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Preface 

An important class of stochastic models for describing time 
series is the class of autoregressive integrated moving average 
(ARIMA) models. This class provides a range of models, station- 
ary and non-stationary, that adequately represent many of the 
time series met in practice. 

At IIASA this class of models has been used to describe the 
time dependence of observations and to predict future observa- 
tions from past data. Previous publications in the System and 
Decision Sciences area on this topic, for example, include a 
comparison of forecasts from ARIMA models and forecasts derived 
from exponential smoothing. Furthermore it is shown how ARIMA 
models can be used in modelling hydrologic sequences. 

A common assumption in AR1P.m models is the normality of the 
distribution of the errors (shocks which drive the system). In 
this paper it is investigated whether this assumption is critical 
or whether inference and prediction of ARIMA models is robust 
with respect to non-normality of the error distribution. 





Inference Robustness of ARIMA Models under Non-normality- 

Special Application to Stock Price Data 

Abstract : 

Wold's [I61 decomposition theorem states that every 
weakly stationary stochastic process can be decomposed into 
orthogonal shocks. For practical reasons, however, it is 
desirable to employ models which use parameters parsimo- 
niously. Box and Jenkins [3] show how parsimony can be 
achieved by representing the linear process in terms of a 
small number of autoregressive and moving average terns 
(ARIMA-models). The Gaussian hypothesis assumes that the 
shocks follow a normal distribution with fixed mean and 
variance. In this case the process is characterized by 
first and second order moments. The normality assumption 
seems to be reasonable for many kinds of series. However, 
it was pointed out by Kendall [8] , Ma.ndelbrot [ 10,Il ,121 , 
and Fama [6] that particularly for stock price data the 
distribution of the shocks appears leptokurtic. 

In this paper we investigate the sensitivity of ARIMA 
models to non-normality of the distribution of the shocks. 
We suppose that the distribution function of the shocks is 
a member of the symmetric exponential power family, which 
includes the normal as well as leptokurtic and platikurtic 
distributions. A Bayesian approach is adopted and the in- 
ference robustness of ARIMA models with respect to 

i) the estimation of parameters ~ 
ii) the forecasts of future observations 

is discussed. 

1.  Statistical models for stock price series 

An early contribution to the theory of stock prices was 
made by Bachelier [I]. He suggested the random walk model 
with normally distributed errors as a possible stochastic 
model for stock price series (Gaussian random walk hypothesis). 

Empirical studies of stock price data show that successive 
differences of stock prices are nearly independent, thus con- 
firming the random walk hypothesis [8,10]. However it is pointed 
out that the Gaussian hypothesis is subject to some doubt, 
since the distribution of the error terms appears leptokurtic. 



This led Mandelbrot [10,11,12] to adopt the stable Paretian 
random walk hypothesis, where it is assumed that differences 
of stock prices follow a stable distribution with character- 
istic exponent 1 . a 2. The stable Paretian random walk 
hypothesis has important implications for data analysis, since 
whenever a < 2 the variance is infinite and the sample standard 
deviation which is used to measure risk becomes meaningless. 
Some doubt of this hypothesis is expressed by other authors. 
Hsu, Miller and Wichern [7] point out that the stable Paretian 
random walk hypothesis does not agree with many stock price 
series observed in practice. 

In the literature on economic stock price series various 
other characterizations have been put forward. Press [I51 
considers a mixture of normal distributions with different var- 
iances and Praetz [I41 suggests a scaled t distribution to 
explain the leptokurtic distribution of the error terms. Miller, 
Wichern and Hsu [13], instead of characterizing the errors by 
leptokurtic distributions, relax the stationarity assumption 
of the model. Changes in the parameters of the model over time 
can lead to leptokurtic distributions, an aspect which is further 
discussed in Ledolter [9] . 

In this paper, however, we consider the consequences of a 
different hypothesis. We assume the usual form of the ARIMA 
model with constant parameters, but allow the possibility of 
a symmetric, but not necessarily normal error distribution. 
Inrtead of assuming it to be a stable distribution we assume 
that it is from the class of exponential power distributions. 

