’ ﬁ International Institute for
- Applied Systems Analysis

[TASA wwwiiasa.ac.at

Conference on Artificial
Intelligence: Question-
Answering Systems

Briabrin, V.M.

IIASA Collaborative Paper
May 1976

Briabrin, V.M. (1976) Conference on Artificial Intelligence: Question-Answering Systems. IIASA Collaborative
Paper. Copyright © May 1976 by the author(s). http://pure.iiasa.ac.at/587/ All rights reserved. Permission to
make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this
notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute
to lists, permission must be sought by contacting repository@iiasa.ac.at

mailto:repository@iiasa.ac.at

CP-76-6

CONFERENCE ON
ARTIFICIAL INTELLIGENCE:
QUESTION-ANSWERING

SYSTEMS

JUNE 23-25,1975

Views expressed herein are those of the contributors and not neces-
sarily those of the International Institute for Applied Systems Analysis.

The Institute assumes full responsibility for minor editorial changes,
and trusts that these modifications have not abused the sense of the writers’

ideas.

international Institute for Applied Systems Analysis
2361 Laxenburg, Austria

FOREWORD

The last decade has produced several profound and exciting results in computer
science theory and application. Some of these results have prepared the ground for
disciplines now recognized as significant branches of computer based science: the theory
of formal grammars and automatic compiler construction, information retrieval and data
base management, the theory of communication and computer networks, and problem
solving and artificial intelligence are examples of new computer sciences.

In the area of artificial intelligence (AI), theoretical and applied research related
to knowledge representation in computers, natural language analysis, deductive inference
and automatic learning represent the most interesting topics and promise to becomc the
basis for a new style of computer use. The general idea of this style consists in allowing
the user to tell the computer “what to do” instead of “how to do”. The computer
system in this case behaves as an intelligent adviser and interpreter of predefined rules
of the game in any particular problem area. Its advantages over human advisers and
interpreters are based on the ability to store and handle gigantic amounts of structured
data of which the end user can have only a vague idea. This approach becomes partic-
ularly attractive in different areas of applied systems analysis where computer program-
med mathematical models give additional analytical power to an “intelligent” computer
system.

The challenging and promising features of Al research resulted in the organization
by ITASA of an international Conference on Artificial Intelligence and Question-
Answering Systems in June 1975. This Conference was held in accordance with the long
range research strategy of the Computer Science Project and attracted 27 computer
specialists from 12 National Member Organizations. Two basic points were discussed:
scientific problems and basic results in the development of question-answering systems
with natural language input and inference capability, and possible ITASA efforts in
establishing an intelligent question-answering system with a data base for IIASA’s applied
projects.

This publication contains papers devoted mostly to the first point. The partic-

ular subjects that were covered include natural language analysis, knowledge representa-
tion and deductive inference mechanisms.

-iii-

An important practical conscquence of the Confercnce was a proposal from the
Conference Working Group to 11ASA for the implementation of a yuestion-answering
system for data base management at IIASA.

Apart from the obvious scientific results, the meeting also helped to establish
contacts bctween the NMO’s involved in Al research. Participants agreed on future
cooperation among their institutions in various Al areas.

Several people put considerable effort into the preparation of the Conference and
the handling of its results. Bertram Raphael from the Stanford Research Institute initi-
ated the discussion on the importance of Al research for IIASA. Alexander Butrimenko,
leader of the IIASA Computer Science Project, and F. Klix from the Academy of Sciences
of the GDR were the main initiators of the Conference and contributed greatly to its
organization. llse Beckey devoted much of her time and energy to arrangements for the
Conference; and Yuri Kriukov from the USSR helped in preparing the papers for presen-
tation and publication. Our thanks are also due to the Computer Science secretaries for
their faithful help, and to the IIASA editorial staff.

On behalf of the Working Group

V. Briabrin

-jivy-

TABLE OF CONTENTS

Foreword . . o ¢ o v ¢« o 4 o o s+ o o o o o o 4 e e e o
Introduction to the Conference
F. KLiX . . ¢ v ¢t v v 4 e 4 o 4 o o & o o o o o o

DILOS - Dialog System for Information Retrieval,
Computation and Logical Inference

V.M. Briabrin, D.A. Pospelov « + . . .
Some Comments on Efficient Question-Answering Systems

H. Nishino ¢ . « ¢ ¢ v ¢ v o ¢« o o o o &
Partitioned Semantic Networks for Question-Answering
Systems

G. Hendrix ¢ ¢ ¢ ¢ v o ¢ 4 o a o o« » o .

The Choice of Semantic Representation in a QAS
J. Simon L . 0 0 o e e e e e e e e e e

Analysis of Japanese Sentences by Using Semantic and
Contextual Information
M. Nagao, J.-I. Tsujii « -« « « . .

Parsing in QAS
W. Paxton ¢ v v 4 v i e e e e e e e e e

Input Processing in a German Language Question-
Answering System
E. Lehmann ¢ ¢ ¢ t ¢ ¢ o o « o« o o o &

A Formal Framework for Unitary Approach to the Theory of
Problem Solving
G. Guida, D. Mandrioli, A. Paci, M. Somalvico . . .

Logic and Interpreters
E. Pagello . . . v ¢ 4 o ¢« a o o o o o a o o o o

Artificial Learning Systems and QAS
A, Andrew . . v v v 4 4 4 s e e e e e e e e e e e

A Computer Interview Procedure Which Reconstructs
Generative Semantical Structures of Human Beings
Using Modal Sets

S. Klaczko-Ryndziun, K.-H. Simon
Cognitive Information Retrieval by Goal-Oriented
Languages

G. Gini, M. Gini 0o

An Experimental Environment for the Implementation of
Question-Answering Systems

G. NEES « v v ¢ v 6 v v o o« o o o o o o 4 4 e e e .
PLATON - A New Programing Language for Natural Language
Analysis

M. Nagao, J.~-I. Tsujii ¢« v v ¢ ¢ « o « o .

—_r-

11

20

28

43

47

102

105

131

194

196

213

216

253

270

The TGS-4000 Translator - Generator System
D. Alexandrov « + .+ « . ..

APPENDIX 1
Some Comments on AI Research Coinformation
D. Dubrovsky « < ¢ . .+ & . .

APPENDIX 2
A Word of Caution
S. Isard . .« . & ¢ 4 o o o o o o o

AGENDA o ¢ ¢« & o o o o o o s o a
LIST OF PARTICIPANTS . . « « « o o o o o« =

-vi-

312

324

327
329
331

Introduction to the Conference

F. Klix

1. Opening Remarks

Dear Colleagues:

Before we go into details, I would like to make some com-
ments on the history and aim of our conference. It was in the
autumn of 1971 at the foundation meeting for IIASA when
Professor Raiffa, the proposed first director, asked me which
project I would like to work on as an experimental and mathe-
matical psychologist. My choice was for selected topics of
artificial intelligence. My reasons were the following: AI is
an interdisciplinary field within the modern sciences that has
more than one applicational value which makes it interesting
for IIASA. As an interdisciplinary research field, AI connects
computer science, mathematical logic and automata theory, experi-
mental and mathematical psychology, linguistics, and other fields.
Al is specific basic research work which grows quickly. The
feedback of these developments encourages a greater use of com-
puter power that is now underexploited. 1In order to obtain the
basic support of ITIASA, it was necessary to indicate the possible
value of AI research within the frame and the policy of that
institute. The various aspects of AI research had to be evalu-
ated under these and other conditions.

What should be selected from the different possible approaches
that are embraced under the roof of artificial intelligence?

To outline some aspects of these evaluation procedures:
first there is the domain of pattern recognition and classifica-
tion systems. These are well-established application fields,
e.g., the identification of type- and handwritten letters, pic-
ture classification and scene analysis algorithms, medical diag-
nosis, etc. Until now, there has been no inner tie to a well-
founded project at IIASA.

Second, there is the field of heuristic programming and
search techniques, which were regarded for a long time as a key
for understanding of problem solving processes. Heuristic pro-
gramming is now widely applied in CAD (Computer Aided Design),
or in fully automated industrial design projects. General search
techniques are incorporated and refined in systems for theorem
proving and automatic programming, which are supported by newly
emerging high-level languages for problem solving. Some of these
developments were integrated in big projects, but these projects
do not appear to be of special interest to IIASA.

Third, there is the development of formal and especially
of programming languages and of methods to describe their struc-
ture and semantics. The main application fields are in problem-
oriented computer devices, their software organization, the op-
timization of man-machine systems, etc. These are also fields
and tasks that have no sufficient background at IIASA.

Fourth, there are motor-action systems as part of AI re-
search. These are components of robots, especially in inter-
linkage with pattern recognition, scene identification, and
classification devices.

As a fifth point, we could mention fact storage and retriev-
al systems. Of course, they would be the most interesting part
of AI, but there are well-established designs for storing and
using data files. It seems to me, however, that as a research
task they are nearly out of our range of interest. So, from the
scientific aspect, there is reason to put aside such a proposal
although the practical value of such an information storage and
retrieval system goes without question. This now leads to the
final proposal.

Sixth, there is a modern development in AI research which
has to do with the representation, manipulation, and use of
knowledge. Up to a certain degree, this aspect is representa-
tive for AI research as a whole, as Raphael (1974) and Nilsson
(1974) have pointed out, and the paradigm of representation,
manipulation, and use of knowledge in today's research is the
question-answering system (QAS).

The main reason why I directed the attention of some IIASA
staff members to QAS is that QAS has both basic and interesting
research aspects, and it can extend application fields of com-
puter capabilities. This should also be of interest to nearly
all NMO countries. The main point is that although AI research,
in general, cannot become a project of its own, special aspects
of AI research related to QAS can support substantial projects
of IIASA as well as link research activities which are going on
in different NMO countries. An international coordination of
research activities in this field could enhance the efficiency
and lower the expenditure of realizing such a system. These are
the main reasons why I have proposed the realization of a QAS
at IIASA. I hope that this conference can be the beginning of
such a project.

Before I continue and define this practical aspect, let me
present some research aspects that will be handled during the
conference and that should be the core of the discussion because
they are necessarily the crucial points with regard to the ex-
tension of the application field in question as mentioned above.

2. QAs and Some Important Research Aspects to be Discussed

During the Conference

The general architecture of a QAS is defined by the follow-
ing conditions and components:

a)

b)

c)

d)

e)

f)

g)

h)

i)

Weak standardized, approximately normal, and well-formed
sentences in a living language, used as inputs as well
as outputs.

A parsing procedure (incorporating or interacting with
a formally described grammar), which decomposes the
input string into a syntax tree or another arrangement
of syntactic constituents (substrings).

A procedure for semantic interpretation of the syntactic
structure. It has to find out the meaning of a sentence
which will be represented in the form of a tree or a
network (particularly labeled by concept words) that

can be stored in the knowledge base.

Searching and transformation procedures which allow the
transformation of surface properties of the input sen-
tence until they fit a given entry structure.

Transformation procedures on the entries within a given
structure until they fit a given input (often realized
as theorems to be proved with given clauses).

Identification procedures which allow detection and
deduction of implicitly given information such as frame
data, causality directions, and time relations.

As far as possible to bring into being the self-extensi-
bility of the system: to organize new data (fitting
given arguments or relating new entries to the appro-
priate conceptual graph structure).

The mapping of an item (explicitly stored in, or deriv-
able from the knowledge base) that represents the mean-
ing of the answer into a language construction (at least
a kernel sentence; surface transformation should be
applied if possible). This last step is necessary to
enable the user to communicate with the QAS completely
in dialogue mode.

Other abilities, such as more sophisticated learning
capabilities and decision procedures for the forgetting
of facts or relations, have not been essential to such
a system until now.

