let us make a change in the water quality 

system, namely assume that only BOD data are available for 

control. Then for this new system with structure C, the 

output matrix is H, = [1,01 and the observability matrix 

becomes 

which is of rank one, i.e. the system C, is unobservable. 

In fact by such a structural change Fig. 8 becomes similar 

to Fig. 9. 



Remark. The relation between observability and estimation 
should be clear at this point. In fact (10) is 
an algorithm for determining x(0) from available 
output data. Along with (1) the determination 
of the states' history becomes possible, in other 
words, we have solved the estimation problem under 
ideal conditions, that is, for deterministic systems. 

Controllability 

To establish the criterion of controllability we proceed 

analogously to that of observability. We consider the discrete 

linear system 

for t=0,1, ... , where x(0) is known but Eu(O),u(l) ,... I is not 

specified. We concern ourselves here with the problem of trans- 

ferring the state of the system (15) from x(0) to some desired 

terminal state x(N) where N is finite. 

We define controllability in the following way: 

The discrete linear dynamic system of (15) is 
controllable at time t=O if there exists a 
control sequence Eu(O),u(l) ,..., u(N-1)) such 
that the state x(0) can be driven to any 
arbitrary state x(N) where N is finite. If 
this is true for any x(0) and initial times 
the system is said to be completely controllable. 

Following similar steps as in the observability analysis, 

the criterion of complete controllability for time varying 

systems that is that the nxn controllability matrix 

is positive definite for some finite N>O, where 



For time invariant systems consider 

with known initial state ~ ( 0 ) .  Again, the question is that 

under what conditions can we determine the control necessary to 

drive the system to x (n) , where x (n) is arbitrary in the state 

space? As in the observability study we may apply recursive 

substitutions, yielding (c. f. : 2-E3-3) 

Therefore 

n n- 1 n- 2 x(n) - 0 x(O) = @ ru(0) + @ ru(1) + + ru(n-1) 

Since x(n) and x(O) are given the condition for a unique solu- 

tion for the control sequence to exist is that the nxnp con- 

trollability matrix W 

has rank n, p(q?) = n. 

E x a m p 1 e 3. Here we analyze whether the water quality 

system discussed in Example 2.6 is controllable or not. 

The controllability matrix (18) for the system is 



Following similar steps as in Example 2 it can be seen that 

the above matrix is of rank 2, consequently the system is 

controllable. Again, let us make a change in the water 

quality system of Fig. 9 and assume that only the dissolved 

oxygen is controlled. Then for this new system with struc- 

ture C,, the control transition matrix becomes 

i.e., the controllability matrix is 

which is of rank one, i.e., the system C,, is uncontrollable. 

By such a structural change Fig. 8 becomes similar to Fig. 10. 

Tomake the analysis complete consider the situation when 

only the biochemical oxygen demand is controlled. Then for 

this system with structure C * * *  the control transition matrix 

becomes 

and the controllability matrix is 



which is, again taking similar steps as in ~xample 2, 

of rank 2, i.e., this system is controllable. The 

conclusions of this example are: controlling the diss- 

solved oxygen only the water quality system becomes 

uncoltrollable while controlling the biochemical 

oxygen demand, alone or together with the DO, the 

system is controllable. 

Remark. Similarities between observability and control- 
lability are extremely interesting. For example, 
to derive the condition (16) for controllability 
it is enough to make the following changes in the 
observability condition (9): 

Observable - Controllable 

This property was first observed by Kalman (1961), 
who termed it duality. Thus observability and 
controllability are dual properties of linear 
dynamic systems. 

Identifiability 

Consider a time invariant free system given by 

x(t+l) = @x(t) , x(0) is known. (19) 

As Lee (1964) defines it, a system is said to be identifiable 

if it is possible to determine @ from the time history of the 

state variables. Again, by recursive substitutions 



\, 

Since all the state variables are available, we can set up a 

matrix 

If is to be determined uniquely the matrix 

must be nonsingular. This statement is the same as to require 

that the identifiability matrix 4 

be of rank n, p ( 4 )  = n. Physically, it means that x(0) must 

excite all modes of the system. 