2. ARIMA -- time series model with shocks from the family of - 
symmetric exponential power distributions: --- 

We consider the linear filter model 

where 
m 

i) B is the backshift operator; B zt = z t-m ' 

eq(B) 1 - e1B-. . .-8 B q 

ii) y(B) = - - q 
d - d 

, and 
, (B) (1 - B) P 

P (1 - QIB-. . .-QpB ) ( 1  - B) 

iii) a are independent drawings (shocks) from the family t 
of symmetric exponential power distributions with 



probability density 

with 

The quantity a > 0 is the standard deviation of the population 

and B (-1 < B < 1  - ) is a measure of kurtosis indicating the extent of 

non-normality of the parent distribution of the shocks. If B = 

0 the shocks are normally distributed. 6 > 0 will result in a 

leptokurtic and B < 0 in a platikurtic distribution. This family 

ranges from the uniform ( B  approaching -1) to the double exponen- 

tial distribution (B = 1). 

In time series analysis the usual assumption is that shocks 

come from a normal distribution (B=O). In this paper we char- 

acterize the error distribution through one additional parameter, 

B, thus broadening the model. Proceeding this way has proved 

useful in studies of what has been called inference robustness 

by Box and Tiao [ 4 , 5 ] .  Inference robustness is concerned with 

how inferences are affected when assumptions about the under- 

lying distribution are changed. 

For P + 0 the distribution of zt in (2.1) is complicated. 

However it is easily shown that for any given stationary process 

the kurtosis of zt is given by 

Q 3 .  



where, as shown by Box [2] , 

3. Parameter estimation for autoregressive models of order p 

with shocks from the family of symmetric exponential power 

distributions 

We consider the process 

where zt -is a stationary difference of original observations 

with Ezt = 0 .  To assure stationarity the roots of (1-BIB-... 

- $  gP) = 0 are assumed to lie outside the unit circle [31. 
9 

Furthermore the at are assumed independent with distribution 

given in (2.2). Thus, 

Transforming 

and treating z '  = (zl,z2, ..., z ) as given, we derive the 
P P 

densityof .., z' = (zpcl ,..., zn) to be 



First we derive the posterior distribution of the parameters 

a and @ '  = (@l,...,@ ) for a specific parent distribution of - P 
the shocks, thus considering fixed. For given B and fixed 

starting values z , the likelihood function of (a,@) is given 
-P - 

by 

Bayes formula states that the posterior distribution of (a,@) - 
is 

where R (a, @ (z,z , B) is the likelihood given in (3.3) and - - -P  
p(a,@) is a chosen prior. - 

An analysis would usually be required in circumstances 

where little was assumed to be known about the parameters 

a priori. The question of choosing a prior so as to be "non- 

informative" has been the subject of considerable research, 

speculation and arguments. In particular in cases where it 

is applicable one can use Jeffreys' principle to derive a non- 

informative prior distribution. According to this rule, the 

prior distribution is chosen proportional to the square root 

of Fisher's information matrix (see for example [ 4 1 ) .  For the 

case B < 0 it is easily shown [ 9 ]  that Jeffreys' principle 

leads to a prior distribution of the form 

1 - - 1 2 
P ( O , ~ )  = P(~)P(@) Jppl , (3.4) 

where P is a p x p  autocorrelation matrix with elements 
P 



For a u t o r e g r e s s i v e  p a r a m e t e r s  w e l l  w i t h i n  t h e  s t a t i o n a r i t y  

r e g i o n  t h e  p r i o r  p ( @ )  a p p e a r s  s u f f i c i e n t l y  f l a t  compared w i t h  - 
t h e  l i k e l i h o o d  and t h u s  can  be  c o n s i d e r e d  c o n s t a n t .  I n  t h e  

f o l l o w i n g  w e  t h e r e f o r e  u s e  t h e  approx imat ion  

Combining t h e  above p r i o r  w i t h  t h e  l i k e l i h o o d  i n  ( 3 . 3 )  w e  

d e r i v e  

where 

I n t e g r a t i o n  o v e r  a g i v e s  

From ( 3 . 7 )  i t  i s  c l e a r  t h a t  t h e  p o s t e r i o r  d i s t r i b u t i o n  of  @ 
u 

depends  h e a v i l y  on t h e  v a l u e  of B .  However, t h i s  does  n o t  

n e c e s s a r i l y  mean t h a t  f o r  a  g i v e n  body of d a t a  t h e  i n f e r e n c e s  

w i l l  b e  i m p r e c i s e .  Cons ide r ing  B a s  a  random v a r i a b l e  it 

w i l l  i t s e l f  p o s s e s s  a  p o s t e r i o r  d i s t r i b u t i o n .  I t  i s  o f t e n  

t h e  c a s e  i n  t i m e  series work t h a t  t h e  number of  o b s e r v a t i o n s  

i s  r a t h e r  l a r g e .  Thus some r a t h e r  p r e c i s e  i n f o r m a t i o n  a b o u t  

B can b e  s u p p l i e d  by t h e  d a t a  and may be i n c o r p o r a t e d  i n  t h e  

a n a l y s i s .  

