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Conditions for the Optimality

of Exponential Smoothing Forecast Procedures

Johannes Ledolter and George E.P. Box

Abstract

Exponential smoothing procedures, in particular those
recommended by Brown [3] are used extensively in many areas
of economics, business and engineering. It is shown in
this paper that:

i) Brown's forecasting procedures are optimal in terms
of achieving minimum mean square error forecasts
only if the underlying stochastic process is in-
cluded in a limited subclass of ARIMA (p,d,q)
processes. Hence, it is shown what assumptions are
made when using these procedures.

ii) The implication of point (i) is that the users of
Brown's procedures tacitly assume that the stochastic
processes which occur in the real world are from
the particular restricted subclass of ARIMA (p,d,q)
processes. No reason can be found why these partic-
ular models should occur more frequently than others.

iii) It is further shown that even if a stochastic
process which would lead to Brown's model occurred,
the actual methods used for making the forecasts
are clumsy and much simpler procedures can be
employed.

1. The class of autoregressive integrated moving average pro-

cesses and their minimum mean square error forecasts

An approach to the modelling and forecasting of stationary
and nonstationary processes, such as commonly occur in business,
economics and engineering, is discussed by Box and Jenkins [2].
Utilizing earlier work by Kolmogorov [7,8], Wold [12], Yaglom
[13], Yule [14], it uses a three stage iterative model building
procedure of identification, estimation and diagnostic checking.

The class of autoregressive integrated moving average
(ARIMA) models of order (p,d,q) which is discuss=d in [2] can
be written



d, .
0, (B) (1-B) %z, = 6_(B)a, (1.1)

‘pp+d (B) Zt
where

i) Ze is a discrete stochastic process
.. P
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(B) = ¢p(B)(1—B)d = 1-¢B-...-0
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and B is the backshift operator: B z, =2

iii) {at} is a white noise sequence

o k=0

The roots of ¢p(B) = 0 and eq(B) = 0 are assumed to lie

outside the unit circle.

ARIMA (p,d,q) processes provide a class of models capable
of representing time series which, although not necessarily

stationary, are homogeneous and in statistical equilibrium.

The stochastic process in (1.1) can equivalently be written

in terms of current and previous shocks a,

z, =a, + ) Vy.a,_ _. (1.2)

where
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J
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P(B) =1+ )
iz
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or in terms of a weighted sum of previous values of the
stochastic process and the current shock ay -

z, = ) T.z, . + a (1.3)
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Forecasts of ARIMA (p,d,q) processes:

Minimum mean square error forecasts for linear stochastic
processes are given by the conditional exvectation of future
observations
.} (1.4)

2, (%) = B{

t [2¢4p] ZepglZerZe_qr--
Forecasts are calculated using the difference equation form of

the model

2e(0) = Mzg ) = Alzp g g1t 9 P (pray ]
*olag,l - 61[at+£-1]—"'_6q[at+2—q]
(1.5)
where
zt+j for j<o
[zt+j] 1.

th(j) for >0

]=‘at+j for <O

0] for j>0
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Forecasts can equivalently be expressed as a linear function of

previous observations

J

[2e4p) = j§1ﬂj [2e4p-51 + T3] - (1.6)
In particular, for f = 1

2, (1) = T.2 .

t .21 Jt+1-3]



Forecasts can be updated from one time origin to the other by

2t+1(2) = ﬁt(2+1) + wlat+1 . (1.7)

Although forecasts are calculated and updated most conveniently
from the difference equation form (1.5), from the point of
studying the nature of the forecasts it is profitable to con-
sider the explicit form of the forecast function. The eventual
forecast function is the solution of the difference equation

ﬁt(l) - ¢12t(2_1)-"'-q%+d2t(2_p-d) =0 for 2 > g

and is given by

ﬁt(l) = bT(t)f#(2)+...+b§+d(t)f* (2) for 2>g-p-d

p+d
(1.8)
f?(z),...,f;+d(2) are functions of the lead time £ and depend
only on the autoregressive part of the model ¢§+d(B)' In gen-

eral, these functions can be polynomials, exponentials, sines,
cosines or combinations of these functions.