E x a m p 1 e 4. Consider again the second order water quality 

system discussed in Example 2.6. The identifiability matrix 

is 

The system is identifiable if p(4) = 2; unidentifiable, if 

the determinant of this matrix equals zero. This is the 

case if both columns of the matrix are linearly dependent. 

We can distinguish (1) a trivial case: x1 (0) = x2 (0) = 0, 

that is the relaxed system cannot be identified; and (2) 

a non-trivial case 



f rom which t h e  e i g e n v a l u e s  A ,  and h 2  and t h e  co r respond ing  

e i g e n v e c t o r s  el  and e2 can be o b t a i n e d .  I f  x ( 0 )  = h e 1 1  
t h e n  o n l y  one  mode e x p ( X l t )  o f  t h e  p r o c e s s  is  e x i t e d  by 

x ( 0 )  and t h e  mode exp (X2 t )  is  n o t  i d e n t i f i a b l e .  I f  

x ( 0 )  = h 2 e 2 ,  t h e n  o n l y  t h e  mode e x p ( A 2 t )  can be  i d e n t i f i e d .  

Consequent ly ,  t h e  p r o c e s s  is  i d e n t i f i a b l e  o n l y  i f  a l l  

modes o f  t h e  p r o c e s s  a r e  e x c i t e d  by x ( 0 ) .  Fo r  f u r t h e r  

d e t a i l s  see Lee (1964 ) .  

Minimal R e a l i z a t i o n s  

W e  have seen  i n  S e c t i o n  2  t h a t  t h e  i n p u t - o u t p u t  d e s c r i p t i o n  

o f  a  l i n e a r  dynamic sys tem,  (2-24) and (2 -25 ) ,  can  b e  d e r i v e d  

from i t s  s t a t e - s p a c e  r e p r e s e n t a t i o n .  One might  a s k  whether  it 

is  p o s s i b l e  t o  c o n s t r u c t  a  dynamic sys tem i n  s t a t e - s p a c e  form 

such  t h a t  it g e n e r a t e s  t h e  same i n p u t - o u t p u t  p a i r s  a s  t h e  dy- 

namic sys tem i n  i npu t -ou tpu t  form. T h i s  is  t h e  prob lem 

r e a l i z a t i o n .  I t  can  be  shown ( W i l l e m s  and M i t t e r ,  1971) t h a t  

e v e r y  i n p u t - o u t p u t  dynamic system h a s  a  s t a t e - s p a c e  r e a l i z a t i o n .  

I t  i s  c l e a r  t h a t  t h e  i npu t -ou tpu t  sys tem (2-24) i s  r e a l i z e d  

by a  s t a t e  s p a c e  model i f  and o n l y  i f  i t s  impu lse  r e s p o n s e  ma- 

t r i x  h a s  t h e  form o f  ( c - f . :  (2 -23) )  

f o r  a l l  t > ~ .  Fur thermore ,  t h e  i npu t -ou tpu t  sys tem h a s  a  f i n i t e  

d imens iona l  l i n e a r  r e a l i z a t i o n  i f  and on l y  i f  t h e  impulse re- 

sponse m a t r i x  h a s  t h e  s e p a r a b l e  form 

For  time i n v a r i a n t  sys tems  t h i s  is  o b v i o u s l y  t r u e  s i n c e  (2-25) 

can  be  w r i t t e n  a s  



F(t-r) G u (r) dr , 
0 

where the impulse response matrix 

is separable. The sufficiency can also be proven easily. For 

time varying systems we refer to Casti (1976). 

Given a record of input-output pairs (an external descrip- 

tion of the system) the realization (F,G,H) that can produce 

this record is not unique in the sense that many different sets 

of (F(or a) ,G(or I') ,HI can give the same input-output behavior. 

The choice of a particular (F(or a) ,G(or r) ,HI corresponds to the 

choice of a coordinate system. This choice can have consider- 

able impact in numerical analyses as well as affecting system 

observability and controllability. 