S i n c e  t h e r e  a p p e a r s  t o  be  no r e a s o n  why B shou ld  depend 

on a and @ a  p r i o r i ,  w e  assume t h a t  t h e  p r i o r  of ( a , $ , @ )  i s  - u 

g i v e n  by 



Box and T i a o  [ 5 ]  i n t r o d u c e  t h e  c o n c e p t  o f  a  r e f e r e n c e  p r i o r  

f o r  B .  T h i s  i s  u s u a l l y ,  b u t  n o t  n e c e s s a r i l y ,  t a k e n  t o  b e  a  

un i fo rm p r i o r  and i s  i n t e n d e d ,  a s  i t s  name i m p l i e s ,  f o r  r e f -  

e r e n c e  p u r p o s e s .  I t  h a s  t h e  p r o p e r t y  t h a t  i f  t h e  d a t a  a r e  

viewed i n  t h e  l i g h t  o f  some o t h e r  p r i o r  d i s t r i b u t i o n  t h e  new 

p o s t e r i o r  d i s t r i b u t i o n  c o u l d  b e  r e a d i l y  o b t a i n e d  by u s i n g  t h e  

r e f e r e n c e  p r i o r .  Using t h e  p r i o r  i n  ( 3 . 8 )  w e  d e r i v e  

p (o ,$ ,B  z , z P ) - ~ ( B )  [w(B) 1 n-p a- (n-p+ 1 
- scm;o) 2/1+B - ( 3 . 9 )  

I n t e g r a t i n g  o v e r  o 

r ( i  + Q ( i + ~ ) )  2 
- n-p ( I + @ )  

P ( B , ~ ~ z , ~ , ) - P ( B )  - - - (s B)] 2  . (3 .1 .3)  
[r  (1 + :(1+0) I n-P 

F u r t h e r m o r e  

where t h e  s t a t i o n a r i t y  r e g i o n  

h a s  r o o t s  o u t s i d e  
- $ l B - . . . - $ p ~ P )  = 0 t h e  u n i t  c i r c l e  i 

I t  i s  n o t  p o s s i b l e  t o  o b t a i n  a  c l o s e d  form e x p r e s s i o n  f o r  

3 . 1 1  However f o r  low o r d e r  a u t o r e g r e s s i v e  p r o c e s s e s  t h e  

i n t e g r a l  can  b e  e v a l u a t e d  n u m e r i c a l l y .  

The p o s t e r i o r  d i s t r i b u t i o n  p ( ~ (  ) s e r v e s  a s  w e i g h t  
P  

f u n c t i o n  i n  d e r i v i n g  t h e  p o s t e r i o r  d i s t r i b u t i o n  of  $.  
?. 



4. Parameter estimation for movinu averaae models of order a 

with shocks from the family of symmetric exponential power 

distributions. 

We consider the invertible model 

where zt is a stationary difference with Ezt = 0 and where a t 
are independent drawings from the distribution in (2.2). To 

assure invertibility we assume that the roots of 1-0 lB-. . . - 8 Bq = 0 
q 

lie outside the unit circle [ 3 ] .  Again, 

Transforming 

and treating the starting values a; - = (aofa-lf...fa-(q-l) 1 
as nuisance parameters, we get 

where 

.-. 



.rr ' = -1  and the .rr weights ( j  > 1 )  are the coefficients in the o j - 
expansion 

The likelihood function for ( 4 . 1  ) is given by 

Combining the non-informative prior distribution 

with the likelihood in ( 4 . 3 )  we derive for given B 

Integrating over o 

Since for any invertible process the n-weights decrease fairly 

rapidly, the choice of the starting values a, will not be 

critical. A sensible approximation, and one which is most 

convenient in practice, is 

where 



Treating B as random variable with prior PCB) 

and 

q where the invertibility region IR = {0:(1 - - BIB-...-BqB ) = 0 

has all roots outside the unit circle) 

5. Forecasting time series models with shocks from the family 

of symmetric exponential power distributions with special 

reference to the ARIMA (0,1,1) model. 

In the following we discuss the integrated moving average 

model of the form 

This type of model is particularly important since many economic, 

business and engineering data behave according to this model. 

Furthermore, as pointed out in Section 1, stock price data 

follow a model of this kind in which the moving average param- 

eter is close to zero. 