Altogether, we see that each question-answering system can
be considered as being composed of three main components, namely:

Y-

a) A corpus of knowledge about a more or less extended
part of reality as the disposition of the system. It
is stored as a structured set of information and usually
called the data base of the system. It constitutes the
semantic representation of the discourse area, the so
called 'universe of discourse'.

b) There is a system of mechanisms or procedures for the
organization and linking of that knowledge. It is
realized by programs and represents the inferential
capacity of the system.

c) Mechanisms for the transformation of language units
into concepts and conceptual properties of the stored
knowledge. The semantic representation is taken as the
basis for the description of the meaning of structural
or phrase components of normal language sentences. 1In
this sense, the semantic representation is the core of
the QAS because it mediates between the language input
and the language output.

Despite the given agreements on the general architecture of
a qguestion-answering system, there are very different approaches
as to the detail. As these details are very important in view
of the practical usefulness of the whole system, they should be
discussed during the conference. I would like to go a bit more
into detail on this topic and indicate some special approaches
within these components.

3. Component: The Internal Representation of Knowledge

First I would like to indicate that there have been real
developments within the last ten years. Together with the
progress in language analysis and language processing, which
began with the handling of words and groups of words and progressed
to the handling of complete sentences and eventually to sentence
sequences, there has also been real progress in the mode of the
conceptual representation of its content or meaning. It goes
from the adjoining of properties with words (represented by se-
quences of symbols) to tree structures. From that point
(and I am simplifying the real progress) the research progressed
to the representation of surface structures. Today, the central
attention has turned to the extraction of deep structures from
surface structures. The aim is to map the deep structure of a
given normal sentence into a logically unequivocal representation
in the form of a semantic net or a set of logical axioms (mostly
in the predicate calculus form). The point I would like to
stress is that the development obviously is removed from the
representation of knowledge by language phrases, and the ability
of language understanding by mapping word chunks in a semantic
net representation is revealed with new and complicated problems:
there are the mutual interrelations between syntactic and seman-
tic aspects, the semantic disambiguation of phrases, and the
semantic role of morphological properties complicating the attach-
ment of linguistic units to concepts as units of the net. Forward

and backward procedures have to be implemented for clearing
context dependencies, and, if I am informed correctly, these
difficulties are in no case completely solved. Different
approaches are proposed. In general, they demonstrate partially
suitable solutions. Let me indicate some examples.

There are several ideas as to how to encode propositions
within the data base. Sandewall indicated that such a represen-
tation is sufficient only if logical rules of interpretation
(for instance as a set of logical axioms) are added.

When comparing different proposals for knowledge represen-
tation it is important to note capabilities and incapabilities
for reflecting the various parts and properties of the reality.
This now leads to competitive forms of knowledge representation.
Besides the dominating semantic network approach there are other
approaches: It is possible to represent the knowledge base by
a set of discourse specific predicate calculus axioms or to
imbed it in data and program structures of higher level languages
of AI e.g. PLANNER or QAH4.

If it is our aim to plan a QAS for IIASA, we should try
during the discussion to clear which mode of representation is
preferred. There are no contradictions in each case. Some
forms of representation are nearly equivalent or alike in their
efficiencies. The pros and cons, however, should be taken into
account during the discussion.

Following is an outline considering some aspects for the
discussion with regard to these three modes of knowledge repre-
sentation.

a) The semantic net representation is a graph with nodes
and labeled edges or areas. The nodes represent the
concepts (individuals) and the edges represent semantic
relations. Generally, they are denominated. 1In the
formal sense, such a net can be interpreted as a collec-
tion of relational triplets R(x,y), where R is the name
of a binary relation, and x and y are two individual
constants. Such a structure is more appropriate for
representing real objects and time-invariant relation-
ships. Under these conditions, the attachment to the
lexical entries is relatively simple. Relationships
between concepts can be represented in the same way as
has been indicated by Schank and Rieger. There are
also difficulties that are due to the limited expres-
sivity power of the relational logic. I am not in a
position to evaluate the efficient trials which have
been undertaken for enlarging this power, i.e., to use
higher order logic calculi to express propositions on
propositions.

b) Now let us consider some critical aspects of knowledge
representation with the help of logical axioms. This
mode of representation can scarcely be separated from

the manipulation of the stored information. It is most
suitable for using resolution-oriented theorem provers
as deductive components. The data base is organized as
axioms, which are given in a skolemized clause form.

The basis is the first order predicate-function calcu-
lus. The first order predicate calculus is suitable to
represent many general propositions but it might be
difficult to express intensional constrictions. It
seems possible to apply higher level logic calculi
within this representation mode. It could be highly
important if participants of our conference have experi-
ence in this field. Until now, it has not seemed quite
clear if deductive procedures, based on the principles
of general theorem provers, can be improved so far as

to suffice the efficiency requirements of an usable QAS.
But methods have been developed which now allow one to
economize the storage volume (e.g., by sharing of common
substructures of different logical terms) and the same
efficiency (by applying various special strategies
oriented on syntactical criteria).

c) Now let us consider some aspects of knowledge represen-
tation by immediately encoding it in higher-order pro-
graming languages. Languages such as MICROPLANNER,
PLANNER, QLISP, AND QAld4, can be regarded to have some
important properties of higher level logical languages.
In the programing systems are implemented deductive
capabilities as well as mechanisms for elaborating and
establishing a specific data base. Abilities of this
kind can be used in QAS systems. One of the most
interesting points are the procedures of pattern-depen-
dent procedure-activation which can be used for goal-
dependent deductive processes. Most of these languages
are based on LISP, but they have a more complicated
command structure, a greater variability of data types
and altogether a more powerful descriptive character
than LISP. Such a form of knowledge representation
within a successful QAS was elaborated by Winograd
(1971) and based on MICROPLANNER. It allows us to
describe facts within the discourse area and use heuris-
tics in the form of recommendations for joining data.
Procedures of this kind are extremely powerful, but
their complexity is very high. The analyses of their
behavior may become difficult even for the designer
himself.

4. Deductive Processes

Now let us check some aspects of deductive processes.
Deductive processes in QAS are determined by sets of propositions
--axioms and theorems. They have to be linked in a goal-directed
manner. The main problem is to decide which proposition has to
be joined. Deductive procedures are not only necessary with
regard to questions which have to be answered, but also they are
necessary for the understanding of sentences, i.e., for resolving

anaphoric references, for the completion of incomplete state-
ments (the use of presuppositions), and for rejecting statements
which are in contradiction with the stored knowledge. More in-
formation has to be activated for understanding sentences than
is given explicitly in the input strings.

With regard to answering questions, the derivation of sup-
plementary questions is most important. Search procedures in
an extended data base are necessary in handling decisive ques-
tions.

Within the inferential processes to be conceived for getting
new statements for the given ones in the data base, the deductive
processes are used to an overwhelming degree. There are also
different standpoints with regard to the general appropriateness
of resolution-oriented theorem provers. Can they be the deduc-
tive vehicle of a QAS? At the moment, the efficiency does not
seem to be sufficient. Research work seems necessary in order
to learn more about semantically oriented criteria (not just
syntactic ones) and heuristic principles for theorem-proving
strategies. I am very curious whether a report on this will be
presented in the next few days.

With regard to psychological aspects, more and more power-
ful inferential capabilities seem to exist. Until now, inferences
due to analogies, inductive, and abductive forms have not been
used. This indicates a research area on common principles in
human and artificial inferential abilities.

Up to this point, I have presented some aspects of QAS with
regard to different functional or procedural aspects. Properties
were especially indicated where different standpoints and posi-
tions are given and where a common standpoint should be elabo-
rated with regard to the design of a real system for IIASA.

But there is also another point where different positions
will come into being (and with regard to this same requirement).
This aspect concerns the design of the system as a whole.
Because it is also necessary to decide this question in favor
of one system, I would like to sketch the main possible alterna-
tives, and I would like to do this with regard to the literature
as it was available to me.

5. On Different Approaches in the Design of a QAS

With the construction ideas of a QAS, today's designers
use--in a different degree--experiences of different scientific
areas: information processing, logic, linguistics, and psychology,
to mention a few. As a consequence, various types of QAS may be
differentiated.

a) There is the endeavor to take already realized and
checked traditional information retrieval systems as
a basis, using relatively homogeneous, structured data
files and a query language which is modified in the

direction of normal language utterances. Improved
information access is the main purpose of these develop-
ments (Kellogs (1968; Woods (1967,1972)).

b) There is another type of system design, tried and
developed by Schank et al. (1971), Simmons et al. (1972),
Friedman and Woods (1972), and others. They prefer the
most efficient procedures of language processing and
use completely normal sentences of the English language.
Some aspects especially serve to check linguistic models,
i.e., with regard to the syntactical and semantic analy-
sis of language comprehension or to the generation of
paraphrases. The general purpose is to realize language
understanding, but several of the developed procedures
are suitable as components of question-answering systems
(see Schank). The unpleasnat situation is that these
language~oriented models seem to be relatively weak in
their inferential power.

c) Within another group of systems, the deductive or
problem-solving abilities play the most important role.
Here the range of the data base as well as the linguistic
variability of the allowed input sentences are small or
weak, respectively. Instead, the dominant tendency is
to develop, together with heuristic problem-solving
programs, very general methods for representing differ-
ent data structures in a strict invariant manner.
Simultaneously, efficient methods are developed which
are appropriate for deriving goal-oriented search pro-
grams, similar to those which are used in problem-
solving strategies. The data base is handled as a prob-
lem space. Search algorithms work as goal-oriented
heuristic programs. Higher programing languages like
PLANNER or QA4 are suitable for realizing such proce-
dures.

d) Another group of systems has been predominantly devel-
oped under psychological aspects (Rumelhart and Norman
(1973), Quillian and Collins, Anderson and Bower (1973),
Newell et al., and others). Special interest is given
to the refinement of hypotheses on human long-term
memory as well as on the interdependencies of short-term
and long-term memory with regard to language under-
standing. The concept of semantic nets seems to have
a powerful heuristic value especially for the under-
standing of language comprehension. Special classes of
psychologically motivated systems are the class of so-
called belief systems (Abelson, 1973). The evaluation
of concepts and relations plays an important role in
these simulation programs.

Although none of these models can be used as complete
guestion-answering systems, I am convinced that these devices
possess a great heuristic value for revealing efficient mecha-
nisms of symbol manipulation and the organization of large data

bases. Properties of storage organization, remembering, cogni-
tive learning devices, forgetting principles, as well as proce-
dures of self-organization and extension of knowledge structures
can be investigated with the help of these systems.

These are some topics which reveal properties and facilities
of information processing systems under special aspects. In
general, the main reason for each approach is not to exhaust the
possible reachable efficiency of a QAS per se, but to demonstrate
specialized procedures or techniques which can be applied or used
in QAS. Obviously, the best solution seems to be a compromise
among the different designs. I have mentioned these different
approaches with regard to the purpose of our conference. Our
discussion should also give hints as to the best compromise,
i.e., which special procedures or techniques should be applied
in a possible IIASA-relevant QAS.

With regard to this question, our alternative seems not to
be among these four approaches. Especially in view of the given
practical demands, two different approaches are possible, and it
might be that they are handled as two steps in our direction.

The first one is to develop a universally expandable prototype
such as MIND, CONVERSE, REL, etc. It is characterized by pro-
cedures with syntactical, morphological-semantic analysis, de-
ductive conjoining, and any semantic net representation and pro-
cedures which allow us to generate answers, paraphrases, etc.

If it should be decided to pursue this approach, the decision

on which discourse area--i.e., which IIASA project is most appro-
priate with regard to such a system--should be made simultaneously.

The other possible approach is to develop a system within
a given project, i.e., with regard to its requirements for lexical
entries, relationships between them, and only a small part of
inferential power. The variability of input sentences can be
strongly restricted. This is of great importance for the com-
plexity of the parsing procedure, for net structure as the frame
for the data representation, and for the answer generation device.
Systems of this type have been developed by Woods (1972), Badre
(1972), Coles (1972), Carbonel et al. (1971), and others. If
this type of a system is preferred, the first decision to be made
is which IIASA project should be the preferred data base or dis-
course area, and recommendations as to which approach we take
should be made.