Assume that a state space model C = (@,r,H) is a realization 

of the input-output system. Then it is said to be a minimal 

realization of the input-output system if every other realiza- 

tion of finite dimensional linear type has a state space of 

greater or equal dimension. 

We cannot hope to identify states that are unobservable and 

for all practical purposes there is no point in specifying more 

states than can be controlled. Therefore the minimal realiza- 

tions have the following properties (Kalman et all 1969): 

1. ~ 1 1  minimal realizations of C are equivalent. 

2. Any minimal realization of C is completely 

controllable and completely observable. 

3. If a minimal realization of C is completely 

controllable and completely observable, it 

is a minimal realization. 



A minimal realization of a system C is thus a subsystem of C 

having the same dimension asC only when C itself is minimal. 

The above properties of minimal realization can be stated 

formally (see Desoer, 1970) as: A realization Q ,  H is 

minimal if and only if the system 

is completely observable and completely controllable. Moreover, 

a minimal realization always exists and any two minimal realiza- 

tions (Ql  , r l  ,HI) and (Q2, r2,H2) are related via the similarity 

transformation 

for some nonsingular matrix T. So, it turns out that the 

minimality of realizations is intimately related to the concept 

of controllability and observability, which is somewhat surpris- 

ing since there is no a priori reason why this should be the case. 

E x a m p 1 e 5. The water quality control system C discussed 

in Example 2.6 is a minimal realization of the processes 

involved. Obviously, the realizations C, and C*, discussed 

in Examples 2 and 3, respectively, are not minimal. 

Equations (21) and (22) can be written as 



and assuming t h a t  a l l  t h e  s t a t e  v a r i a b l e s  a r e  a l s o  o u t p u t  

v a r i a b l e s ,  i . e . ,  H = I ,  w e  have 

which i s  a d i r e c t  r e l a t i o n  between t h e  i n p u t  and o u t p u t ,  i t  

does n o t  have t h e  s t a t e  v e c t o r  x ( t )  a p p e a r i n g  e x p l i c i t l y .  

Using (23)  , [@,  r l  can be o b t a i n e d  from t h e  r e l a t i o n  

prov ided t h a t  t h e  m a t r i x  m u l t i p l y i n g  [ @ , r ]  i s  nons ingu la r .  I n  

t h i s  c a s e  t h e s e  a r e  a  un ique s o l u t i o n  f o r  [ @ , r l .  

For  o b s e r v a b l e  and c o n t r o l l a b l e  sys tems w i t h  o u t p u t  m a t r i x  

H n o t  e q u a l  t o  i d e n t i t y  m a t r i x  Ho and Kalman (1966) c o n s t r u c t e d  

a l g o r i t h m s  t o  o b t a i n  minimal r e a l i z a t i o n  us ing  Hankel m a t r i c e s  

formed from t h e  impulse response  m a t r i c e s .  Th is  q u e s t i o n  is 

f a r  beyond t h e  scope o f  t h i s  paper ,  s o  t h e  r e a d e r  i s  r e f e r r e d  

t o  t h e  l i t e r a t u r e  (Kalman e t  a l ,  1969; Desoer,  1970; Budin, 

1971; C a s t i ,  1976) .  An e f f e c t i v e  minimal r e a l i z a t i o n  a l g o r i t h m  

c a n  be  found i n  S i l verman (1971) .  



4 .  DISCRETE LINEAR STOCHASTIC DYNAMIC SYSTEMS 

The Not ion o f  S t a t e  and t h e  D e r i v a t i o n  o f  S t a t e  Equa t i ons  