Sample theory approach 

Two approaches to forecasting can be distinguished. The 



first is a sample theory approach. The minimum mean square 

error (MMSE) forecast of a future observation z ~ + ~  is the con- 

ditional expectation of zn+& at time n. For any class of 

distributions with finite second order moments the distribu- 

tional assumption about the shocks at are irrelevant for the 

derivation of the MMSE forecast. Forecasts, however, are of 

little value if they are not accompanied by some measure of 

their variability. The variance of the forecast error 

provides such a measure, and is given by 

The distributional assumptions about the shocks at change the 

interpretation of the probability interval 

If one is interested in one step ahead forecasts, the forecast 

error is given by en(l) = a n+l ' 
Thus (1-a) 100% probability 

limits for the future observation z ~ + ~  are given by { sn ( 1 + - 
ho 1 where h is chosen such that Prob { 1 a 1 > ho,} = a. a 
For the case 6 = 0, the normal table provides h corresponding 

to a. If B > 0 however, the distribhtion of the shocks at 

is leptokurtic and the normal probability limits will under- 

estimate therisk of a realization in the extreme tails. For 

the platikurtic case ( B  < 0) the normal theory probability 

limits will overestimate this risk. Box and Tiao [5] show that 

the probability limits can be quite different for very small 

a (a<<.05); however for a = .05 they are not very sensitive to 

the choice of B .  



For lead times R - > 2 the distribution of the forecast 

errors e !R) can readily be derived only in the case of a n 
norm,.rl ,.arent. For general f3 its distribution is complicated. 

Nc ertheless some idea of the approach to normality of en(R) 

can be obtained by considering the kurtosis of the forecast 

error 

The kurtosis depends on 

i) the non-normality parameter in the distribution of 

the shocks, 

ii) the $-weights of the ARIMA model. 

For the case of an ARIMA (0,1,1) model, $ = 1 -  for all 
3 

' > 1 and I - 

The above sample theory interpretation of forecasting has the 

drawback that it assumes that the values of the parameters are 

known. But parameters are estimated and parameter estimation 

errors are therefore present. A sample theory development which 

allows for errors in the parameters would he extremely dif- 

ficult. However, some progress has been made by investigating 

how much the variance of the forecast errors increases if the 

parameters are estimated from the data [ 3 ] .  

Bayesian approach 

Another approach to forecasting is a Bayesian one. ~ h l s  

approach does provide a manageable way of incorporating 



e s t i m a t i o n  e r r o r s  i n  t h e  pa ramete r s .  T r e a t i n g  t h e  pa ramete r s  

i n  t h e  ARIPlA model a s  random v a r i a b l e s ,  t h e  p r e d i c t i v e  d i s t r i -  

b u t i o n  of f u t u r e  o b s e r v a t i o n s  can  be d e r i v e d .  

W e  i l l u s t r a t e  t h i s  approach f o r  t h e  one s t e p  ahead p re -  

d i c t i v e  d i s t r i b u t i o n  o f  t h e  i n t e g r a t e d  f i r s t  o r d e r  moving 

average  p ro ce s s .  

For known paramete r s  of t h e  p roce s s  t h e  one-step-ahead 

p r e d i c t i v e  d i s t r i b u t i o n  of t h e  i n t e g r a t e d  f i r s t  o r d e r  moving 

average  p ro ce s s  i s  given  by 

where 

I n  a  Bayesian c o n t e x t  t h e  pa ramete r s  u , B , B  a r e  cons ide r ed  

random and i t s  p o s t e r i o r  d i s t r i b u t i o n  can be d e r i v e d .  

The one s t e p  ahead p r e d i c t i v e  d i s t r i b u t i o n  ( u n c o n d i t i o n a l  

on t h e  p a r am e t e r s )  i s  t h u s  g iven by 

Combining (5 . 6 )  w i t h  t h e  p o s t e r i o r  d i s t r i b u t i o n  of  t h e  param- 

eters  i n  ( 4 . 7 )  w e  d e r i v e  



Integrating over (J and for fixed B 

where p(8lz,B) is given in (4.6) - 

The posterior predictive distribution for given B and 8 is 

given by 

and 

( z, B=O) is an It can be seen that for the case B = 0 ,  , 

average of t distributions, weighted by p(8(zrB=0). 

Equation (5.11) allows one to determine the sensitivity 

(or conversely the robustness) of the predictive distribution 

to changes in the assumption about the distribution of the B 
shocks at. It expresses how the predictive distribution varies 

for changing B .  

