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C o n d i t i o n s  . - -y 

of  E x p o n e n t i a l  Smoothing F o r e c a s t  P r o c e d u r e s  - 

Johannes L e d o l t e r  and George E.P.  Box 

A b s t r a c t  - 

E x p o n e n t i a l  smoothing p r o c e d u r e s ,  i n  p a r t i c u l a r  t h o s e  
recommended by 3rown [3 ]  a r e  used  e x t e n s i v e l y  i n  many a r e a s  
of  economics,  b u s i n e s s  and e n g i n e e r i n g .  I t  i s  shown i n  
t h i s  paper  t h a t :  

i )  Srown 's  f o r e c a s t i n g  p r o c e d u r e s  a r e  o p t i m a l  i n  terms 
of a c h i e v i n g  minimum mean s q u a r e  e r r o r  f o r e c a s t s  
o n l y  i f  t h e  u n d e r l y i n g  s t o c h a s t i c  p r o c e s s  is i n -  
c l u d e d  i n  a l i m i t e d  s u b c l a s s  o f  ARIPJA ( p I d I q )  
p r o c e s s e s .  Hence, it i s  shown what assumpt ions  a r e  
made when u s i n g  t h e s e  p r o c e d u r e s .  

ii) The i m p l i c a t i o n  of  p o i n t  ( i)  i s  t h a t  t h e  u s e r s  of  
Brown's p r o c e d u r e s  t a c i t l y  assume t h a t  t h e  s t o c h a s t i c  
p r o c e s s e s  which o c c u r  i n  t h e  r e a l  wor ld  a r e  f rom 
t h e  p a r t i c u l a r  r e s t r i c t e d  s u l ~ c l n s s  o f  ARINA ( p , d , q )  
p r o c e s s e s .  No r e a s o n  c a n  b e  found why t h e s e  p a r t i c -  
u l a r  models  shou ld  o c c u r  more f r e q u e n t l y  t h a n  o t h e r s .  

iii) I t  i s  f u r t h e r  shown t h a t  even i f  a s t o c h a s t i c  
p r o c e s s  which would l e a d  t o  Brown's model o c c u r r e d ,  
t h e  a c t u a l  methods used f o r  making t h e  f o r e c a s t s  
a r e  clunlsy and much s i m p l e r  p r o c e d u r e s  c a n  be 
employed. 

1 .  -- The -.------- c l a s s  of  a u t o r e g r e s s i v e  i n t e g r a t e d  moving a v e r a g e  pro-  

cesses and t h e i r  minimum mean s a u a r e  e r r o r  f o r e c a s t s  

An approach t o  t h e  mode l l i ng  and f o r e c a s t i n g  o f  s t a t i o n a r y  
and n o n s t a t i o n a r y  p r o c e s s e s ,  such a s  commonly o c c u r  i n  b u s i n e s s ,  
economics and e n g i n e e r i n g ,  i s  d i s c u s s e d  by Box and J e n k i n s  [ 2 ] .  
U t i l i z i n g  e a r l i e r  work by Kolmogorov [ 7 , 8 ] ,  Wold [ 1 2 ] ,  Yaglom 
[ 1 3 ] ,  Yule [ 1 4 ] ,  it u s e s  a t h r e e  s t a g e  i t e r a t i v e  model b u i l d i n g  
p r o c e d u r e  of  .-- i d e n t i f i c a t i o n ,  e s t i m a t i o n  and -- d i a g n o s t i c  check ing .  

The c l a s s  o f  a u t o r e g r e s s i v e  i n t e g r a t e d  moving a v e r a g e  
(ARIVA) models  of  o r d e r  ( p , d , q )  which i s  d iscuss fX l  i n  [2 ]  c a n  
b e  w r i t t e n  



where 

i) z is a discrete stochastic process t 
ii) Op(B) = ~-$I~B-. . . -@~B P 

d r (B) = Op(B) (1-B) = l -  rlB-. . . - p+d 
p+d r-,+dB 

m and B is the backshift operator: B zt = z t-m 

iii) {at) is a white noise sequence 

The roots of $J (B) = 0 and 8 (B) = 0 are assumed to lie 
P q 

outside the unit circle. 

ARIMA (p,d,q) processes provide a class of models capable 

of representing time series which, although not necessarily 

stationary, are homogeneous and in statistical equilibrium. 