Up u n t i l  now w e  d e a l t  w i t h  s t r i c t  d e t e r m i n i s t i c  sys tems 

where t h e r e  a r e  no u n c e r t a i n t i e s  of  any k ind .  U n f o r t u n a t e l y ,  

i n  p r a c t i c a l  w a t e r  r e s o u r c e s  a p p l i c a t i o n  t h i s  is  c e r t a i n l y  n o t  

t h e  c a s e ,  s i n c e ,  a s  Yevjev ich (1974) s t a t e s ,  it i s  ex t reme ly  

d i f f i c u l t  t o  f i n d  a  pu re  d e t e r m i n i s t i c  h y d r o l o g i c  p r o c e s s  i n  

n a t u r e .  I n  t h i s  s e c t i o n  w e  r e d e f i n e  t h e  p r e v i o u s  c o n c e p t s  o f  

dynamic sys tems and g i v e  some i n s i g h t  i n t o  t h e  b e h a v i o r  o f  

sys tems i n  a  random envi ronment .  The d i s c u s s i o n  w i l l  be  re- 

s t r i c t e d  t o  d i s c r e t e  systems.  For  con t i nuous  s t o c h a s t i c  sys -  

sys tems t h e  r e a d e r  is  r e f e r r e d  t o  Fleming and R i s h e l  (1  975) . 

A s  a s t r i j m  (1970) i n d i c a t e s  f o r  s t o c h a s t i c  sys tems w e  

n a t u r a l l y  canno t  r e q u i r e ,  a s  w e  d i d  f o r  d e t e r m i n i s t i c  sys tems 

i n  S e c t i o n  1 ,  t h a t  t h e  f u t u r e  behav io r  be  un ique ly  de te rmined 

by t h e  a c t u a l  s t a t e  x. A n a t u r a l  e x t e n s i o n  o f  t h e  n o t i o n  o f  

s t a t e  t o  s t o c h a s t i c  sys tems would be  t o  r e q u i r e  t h a t  t h e  pro-  

b a b i l i t y  d i s t r i b u t i o n  o f  t h e  s ta te  x  a t  f u t u r e  t i m e  shou ld  be  

un ique ly  de te rmined by t h e  a c t u a l  v a l u e  o f  t h e  s t a t e .  T h i s  

means t h a t ,  w e  r e q u i r e  t h a t  t h e  system be d e s c r i b e d  a s  a  

Markov p r o c e s s .  I n  o t h e r  works,  w e  assume t h a t  x ( t + l )  i s  n o t  

un ique ly  g i v e n  by x ( t )  and u ( t )  a s  exp ressed  by ( 1 - 3 ) ,  b u t  

t h a t  x ( t + l )  i s  a random v e c t o r  which a l s o  depends on a  random 

v a r i a b l e  w ( t )  , i . e . ,  

where f  now is  t h e  c o n d i t i o n a l  e x p e c t a t i o n  o f  x ( t + l )  g i v e n  - t 
x ( t )  , u ( t )  , and w ( t )  . I t  is  assumed h e r e  t h a t  w ( t )  h a s  z e r o  

mean. The above e q u a t i o n  i s  c a l l e d  a  s t o c h a s t i c  d i f f e r e n c e  

e q u a t i o n .  



For s t o c h a s t i c  l i n e a r  sys tems,  by ana logy  w i t h  (2 -3 )  , t h e  

s t a t e  e q u a t i o n  becomes 

where, beyond t h e  a l r e a d y  known n o t a t i o n s ,  w ( t )  i s  a  v e c t o r  o f  

w h i t e  g a u s s i a n  n o i s e  (WGN) sequences ,  w i t h  z e r o  mean 

and c o v a r i a n c e  m a t r i x  

where 6 , i s  t h e  Kronecker d e l t a  and Q( t )  is a  p o s i t i v e  s e m i -  

d e f i n i t e  m a t r i x .  S i n c e  t h e  s t a t e  i t s e l f  i s  a  random v a r i a b l e  

t h e  i n i t i a l  s t a t e  i s  g i v e n  by i t s  mean 

and cova r iance  m a t r i x  

where P ( 0 )  i s  a  p o s i t i v e  s e m i d e f i n i t e  nxn m a t r i x .  The n o i s e  

p r o c e s s  i s  c a l l e d  p r o c e s s  d i s t u r b a n c e ,  o r  sometimes model un- 

c e r t a i n t y ,  and i s  assumed t o  be  independent  o f  x ( O ) ,  s o  t h a t  

f o r  a l l  t E Td. I f  t h e  c o n t r o l  v a r i a b l e  u ( t )  is  miss ing  from 

( 2 )  , t h e n  t h e  system g e n e r a t e s  a  Gauss-Markov sequence. 