For a given forecast origin t, the coefficients
b*(t) = [bT(t)"“’b;+d(t)]' are constants and are the same

for all lead times %; however they change from one forecast
origin to the next and as shown by Box and Jenkins [2] they

can be updated by

b*(t) = L' b*(t=1) + glz, -2, (1] (1.9)

where
¥ ! L
Fo Fos
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for any 2>g-p-d .
2. Exponential smoothing forecast procedures

Exponential smoothing techniques have received broad
attention in the existing literature, especially in the area
of management science. These procedures are fully automatic
which means that once a computer program has been written,
forecasts for any time series can be derived without manual
intervention. The fact that they are automatic has been put
forward as an advantage of the scheme. However it can equally
well be argued that this is a great disadvantage since it
discourages the use of the human mind in circumstances where

this instrument could be used with profit.

The basic exponential smoothing equation replaces an
observed series ze by a smoothed series z,, an exponentially
weighted average of current and past values of z.

- 3
Z, = 0O (1=-a)?z, . . (2.1)
L 3

The latest available smoothed value is used to forecast all

future observations

2. (2) = Et . (2.2)




This basic exponential smoothing procedure by Holt (6],
Winters [11], Brown [3] was, and still is, used frequently to
derive forecasts of economic and business data. Muth [9] in-
vestigated the conditions under which this procedure provides
minimum mean square error forecasts. He showed that the

underlying process has to be given by the ARIMA (0,1,1) process

(1--B)zt = (1—(1—0L)B)at . ' (2.3)

Generalizations of exponential smoothing procedures have been
considered by Brown [3], Brown and Meyer [4]. They select
fitting functions £(2) = [f1(2),...,fm(2)]' from the class of

functions

f£(4+1) = LE(R) . (2.4)

L is a (mxm) non singular transition matrix and £(0) is
specified. The coefficients b(t) = [b1(t),...,bm(t)]' of

the forecast function
ﬁt(ﬁ) = p(t,) = b' (t)£(2) (2.5)
are fitted by discounted least squares minimizing

I 8z, -pet,-3)1°
30

The fitting functions are chosen by visual inspection and the

smoothing constant B (0<B<1) is assumed to be known. Brown

suggests picking B between .7 and .9.

The coefficients b(t) are updated from one time origin to
the other by

b(t) = L'b(t=1) + hiz =~ p(t=-1,1)] (2.6)

where



h = F £(0)
and
F= ) BIEC-E'(-3) .
j>0 " )
3. Equivalence theorem for forecasts derived from exponential

smoothing forecast procedures and forecasts from ARIMA

models.

Summary of the equivalence theorem:

In the appendix we prove the following theorem.

Brown's exponential smoothing forecast procedures with
specified fitting functions f(%) and smoothing parameter B
will provide minimum mean square error forecasts if and
only if the underlying stochastic process follows the
ARIMA model

(P(B)Zt = ﬁ"(BB)at . (3.1)
The roots of ¢(B) = 0 lie on the unit circle and the
eventual forecast function of (3.1) is given by the fore-

cast function of Brown's model.

Some examples:

1. Constant model

f(2) =1 ¥ 2 and smoothing parameter B
B(t,2) = by(t)

The equivalent ARIMA model is given by

(1"B)zt = (1—BB)at .




2. Linear model

1
f(L) = { } and smoothing parameter B
- 2

p(t,2) = b1(t) + b2(t)2 .
The equivalent ARIMA model is given by

2. a2
(1-B)“z, = (1-BB)“a_ .

3. 12-point sinusoidal model

1

sin %%Qﬁ' and smoothing parameter B.

I

£(2) =

27
_Cos sz

The eguivalent ARIMA model is given by

(1-B) (1-v3 B + B%) z, = (1-8B) (1-/3 gB + 8°82) a, -

Interpretation and shortcomings of Brown's exponential

smoothing method:

In the light of the above theorem the shortcomings of

Brown's forecasting procedure are threefold.

i) The class of fitting functions decides the form of the
left hand side of the difference eqguation model (3.1)
(autoregressive operator). In Brown's method the
fitting functions are chosen by visual inspection of
the time series itself. As is shown in Box and
Jenkins [2] visual inspection of the time series alone
can be quite misleading and more reliable identification
tools such as sample autocorrelation and sample partial
autocorrelation function have to be considered.



ii) The exponentially discounted least squares pro-
cedure then forces the right hand side of the
difference equation (moving average operator) to be
of the form ¢(BB). It is thus automatically
determined by the autoregressive part on the left
hand side of model (3.1) and is a function of the
smoothing constant only.

iii) The smoothing constant B is assumed to be known.
Brown states that the smoothing constant should be
picked between .7 and .9. Actual study of time
series, however, gives no empirical support to this
assertion and no theoretical reasons seem to be
available for discussion. The supposition that B
ought to be picked in this range appears strange.