The stochastic process in (1.1) can equivalently be written 

in terms of current and previous shocks at 

where 

or in terms of a weighted sum of previous values of the 

stochastic process and the current shock at. 



where 

Forecasts of ARIfilA ( p ,  d, q) processes : 

Minimum mean square error forecasts for linear stochastic 

processes are given by the conditional expectation of future 

observations 

Forecasts are calculated using the difference equation form of 

the model 

where 

Izt+j for j < O  - 
= 

for j > O  

for j - c O  
= 

for j > O  

Forecasts can equivalently be expressed as a linear function of 

previous observations 

In particular, for R = 1 



Forecasts can be updated from one time origin to the other by 

Although forecasts are calculated and updated most conveniently 

from the difference equation form (1.5), from the point of 

studying the nature of the forecasts it is profitable to con- 

sider the explicit form of the forecast function. The eventual 

forecast function is the solution of the difference equation 

1 t 2 (2-p-d) = 0 for R > q Bt(e) - c 2 (!~-i)-...-lg+~ 

and is given by 

2,(e) = bt (t)ft (el+. -+b;+d(t)fG+d (R) for R>q-p-d 

f~(e),...,f~+d(R) are functions of the lead time R and depend 

only on the autoregressive part of the model cP ( B ) .  In gen- 
p+d 

eral, these functions can be polynomials, exponentials, sines, 

cosines or combinations of these functions. 

For a given forecast origin t, the coefficients 

b* (t) = [bt (t) , . . . ,bG+d (t) ] ' are constants and are the same 

for all lead times R; however they change from one forecast 

origin to the next and as shown by Box and Jenkins [ 2 ]  they 

can be updated by 

where 



and 

g = F  *-1 - a ?a with V, = [@,I$,+ ,.... 1 I '  

for any R>q-p-d 

2. Exponential smoothins forecast procedures 

Exponential smoothing techniques have received broad 

attention in the existing literature, especially in the area 

of management science. These procedures are fully automatic 

which means that once a computer program has been written, 

forecasts for any time series can be derived without manual 

intervention. The fact that they are automatic has been put 

forward as an advantage of the scheme. However it can equally 

well be argued that this is a great disadvantage since it 

discourages the use of the human mind in circumstances where 

this instrument could be used with profit. 

The basic exponential smoothing equation replaces an 

observed ser'ies zt by a smoothed series zt, an exponentially 

weighted average of current and past values of z .  

The latest available smoothed value is used to forecast all 

future observations 



This basic exponential smoothing procedure by Holt [6], 

Winters [11], Brown [3] was, and still is, used frequently to 

derive forecasts of economic and business data. Muth [9] in- 

vestigated the conditions under which this procedure provides 

minimum mean square error forecasts. He showed that the 

underlying process has to be given by the ARIMA (0,1,1) process 

Generalizations of exponential smoothing procedures have been 

considered by Brown [3] , Brown and Meyer [41 . They select 

fitting functions f (R) = [f ( R )  , . . . , fm(R) 1 ' from the class of - 
functions 

L is a (mxm) non singular transition matrix and f(0) is .., 

specified. The coefficients b(t) = [bl (t) , . . . ,bm(t) ] ' of 
.., 

the forecast function 

are fitted by discounted least squares minimizing 

The fitting functions are chosen by visual inspection and the 

smoothing constant B(O<B<1) is assumed to be known. Brown 

suggests picking B between . 7  and .9. 

The coefficients b(t) are updated from one time origin to 

the other by 

where 



and 

3. Equ iva lence theorem f o r  f o r e c a s t s  de r i ved  from e x p o n e n t i a l  

smoothing f o r e c a s t  p rocedures  and f o r e c a s t s  from ARIMA 

models. 

Summarv of t h e  ea.u iva lence theorem: 

I n  t h e  appendix w e  prove t h e  f o l l ow ing  theorem. 

Brown's exponen t i a l  smoothing f o r e c a s t  p rocedures  w i t h  

s p e c i f i e d  f i t t i n g  f u n c t i o n s  f  ( 2 )  and smoothing parameter  B - 
w i l l  p rov ide  minimum mean squa re  e r r o r  f o r e c a s t s  i f  and 

o n l y  i f  t h e  under l y ing  s t o c h a s t i c  p rocess  f o l l ows  t h e  

ARIbIA model 

The r o o t s  of v ( B )  = 0 l i e  on t h e  u n i t  c i r c l e  and t h e  

e v e n t u a l  f o r e c a s t  f u n c t i o n  of (3 .1 )  i s  given by t h e  f o r e -  

c a s t  f u n c t i o n  of Brown's model. 