By s i m i l a r  arguments a s  b e f o r e  it i s  assumed t h a t  t h e  ou t -  

p u t  o f  t h e  system i s  contaminated w i t h  some n o i s e ,  i . e . ,  (2-4) 

becomes t h e  fo l l ow ing  measurement e q u a t i o n  



where x(t) is the m-vector of measurements, and v(t) is a vector 

of WGN sequences, called measurement error or measurement un- 

certainty with zero mean 

and covariance matrix 

where R(t) is a positive semidefinite matrix. We assume that 

the measurement uncertainty is independent of x(O), so that 

for all t E Td. Moreover, it is also assumed that the un- 

certainties are independent of each other 

for all t,r E Td. Clearly, the measurements z(t) generate an 

increasing measurement sequence 

with the obvious chain property of 

The matrix block diagram of the discrete stochastic linear 

systme is shown in Fig. 12.  Upon inspection with Fig. 4, the 

differences from and similarities with the deterministic case 

become immediately apparent. 



For illustrative purposes same examples on the state space 

formulation of time series models are presented below. 

E x a m p 1 e 1. In water resources literature there is a 

long history of using autoregressive (AR) time series 

models wither to predict or to generate sequences. For a 

detailed account consult Clarke (1973). A discrete time 

AR model of order n has the form of 

where the $s are the autoregressive coefficients, and w(t) 

is a WGN sequence with the usual properties. Defining the 

state variables as x l  (t)=y(t-n+l) , x2 (t)=y(t-n+2), . . . , 
xn (t) =y (t) , (El-1 ) can be written in the state space model 

where 

The measurement equation, which in this case is the output 

equation as well, is 

where 

In fact in the above model the noise sequence plays the role 

of the input and the measurement uncertainty is not present. 



E x  a  m p  1 e  2 .  To model r a i n f a l l  sequences a moving average 

(MA) model o f  o rde r  o r  

is  f r equen t l y  used i n  hydrology, where O s  a r e  t h e  moving 

average parameters and w ( * )  i s  a  WGN sequence. For example 

Matalas (1 963) has  app l i ed  t h e  above model t o  r e l a t e  e f f ec -  

t i v e  annual  p r e c i p i t a t i o n  t o  annual r uno f f .  Def in ing t h e  

s t a t e  v a r i a b l e s  a s  x l  (t) = w ( t - n )  , x2 (t) = w ( t -n+l  ) , . . . , 
x n ( t )  = w ( t - l ) ,  (E2-1) can be w r i t t e n  

where 

and 

z ( t )  = y ( t )  = H x ( t )  , 

where 

H = [On' On+.  .. f 011 . 

E x  a  m p  1 e 3. Here t h e  state space model of  t h e  combinat ion 

of  t h e  p rev ious  t i m e  s , e r i e s  models is  der i ved .  These t i m e s  

s e r i e s  models a r e  c a l l e d  mixed autoregressive-moving average 

models (ARMA) and a r e  ex tens i ve l y  t r e a t e d  i n  Box and Jenk ins  

(1970) .  For hyd ro log ica l  i n t e r p r e t a t i o n  consu l t  S p o l i a  and 

Chander (1974) and Dooge (1972) ,  where t h e  i n t i m a t e  r e l a t i o n  



between ARMA models and l i n e a r  r e s e r v o i r s  i s  p i n p o i n t e d .  

Cons ide r  an ARMA ( n , n )  model, which has  n a u t o r e g r e s s i v e  

and m moving ave rage  t e r m s ,  r e s p e c t i v e l y ,  i . e . ,  

which can be  t rans fo rmed  i n t o  a  s t a t e  s p a c e  model 

where @ , r , H  a r e  g i ven  by (Lee,  1964) 

O t h e r  examples f o r  s t o c h a s t i c  s t a t e  s p a c e  model ing a s  

a p p l i e d  t o  h y d r o l o g i c  sys tems can be  found i n  Kontur (1975) ,  

McLaughlin (1975) , and Yakowitz (1975) .  