P (2 n+l lz) - is derived by averaging the conditional predict- 

ive distributions in (5.11). The posterior distribution of B 
given in (4.9) acts as a weighting function. 



6.  Example and c o n c l u d i n g  remarks  

To i l l u s t r a t e  t h e  above r o b u s t n e s s  s t u d y  w e  a n a l y z e  d a i l y  

I B M  common s t o c k  c l o s i n g  p r i c e s  g i v e n  i n  ( 3 ) .  I t  i s  shown t h a t  

t h e  model f o r  t h i s  series i s  g i v e n  by an  i n t e g r a t e d  f i r s t  o r d e r  

moving a v e r a g e  p r o c e s s .  Under t h e  a s sumpt ion  o f  normal  s h o c k s  

t h e  p o i n t  e s t i m a t e s  (means o f  t h e  p o s t e r i o r  d i s t r i b u t i o n )  a r e  

The c o n d i t i o n a l  p o s t e r i o r  d i s t r i b u t i o n s  p ( 8 ( z , B )  - are d e r i v e d  

f o r  v a r i o u s  v a l u e s  o f  B .  They a r e  g i v e n  i n  F i g u r e  1 and show 

m o d e r a t e  s e n s i t i v i t y  t o  changes  i n  B. 

The p a r a m e t e r  6, c o n s i d e r e d  a s  a  random v a r i a b l e ,  p o s s e s s e s  

a p o s t e r i o r  d i s t r i b u t i o n .  Assuming a  un i fo rm r e f e r e n c e  p r i o r  

f o r  6, t h e  p o s t e r i o r  d i s t r i b u t i o n  p ( B l z )  i s  d e r i v e d  and g i v e n  i n  
v 

F i g u r e  2 .  I t  shows v e r y  c l e a r l y  t h a t  t h e  e r r o r  d i s t r i b u t i o n  i s  

n o t  normal ( B = O ) ;  s t r o n g  e v i d e n c e  f o r  a l e p t o k u r t i c  e r r o r  d i s -  

t r i b u t i o n  i s  g i v e n .  

The p o s t e r i o r  d i s t r i b u t i o n  ( 8  1 z )  i s  compared t o  t h e  pos-  - 
t e r i o r  d i s t r i b u t i o n  o f  8  assuming normal  d i s t r i b u t e d  e r r o r s ,  

p  (8 1 z ,  B = o ) .  Both are p l o t t e d  i n  F i g u r e  3 .  

The p r e d i c t i v e  d i s t r i b u t i o n s  p  (zn+ 1 Z ,  6)  f o r  v a r i o u s  - 
v a l u e s  o f  B a r e  g i v e n  i n  F i g u r e  4 .  The modes of  t h e s e  d i s t r i -  

b u t i o n s  a r e  shown t o  b e  i n s e n s i t i v e  t o  t h e  c h o i c e  o f  B ;  t h e  

s h a p e  o f  t h e  d i s t r i b u t i o n  ( u n c e r t a i n t y  o f  f o r e c a s t ) ,  however,  

changes  c o n s i d e r a b l y .  

The p r e d i c t i v e  d i s t r i b u t i o n s  p  (zn+ 1 z )  and p  ( zn+ ,  1 z t  6 4 )  

are compared i n  F i g u r e  5 .  The d i f f e r e n c e  i n  t h e  s h a p e  o f  



the predictive distributions is very marked and shows that th3 

assumption of normality would result in quite a different 50% 

highest posterior density region for the forecast. 9 0 %  highest 

posterior density regions, however, are virtually the same, 

whereas the normality assumption would underestimate the risk 

in the extreme tails of the distribution. Summarizing, it can 

be said that in this example the pointforecast (mode of the 

posterior distribution) and 90% highest posterior density regions 

are not seriously affected by symmetric non-normality of the 

error distribution. 



e 

Figure 1. Posterior distribution of 0 for various fixed P 



Figure 2. Posterior distribution of /3 assuming uniform reference prior. 



Figure 3. Posterior distribution of  0 ,  p(8 /z), and the posterior distribution 
of 8 assuming normal distribution shocks, p(B/z, 0 = 0). 



Figure 4. Posterior one step ahead predictive distribution for various fixed 0: n = 369. 



Figure 5. Posterior one step ahead predictive distribution p(z /z) 
n+l - 

compared with p(z n+l/"'B = 0) , the posterior one step ahead 

predictive distribution assuming normal distributed shocks, 

and their 50% (90%) probability limits. 
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