Some examples: 

Cons tan t  model 

f  ( R )  = 1 U R and smoothing parameter  B 

The e q u i v a l e n t  ARIMA model i s  g iven  by 



2. Linear model 

f(L) = iL/ and smoothing parameter B ." 

The equivalent ARIMA model is given by 

3. 12-point sinusoidal model 

r 7 

and smoothing parameter B .  

The equivalent ARIMA model is given by 

Interpretation and shortcomings of Brown's exponential 

smoothins method: 

In the light of the above theorem the shortcomings of 

Brown's forecasting procedure are threefold. 

i) The class of fitting functions decides the form of the 
left hand side of the difference equation model (3.1) 
(autoregressive operator). In Brown's method the 
fitting functions are chosen by visual inspection of 
the time series itself. As is shown in Box and 
Jenkins [2] visual inspection of the time series alone 
can be quite misleading and more reliable identification 
tools such as sample autocorrelation and sample partial 
autocorrelation function have to be considered. 



ii) The exponentially discounted least squares pro- 
cedure then forces the right hand side of the 
difference equation (moving average operator) to be 
of the form '(BB). It is thus automatically 
determined by the autoregressive part on the left 
hand side of model (3.1) and is a function of the 
smoothing constant only. 

iii) The smoothing constant B is assumed to be known. 
Brown states that the smoothing constant should be 
picked between .7  and .9. Actual study of tine 
series, however, gives no empirical support to this 
assertion and no theoretical reasons seem to be 

available for discussion. The supposition that B 
ought to be picked in this range appears strange. 

The n-weights inplied by Brown's model 

The n-weights for the ARIMA model (3.1 ) are given by 

2 n 
nj = Bvlnj-,+B V'~IT~-~+...+B ' n n j-n 

It is instructive to look at the T-weights since they show how 

past observations are discounted to derive one step ahead 

minimum mean square error forecasts 

One must ask the question: "Is there any reason to believe 

that the world behaves according to this class of weight func- 

tions given in (3.2) ? "  Pandit [8] has tried to find some 

theoretical reasons why business, economic, and quality control 

systems can be predicted by exponential smoothing methods, 

giving it a "spring-dashpoint" interpretation. The analogy 



seems s t r a n g e  and i s  c o n t r a d i c t e d  by many t i m e  series, which 

have been model led by t h e  t h r e e  s t a g e  i t e r a t i v e  Box-Jenkins 

method . 

The d a t a  themse lves  shou ld  de te rm ine  t h e  form o f  t h e  

model and t h e . v a l u e  of i t s  paramete rs .  The n-weights shou ld  

depend on t h e  unde r l y i ng  p r o c e s s  which has  t o  be  i d e n t i f i e d  

p rope r l y .  

Computat ion o f  t h e  f o r e c a s t s  

Brown's f o r e c a s t i n g  p rocedures  a r e  c la imed t o  be  computa- 

t i o n a l l y  e f f i c i e n t .  I t  i s  e a s i l y  seen ,  however, t h a t  t h e  f o re -  

casts can  be d e r i v e d  more r e a d i l y  d i r e c t l y  from t h e  d i f f e r e n c e  

e q u a t i o n  o f  t h e  e q u i v a l e n t  ARIMA model (3.1). Thus, even i f  

one  b e l i e v e d  i n  t h e  adequacy o f  Brown's imp l ied  model,  one 

shou ld  n o t  use  h i s  method t o  c a l c u l a t e  and upda te  t h e  f o r e -  

casts. 

These p o i n t s  are b e s t  b rought  o u t  by c o n s i d e r a t i o n  of  

s p e c i f i c  examples. 