S t a t e  Model f o r  Svstems w i t h  C o r r e l a t e d  Noise Sequences 

A s  it t u r n s  o u t  form ( 4 )  and (10)  t h e  u n c e r t a i n t i e s  w e r e  

assumed t o  be  independent  between sampl ing i n t e r v a l s ,  i . e . ,  

t h e y  w e r e  assumed t o  be  WGN sequences.  One might  s a y  t h a t  t h i s  

is  a somewhat s e r i o u s  r e s t r i c t i o n  s i n c e  i n  rea l -wor ld  w a t e r  

r e s o u r c e s  sys tems t h e  u n c e r t a i n t i e s  a r e  o f t e n  s e q u e n t i a l l y  

c o r r e l a t e d .  Below, w e  demonst ra te ,  f o l l ow ing  Sor renson (19661, 

how a s t a t e  space  model can  be c o n s t r u c t e d  when t h e  u n c e r t a i n -  

t i e s  a r e  s e r i a l l y  c o r r e l a t e d .  For s i m p l i c i t y  w e  omi t  t h e  con- 

t r o l  v e c t o r  from ( 2 )  and c o n s i d e r  t h e  sys tem 

z (t) = ~ ( t )  x ( t )  + Y( t )  , (16)  

where t h e  n o i s e  p r o c e s s e s  W ( t )  and Y( t )  a r e  n o t  n e c e s s a r l y  

independent  between sampl ing t i m e s .  I t  is  assumed however, t h a t  

t h e y  a r e  z e r o  mean p r o c e s s e s  and a r e  s t i l l  i ndependent  o f  each  

o t h e r ,  i. e . ,  

f o r  a l l  r ,  t E Td. The cova r iance  m a t r i c e s  o f  t h e  n o i s e  pro- 

cesses a r e  g i v e n  by 

67 ~ ( r )  4 (t) 1 = w ( r ,  t )  (18)  

I t  is known (see e .g .  Box and J e n k i n s ,  1 9 7 0 ) ,  however, t h a t  a  

c o r r e l a t e d  sequence can be looked upon a s  t h e  o u t p u t  o f  a  l i n e a r  

sys tem whose i n p u t  was a WGN sequence. Such a l i n e a r , s y s t e m  i s  

c a l l e d  shap ing  f i l t e r .  T h i s  means t h a t  t h e  c o r r e l a t e d  n o i s e  

p r o c e s s e s  a r e  g e n e r a t e d  by 



where O W ( * )  and Q V ( = )  a r e  t h e  t r a n s i t i o n  ma t r i ces  of  t h e  appro- 

p r i a t e  shaping f i l t e r s ,  and w ( = )  and v ( * )  a r e  WGN sequences 

a c t i n g  a s  i n p u t s  t o  t h e  shaping f i l t e r s  (F ig .  1 3 ) .  By augment- 

i n g  t h e  s t a t e  v e c t o r  w i th  t h e  c o r r e l a t e d  no i se  p rocesses  and 

combining ( 1 5 ) , ( 1 6 ) , ( 2 0 ) ,  and (21) we have 

x  ( t+l)  Q (t+l I t )  I 0  

kt:] = [ o 
QW(t+l I t )  

0  ] Eii]+[;!)t] (22) O 0  QV(t+1 r t) 

which i s  apparen t l y  a  s t a t e  space model f o r  

T x '  ( t)  = [ x ( t ) ,  W t )  I W t )  I I 

i n  t h e  form of ( 2 )  and ( 8 )  a s  

x '  ( t + l )  = Q '  ( t + l  , t )  x '  ( t )  + w'  ( t )  ( 2 4 )  

o r  even s imp le r  s i n c e  t h e r e  is no WGN measurement unce r ta i n t y  

p r e s e n t  s i n c e  t h e  c o r r e l a t e d  measurement unce r ta i n t y  is embedded 

i n  t h e  s t a t e  equa t ion  of  t h e  augmented system. Thus, whenever 

t h e  mathematical  model i nc l udes  c o r r e l a t e d  processes which a r e  

o f  such a  na tu re  a s  t o  permi t  t h e  d e r i v a t i o n  o f  t h e  app rop r i a te  

shap ing f i l t e r ,  t h e  system can be reduced t o  t h e  form of (24) 

and (25 ) .  I n  t h i s  c a s e  a l l  t h e  techn iques developed f o r  hand l ing 