The m-weights implied by Brown's model

The m-weights for the ARIMA model (3.1) are given by

= (1-B)s01
M., = B, T. +82¢ m + +Bj_1¢ m +(1—Bj)¢. 2<j<n
j 17 3-1 2 j=2"°""" j=1"1 j — =
mT, = Be, T +82¢ il + +Bn¢ v j>n+1
j 1 3-1 2°j-2 """ n j-n -
(3.2)

It is instructive to look at the 7m-weights since they show how
past observations are discounted to derive one step ahead

minimum mean square error forecasts

z, (1) = § m.z .
t 331 JTE+1-3
One must ask the question: "Is there any reason to believe

that the world behaves according to this class of weight func-
tions given in (3.2)?" Pandit [8] has tried to find some
theoretical reasons why business, economic, and gquality control
systems can be predicted by exponential smoothing methods,

giving it a "spring-dashpoint" interpretation. The analogy
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seems strange and is contradicted by many time series, which
have been modelled by the three stage iterative Box-Jenkins
method.

The data themselves should determine the form of the
model and the value of its parameters. The m-weights should
depend on the underlying process which has to be identified

properly.

Computation of the forecasts

Brown's forecasting procedures are claimed to be computa-
tionally efficient. It is easily seen, however, that the fore-
casts can be derived more readily directly from the difference
equation of the equivalent ARIMA model (3.1). Thus, even if
one believed in the adequacy of Brown's implied model, one
should not use his method to calculate and update the fore-

casts.

These points are best brought out by consideration of

specific examples.

4. 1Illustrative examples

Example 1: Daily IBM common stock closing prices. The data
is given in Box and Jenkins [2]. After inspection of the
series, Brown {3] argued that short pieces of the data could
be represented by quadratic curves and that one, therefore,

ought to consider quadratic fitting functions given by
B(t,8) = by (t)+b, (£) L+b, (£)2° . (3.1)

He updates the coefficients of the forecast function by dis-
counted least squares and chooses a smoothing constant of
B = .9.

The forecasts for this form of Brown's model are shown
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for several time origins and for lead times ¢ = 1,2,3 in the

first column of Table 1.

If Brown's model were to be used then it would be much
more convenient to use the theory developed in this paper and
to calculate the forecasts directly from the equivalent dif-

ference equation given below
3 _ 3
(1-B)7z, = (1-.9B)7a, . (4.2)

The forecasts are given in the second column of Table 1.

In fact, however, as was shown originally by Box and
Jenkins [2], Brown's model seems to be totally inadequate. This
is seen for example by the much larger mean square error of
the one, two, and three steps ahead forecasts given in Table 1.
Identification using Box-Jenkins methods leads to consider an
ARIMA (0,1,1) model with the moving average parameter estimated

close to zero
(1—-B)zt = (1+.087B)at . (4.3)

It was noted that the model in (4.3) is very nearly a random
walk as originally suggested by Bachelier [1]. This model
implies that the best forecasts of future observations are
very nearly the current value of the stock price. This is
very different from Brown's model which implies that informa-
tion about the next value is not only contained in the current

observation but also in the observations before.

The m-weights for the models (4.2) and (4.3) are shown

in the diagram in Table 2.

The autocorrelation of the one step ahead forecast errors
for models (4.2) and (4.3) are given in Table 1. It can be
seen that there is significant autocorrelation among the one

step ahead forecast errors for the difference equation model
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(4.2) which is implied by Brown's forecasting procedure in (4.1).

For the model (4.3) the autocorrelations are essentially zero.

Calculating the forecasts

It is worth emphasizing again that if forecasts were to
be derived from Brown's model, one should not use Brown's
method of calculating and updating, which is extremely laborious.
It is much easier to calculate the forecasts directly from the
equivalent difference equation. This will give the same result,

except for rounding errors, as it is shown in Table 1.