6. Some Suggestions for the Workshop

The purpose of this conference has to be seen from different
approaches. With regard to the main goal, which is to bring AI
research at IIASA into being, it seems necessary to view the con-
tents of the reports, as well as the contents of the discussion,
along the following lines:

a) To exchange information and experience gathered with
QAS that are successful in practical use. One of the
main points of interest should be the demonstration of

b)

c)

d)

-10-

different principles with regard to their special
efficiencies. Information should be given on computer
capabilities necessarily needed to realize a given task.

To inform and to exchange ideas on the feasibility of
different possible implementation languages. The prac-
ticable way seems to be the discussion of selected
examples. They should be linked with the representa-~
tion of semantic properties of the input language.

With regard to the programing language, the so-called
higher-level languages such as PLANNER, CONNIVER, QLISP,
and others should be considered with a view to their
special efficiencies.

Of theoretical as well as of practical interest is the
exchange of information on the complexity problem, by
which I mean the relationships between the size of the
data base, its structure, the inference modes, and the
storage capacity. The information should include tech-
niques of economical storage principles and chunking
rules, the incorporation of heuristic principles in the
standard mechanisms of higher level language processors.

Together with the elaboration of proposals for IIASA,
we should work out some proposals for the NMO's on the
coordination of research work in AI between groups in
different countries and also under the aspect of the
establishment of an in-house QAS for IIASA.

The time of our conference is very limited. Until now I
have mentioned only a few aspects of the reports and the discus-
sion of some crucial points.

The main purpose I have in mind is to bring a scheme work
into being between an IIASA group and research groups in NMO
countries. This could be done with the following two subgoals:

a)

b)

to begin with a classical fact retrieval system for a
special IIASA project as an in-house task:;

to coordinate the work of different research groups in
different NMO countries which are working on QAS with
the purpose of extending the efficiency of the fact
retrieval system stepwise by inserting inferential
capabilities and a natural language understanding and
generating part.

-11-

DILOS - Dialog System for Information Retrieval,

Computation and Logical Inference

V.M. Briabrin and D.A. Pospelov

1. Introduction

There are two main objectives for creating the system de-
scribed below. First, the processes of developing the system's
ideology, its implementation, and its experience for its further
utilization are the perfect subjects for computer science and
artificial intelligence research, and as such could be proposed
as topics for a computer science project at IIASA [7]. Second,
the system is oriented toward becoming an instrument for applied
research based on different kinds of knowledge representation in
computer data base, and, therefore, it has the desirable possi-
bility of being used as a supporting computer system for other
IIASA projects [4].

Preliminary discussions have shown that at least two IIASA
projects could have immediate profit from promoting and coopera-
ting with the proposed computer system development: these are
"urban problems" and "water" projects. Specific project orien-
tation is reflected in the following parts of our system:

a) a "professional" dictionary containing a set of specific
terms together with their semantic interpretation;

b) a set of grammatical rules, reflecting specific forms
of language or particular phrases by means of which end-
users would like to interact with the system;

c) a set of procedures for calculating specific results
(usually numerical) from the given arguments; examples
of such procedures are machine code subroutines or pro-
grams in high~level language for linear programing,
matrix manipulation, differential calculus, etc;

d) a description of structure and contents of the data
bank which has to keep all the objects (with properties)
being relevant to the given problem area;

e) a set of "axioms" and rules of inference to be used for
the creation and logical analysis of a semantic model
for the specific problem domain.

Switching to another project means the necessity of thorough
thinking about the form and contents of knowledge to be fit into
the computer system. Actually, this work is a form of systems
analysis and hopefully will help applied systems analysis to clear
up their own views at the appropriate problem domain.

2. System Configuration and Function

All system functions are performed by a set of procedures
which are grouped into four main subsets called "processors"
(Figure 1):

a) dialog linguistic processor (DLP),

b) information retrieval processor (IRP),

c) computational processor (CP),

d) 1logical processor (LP).

Each of these processors manipulates information stored in
the data base (DB) which is split into divisions. Each data
base division (DBD) has a name and a set of access functions
which control all operations, such as object addition, search,
and removal. Access functions also provide a hierarchy of access

between different DBD's.

Each DBD contains a set of data base objects (DBO's) each
of which is characterized by:

a) name,

b) designation of value type,
c) standard value (optional),
d) property list (optional).

Each property in its turn is characterized by an indicator
(considered as an extension to the DBO-name) and property value.

The main "users" value types are: character string, bits
string, list of numbers (possibly one number), list of pointers
to other DBD's or DBO's (possibly one pointer). Besides these
types, additional "systems" types show that a given DBO value
should be interpreted in a definite manner: for example, one
type says that a value of given DBO is actually a DBD descriptor,
another type says that it is a procedure body, etc.

In the process of working with the system three basic stages
could be outlined:

a) system construction, performed by systems programmers;

b) system specification, performed by systems analysts;

c) system utilization, performed by end-users.

Stage (a) means building up all the necessary procedures to
provide for further work by systems analysts and end-users. It

is clear that for the benefit of system portability and easiness
of amendment and documentation, all the procedures preferably

-13-

End-user

U

{Restricted Natural Language}

Systems analyst

\

{specification Language}

Dialog Linguistic Processor

‘\.
Data

i

{Formal Interface Language}

i

A

A\

+—— Base

—
0

Information
Retrieval
Processor

Computational
Processor

Logical Special
Processor Software
Package

J

{(Results of Processor Operation)

U

Output Data

v i

Implementation Tanguage
(LORD/LISP/MACROCODE)

Systems Programmer

Figure 1. System configuration.

-14=-

should be written in high-level implementation languages. We
choose for this purpose the following combination of programing
languages: LISP [3], MACROCODE [5], and LORD [2]. All these
languages are available at the present time on the BESM-6 comput-
er and can be transported to the 360-type computers.

Stage (b) creates internal system knowledge about the
specific problem domain. It means filling up all the necessary
parts of the DB with relevant terms, procedures, axioms, rules
of inference, etc. This filling is performed with the aid of
special procedures stored in the DB. Formal access language is
used at this stage; it could be called "specification language."

Stage (c) implies using the system for applied research.
That means running results from the given arguments, searching
in the data bank for objects and their properties, answering
questions about interrelations among different objects in the
semantic model, making logical inference with the purpose of
finding the solution and/or planning the sequence of calculation
for the given problem. Access to the system at this stage is
going to be done in restricted natural language, which is trans-
formed by DLP into the language of "formal interface" (Figure 1)
between DLP and other processors.

In the rest of this paper, we discuss the general ideas for
implementation of system processors, contents of the appropriate
DB divisions, examples of user access language, and corresponding
formal interface expressions.

3. Dialog Linguistic Processor

At the stage of utilization, the access to the system is
going on through DLP which converts input phrases into expressions
of formal interface (¢-expressions).

DLP works on input phrase in three stages:

a) Morphological analysis discovers morphological charac-
teristics of the words, searches in the dictionary for
their syntactical and possible semantic interpretation,
and leaves at the output a sequence of morphemes to-
gether with the lists of discovered morphological, syn-
tactical, and semantic attributes.

b) Surface syntactical analysis builds up a syntactic tree
with the nodes--morphemes or groups of morphemes and
arcs—--syntactical relations.

c) Deep syntactical analysis transforms a syntactic tree
into ¢-expression or a sequence of ¢-expressions which
is an output of DLP.

¢-expression has a functional format which looks like the
following:

-15=

* £ al,a2,...,an ; (1)

where £ is a function name; al,a2,...,an -- arguments derived
from the input phrase.

Each argument could be an atom (name of object or literal),
or a structured list in the sense of LISP language, or a chain
of the form:

[a,0,B] (2)

where o and B are atoms, or lists, or syntagmatic chains; p-
predicate name reflecting the semantic relation between w and 8
[61.

In some cases for the purpose of clear documentation and
easiness of interpretation, arquments are prefixed by key words
followed by "=" sign. The sequence of such "key arguments" looks
like the following: k1 = al, k2 = a2,....

A function name is derived from the input phrase or generated
by DLP. It shows an action to be performed over the arguments.
A list of possible function names is fixed, and each name serves
as an indicator directing ¢-expression to a corresponding proces-
sor.

DLP is supported by the contents of several divisions in
the DB including:

a) dictionary,

b) set of procedures for morphological and syntactical
analysis,

c) grammatical rules controlling all stages of input trans-
formation performed by DLP.

One essential point about DLP is that it can interact with

the user by means of auxiliary gquestions in order to get full
"understanding” of the input phrase.

4, Information Retrieval Processor

One of the most frequently needed possibilities provided
by a computer system to the end-users is an access to the large
data bank containing different sorts of statistical information,
reference lists, and other types of encyclopedic data. The
following functions should be provided by IRP:

a) Put a new object (with properties) into an appropriate
division of the data bank.

-16-

b) Find an object by its name (and possible by a descriptor)
and get its standard value or the value (s) of its
specified property (ies).

c) Delete an object from the DBD.

d)} Change standard value or property value of the given
object.

e) Perform special operation (e.g., union, intersection,
exclusion) over the object standard or property values.

IRP could produce as an output:
a) an object standard or property value (s);

b) a list of references to the objects satisfying the
given search criteria;

c) SUCCESS or FAIL signals indicating whether the search
was successful or not.

4.1 Examples

a) The question, "What was the Moscow population in 19452"
could be transformed by DLP into ¢-expression:

GET MOSCOW POPULATION. 1945.

Function GET here has two arguments: the name of division
(MOSCOW) , and the name of object (POPULATION) extended by the
property indicator (1945). Corresponding IRP procedure searches
in the given division for the object, extracts its property
value and types it out.

b) The phrase, "Give me the numbers of all flights and
trains connecting Moscow and Leningrad," could be trans-
formed by DLP into:

GET (FLIGHTS (FROM-MOSCOW & TO—LENINGRAD”

U(TRAINS (FROM-MOSCOW & TO-LENINGRAD))

This expression implies that IRP searches in the FLIGHTS
and TRAINS divisions for the standard values of FROM-MOSCOW and
TO-LENINGRAD OBJECTS, performs two intersections and union of
their results as indicated by brackets, and types out the final
list of flights and trains connecting Moscow and Leningrad.

Each object in the DB has a unique pointer which can be used
instead of object name where necessary (in the property lists, in
the semantic model, etc.). Special procedures handle object names
and/or pointers providing access to object standard value or prop-
erty values.

-17~

5. Computational Processor

At the present time, most applied systems analysis research
is based on a series of calculations performed by programs written
in high-level algorithmic languages. Every such program could be
considered as a procedure which takes some input data (arguments)
and produces output data (results). One procedure's results could
become another procedure's arguments or could be printed out as
a final data requested by the end-user.

This philosophy constitutes a basis for CP operation. Its
task is to interpret procedure calls with the necessary substi-
tution of arguments and to handle the results of calculation.

Each applied program is stored in the DB and accompanied
by special object--"applied program module descriptor" (APMD).
This object contains the following properties:

a) program name (coinciding with APMD name);

b) type of calculation (the name of programming system);

¢) 1list of arguments (possible with their types);

d) 1list of results (possibly with their types);

e) location of input area;

f) location of output area;

g) DB poiqter to APM body (the body could be stored in
symbolic or machine code representation).

. Properties (a - f) are provided by experts during the defini-
tion of APM and loading it into the DB; (g) is generated by the
system.

CP operation starts when DLP produces a ¢-expression of the

form:

CALL z ARG = (x1,x2,...,xm) RES = (y1,y2,...,yn) , (3)
where z-program name; x1,x2,...,xm--objects which are going to
be substituted instead of arguments; y1,y2,...,yn--objects which

are going to receive new values after performing calculation and
getting the results.