4 .  I l l u s t r a t i v e  examnles 

Example 1 :  Dai l y  I B M  common s t o c k  c l o s i n g  p r i c e s .  The d a t a  

is  g i ven  i n  Box and J e n k i n s  [2]. A f t e r  i n s p e c t i o n  of  t h e  

series, Brown [3] argued t h a t  s h o r t  p i e c e s  of t h e  d a t a  cou ld  

be  r e p r e s e n t e d  by q u a d r a t i c  cu r ves  and t h a t  one,  t h e r e f o r e ,  

ough t  t o  c o n s i d e r  q u a d r a t i c  f i t t i n g  f u n c t i o n s  g i ven  by 

H e  upda tes  t h e  c o e f f i c i e n t s  o f  t h e  f o r e c a s t  f u n c t i o n  by d i s -  

counted l e a s t  s q u a r e s  and chooses a smoothing c o n s t a n t  of 

B = . 9 .  

The f o r e c a s t s  f o r  t h i s  form of Brown's model are shown 



f o r  s e v e r a l  t i m e  o r i g i n s  and f o r  l e a d  t i m e s  R = 1 , 2 , 3  i n  t h e  

f i r s t  column o f  T a b l e  1 .  

I f  Brown's model  w e r e  t o  b e  used t h e n  it would b e  much 

m o r e  c o n v e n i e n t  t o  u s e  t h e  t h e o r y  deve loped  i n  t h i s  p a p e r  and 

t o  c a l c u l a t e  t h e  f o r e c a s t s  d i r e c t l y  f rom t h e  e q u i v a l e n t  d i f -  

f e r e n c e  e q u a t i o n  g i v e n  below 

The f o r e c a s t s  are g i v e n  i n  t h e  second column o f  T a b l e  1 .  

I n  f a c t ,  however,  as was shown o r i g i n a l l y  by Box and 

J e n k i n s  [ 2 ] ,  Brown's model seems t o  b e  t o t a l l y  i n a d e q u a t e .  T h i s  

is  s e e n  f o r  example by t h e  much l a r g e r  mean s q u a r e  e r r o r  o f  

t h e  one ,  two, and  t h r e e  s t e p s  ahead f o r e c a s t s  g i v e n  i n  T a b l e  1 .  

I d e n t i f i c a t i o n  u s i n g  Box-Jenkins methods l e a d s  t o  c o n s i d e r  a n  

ARIMA (0 , l  , I )  model w i t h  t h e  moving a v e r a g e  p a r a m e t e r  e s t i m a t e d  

close t o  z e r o  

I t  was n o t e d  t h a t  t h e  model i n  ( 4 . 3 )  i s  v e r y  n e a r l y  a random 

walk a s  o r i g i n a l l y  s u g g e s t e d  by B a c h e l i e r  [ I ] .  T h i s  model 

i m p l i e s  t h a t  t h e  b e s t  f o r e c a s t s  o f  f u t u r e  o b s e r v a t i o n s  are 

v e r y  n e a r l y  t h e  c u r r e n t  v a l u e  o f  t h e  s t o c k  p r i c e .  T h i s  is 

v e r y  d i f f e r e n t  f rom Brown's  model which i m p l i e s  t h a t  in fo rma-  

t i o n  a b o u t  t h e  n e x t  v a l u e  i s  n o t  o n l y  c o n t a i n e d  i n  t h e  c u r r e n t  

o b s e r v a t i o n  b u t  a l s o  i n  t h e  o b s e r v a t i o n s  b e f o r e .  

The IT-weights f o r  t h e  models  ( 4 . 2 )  and  ( 4 . 3 )  are shown 

i n  t h e  d iag ram i n  T a b l e  2. 

The a u t o c o r r e l a t i o n  o f  t h e  one  s t e p  ahead f o r e c a s t  errors 

f o r  mode ls  ( 4 . 2 )  and  ( 4 . 3 )  a r e  g i v e n  i n  T a b l e  1 .  I t  c a n  b e  

s e e n  t h a t  t h e r e  i s  s i g n i f i c a n t  a u t o c o r r e l a t i o n  among t h e  one  

s t e p  ahead f o r e c a s t  errors f o r  t h e  d i f f e r e n c e  e q u a t i o n  model  



(4 .2 )  which i s  imp l ied  by Brown's f o r e c a s t i n g  p rocedure  i n  ( 4 . 1 ) .  

For  t h e  model (4 .3)  t h e  a u t o c o r r e l a t i o n s  a r e  e s s e n t i a l l y  ze ro .  

C a l c u l a t i n a  t h e  f o r e c a s t s  

I t  i s  worth emphasiz ing a g a i n  t h a t  i f  f o r e c a s t s  were t o  

be  d e r i v e d  from Brown's model, one should n o t  u s e  Brown's 

method of  c a l c u l a t i n g  and upda t ing ,  which i s  ext remely  l a b o r i o u s .  