(2) and ( 8 )  a r e  v a l i d  provided t h a t  t h e  s t a t e  t r a n s i t i o n  ma t r i ces  



@ ( m )  and 0 ( - 1  a r e  a v a i l a b l e .  W e  t u r n  now over  a t t e n t i o n  t o  
W v 

t h e  de te rm ina t i on  o f  t h e s e  ma t r i ces .  Here w e  d e r i v e  ( P W ( * )  on l y ,  

no t i ng  t h a t  t h e  ve ry  same procedure ho lds  f o r  Q V ( - ) .  

A s  it is known, a  random sequence W ( t )  w i t h  ze ro  mean is 

s a i d  t o  be  wide-sense Markov, o r  e q u i v a l e n t l y ,  s e r i a l l y  co r -  

r a l a t e d  sequence i f  i ts  covar iance  ma t r i x  W ( T , ~ )  s a t i s f i e s  t h e  

r e l a t i o n  

where 

A s s u m e  t h a t  t h e  c o r r e l a t e d  sequence W ' ( - )  is genera ted  by ( 2 0 ) ,  

where t h e  ma t r i x  Q W ( - )  must obey t h e  p r o p e r t i e s  o f  t h e  s t a t e  

t r a n s i t i o n  m a t r i c e s  d i scussed  i n  Sec t i on  2. Then, i n  accordance 

w i t h  (18) and (20)  w e  have 

S ince  w ( t )  is independent  o f  W- ( t )  

w e  have 

W ( t + l , t )  = % ( t + l , t )  W ( t , t )  . 

Assuming t h a t  t h e  cova r i ance  ma t r i x  W ( t , t )  is p o s i t i v e  d e f i n i t e ,  

@ , ( t + l , t )  = w ( t + l , t )  w - l ( t , t )  (27 )  



Now, w e  v e r i f y  t h a t  @ ( - * )  i s  r e a l l y  a s ta te  t r a n s i t i o n  ma t r i x .  W 
Obviously  

which cor responds t o  ( 2 -9 ) ,  and 

which, due t o  (26)  and ( 2 7 ) ,  reduces  t o  

@,(t+l ,t)@ ,(t,t-1) = W(t+l,t-1) w-I (t-1 ,t-1) 

t h u s  Q W ( - )  s a t i s f i e s  t h e  requ i rement  f o r  a s ta te  t r a n s i t i o n  

m a t r i x  s t a t e d  i n  S e c t i o n  2. 

To complete t h e  d i s c u s s i o n  t h e  cova r i ance  m a t r i x  o f  t h e  

WGN p r o c e s s  w ( * )  is  s t i l l  t o  be de r i ved .  I t  f o l l ows  from (20)  

t h a t  

which is nonnega t i ve -de f i n i t e .  

E x  a m p  1 e 4 .  Cons ider  a s c a l a r  c o r r e l a t e d  sequenceW( t1  

w i t h  an exponen t i a l  cova r i ance  f u n c t i o n  

Then, accord ing  t o  (26)  , 



since T - > u - > t. Using (27) the state transition factor 

becomes 

and the covariance of the corresponding WGN sequence is 

Structural Properties 

Here we shortly reexamine the structural properties such 

as observability, controllability, minimal realization, de- 

veloped for deterministic systems in Section 3, for discrete 

stochastic linear dynamic systems. The relevant questions are 

the same as in Section 3 but here the system and measurement 

uncertainties make life much more interesting. The names of 

these structural properties will be the same modified only by 

the adjective stochastic. 