CP picks up all argument values (with the necessary type
conversions) and collects them in the input area. Then CP loads
APM body as it is required by the programing system and makes a
call for appropriate translator.

Translapor handles APM body together with data from input
area, and this computational process is supposed to produce re-
quired results in the output area.

-18-

The final stage of CP operation constitutes in disjoining
contents of output area into separate pieces and assigning them
as new values to the objects y1,y2,...,yn announced in (c).
Thus APM operation could be considered as a process which con-
verts a set of input object values x1,x2,...,xm into a set of
output object values y1,y2,...,yn.

CP could discover that in order to get the value of some
object x., it is necessary to suspend the current calculation
and make a call for another procedure providing the required Xy
value. This type of operation is performed by means of CP stack
mechanism.

6. ILogical Processor

In many cases, end-user's inquires will imply direct IRP or
CP operation based on preprogramed knowledge about the problem
domain. On the other hand, it is likely that some inquires will
require a preliminary stage of system operation--looking for the
possibility of getting the solution and generating a plan for
obtaining the necessary results. This part of system operation
is performed by LP.

LP is responsible for construction, amendment, and analysis
of semantic model which is represented in computer memory in a
form of oriented graph. Each pair of nodes in this graph connect-
ed by an arc (p) represents a syntagmatic chain corresponding to
analytical expression (b). Semantic interpretation of such an
expression depends on the meaning of p. Examples of semantic
interpretation are:

a) "o is the name of B";
b) "o implies 8";
c) "o is part of R";

d) "o has property BR", etc.

Semantic models contain axioms about the problem domain as
well as rules of inference giving the possibility of deducting
new facts out of existing axioms and temporary results.

Resolution principles or STRIPS implementation could be good
examples of LP procedures.

Besides the goal of finding the solution or plan generation
for the specific task, LP cooperates with DLP in providing ques-
tion-answering facilities which are based on pattern search and
logical analysis of the semantic memory contents.

LP is implemented as a set of LISP [3] and LORD [2] proce-
dures with a heavy accent on pattern search and pattern-driven
procedure invocation technique which is becoming popular in the
recent developments of AI programing systems [1].

-19-

7. Conclusion

The proposed system will be capable of providing the
"intelligent" computer service for three main kinds of end-user
inquires: information retrieval and data bank management, compu-
tation of specific results from the given arguments, semantic
model creation and analysis with the purpose of problem solving
or question answering. There are some theoretical and technical
difficulties in developing the system. Prototype implementation
and application to specific problem domain will give the neces-
sary experience for further system development and utilization.

References
f1] Bobrow, D.G. and Raphael, B. "New Programming Languages
for Artificial Intelligence Research." ACM Computing

Surveys, 6, 3 (1974).

[2] Briabrin, V.M., Serebrjakov, V.A. and Jufa, V.M. "Program-
ing System for Artificial Intelligence Problems."
VII Symp. on Cybern. Tbhilisi, U.S.S.R., 1974.

[3] Jufa, V.M. "LISP~BESM-6 Programming System Development."

Symbol Inf. Proc. Comp. Cent., Acad. of Sci., Moscow,
U.S.S.R., 1973.

[4] Klix, F. "Problems and Preparatory Steps in Realization
of a Question-Answering System at IIASA." Private
communication, November 1974.

[5] Mikchelev, V.M. and Shtarkman, V.S. "MACROCODE: Language
Description." 1IAM, Acad. of Sci., Moscow, U.S.S.R., 1972.

[6] Pospelov, D.A. Big Systems (Situation Control). Moscow,
Znanie, 1975.

[7] Raphael, B. "Artificial Intelligence: Possible Activities
for ITASA." Private communication, June 1974.

-20-

Some Comments on Efficient

Question-Answering Systems

Hiroji Nishino

1. Introduction

The research and development of a QAS using natural language
is one of the most active and hopeful fields in artificial intel-
ligence (AI) research. The review paper on AI given by
N.J. Nilson at 1974s IFIP conference gives us a well-sketched
overview of the research on natural language understanding [7].
The first peak of the research in 1970s decade was SHRDLU devel-
oped by T. Winograd [10]. Inspired by his success, many research-
ers have been hoping that a QAS for practical uses will be real-
ized in the near future. In connection with Figure 1, Figure 5
shows an enlarged recent history of QA research since T. Winograd.

I would like, however, to mention some practical approaches,
different from AI approaches, with respect to the following
standpoints. The basic features of the systems proposed for
practical uses are as follows:

a) They make use of existing large data bases, created
mostly by conventional methods.

b) The use of a natural language is just a convenience for

nonprogrammers as end-users. The direct objective is
not a sophisticated understanding of natural language.

2. Development Strategy

Although they are closely related to each other, the prob-
lems concerning a QAS are roughly divided into the following
three areas shown in Figure 1:

a) sentence analysis and generation (linguistic studies),

b) inference and decision (discourse analysis and psycho-
logical studies of cognition),

c) data-base management (storage and retrieval of knowledge).

The first area, in which linguists are mainly concerned, has
a long traditional history. A linguist tends to make a mammoth
syntax analyzer in order to expect the completeness based on
linguistic viewpoints. To my thinking, such analyzers seem to
be too sophisticated for our purpose and furthermore cannot handle
the full complexity of natural language. More compact and effi-
cient analyzers are desirable.

-21-

Recent works on a natural language understanding in AI
research are mostly concentrated in the second area. There is
a broad spectrum ranging from the simplest inference to the
most sophisticated one. The recently active studies on psycho-
logical cognition are at an extreme end. I feel, however, that
these studies are still in the pure research stage.

The third area is also contained in today's computer tech-
nologies and is a hot topic at that. In most cases of QAS's in
AT research, the data base is small. Conversely, the data base
required in practical uses is usually large. Notice that an
appropriate method for a small system is, in general, not neces-
sarily efficient for a large one. However, the method of

effectively storing and retrieving the knowledge is common in both
cases.

From these above-described reasons, a loosely coupled system
is recommended. The basic functions of each subsystem and the
interfaces among them are briefly illustrated in Figure 2.

It may be clever to adopt two different approaches at the
same time in order to promote its development. One approach is,
of course, the AI approach. The other one is a data-base oriented
one, and the emphasis is placed on managing a real data base.

This paper is mainly concerned with the latter approach.

3. Design Criteria

In practical computer technologies, several kinds of query
languages for data bases have been proposed and implemented.
They contain:

a) a series of procedural operators, or
b) the representation of predicate calculus, or
c) a restricted subset of a natural language.

It is particularly noticeable that certain experimental
systems belonging to the third category are quite recently in-
creasing [2,5,6,9]. 1In this case, the general scheme of the QAS
is shown as something like Figure 3. Figure 3 shows a lossely-
coupled system with two subsystems. The upper part is a pre-
processor for a natural language understanding followed by the
lower part, a conventional data-base system. In order to keep
the close interface between them, the query lanquage is to be
open-ended.

Although the general scheme of a QAS seems to be fairly
clear, it is extremely difficult to specify the external specifi-
cation of the dialog between the machine and the user at the
design stage.

-22-

The disadvantage of a restricted natural language and a
natural languagelike query language is the fact that the casual
user forgets the restriction because of the similarity to a
natural language.

From the practical viewpoint, it is, however, sufficient
enough to make the user only an "illusion" interacting with the
machine in a natural way. In this case, the output responses
from the machine may be employed for clarifying the meaning of
the user's gquestions, i.e., (a) the ambiguity of the meaning,
and (b) the meaning of words not found in the dictionary, and
SO on.

For example:
a) "Which do you mean by X, X1 or Xx2?"

b) "Sorry, I don't know the word Y. Please tell me in
other words."

Furthermore, the choice of the decision by inference may be
helped by the user as follows:

"Can I assume that you mean 22"

Such clarifying responses will be effective to simplify the
upper part of Figure 3 and particularly the dictionary. The de-
tailed mechanism of this part, which is omitted here, will be
enhanced step by step by adopting the results of AI research.

How to represent knowledge--i.e., formalism of knowledge--is
one of the most important topics, not only in a natural language
understanding, but also in other fields of AI research. Most
representations have a list structure or semantic network struc-
ture of variations of these. 1In some cases, they have the forms
of primitive assertions or predicate calculus. Newly proposed
concepts, such as frame or schemata, will give us more flexible
structures for the representation of knowledge.

In computer technologies, there are similar circumstances.
There were several data~-base management systems (DBMS) reviewed
in the CODASYL report published in 1971 [3]. Now only a few of
them still remain, and the others are already obsolete. There-
fore, at first, we must select a flexible data-base model suited
for our purposes.

Recently, several new models of the data base, such as a
relational-data model [4], a data-semantics model [1], an entity-
data model [8], etc., have been proposed, and some of them have been
implemented. Although these models are formalized comparable to
the ones in AI research, they seem to be flexible enough to satisfy
the necessary conditions for our purposes. Particularly the re-
trieval efficiency for a large amount of knowledge is seriously
considered.

-23-

4. Implementation Method

LISP is frequently used in the research on natural language
understanding. Therefore, LISP's users (rigorously speaking,
PDP-10 users) are supported by many useful programs concerning
natural language understanding.

Higher-level languages such as PLANNER, CONNIVER, etc.,
which are based on LISP and developed for inference, are too
inefficient in practical applications. The execution time of
PLANNER is approximately ten times slower than that of LISP
interpreter, and CONNIVER is nearly ten times slower than PLANNER.

A dedicated, high-level language machine which executes the
language directly is thus desirable. Recently, some proposals
have been reported.

In addition, a dedicated data-base machine is also recom-
mended. The total system which operates as a function-distributed
system is illustrated in Figure 4.

Acknowledgment

I am very grateful for the helpful suggestions of H. Tanaka
and S. Uemura of our institute.

References
[1] Abrial, J.R. "Data Semantics." Proc. IFIP Working Conf.
on Data Base Management System. Cargése, 1974,
[2] Chamberlin, D.D. et al. "SEQUEL: A Structured English
Query Language." Proc. ACM SIGFIDET Workshop.

Ann Arbor, Michigan, 1974.

[3] COSASYL System Committee Data Base Task Group Report.
Feature Analysis of Generalized Data Base Management
Systems. Comm. ACM, 1971.

[#] Codd, E.F. "A Relational Model of Data for Large Shared
Data Banks." Comm. ACM, 13 (1970).
[5] Codd, E.F. "Seven Steps to RENDEZVOUS with the Casual User."”

Proc. IFIP Working Conf. on Data Base Management System.
Cargése, 1974.

[6] Kellogg, C.H. et al. "The CONVERSE Natural Language Data
Management System: Current Status and Plans." Proc.
ACM Symposium on Information Storage and Retrieval.
University of Maryland, 1971.

[71

[8]

[91]

[101]

24—

Nilson, N.J. "Artificial Intelligence." Proc. IFIP 1974.
Stockholm.

Senko, M. et al. "Data Structures and Accessing in Data-
Base Systems-Data Representation and DIAM." IBM
System Journal, 12 (1973).

Thompson, F.P. et al. "REL; A Rapidly Extensible Language
System." Proc. 24th ACM National Conf. New York, 1969.

Winograd, T. "Procedures as Representation for Data in a
Computer Program for Understanding Natural Language."
Tech. Rep. AI TR-17. Massachusetts Institute of
Technology, 1971.

Figure 1.

~25-

Data

Base

Three problem areas.

INPUT SYNTAX RULE
SENTENCE — g SYNTACTIC
PARSING -————1
DICTIONARY
1
EXTRACTING TRANSFORMATION
SEMANTIC RULE
STRUCTURE
INTERROGATIVE
SENTENCE
AFFIRMATIVE DATA BASE
SENTENCE =
OUTPUT SEMANTIC
RESPONSE REFERENCE INFERENCE RULE
Figure 2. Functional diagram of a 0AS.