The same point can be made in terms of a further example.
Example 2: Warmdot filter sales. This series is given in

Brown [3].
Brown chooses the simple 12-point sinusoidal model

A _ L 2T 2m
p(t,L) = bo(t)+b1(t)51nT§2A-b2(t)cosT§2 (4.4)

and updates the coefficients of the forecast function by dis-
counted least squares with smoothing constant B = .9. The
forecasts for this form of Brown's model are shown in the first

column of Table 3.

There is no point in going through the Box-Jenkins three
stage iterative method for this series because this appears
to be an artificial series which has been manufactured from
the model (4.4).

However if at the moment we suppose that forecasts of
this type are needed, the theory of this paper supplies a
much simpler method of obtaining the forecasts. The stochastic
difference equation which would provide minimum mean square

error forecasts for the procedure (4.4) is given by

(1—B)(1—/§B+B2)zt = (1- .9B)(1-/§(.9)B+(.9)2B2)at .

(4.5)
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Table 3 shows that except for rounding errors the forecasts
using the stochastic difference equation coincide with the

forecasts derived by Brown.
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Difference equation
form equivalent to

Brown's model

~

Difference equation
form of the ARIMA (0,1,1)

= 2
(E’ %—bo(t)+b1 (£)e+b(t)e Brown's model suggested by Box-Jenkins
B= 2 .1 (4.2) (4.3)
time Tead - -
origin  time F 0 .R E C A S T S
300 1 382.59 382.50 376.63
2 385.56 385.56 376.63
3 388.66 388.66 376.63
310 1 385.93 385.92 375.96
2 387.49 387.48 375.96
3 389.09 389.09 375.96
320 1 409,33 £ 409.32 408.82
2 411,98 411,98 408.82
3 414,71 414.70 408,82
330 1 387.31 387.31 384,22
2 386.72 386.71 384,22
3 386.07 386.07 384,22
340 1 375.63 375.62 362.92
2 374,16 374.15 362,92
3 372.63 372.62 362,92
350 1 346.60 346.60 359.99
2 344,15 344.14 359.99
3 341.63 341.62 359.99
360 1 348.21 348.21 342.62
2 347.06 347.05 342.62
3 345.89 345.89 342,62
369 1 345.88 345.88 357.38
2 345.65 345.65 357.38
3 345,45 345,44 357.38 :
lead time Observed mean square error of forecasts obtained at various lead times %
1 186.81 92.00
2 279.78 188.00
3 378,17 291.34
Correlation among T = .71 L= .00
the one step ahead r. o= 44 r o= .00
forecast errors 2 2

Table 1:

Forecasts, observed mean square error of the forecasts and auto-
correlation among one step ahead forecast errors for Brown's model
(4.1), using both Brown's method of calculating the forecasts and
the equivalent difference equation form (4.2), and for model (4.3)
suggested by Box-Jenkins procedures.
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n-weights implied by Brown's model : T-weights of the fitted ARIMA
(0,1,1) model (4.3) suggested
3 . R T by Box and Jenkins
) 1TJ - ! 1TJ ]
1 .300 11 .008 3 s
2 .240 12 .000 1 1.087
3 - .190 13 -.001 2 - .094
4 - 146 14 -.001 3 .008
5 .114 15 -.012 4 - 001
6 .086 16 -.015 j>5 .000
7 .063 17 -.016 - :
8 044 18 -.016
9 030 19 -.017
10 018 20 - =.016
10+ 1.0 +
1]
l ' ' | I I | J I {1 — . J T
5 10 15 |

Table 2: The m-weights implied by Brown's model (4.2) and for the fitted ARIMA
(0,1,1) model (4.3) suggested by Box and Jenkins.
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Forecasts for the model (4.4) Forecasts for the model (4.4)
time lead using Brown's method of fore- using the equivalent difference
origin time casting with smoothing equation (4.5) for the cal-
constant § = .9 culation of the forecasts
80 1 130.01 130.12
2 151.16 151.27
3 169.64 169.73
90 1 101.48 101
| 2 114,61 124,67
3 135.23 135.28
100 1 105.71 10
2 98.66 0868
3 102.36 102,37
110 1 132.17 132.17
: 2 102.98 .
102,98
3 81.52  81.52
120 1 163.80 163,80
3 133.03 ’
. 133,03
Table 3: Forecasts for the Warmdot filter sales using Brown's model (4.4):

Comparison of Brown's method of calculating the forecasts and the
forecasts derived from the equivalent difference equation (4.5).
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APPENDIX

Proof of equivalence theorems for forecasts derived from ex-
ponential smoothing forecast procedures and forecasts from
ARIMA models.