I t  i s  much e a s i e r  t o  c a l c u l a t e  t h e  f o r e c a s t s  d i r e c t l y  from t h e  

e q u i v a l e n t  d i f f e r e n c e  equa t i on .  T h i s  w i l l  g i v e  t h e  same r e s u l t ,  

excep t  f o r  round ing e r r o r s ,  a s  it i s  shown i n  Tab le  1 .  

The same p o i n t  can be made i n  terms of  a  f u r t h e r  example. 

Example 2: Warmdot f i l t e r  s a l e s .  Th i s  series is  g iven  i n  

Brown [ 3 ] .  

Brown chooses t h e  s imple  12-point  s i n u s o i d a l  model 

and upda tes  t h e  c o e f f i c i e n t s  of  t h e  f o r e c a s t  f u n c t i o n  by d i s -  

counted l e a s t  squa res  w i t h  smoothing c o n s t a n t  B = . 9 .  The 

f o r e c a s t s  f o r  t h i s  form o f  Brown's model a r e  shown i n  t h e  f i r s t  

column of  Tab le  3 .  

There i s  no p o i n t  i n  go ing  through t h e  Box-Jenkins t h r e e  

s t a g e  i t e r a t i v e  method f o r  t h i s  s e r i e s  because t h i s  appea rs  

t o  be an a r t i f i c i a l  series which h a s  been manufactured from 

t h e  model ( 4 . 4 ) .  

However i f  a t  t h e  moment w e  suppose t h a t  f o r e c a s t s  of 

t h i s  t ype  a r e  needed, t h e  t heo ry  o f  t h i s  paper  s u p p l i e s  a 

much s imp le r  method of o b t a i n i n g  t h e  f o r e c a s t s .  The s t o c h a s t i c  

d i f f e r e n c e  equa t i on  which would p rov ide  minimum mean squa re  

e r r o r  f o r e c a s t s  f o r  t h e  procedure  ( 4 . 4 )  i s  g iven  by 



T a b l e  3 shows t h a t  e x c e p t  f o r  round ing  e r r o r s  t h e  f o r e c a s t s  

u s i n g  t h e  s t o c h a s t i c  d i f f e r e n c e  e q u a t i o n  c o i n c i d e  w i t h  t h e  

f o r e c a s t s  d e r i v e d  by Brown. 



Brown's model Difference equation ~ i f f e r e n c e  equation 

G(t , 9=b0(t)+bl ( t )  R+b(t)~'  
form equivalent t o  form of the  ARIhl4 (O,1,1) 
Brohn ' s mode 1 suggested by Box- Jenkins 

f3= *9  (4 .1)  ( 4 . 2 1  (4.3) 
.- 

time lead 
or ig in  time F .O . R E C A S T S 

300 1 382.59 382.50 376.63 
2 385.56 385.56 376.63 
3 388.66 388.66 376.63 

310 1 385.93 385.92 375.96 
2 387.49 387.48 375.96 
3 389.09 389.09 375.96 

320 1 409.33 409.32 408.82 
2 411.98 411.98 408.82 
3 414.71 414.70 408.82 

, 330 1 387.31 387.31 384.22 
2 386.72 386.71 384.22 
3 386.07 386.07 384.22 

340 1 375.63 375.62 362.92 
2 374.16 374.15 362.92 
3 372.63 372.62 362.92 

350 1 346.60 346.60 359.99 
2 344.15 344.14 359.99 
3 341.63 341.62 . 359.99 

360 1 348.21 348.21 342.62 
2 347.06 347.05 342.62 
3 345.89 345.89 342.62 

369 1 345.88 345.88 357.38 
2 345.65 345.65 357.38 
3 345.45 345.44 357.38 

lead time Observed mean square er ro r  of torecasts obtained a t  various lead times R 

1 186.81 92.00 
2 279.78 188.00 
3 378.17 291.34 

Correlation among rl = .71 rl = . O O  
the one s tep  ahead r2 = .44 r2 = '00 forecast e r ro rs  