USER &40

-26-

NATURAL LANGUAGE
UNDERSTANDING SYSTEM

QUERY INTERFACE
LANGUAGE
PROCESSOR
DBMS
DATA BASE

General scheme of a QAS.

NATURAL
LANGUAGE
QUERY \
LANGUAGE
Figure 3.
PREPROCESSOR

(LISP MACHINE)

HOST COMPUTER

Figure 4.

BACK-END

DATA BASE

COMPUTER FOR

Function-distributed 0AS.

-27-

*Sv0 30 Ax03STY 3IUL[09Yy

g 2anbtg
(wxog uoT3IRIIUYH
@ous3lua@g) (Ssd :1IMO) (SY0 :ATQYHS)
(butbbngadg
(1d :NOIVId) E
(UOTIBTTWISSY :dTdOL) _ommmz_
N (butbbngaqg
(Id :7T0SNIT) TUANDVH)
(uotsuayaadwo)
A1035 uU2IPTTUD)
pETETee ze61
(Aouspuadag (s¥0 :0TquHs)
Ten3idaosuo)) (9NIL)

-28-

Partitioned Semantic Networks for

Question-Answering Systems

Gary G. Hendrix

1. Basic Network Notions

In its simplest form, a semantic network is a set of nodes
interconnected by an accompanying set of arcs. A node may be
used to represent an object--where an object may be virtually
anything--including physical objects, relationships, sets, events,
rules, and utterances. Arcs are used to represent certain
"primitive" omnichronic (i.e., time invariant) relationships.
(Such relationships may also be represented as nodes.)

A feeling for how nodes and arcs are organized to represent
various facts may be gained by considering the network of
Figure 1. 1In this network, the node 'PHYSICAL.OBJECTS' | repre-
sents the set PHYSICAL.OBJECTS, the set of all physical objects.
Likewise, node 'MACHINE.PARTS' represents the set of all machine
parts. The arc labeled "s" from 'MACHINE.PARTS' to 'PHYSICAL.
OBJECTS' indicates that MACHINE,PARTS is a subset of PHYSICAL.
OBJECTS. Similarly, the network indicates that BOLTS is a sub-
set of MACHINE.PARTS and that B, an element of BOLTS, is a par-
ticular bolt. Following the hierarchy of another family, X is
a particular box, an element of BOXES, a subset of CONTAINERS,
a subset of PHYSICAL.OBJECTS.

Node 'C' encodes a containing situation, an element of the
situations set (sit-contain), a subset of SITUATIONS, the set of
all situations. In particular, 'C' represents the containing of
bolt B by box X from time T1 until time T2. The various component
parts of situation C are associated with it through special deep-
case relationships. For example, in the network there is an arc
labeled "content" from 'C' to 'B.' This arc indicates that B is
the #3dcontent of situation C, where the notation "#acontent of C"
means "the value (#) of the content attribute (d) of C." Simi-
larly, X is the #dcontainer of C while T1 and T2 are the #adstart-
time and #adend-time, respectively.

As a general principle, arcs encode only element, subset,
and case relationships. (Under one interpretation, element and
subset relationships may be viewed as deep cases also.) Arcs
are never allowed to encode relationships such as ownership, which
are time bounded.

1Single quotes are used to delimit nodes.

PHYSICAL
OBJECTS

]

CONTAINLRS

S

MACHINE
PARTS

FPigure 1.

-29-

SITUATIONS
A
s
(sit- -
contain) TIHES
e e
g
e,
4
Ze

A typical nret fragment.

-30-

2. Net Partitioning

The central idea of net partitioning is to separate the
various nodes and arcs of a network into units called spaces.
Every node and every arc of the overall network is assigned to
exactly one space with all nodes and arcs that lie in the same
space being distinguishable from those of other spaces. While
nodes and arcs of different spaces may be linked, the linkage
must pass through certain boundaries that separate one net space
from another.

Net spaces are typically used to delimit the scopes of quan-
tified variables and to distinguish alternative hypotheses
(during parsing and planning). However, before taking up such
practical applications, consider the simpler (if atypical) net-
work partitioning exhibited in Figqure 2. As shown, each space
of the partitioning is enclosed within a dotted line. For example,
space S1 is at the top of the figure and includes nodes 'PHYSICAL.

OBJECTS,' 'BOLTS,' '{sit-contain)' and 'BOXES.' S1 also includes
the two s arcs indicating that the set of BOLTS and the set of
BOXES are subsets of the set 'PHYSICAL.OBJECTS.' 1In our diagram-

matic representations of semantic nets, an arc belongs to a space
if the arc's label is written within the dotted-line boundaries
of the space. Thus the e arc from 'B' to 'BOLTS' lies in space
S2.

The various spaces of a partition are organized into a
partial ordering, such as that shown in Figure 3. 1In viewing
the semantic network from some point S in this ordering, only
those nodes and arcs are visible that lie in S or in a space
above S in the ordering. Thus, for example, from space S2 of
Figures 2 and 3, only those nodes and arcs lying in S2 or S1 are
visible. 1In particular, it is possible to see that B is a BOLT
and that BOLTS are PHYSICAL.OBJECTS, but it is not possible to
see that X is a BOX. From space S5, information in spaces S5,
S§3, S2, and S1 is visible. Hence, from S5, the whole of the
semantic network of Figure 2 may be seen. (For certain applica-
tions, the net may be inspected one space at a time. For example,
it is possible to query the net in such a way that only nodes and
arcs lying in space S2 are visible even though information in S1
is normally visible whenever S2 is inspected.)

In practice, partitioned networks are constructed by creat-
ing empty net spaces, adding them to the partition ordering, and
then creating nodes and arcs within each newly created space.
The use of partitioning in the encoding of quantified statements
and categories is the subject of the next two sections.

3. Quantified Statements

In addition to an ability to encode specific facts (such as
the containing event encoded in Figure 1), a semantic system
needs some facility for grouping sets of similar facts into units,
allowing these facts to be represented collectively through some
sharing mechanism, and to be conceptualized as an integrated

-31-

PHYSICAL
OBJECTS

Figure 2. A sample net-space partition.

Figure 3. A net-space partial ordering.

-32-

whole. An ability to encode generalized information (in the

form of quantified expressions) is of considerable importance
since it is often impractical (or even impossible) to record

the same information by a collection of individual specific
statements, both because of the very number (possibly infinite)
of statements required and because details of particular individ-
uals may not be explicitly known. Further, since quantification
is a component of language, an ability to encode quantifiers is
vital to the understanding of certain classes of English sentences,
e.g., "Are all subs in the Russian Fleet nuclear powered?" "Do
some U.S. boats have more than five torpedo tubes?"

As an example of how quantification is handled in parti-
tioned networks, consider the network of Figure 4 that encodes
the statement, "Every bolt in the box is 3/4 inch long and has
a nut screwed onto it." In this network, the node 'GS' repre-
sents the set of all general statements (the set of statements
involving universal quantifiers or, under another interpretation,
the set of recurring patterns of events.) The node 'g' repre-
sents the particular statement (set of events) cited above.

Characteristically, a general statement encodes a collection
of separate circumstances, all of which follow the same basic
pattern. This basic pattern is represented by the #aform of the
general statement. The #adaform of g is encoded by a net space,
S4, that lies just below S1 in the partition ordering. (When
one net space is pictured inside another, the inner space is
below the outer in the partition ordering.) This net space may
be thought of as a supernode containing its own internal struc-
ture and representing a composite variable that takes on a dif-
ferent value for each of the instantiations of the recurring
pattern. Each node and arc within the space of the supernode
may be thought of as a subvariable.

General statements are also typically associated with one
or more universally quantified variables that are allowed to
assume values from some specified range. Statement g, for
example, has a universally quantified variable b given by its
aVv attribute. Note that variable b is necessarily a part of
the #aform of g, i.e., 'b' lies in space S#. From node 'b' there
is an e arc to the set the.bolts.in.the.box, indicating that
the value of b (written #b) must be taken from the range set
the.bolts.in.box. (The node 'the.bolts.in.the.box' has been
created especially to help encode the general statement. Its
meaning may be inferred subsequently when the.bolts.in.box.X is
defined by the network Figure 6.)

The interpretation of a general statement is that for each
assignment of the variables #aVv to values in their corresponding
ranges, there exist entities matching the structure of the #3form.
For g this means that for every #b an element of the.bolts.in.the.
box there exist,

#h ¢ <{has.length)
#s C {sit-screwed:simplistic)

#n C NUTS ,

-33-

linear,
measures

sit-
screwed:
simplistic),

Figure 4. Every bolt in the box is 3/4-inch
long and has a nut screwed onto it.

-34-

and the relations,

#b is the #3obj of #h
3/4 INCH is the #dmeasure of #h

#b is the #amt of #s (i.e., #b is the male-~
threaded part of #s)

and #n is the #aft of #s.

Thus, the interpretation of g is that for every #b in the.bolts.
in.the.box, there exists a situation #h in which the length of
OBJect #b is the MEASURE 3/4 inch. Since '3/4 INCH' lies out-
side space S4, there is only one measure for all the bolts in
the box. Further, for each bolt #b there is a nut #n (depending
on the individual #b) which is in a situation of being screwed
onto #b. (A screwed:simplistic connection may exist only between
two threaded objects, one with male threads [the #amt] the other
with female threads [the #aft]. A screwed:simplistic connection
may be contrasted with screwed:standard connections in which
multiple unthreaded parts are held together by a bolt [or other
threaded object] that passes through the unthreaded objects to
engage a nut.)

Complex gquantifications involving nested scopes may also
be encoded by net spaces, as shown abstractly in Figure 5.

4. Rules and Categories

A convenient method for organizing information in a semantic
system is to divide the various objects (including physical ob-
jects, situation, and event objects) in the semantic domain into
a number of categories. Using categories, objects that are some-
what alike become grouped together, allowing similar objects to
be thought about and talked about collectively. The scheme is
hierarchical, in that some categories may be subcategories of
more general classes. The lower a class is in the category
hierarchy, the more alike its members must be. The "likeness"
arises in that members of each category possess certain common,
characterizing properties (such as an association, with common
attributes or deep conceptual cases.)

The categorical system serves the important purposes of spot-
lighting similarities among objects and compressing redundant
information by recording common information at the category level
rather than with the individual. If an object 2 is known to
belong to some category K, then 2 is known to possess the common
properties of K's members and the common properties of the members
of each of K's supercategories. This ability to encode informa-
tion at the category level rather than with each individual is of
practical importance because it saves computer memory and because

-35-

(va ¢ A)(db ¢ B) (¥c ¢ C)(dd ¢ c¢) [P(a,b,d)] .

Figure 5.

-36-

all the elements of a category (perhaps being infinite in number)
may not be explicitly known.

For natural language processing, the category system has
the important feature that members of the more significant cate-
gories (the categories commonly held in the minds of humans) are
expressed by the same set of linguistic patterns. As an elemen-
tary example, screwdrivers, wrenches, hammers, and saws belong
to a category of objects that may be expressed by noun phrases
headed by the noun "tool." Various attaching events may be ex-
pressed by complete sentences using the words "attach," "mount,"
or "fasten" as their central verbs.

Central to the notion of a category is the notion of a rule
that specifies a necessary and sufficient test for category mem-
bership. Necessary rules, which all category members must obey,
and sufficient rules, which can prove that an object belongs to
a given category, are also of importance.

As a simple example of a category and its defining rule,
consider the category of bolts in box X. This category is rep-
resented by node 'the.bolts.in.box.X' of Figure 6 with the asso-
ciated rule being encoded by net space S2. The ens arc lying
in space S2 from node 'b' to 'the.bolts.in.box.X' indicates that
'b' represents what may be thought of as an archetypal element
of the category. (Symbol "ens" means archetypal "element, neces-
sary and sufficient.”) Any objects with the characteristics of
b belong to the category, and all members of the category have
the characteristics of b. As encoded in space S2, the charac-
teristics of b include membership in BOLTS (the set of all bolts)
and involvement as the #dcontent in a containing situation in
which box X is the #acontainer.

the., bolts. E

in. box.X

— — —— — — — — —

Figure 6. The necessary and sufficient rule defining
"the bolts in box x".