For stochastic observability, by similar arguments as in 

Section 3, it is sufficient to consider only the unforced 

system if it is assumed that there is no system uncertainty, 

i-e., 

with noisy measurements, having the usual statistics, on it. 

Here again, if we can determine the state vector at any one 

time in Td, such as x (01, then from (29) we can determine all 

other state vectors. Because of noisy measurements, however, 

it is no longer possible to determine the state vector from a 

finite number of observations. Instead, we consider the problem 



of obtaining the maximum likelihood estimate of x(0) by maxi- 

mizing the likelihood function 

with respect to the choice of ~ (0 ) .  Again, determining, or rather 

estimating, x(O) in this fashion is equivalent to estimating 

x(T), for 0 - < T - < t, since X(T) evolves from x(0) according 

to (29). 2 has the same meaning as in ( 1  3). We have, for the 
t 

first two conditional moments 

where 

The likelihood function, or probability density of Zt condition- 

ed upon x(O), is Gaussian and has the form of 

where, for the sake of brevity, the notation 

was used for the quadratic forms. As a matter of fact the max- 

imization of the likelihood function is equivalent to the min- 

imizatkon of the quadratic forms, i.e., 



is to be minimized. This minimization is of least squares type 

which must be accomplished with respect to x(O), where 

Combining the two foregoing equations, differentiating with 

respect to x(O), and setting the result equal to zero the 

estimated initial state can be obtained as 

where 

is an nxn symmetric matrix called stochastic observability 

matrix. For the solution (35) to exist as (Oft) must have an 

inverse. If such an inverse exists the system (29) and (30) 

is said to be stochastically observable. By comparing (36) with 

(3-9) it appears that the only difference between the deter- 

ministic and stochastic observability matrices is that the 

later, through the measurement noise covariance matrix, con- 

siders the uncertainties as well. For the case when the system 

is not free similar criterion can be established; for details 

see Aoki (1967). 

Here the same remark can be made as for the deterministic 

observability, namely that the observability and estimation of 

stochastic systems state are intimately related concepts. In- 

deed, using (29) along with (35) the estimation of the states' 

history becomes possible. We note that in practical computer 

applications recursive techniques are applied. These procedures 

are discussed in detail later. 

Criterion for controllability of stochastic systems can be 

obtained along the same lines. The final result is that the 



stochastic controllability matrix 

must be positive definite, i.e., the process noise must excite 

all the states in the system (c.f.: (3-16)). Again see Aoki 

(1967) where the identifiability conditions for stochastic 

systems are also discussed. 

As for minimal realizations of stochastic systems Akaike 

(1974) showed recently that the natural representation of a 

state space for stochastic systems is given by the predictor 

space, the linear space-spanned by the predictors when a 

system is driven by a WGN input sequence, and a minimal real- 

ization corresponds to a selection of a basis of this predictor 

space. As in the deterministic case, any two minimal realiza- 

tions are connected by a nonsingular linear transformation 

between the two corresponding bases of the predictor space. 

Akaike's minimal realization algorithm is again based upon the 

analysis of the infinite dimensional Hankel matrix composed 

from the impulse response matrices. 
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Fiaures 

Figure 1. Nonlinear System as Cascaded Blocks of Linear 
Dynamic and Zero Memory Nonlinear Subsystems. 

Figure 2. Simplified Catchment Model. 

Figure 3. Flow. Chart of Lake-Aquifier System. 

Figure 4. Matrix Block Diagram of a Discrete Linear 
Dynamic System. 

Figure 5. State. Trajectories for Transient Responses. 

Figure 6. Three Basic Properties of the State  rans sit ion 
Matrix 

Figure 7. State Representation of the Nash-Model. 

Figure 8. The Dynamics of the Discrete Time Water Quality 
Control System. 

Figure 9. An Unobservable-Controllable System. 

Figure 10. An Observable-Uncontrollable System. 

Figure 1 1 .  Canonical Decomposition of a Linear Dynamic 
System into Four Subsystems. 

Figure 12. Matrix Block Diagram of a Stochastic Discrete 
Linear Dynamic System. 

Figure 13. The Notion. of Shaping Filter. 


