Theorem 1.

Model A: Consider the Brown model with fitting functions

£ L

£'(0) = [uy" ... u 7] with |u,| > 1; u; #uy for i#3;

and |uiuj| <1/B for 1<i, j<n.

The coefficients of the forecast function

B(t,) = b1(t)u;“+b2(t)u5“+...+bn(t)u;2 (A.1)

are estimated by discounted least squares with smoothing

constant B; O < B < 1.
Model B: ARIMA model

n 1
N (-5-Blz, =
i=1 i i=1

=3

(1 - uiBB)at . (A.2)

Then, Brown's forecasting procedure using the forecast function
(A.1) in model A will provide optimal forecasts in terms of
minimizing the mean square forecast error if and only if the

underlying stochastic process follows the ARIMA model in (A.2).

Proof. In the proof of theorem 1 we use the following result

about the inverse of a Vandermonde matrix:



It is easily shown that the inverse of A is given by

where a;.
h i3

Pi(x) =

k
k

Theorem 1 is

=5

i) the

ii) the

the

ad (i). The

solution of

and is given

-18-

[ 1 1 1]
ay a, SR
n-1 n-1 n-1

|2y a, . ag i

(217 23 --- Ay
a21 a22 “ee a2n
an1 an2 .« annJ

are the coefficients in the expansion

x—ak 0

a.,-a = ai1
1 71 "k

i

1
X+ a. X + ..
i2

n-1
.t a. x
qin

where a; # aj (for i# 3j).

(1<i<n)

(A.3)

proved by showing that model A and model B have

same form of the forecast function

same updating formula for the coefficients of

forecast function.

eventual forecast function for model B is the

by

2,(2) = b’;(t)u;2

-2 -2
+ bﬁ(t)u2 +...+b;"1(t)un

for 2> 0

(A.4)
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which coincides with the forecast function of model A given in

(a.1).

ad (ii). The updating algorithm for the coefficients of the
forecast function b'(t)£f (L) for model A is given by

b'(t) = L'b(t-1) + Q[zt-ﬁ(t—1,1)] . (A.5)

Dobbie [5] showed that for the case of exponential fitting

functions h = (h1,h2,...,hn)' is given by

1<i<n (A.6)

2 n
hi = (1- Bui) E
#

The updating algorithm for the coefficients of the eventual

forecast function of the ARIMA model in (A.2) is given by:

% = L'b*(t- -3
? (t) L ? (t-1) + g[zt zt_1(1)] . (A.7)
Choosing & = 1 in (1.9), it is seen that
" a a a -1 [V, ]
1 2 - J 1
2 2 2
*-1 a1 a e a Y
g=F ¥ = ? g 2 (A.8)
n n
La1 a2 .o an _wnJ
where a, = 1 1 <1 <n
i uy — -

and wk(1 < k < n) are the y-weights in
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n n B
i (1—BukB) I (- a—B)
k=1 k=1 k
Y(B) = - 1 = 3 (A.9)
I (1--1B) I (1-a,B)
k=1 uy k=1 k

In order to prove theorem 1 we have to show that

g =h or equivalently that
_ =1 _ _
1 1 . e 1 a1h1
a, a, . e an azh2
d= | . v = -
n-1 n-1 n-1
_a1 a, .o a ] ban n|
= t, =
where g = [d1""’dn] ; di ai1w1 + aizwz + ainwn and aij
are the elements of the inverse of matrix A. di is the
coefficient of x° in P, (1)¥(x), where P;(x) is given in (A.3).