-37-

In natural language processing, particularly during the
parsing phase when surface structures are being translated into
nets and when the semantic well formedness of sentences and
sentence fragments is being tested, it is important to know what
attributes (deep cases) are associated with certain categories
of objects (especially with event, situation, and other verblike
categories) and what range of values each attribute may assume.
This information is of utility because attributes indicate the
types of participants that are involved in particular categories
of situations and because there is often a direct mapping from
syntactic cases (including prepositional phrases) to these attri-
butes. Knowing the correspondences between surface cases and
attributes, and knowing the ranges of values for each attribute
allows some parses to be rejected on macrosemantic grounds and
provides a facility for predicting the citing of certain situa-
tion participants in the surface language. (This prediction
ability is especially important for speech understanding.)

The attribute-range information for a category, collectively
referred to as the category's delineation, may be associated
with the category through a delineation rule. A delineation
rule is a necessary rule that includes range information about
every attribute of the delineated category.

As an example of a delineation rule, consider the delinea-
tion of category (to-bolt), the category of events in which two
machine parts are attached by using bolts as fasteners. Delinea-
tion information for this category is encoded by the network of
Figure 7. In this network, node '{to-bolt)' is linked to a node
'b’ by an ed arc which indicates that b is the delineating
"element" of {to-bolt). Encoded within space S4 is attribute-
range information concerning each of the six attributes possessed
by members of {to-bolt)>. 1In particular, the rule encoded by
space S4 indicates that a bolting event involves an #aactor
taken from the set of INTELLIGENT.ANTIMATE.OBJECTS, a #aminor-p
and a #amajor-p taken from the set of MACHINE.PARTS, a set of
#afasteners taken from the set of BOLT/NUTS (a bolt/nut is a bolt
and a nut that work together to form a single fastener), a #atool
taken from the set of TOOLS (which includes hands and fingers),
and a #2time taken from the set of TIME.INTERVALS.

Given the two sentences, "I bolted the pump to the base
plate WITH 1 INCH BOLTS," "I bolted the pump to the base plate
WITH THE WRENCH," the delineation of (to-bolt) may be used to
determine that the WITH phrase in the first sentence supplies
the #afasteners case, while in the second sentence it supplies
the #2tools case.

The delineation rule of Figure 7 shows all delineation
information concerning (to-bolt)> to be encoded in a single rule
linked directly to the category. 1In practice, cateqgorical infor-
mation is almost always distributed among many points in the
categorical hierarchy. To see how information is distributed
at various levels, consider the hierarchy of (to-attach) events
that is exhibited in Figure 8. The most general category in the

-38-

TIMFE
INTLRVALS

MACHINE
PARTS

Figure 7. Delineation of <{to-bolt).

{to-attach)

-39-

MACHINE.
PARTS

-——
o«
I

|

|

-y

| 8

I
ﬁg_

<has.male.
threads)

{to-screw:
simplistic)

d

I
*"é |
I
N
|

- o]
m |

O

threads)

NTELLIGEN
ANIMATE

{to-attach:
fastener)

s Ca
Cto-attach: M _aSEn_e-rs—|
fastener/ | . I

tool
2oL L
s
{to-bolt)

Figure 8. The {to-attach) family.

-40-

hierarchy is category U, the universal set. Even U has a deline-
ation since all objects (including events and situations) exist
over some (possibly one-point or infinite) time interval. A
subset of U is {(to-attach), the set of all attaching events of
any nature whatever. Members of {(to-attach) inherit the time
attribute from supercategory U and add two additional attributes,
#dparts and #dactor, of their own. In general, each attaching
event involves a set of #aparts that an #dactor binds together

in some way.

Two subcategories of (to-attach) are shown in the figure.
The first is {to-screw:simplistic), which is the set of events
in which two threaded objects, one (#amt) with male threads, the
other (#2ft) with female threads are engaged by twisting. Notice
that the delineation rule of this category shows that the #amt
and #aft are both elements of the #adparts. The cardinality of
#aparts is at most two (but could be one as for a garden hose
with one end attached to the other).

A second subcategory of {to-attach) is (to-attach:fastener),
the category of fastening events in which the #aparts are attached
with fasteners. (Screwing a lightbulb into a socket involves
no fasteners and is a simplistic screwing event. ©Nailing a sign
to a post involves a nail as a fastener.) The delineation of
(to-attach:fastener) simply adds the attribute of afasteners.

Category <to-bolt) is a subcategory of (to-attach:tool)
which is a subcategory of {to-attach:fastener). The delineation
of {to-bolt) shown in Figure 8 indicates how the #amajor-p and
the #dminor-p are related to #avarts and to each other. Further,
the #afasteners used by bolting events are restricted to be bolt/
nuts as opposed to any type of fastener. Linkage to a process
automaton that indicates the sequence of changes characterizing
a bolting event might also be included with the category infor-
mation but has been omitted here for simplicity.

5. Abstraction

Since a user may think at varying levels of detail, it is
important in our second task domain for the semantic system to
be able to encode information at multiple levels of abstraction
and have some capability for jumping from one level to another.
Figure 9 shows one way in which net partitioning may be used to
encode an attaching event A at two levels of detail. By viewing
the network from the vantage of space S2 (which lies below S1 in
the ordering and is a sister space to S3), A is seen to be an
element of {to-attach) since the e arc lying in S2 is visible.
Since the information lying in S3 is invisible from S$2, A appears
to have only an #dactor and a set of #aparts and is not seen to
involve #dfasteners. From S3, the same event may be viewed with
more detail. First, the e arc from A to {to-attach) is invisible
and A is thus seen as an element of {to-bolt), a subset of
{to-attach). Further, at this finer level of detail, the
#afasteners involved in the attaching (bolting) event are visible
(as are tools, and so on, which are omitted from the figure for
simplicity.)

—41-

{to-attach)

BASE-PLATE

Figure 9. Viewing a bolting at two levels of detail.

42~

6. Processes

An important aspect of the workstation domain is that of
change. Since sequences of change tend to follow certain regular
patterns, it is conveninet to organize the recurring sequences
of change into categories, grouping similar sequences together.
Each category of sequential change is tantamount to an event
category, the members of which may be thought of as individual
enactments of a common plot or script that encodes a generalized
pattern of change. For example, every event of tightening bolts
follows the plot that consists of finding a wrench, putting the
wrench on the bolt, twisting the bolt clockwise, and so on. Each
enactment casts different actors in the various roles, but follows
the same basic pattern.

Since the members of a particular event category may be
distinguished as exactly those instantiations of sequential change
that follow some particular script, the script itself forms the
basis for a rule defining the event category.

Acknowledgment

This report has been extracted from W.E. Walker et al.,
Speech Understanding Research, Annual Report, Project 3804,
Artificial Intelligence Center, SRI, Menlo Park, California,
1975.

43—

The Choice of Semantic Representation in a QAS

J.C. Simon

1. Introduction

It is now generally recognized that a guestion-answering
system has to have some limitations in order to be realistic:

a) 1in the outside universe (the domain),
b) 1in the language of communication (input-output),
¢) in the ability of reasoning (the intelligence).

At the Institut de Programmation, we decided to select the
restricted domains of learning elementary arithmetic and simple
stories (fables) in order to bypass, in a way, the linguistic
problems of the communication language and to restrict the
semantic representations to a strict model.

In fact, the choice of the "deep structure" and of the basic
operators acting on it is made a priori, with some learning
abilities. A capacity of planned extension seems essential to
any QAS and cannot reasonably be hoped for if the semantic
representation is not restricted to a formalized simple structure.
Another point of importance is the nature of the implementation
of the semantic information. In a sense, a comparison may be
made with the implementation of a "computing function"--either
an algorithm or a table. The first type is quite general and
works on all the variable space (possibly); the second is more
flexible, but no "extension" is permissible outside of the table
entries. 1In representing a "semantic function," the same con-
flict arises between generality and exceptions; a linguist's
proverb says, "a grammar always leaks."

A compromise has to be decided for the representation of the
semantic space and operators acting on that space. Building it
around a theorem prover means that one believes that the universe
can be modeled by algorithms rather than by a set of specific
informations. On the other hand, semantic nets have been found
objectionable because of their limited capacity for reasoning.

Our choice is to build up the semantic information into an improved
semantic net, relying on the idea of categories (later on also
called types or class), and also, at the same time, to build up

the communication language.

44—

2. Project of J.P. Jouannaud, G. Guiho, J.P. Treuil

The domain is formation concept in elementary arithmetic.
The data base is made of "types" connected by liaisons. These
types are defined by some memory information and/or properties.
They are interpreted by a structure. Operators may act on the
data base and on the interpretative structure. A set of heuris-
tics controls the learning phase.

Only questions, statements, and answers are planned. The
difficulties of the communication language are deliberately by-
passed. In fact, we are mainly interested in the learning
process--here the formation of concepts.

The operators are represented in A-calculus formalism, con-
venient as the atomic types are strings of characters. At the
start, the usual basic operators of i-calculus are given.

Only a few types exist at the start, the idea being to
generate new types from the base types, the question-answers,
and the operators. Heuristics also allow generating new opera-
tors and estimating them (partially).

A new information such as a statement will:

a) either be put in an existing type,

b) modify the structure and create new types.

The "autonomous" work on the semantic structure allows:

a) creating new operators,

b) building new links between types,

c) creating new atomic types and possibly new heuristics
of utilization.

The A-calculus is used in (a) and (b), in particular the "combi-
nators" such as substitution, abstraction, and generalization.

Heuristics of forgetting are planned, so as to limit the

growth. The interaction with the professor will also allow
pruning the structure through the human evaluation of usefulness.

3. Project of G. Sabah, G. Loyo, M. Puzin

This project relies on the facilities offered by SIMULA 67,
which easily allows setting up categories by the class process.
The categories are tree structures of classes, each of which has
attributes and/or procedures. By linking various trees, a lattice
structure may be obtained.

-45-

A phrase is again only an assertion, a question, or an
answer. The deep structure into which the interpretation is made
is unique. Thus a phrase has to be matched to the deep structure.
The operators acting on the semantic net are the monitor, the
analyzer (input-output), and the operators exploiting or modify-
ing the memory structure.

Generalization capacity is naturally embedded in the tree
structure of the class categories. The different types of
classes utilized are:

a) ELEMENT - a word of the vocabulary;

b) ASSERTION - contains the information relative to a
statement;

c) OBPEN - the different nominal syntagms (N.S.) occurring
in a phrase;

d) PREDI - the predicate of the phrase.

Along with Fillmore, Anderson, and Bower, we decided that a
phrase is a "predicate" about an "object of thought,” in a con-
text (time and locus). This is represented by the simple rules

Assertion —— (context) + N.S. + Predicate
Context —— (N.S.) + (N.S.)
N.S. ——{word} + {assertion}
() signifies one or @, { } one or more.
As an example, let us give the composition of an object of the
class PREDI:
Qualification (points toward an ELEMENT)
Source
Principle agent

Theme (points toward an OBPEN)

represerits the semantic rela-

Goal tions: the case.

Secondary agent

Locus J

~46-

Most of the time, an object PREDI is a verb, though it also may
be an adjective or a preposition. For a verb, five "cases" are
distinguished.

state verb: the sky is blue
processes verb: the fox sees grapes
action verb: Mary dances

action processes verb: Paul cuts a string

locus verb: Paul is in the garden.

An incoming phrase will either:
a) modify the memory,
b) provoke an action (reasoning with a possible answer).

The phase, "the fox sees grapes," belongs to (a); the words

are recognized but not understood. The phrase, "speak about

the grapes,”™ is understood 1n the sense that it will be followed
by the execution of a procedure giving a speech about grapes.
The phrase, "the fox is an animal," is understood in the sense
that the object fox is created as the sum of the object animal.