T a b l e  1: F o r e c a s t s ,  obse rved  mean s q u a r e  e r r o r  of t h e  f o r e c a s t s  and au to -  
c o r r e l a t i o n  among one s t e p  ahead f o r e c a s t  e r r o r s  f o r  Brown's model 
( 4 . 1 ) ,  u s i n g  b o t h  Brown's method of c a l c u l a t i n g  t h e  f o r e c a s t s  and 
t h e  e q u i v a l e n t  d i f f e r e n c e  e q u a t i o n  form ( 4 . 2 ) ,  and f o r  model ( 4 . 3 )  
sugges ted  by Box-Jenkins p r o c e d u r e s .  



n-weights implied by Brawn's model n-weights of the fitted ARIMA 
(O,1,1) model (4.3) suggested 
by Box and Jenkins 

Table 2: The n-weights implied by Brown's model (4.2) and for the fitted ARIPIA 
(O,1,1) model (4.3) suggested by Box and Jenkins. 



Forecasts for the model ( 4 . 4 )  Forecasts for the model ( 4 . 4 )  
t ime lead using Brown's method of fore- using the equivalent difference 

origin time casting with smoothing equation ( 4 . 5 )  for the cal- 
constant B = .9 culation of the forecasts 

Table 3: Forecasts for the Warmdot filter sales using Brown's model ( 4 . 4 ) :  
Comparison of Brown's method of calculating the forecasts and the 
forecasts derived from the equivalent difference equation ( 4 . 5 ) .  



APPENDIX 

Proof o f  equ iva lence  theorems f o r  f o r e c a s t s  d e r i v e d  from ex- 

p o n e n t i a l  smoothing f o r e c a s t  p rocedures  and f o r e c a s t s  from 

ARI l lA models. 

Theorem 1. 

Model A: Cons ider  t h e  Brown model w i t h  f i t t i n g  f u n c t i o n s  

-2 
f '  .., ( R )  = [ u l  , . . . , u R  n w i t h  luil - > 1 ;  ui # u j  f o r  i # j ;  

and 1 u . u . l  < 1/B f o r  l < i ,  j l n .  
1 3  - 

The c o e f f i c i e n t s  o f  t h e  f o r e c a s t  f u n c t i o n  

a r e  es t ima ted  by d iscoun ted  l e a s t  squa res  w i t h  smoothing 

c o n s t a n t  R ;  0 < B < 1 .  

Model B: ARIbIA model 

(A. 2) 

Then, Brown's f o r e c a s t i n g  procedure  u s i n g  t h e  f o r e c a s t  f u n c t i o n  

(A. l )  i n  model A w i l l  prov ide  op t ima l  f o r e c a s t s  i n  terms o f  

min imiz ing t h e  mean squa re  f o r e c a s t  e r r o r  i f  and on l y  i f  t h e  

under l y ing  s t o c h a s t i c  p rocess  f o l l ows  t h e  ARIMA model i n  (A.2) .  

Proof .  I n  t h e  proof of  theorem 1 w e  use  t h e  fo l l ow ing  r e s u l t  

abou t  t h e  i n v e r s e  of a Vandermonde mat r i x :  



where a i  # a j  ( f o r  i #  j ) .  

I t  is e a s i l y  shown t h a t  t h e  i n v e r s e  of  A i s  g i v e n  by 

where a i j  a r e  t h e  c o e f f i c i e n t s  i n  t h e  expans ion 

Theorem 1  is proved by showing t h a t  model A and model B have 

i) t h e  same form of t h e  f o r e c a s t  f u n c t i o n  

ii) t h e  same updating f o r  t h e  c o e f f i c i e n t s  of 

t h e  f o r e c a s t  f u n c t i o n .  

ad ( i ) .  The e v e n t u a l  f o r e c a s t  f u n c t i o n  f o r  model B i s  t h e  

s o l u t i o n  of 

n (1 - +B) st ( t )  = 0 f o r  R > n  
i = l  i 

and is  g iven  by 

- R  ,t (" = bf (t) u i R  + b3 (t) u i R + .  . . + b i  ( t )  un f o r  R >  0 



which coincides with the forecast function of model A given in 

(A.1). 