Using (A.3) and (A.9)

o B
i (1—a—X)
SP (D) = n(11 ) k?( ‘; ) (A.10)
X -a.X a. =
Yo YK

It therefore remains to show that the coefficient of xO in
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However,
o B
. (E»— a,’ 2.2
V. (X) = k=1 k- [1+a.x+a’x"+...]
i i i
(1 - aix)
1,n 1,n-1 1
X [(;) +c1(§) +...+cn_1(§)+cn]
(a.12)
where the cj's are the coefficients in the expansion of
g (& - gi) given by
k=1 k
a n 1
C = —B _
1 k£1 %k
c _ B2 1
2 k< akal
P, (A.13)
c. = -4 1
3 k<t<m “k%2%m
: i, n
= - B
~ “n =n a.a a
172" ""n
Furthermore
I (1 - afz ) = 1 + efl)+...+e(fi (A.104)
k#i i%k n

where the coefficients eél)(1 < j £ n-1) are given by
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e g2
i k#i "k
COTN I
2 ai k<s 33
k#i 0#i
J (A.15)
X 3
Sl - y B
3 ai k<2<m 2k3%m
k#i, L#1,m#L
(i) n-1 1 n-1 1
e " = (=1) — B n — .
. n-1 ab~] k#i 2k
i
Therefore, the right hand side of (A.11) is given by
-8 1~ Ey=ato - Bareliell)
a, k#i ik a’
i i
(A.16)

Since the relation between the coefficients in (A.13) and
(A.15) is

( €1 = aie;i) - g?
1
c; = ajest) - gaell) (A.17)
)
Cpoy = a1 egl) - BalTlell)
W - -spy
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the coefficient of xO in Vi(x) is given by

n _ n,.. _B (i), (1), L, (1)
ai+a. c1+...+aicn_1+cn = ai(l —7)[1+-e1 +e2 +...+en_1]. (A.18)

i

This equals (A.16), thus proving the claim that g = Q.

~

g.e.d.

Furthermore it is easily seen that Brown's forecast
procedure with forecast function g(t)'g(z), where g(l) is any
non singular linear combination of the exponential fitting

functions £(2) of theorem 1,
£(2) = RA(R)

will provide minimum mean square error forecasts if and only

if the underlying process follows the ARIMA model B.

Sinusoidal fitting functions which are frequently con-
sidered by Brown can be written as linear combinations of such

exponential functions.

1

For example the fitting functions d(L) = < sinwf
coswf
in p(t,) = b1(t) + bz(t) sinwf + b3(t) cosw? can be written as

£(2) = RA(L)

where
1 1 o) o) 1
e—iwz = 0 -i 1 sinwf (A.19)
eiwz 0 i 1 coswi

Equation (A.19) shows that the roots of the characteristic

equation for the ARIMA model which is implied by the sinusoidal
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fitting functions of Brown's forecasting scheme are lying on the

unit circle.

In the following corollary we use the fact that if the
characteristic equation of the ARIMA model has a complex root,

the conjugate complex will be a solution, too.

Corollary 1:

Model B: We consider the ARIMA model
%"(B)Zt = <P(BB)at

where the coefficients of ¢(B) are real.

Furthermore it is assumed that the roots of ¢(B) = 0O are
distinct and lie on the unit circle, and that the eventual

forecast function is given by

Qt(l) = b#(t)f1(2)+...+b;(t)fn(2)

Model A: Consider the Brown forecasting procedure with fitting

functions
] -
£'(2) = [£4(0),v-ohf ()]
The coefficients of the forecast function
ﬁt(ﬂ) = @'(t)f(ﬂ)

are fitted by discounted least squares with smoothing co-
efficient B, O < B < 1. Then the Brown forecasting procedure
with fitting functions as specified in model A will provide
minimum mean square error forecasts if and only if the under-

lying stochastic process is given by the ARIMA model B.
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In the following theorem we relax the assumption.of

distinct roots of ¢(B) = O.

Theorem 2:

Model B: <P(B)zt = ¢(BB)at as specified in corollary 1, how-
ever we allow the possibility of multiple roots of ¢(B) = O

on the unit circle.

Model A: Brown model as specified in corollary 1.
Then model A and model B are equivalent in terms of having

(i) the same form of forecast function
(ii) the same recursive updating formula for the co-

efficients of the forecast function 9'(t).

Proof: The only part which remains to show is (ii).

We can write

¢(B) =
i

=]

1¢i(B) where ¢ (B) 1 <1 <s

are real valued polynomials in B with distinct roots on the

unit circle;

Model B can be written as

¢1(B)¢§(B)"‘¢S(B)Zt = ¢1(BB)¢5(BB)...¢E(BB)at
or
L2 Ak %6 B
t ¢1(BB) ‘PZ(BB) <PS(BB) t
(s) ‘Ps(B)

We define « z, and through continued application

t - #g(BB) t

of corollary 1 the claim is proved.
g.e.d.
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