The generalizations are potentially made by going up and
down a class tree, as in NAGAO semantic trees. The restrictions
are made by interaction with the professor.

The three main directing ideas of this project are:
a) the existence of a minimum a priori knowledge,
b) the choice of a semantic deep structure,

c) the possibility of a learning for the operators modi-
fying and handling this structure.

4, Conclusion

To date (June '75), the implementation by program of the
two projects is 50% made up. The first results have been obtained
and are encouraging. The emphasis of our approach is on the
capabilities of the semantic deep structure and on its extensi-
bility. Of course, at the start, the linguistic communications
are poor, in the sense that the QAS does not understand certain
types of phrases. The communication language has to be learned
and refined during the learning phases.

-47-

Analysis of Japanese Sentences by Using Semantic

and Contextual Information

Makoto Nagao and Jun-Ichi Tsujii

1. Introduction

We are developing a question-answering system with natural
language input. In this paper, we describe the organization of
the natural language parser, which we have developed in the past
two years. The parser can transform a fairly complicated sen-
tence into a deep case structure by utilizing detailed semantic
descriptions in the dictionary and contextual information
extracted from the preceding sentences.

In most of the artificial intelligence approaches to the
understanding of natural language, knowledge structures, which
are convenient for logical operations, are used in order to
represent both semantic and contextual information. In fact,
logical expressions are suitable for solving some kinds of pro-
blems in natural language, especially in the deep deductive
stage of understanding.

However, the intuitive reasoning, which is not well for-
malized as logical operation, plays more important roles in the
human understanding process. We think that intuitive
reasoning is completely based on the language activity in the
human brain, and the association functions such as semantic
similarity among words, semantic deepness of an interpretation,
probability of associative occurrence of events, etc., together
with the knowledge structures and short-, intermediate-, and
long-term memories, are inherent in the question-answering
activities. Our approach to question-answering, therefore, is
not based on formal logics, but on deep structures of natural
language and some heuristics.

We express the meaning of a word in view of how it is related
to other words. The meaning of a verb is described in the form
of "activity patterns" in the verb dictionary. Activity pattern
is actually the case frame of a verb and its related additional
information. Case frame represents itself as to what kind of
cases the activity requires, and what kind of objects will be
supplied for each case. Additional information concerns how an
activity pattern is related to other activity patterns by
causal relationships. By using this description, we can infer
what activities and change will follow the present activity.

-48-

The human abstraction process from a sentence to cognition
consists of several stages. The logical expression may be used
somewhere in the final stages. In the intermediate stages, we
use several kinds of memory structures such as short-term memory,
intermediate-term memory, and so on. We provide such memory
structures in our system. By combining these structures with
semantic descriptions of words, our system can analyze fairly
complicated Japanese sentences.

To start with the construction of a question-answering
system, we have confined ourselves to the field of elementary
chemistry where we can describe rather easily the semantic world
in detail. From elementary and middle-school textbooks on
chemistry, we chose sample sentences of natural language
analysis. This choice was due to the small irregularity of the
styles in these Japanese sentences, although they contain
enough complexity of the Japanese language.

The Japanese language is a typical SOV language. The word
order is rather arbitrary except that the main verb comes last.
The subject noun is often omitted when it can be easily surmised.
Cases such as subjective case, objective case, and dative case
are syntactically indicated by postpositions, but they can be
ambiguously used for several cases. So the determination of the
sentence structure is strongly dependent on semantics and
contextual situations. This paper is an attempt to surmount
these difficulties by an artificial intelligence approach. Use
is made of chemistry semantics, contextual information, and so
on, and the analysis program is written by PLATON (Programing
LAnquage for Tree QperatioN), which we have developed on LISP.
It has the facilities of pattern matching and flexible back-
tracking. A grammar written by PLATON not only maintains the
clarity of syntax, but also provides adequate semantic and
contextual representations.

2. Lexical Descriptions of Words

2.1 ©Noun Description

Most nouns have definite meaning by themselves. We call
them entity nouns. An entity noun is considered to represent a
set of objects, and therefore is taken as a name of the set. The
objects belonging to the set may share the same properties. By
introducing another property, the set may be divided into a
number of subsets, each of which is expressed by another noun.
We describe such set-inclusion relationships and set properties
in the noun dictionary.

We represent a property of a noun by an attribute~value pair
expressed simply by an abbreviated form (A V). For instance,
the dictionary contents of the nouns "material” and "liquid" are:

-49-

material: ((SP) (ATTR(STATE) (MASS) (COLOR) (SHAPE)...))
liquid: ((SP material) (ATTR (STATE LIQUID) (SHAPE NIL))).

The descriptions (STATE) (MASS) and so on in the definition of
"material," which lack the value part V, show that "material"

may have arbitrary values of these attributes. In the definition
of "liquid," there is a SP-link to "material," which means that
"material" is a superset concept of "liquid," or that "liquid"

is a subset or a lower concept of "material." The objects
belonging to a subset are considered to have the same properties
as the objects of the superset, in addition to the properties
described explicitly in its definition.

By the above descriptions, we can see that the value of the
attribute STATE of "liquid" is LIQUID, and that of SHAPE is the
special value NIL. The value NIL means "liquid" can not have
any value of SHAPE. By tracing up the SP-links, we can retrieve
all the (A V) pairs of an object, where we assume the value of
an attribute of a lower concept has precedence over that of the
upper concept. For instance, we can obtain the following full
description of "liquid":

liquid: ({(ATTR (STATE LIQUID) (SHAPE NIL) (MASS) (COLOR)...)).

These upper-lower relationships among entity nouns are not
expressed by a tree structure. Some nouns may have properties
of more than one different noun. "Water" is such an example.
"Water" has the properties of both "liquid" and "compound." We
permit a noun to have several upper concepts. The relationships
are then represented by a lattice as shown in Figure 1.

material

mixture compound

solution water oxygen metal ammonia sodium
chloride
(salt)
water solution zinc copper
salt liquid

solution ammonia

Figure 1. Upper-lower relationships among nouns.

-50-~

Although most nouns are regarded as entity nouns, there are
a few nouns which have relational functions. We call them
relational nouns. "Father" is a familiar example of such a word.
In order to identify a person indicated by the word, we have to
know whose father he is. In the chemical field, we can easily
find such nouns, for example "weight," "temperature," "color,"
"mass," and so on. They are called attribute nouns. Their
meanings are described in different ways from that of ordinary
nouns. Figure 2 shows some examples. Here, A-ST designates
the standard name of the attribute that is expressed by the word.

(ONDO ((NF N-A) (A-ST TEMPERATURE) (SP ZOKUSEI RYOU 1))
temperature attribute quantity
(SHITSURYOU ((NF N-A) (A-ST MASS) (SP ZOKUSEI RYO)
mass attribute quantity
(OOKISA ((NF N-A) (A-ST VOLUME MASS LENGTH AREA)
size (SP ZOKUSEI RYO)))

attribute quantity

(IRO ((NF N-A) (A-ST COLOR) (SP ZOKUSEI SHITSU)))
color attribute quality

An attribute noun may express more than one standard attribute
OOKISA (size) expresses VOLUME, MASS, LENGTH, AREA, and which attribute
it expresses depends upon what entity noun is used with it.

Attribute nouns are further classified into two groups--quantitative
and qualitative. A qualitative attribute noun cannot be a case element
of the verbs which require quantitative nouns. The verbs "FUERU" (increase)
and "HERU" (decrease) are such examples.

Figure 2. Attribute nouns.

"Liquid” is another example of relational nouns. The
JaPangse word which corresponds to "liquid" is "EKITAI." Though
"liquid" in English represents two parts of speech, that is,
noun and adjective, "EKITAI" in Japanese is categorized syntac-
t1ca;ly as a noun. But semantically "EKITAI" has two different
meanings, one corresponding to the noun usage of "liguid," the
gther corresponding to the adjective usage. The noun "EKITAI"
in the adjective usage is called a value noun of the attribute
STATE. Another Japanes word "AKAIRO," which corresponds to
"red color" in English is also a value noun of the attribute
COLOR. Figure 3 shows the description of these nouns in the
noun dictionary.

-51-

(EKITAI ((NF N-E) (SP BUSSHITSU) (ATR (STATE LIQUID) (SHAPE NIL)))))
liquid material

((NF N-V) (V-DESCRIPTION (STATE LIQUID)))

(AKAIRO ((NF N-E) (SP IRO)))
red color

((NF N-V) (V-DESCRIPTION (COLOR RED)))

Figure 3. Value nouns.

There are other kinds of relational nouns in Japanese, e.g.,
action noun, prepositional noun, anaphoric noun, and function
noun. Action noun is the nominalization of a verb. For example,
"KANSATSU" (observation) is the nominalization of the verb
"KANSATSU-SURU" (observe.) We describe this in the dictionary
by giving the link to the original verb and other additional
information.

There are no words in Japanese which correspond to preposi-
tions in English, but some special nouns play the role of prepo-
sitions. We call such nouns prepositional nouns. Because a
prepositional noun usually has more than one meaning, just as a
English preposition has, we attach semantic conditions in order
to disambiguate them. Figure 4 shows examples of lexical descrip-
tions of prepositional nouns. Corresponding to each meaning of
them, we give a triplet. The first element of it is the semantic
condition. If the condition is satisfied, the corresponding
second element is adopted as the meaning. If not, the next
triplet is tried. The second element of a triplet represents
the whole meaning of the phrase. For example, the whole meaning
of the phrase "TSUKUE (desk-entity noun) NO (of) UE (on-~-
prepositional noun)" (on the desk) is PLACE. The third element
of a triplet expresses the relationship by which the other noun
in the phrase may specialize the whole meaning.

(MAE ((NF.N-P) (F-DESCRIPTICN)))
before
in front of ((CAT ACTION) TIME BEFORE))
((AND (CAT N-E) (LOWER DOUGU)))
instrument
((BUSSHITSU) PLACE IN-FRONT-OF)
material
(NAKA ((NF N-P) (F-DESCRIPTION)))
in
(OR (LOWER YOUKI) (LOWER EKITAL) PLACE IN)
container liquid

Figure 4. Prepositional nouns.

-52-

2.2 Verb Description

Verbs, adjectives, and prepositions in English have relational
meanings with nouns. A verb represents a certain activity, while
the agent who causes the activity is not inherent to the meaning
of the verb, the same with the object which the activity affects, and
the other components. They appear in a sentence with certain
loose relations to a verb of the sentence. 1In our system, the
meaning of a verb is described by setting up several relational
slots which will be filled in by nouns. 1In this sense, the
meaning of a verb is not confined to itself, but is related to
nouns.

We describe these relations by using the case concept
introduced by C.J. Fillmore. Case may be looked upon as a role
which an object plays in an activity. Because several objects
usually participate in an activity, there are several cases
associated with an activity. An object is expressed by a noun
phrase, and an activity by a verb in a sentence. A sentence
instantiates an activity by supplying noun phrases to the cases
associated with the activity. We call such instantiated activity
an event. The problem is to decide what case a noun phrase takes
to a verb in a sentence.

Though there are usually some syntactic clues in a sentence
as to how it instantiates an activity, they are not enough to
decide the case relationships between noun phrases and a verb.
To do it, we need not only syntactic information but also a
semantic one. A verb has its own special usage patterns. That
is, certain kinds of cases are necessary for the activity, and
certain kinds of objects are preferable as the case elements.
We call these patterns case frames of verbs, and express them
by a list of case pairs such as (CASE-ELEMENT: NOUN). A verb
usually has more than one case frame corresponding to the dif-
ferent usages of it. A typical description of a verb is shown
in Figure 5.