ad (ii). The updating algorithm for the coefficients of the 

forecast function bl(t)f(R) for model A is given by - - 

Dobbie [5] showed that for the case of exponential fitting 

functions h - = (hlrh2,.-.,hn)' is given by 

The updating algorithm for the coefficients of the eventual 

forecast function of the ARIFlA model in (A.2) is given by: 

b*(t) - = L'b* - (t-1) + (1) ] . - 

Choosing R = 1 in (1.9), it is seen that 

where 1 a = -  
i u l < i < n  - - 

i 

and qk(1 - < k - < n) are the $-weights in 



In order to prove theorem 1 we have to show that 

g = h or equivalently that 
.-- .-- 

- 1  

- where d = [dl ,. .. ,dnl ': di - ail$l + ai2$2 + ain$n and a 
.-- ij 

are the elements of the inverse of matrix A. di is the 

1 1 coefficient of xo in -P. (-) $ (x), where Pi (x) is given in (A. 3) . 
X 1 X  

Using (A.3) and (A.9) 

1 1 1 k= 1 -P. (-) $ (x) = 
ak 

X ~ X  xn(1-six) n (ai-ak) 
k#i 

It therefore remains to show that the coefficient of xo in 

n B rI (1 --XI 
k=l vi(x) f 

ak equals aihi II (ai - ak) 
xn( 1 - aix) k+i 

(A. 10) 



However, 

where the c 's are the coefficients in the expansion of 
j 

1 B n. (X  - -) given by 
a k= 1 k 

(A. 13) 

C3 = - B  3 1 1 a a a  
k < R < m  k R m 

Furthermore 

(A. 14) 

where the coefficients e i  (1 j 1 ) are given by 
3 



(A. 1 5 )  

T h e r e f o r e ,  t h e  r i g h t  hand s i de  of ( A . l l )  is given by 

(A. 1 6 )  

Since  t he  re la t ion  b e t w e e n  t h e  coeff ic ients i n  ( A . 1 3 )  and 

(A. 1 5 )  is 

C - - a n-1 ( i )  
n- 1  i n-1  n - 2  

(A. 1 7 )  



the coefficient of xo in Vi (x) is given by 

This equals (A.16), thus proving the claim that g = h. 
-" -" 

Furthermore it is easily seen that Brown's forecast 

procedure with forecast function b (t) 'd (2) , where d (R) is any - - - 
non singular linear combination of the exponential fitting 

functions f (R) of theorem 1 ,  
-3 

will provide minimum mean square error forecasts if and only 

if the underlying process follows the ARIMA model B. 

Sinusoidal fitting functions which are frequently con- 

sidered by Brown can be written as linear combinations of such 

exponential functions. 

For example the fitting functions d(R) = 

in b(t,R) = bl (t) + b2(t) sinwe + bj(t) coswR can be written as 

where 

(A. 1 9 )  

Equation (A.19) shows that the roots of the characteristic 

equation for the ARIMA model which is implied by the sinusoidal 



fitting functions of Brown's forecasting scheme are lying on the 

unit circle. 

In the following corollary we use the fact that if the 

characteristic equation of the ARIMA model has a complex root, 

the conjugate complex will be a solution, too. 

Corollary 1: 

Model B: We consider the ARIMA model 

where the coefficients of (P(B) are real. 

Furthermore it is assumed that the roots of v(B) = 0 are 

distinct and lie on the unit circle, and that the eventual 

forecast function is given by 

Model A :  Consider the Brown forecasting procedure with fitting 

functions 

The coefficients of the forecast function 

are fitted by discounted least squares with smoothing co- 

efficient B,  0 < B < 1.  Then the Brown forecasting procedure 

with fitting functions as specified in model A will provide 

minimum mean square error forecasts if and only if the under- 

lying stochastic process is given by the ARIMA model B. 



In the following theorem we relax the assumption-of 

distinct roots of P(B) = 0. 

Theorem 2: 

Model B: v(B) zt = v(BB) at as specified in corollary 1 ,  how- 

ever we allow the possibility of multiple roots of v(B) = 0 

on the unit circle. 

Model A: Brown model as specified in corollary 1. 

Then model A and model B are equivalent in terms of having 

(i) the same form of forecast function 

(ii) the same recursive updating formula for the co- 

efficients of the forecast function b'(t). - 

Proof: The only part which remains to show is (ii). 

We can write 

S 

v(B) = ll vi(B) where pi(B) 1 - < i - < s 
i=l 

are real valued polynomials in B with distinct roots on the 

unit circle; 

Model B can be written as 

(s) = 
vs (B) 

We define at z and through continued application 
vs(BB) t 

of corollary 1 the claim is proved. 
q.e.d. 
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