(TOKASU (CF
melt ((ACT NINGEN) { OBJ KOTAI) (IN EKITAI))))
dissolve: human being solid liquid
((ACT NINGEN) (OBJ KOTAI) (INST))

human being solid

((ACT SAN) (OBJ KINZOKU))
acid metal

Figure 5. A typical description of a verb.

-53-

According to this description, we understand that the verb
"TOKASU" (melt, dissolve) has two different usages. In one
usage, the verb takes the ACTOR case, and prefers to take the
subconcepts of the noun "NINGEN" (human being) as the case
element. In such a way, case frame descriptions are closely
connected with the noun descriptions, especially of the upper-
lower concept relationships among nouns.

There are two kinds of cases, intrinsic case and extrinsic
case. The intrinsic cases of a verb are essential ones for the
activity, but extrinsic cases are not. For example, the cases
of TIME and PLACE, which express when and where an event occurs,
are extrinsic ones for ordinary verbs. Most activities can be
modified by these extrinsic cases, but the kinds of nouns pre-
ferred for these case elements do not strongly depend on the
kinds of activities. Therefore, we describe only the intrinsic
cases in the verb dictionary. We set up fourteen cases, as
shown in Table 1, for the analysis of sentences in the textbook
of elementary chemistry.

In order to resolve the syntactic ambiquities of a sentence,
it is also necessary to utilize contextual information obtained
by the preceding sentences. When one knows a certain event has
occurred, he can expect what events will occur in succession,
and what changes the objects participating in the event will
suffer. This kind of expectation plays an important role in
understanding sentences. Various kinds of associations cluster
richly around an individual activity such as human knowledge.

One can perform contextual analysis of language by using these
associations.

We append this kind of individual knowledge to a case frame
of a verb. The following two items are described for each verb
in the verb dictionary.

1) CON: this means the consequent activities which may
probably follow the activity of the verb, but not
necessarily.

2) NTRANS: this means the resultant relations which may
hold between the activity and the objects in view of
how the objects will be influenced by the activity.
In our system, the influence on the objects is described
by the following three expressions.

a) (ADD case a-set-of-(A V)-pairs)
b) (DELETE case a-set-of-attributes)
c) (CREAT lexical-name-of-an-object a-set-of-(A V)-pairs)

By a), we mean that the object in the case indicated by the
second element comes to have a set of properties indicated by the
third element; b) is for the deletion of a set of properties

-54-

Table 1.

1) ACT: ACTor is responsible for action.

KARE- GA o0y -0 SHIKENKAN-NI IRERU.
(he) - (ACT) (sulfur)-(OBJ) (test tube)-(IN, PLACE, etc.) (put in)

(He puts sulfur in a test tube.)

In the chemical field, a chemical object is often regarded as ACTor

of an action, though it does not exercise intention to do the action.

For
example,

the underlined word in the following sentence is regarded as ACT.

ENSAN -WA DOU -0 TOKASU.,
(hydrochloric acid)-(all cases) (copper)-(OBJ) (melt)

(Hydrochloric acid melts copper.)

2) SUBJ: SUBJect is one which is the main object of talk in a sentence.

a) KITAI-NO TAISEKI - GA FUERU.
(gas) {volume) - (SUBJ) (increase)

(The volume of the gas increases.)

b) I0U - WA KIIROI.
(sulfur) - (SUBJ) (yellow)

(Sulfur is yellow.)

c) KITAI- GA HASSEI-SURU!
(gas) - (SUBJ) (be created)

(Gas is created.)

In Japanese, this sentence is not in passive voice.

3) OBJ: OBJect is the receiving end of an activity. It is affected
by the activity.
a) KARE- GA MIZU - [0} NESSURU.
(he) - (SUBJ) (water) - (OBJ) (heat)
(He heats the water.)
b) ENSAN - GA AEN - O TOKASU.

(hydrochloric acid)-(ACT) (zinc)-(OBJ) (melt)

(Bydrochloric acid melts zinc.)

—-55-

Table 1 (continued).

4)

5)

IOBJ: This case is semantically the most neutral case. It is an
object or concept which is affected by an activity, and which
is not OBJect. This case is usually specialized by other
cases such as PLACE, TO, IN, and so on, depending on the
semantic interpretation of the verb itself.

DOU -0 ENSAN-NI TSUKERU.
(copper) - (OBJ) (hydrochloric acid)-(IOBJ) (dip)
(IN)

(Someone dips copper in hydrochloric acid.)

FROM: FROM describes a former position or state. By the physical
objects with verbs: put, give, receive, and so on, FROM is
the previous location of the OBJECT.

a) SHIKENKAN-KARA BEAKER-E EKITAI-O
(test tube)-(FROM) (beaker)-(PLACE) (liquid)-(OBJECT)

UTSUSU.
(pour)

((Someone) pour the liquid from the test tube into the beaker.

b) KAGOUBUTSU-KARA SUISO -GA HASSEISURU. 1
(compound) - (FROM) (hydrogen)-(SUBJ) (be generated)

(Hydrogen is generated from the compound.)

In Japanese, this sentence is not in the passive voice.

6)

7)

RESULT: RESULT is to the future as FROM is to the past.

MIzU - GA SUIJOUKI-NI NARU.
(water)- (SUBJ) (steam) (RESULT) (become)

(The water becomes steam.)

INST: INSTrument is an object used as a tool.

GAS-BURNER-DE MIZU -0 NESSURU.
(gas burner)-(INST) (water)-(0OBJ) (heat)

((Someone) heats water by a gas burner.)

-~56-

Table 1 (continued).

8) TO: This is a destination of something in the action.

a) SUIBUN - GA NAKUNARU TOKI MADE NESSHI TSUZUKERU.

(water) - (SUBJ) (be gone) (time) (till) (heat) (continue)
(Continue to heat (it) till water is gone.)

b) MIZU-O 10°C-NI HIYASU.
(water)-(0BJ) (10°C)-(TO) (refrigerate)
((Someone) refrigerates the water to 10°C.)

9) FACT:
KORE - O SHITSURYOUHOZON-NO HOUSOKU- TO IU.
(it) -(0BJ) (the conservation of mass) (law) -(FACT) (call)

(We call it the law of conservation of mass.)

10) PLACE:

ALCOHOL-LAMP-NO YOKO -NI BEAKER-O OKU.
(alcohol lamp) (side) - (PLACE) (beaker)-(0BJ) (put)

((Someone) puts a beaker on the side of an alcohol lamp.)

11) IN: This is the case which is more specific than PLACE.

MIZU - O SHIKENKAN-NI IRERU.
(water) (OBJ) (test tube)-(IN) (pour)

((Someone) pour water in a test tube.)

12) SOURCE: This shows materials of compounds.

ENSOSANNATRIUM -WA ENSO, SANSO , NATRIUM -KARA
(sodium chlorate)- (SUBJ) (chlorine) (oxygen) (natrium) - (SOURCE)
DEKITEIRU.

(consist)

(Sodium chlorate consists of chlorine, oxygen, and natrium.)

-57-

Table 1 (concluded).

13) CAUSE: This shows a reason or cause of the activity.

NESSHITA-TAME - NI HAGESKIKU KAGOUSURU.

(heat) -(reason)-(CAUSE)} (violently) (react)

(Because (someone) heats (them), (they) react violently.)
14) TIME:

NESSHITA-TOKI -NI SANSO-GA HASSEISURU.

(heat) (time) ~(TIME) (oxygen)-(SUBJ) (be generated)

(Oxygen is generated when (someone) heats (it).)

from the object; c) shows that some objects will be created by
the activity.

A typical example using CON expression is shown in Figure 6.
When we have completed the analysis of the sentence:

I0U-O SHIKENKAN-NI IRERU.
sulfur - (object) test tube-(in, result, etc.) put in

(Someone puts sulfur in test tube.)

each case of the case frame of the verb "IRERU" (put in) is
instantiated by an object referred to in the sentence. Then we
can instantiate the expression of CON, and we conclude, "the
sulfur is in the test tube." Figure 7 shows an example using
NTRANS expression. From this expression, one can see the verb
"tokasu" has two different meanings. One corresponds to "melt,"

and the other to "dissolve in" in English. When we analyze the
sentence:

DOU-0O TOKASU.
copper-(object) dissolve, melt

(Someone melts copper.)

we adopt the first case frame of "TOKASU" (melt), because it
gives the highest matched value against the sentence (See section
3.4). As the result of evaluating the NTRANS expression in the
case frame, we conclude that the copper is now in the liquid
state. In the lexical description, copper is a lower concept of
solid, so that copper in general behaves as a solid object.

-58-

(IRERU (CF
put in

(ACT NINGEN) (OBJ BUSSHITSU) (IN YOUKI)))
(human beings) (material) (container)

(CON (ARU (SOBJ (» OBJ) (PLACE (IN (*1IN))))))

The function * retrieves the designated case-element of the
of the current frame.

Figure 6.

(TOKASU (CF
melt
dissolve
(ACT NINGEN) (OBJ KOTAI) (INST)))
(human beings) (solid)

(NTRANS (ADD OBJ (STATE EKITAI)))
(liquid)

(ACT NINGEN) (OBJ KOTAI) (IN EKITAI)
(human beings) (solid) (liquid)

(NTRANS (CREAT YOUEKI))
(solution)
(SOLVER (*IN))

(SOLVENT (* OBJ))

Figure 7.

-59-

But the copper in the above sentence has the attribute value
pair (STATE LIQUID) and will behave as liquid in the succeeding
sentences.

On the contrary, when we analyze the sentence:

SHIO-O MIZU-NI TOKASU.
(salt- (object) water-(in, place, etc.) melt dissolve

(Someone dissolve salt in water.)

the second case frame of "TOKASU" (dissolve in) gives the
highest value. After the sentence instantiates the case frame,
a new object--that is, a mixture which consists of salt and
water--will be created.

CON and NTRANS are thus important in the contextual analysis

of sentences. The detailed analysis procedure using these
expressions is described in section 4.2.

3. Analysis of Noun Phrase

3.1 Properties of a Noun Phrase

In Japanese, two or more nouns are often concatenated by
the postprosition "NO" to form a noun nhrase. Because there are
many different semantic relationships among nouns concatenated
by "NO," we must decide what relationships may be held among the
nouns. Typical examples are shown in Figure 8. The phrase
"NOUN+NO" can modify, in principle, all the succeeding nouns in
Japanese, so that many different patterns of modification
relationships are syntactically permitted. We must decide which
one 1is correct, by considering semantic restrictions.

EKITAI -NO JOUTAI -NO SANSO-NO TAISEKI
(liquid)-NO (state)-NO (oxygen) -NO {(volume)

(the volume of the oxygen in the state of liquid)

HANNOU -NO ATO -NO NATRIUM -NO TAISEKI -NO HENKA
(reaction}-NO (after) - (natrium)-NO (volume)-NO (change)
(changes of the natrium's volume after the reaction)

SANKADOU - NO KANGEN

(oxidized-copper)-NO deoxidization

(deoxidization of oxidized copper)

Figure 8.

-60-

We extracted sixteen semantically acceptable combinations
of two nouns. They are shown in Table 2. Corresponding to these
relationships, we prepared sixteen primitive functions. These
functions are applied in turn to a noun phrase to decide what
relationship is held between two nouns. The order in which these
functions are applied is based on the frequency and the tightness
of the relations. The scope within which the relations are
checked is relatively short and each function checks only cne
semantic relation. In order to illustrate how these functions
perform their tasks, we will show an example of "noun +
prepositional noun" phrase.

Table 2. Admissible noun-noun combinations.

1) (value noun) + (attribute noun)
(ex) 1l00gr - NO SHITSURYO
(mass)
(ex) KOTAI - NO JOUTAI
(solid) (state)
2) (value noun) + (entity noun)

(ex) AOIRO =~ NO KOTAI
(blue--noun) (solid)

(ex) EKITAI - NO 1IOU
(liquid) (sulfur)

3) (entity noun) + (attribute noun)

(ex) DOU - NO SHITSURYOU

(copper) {mass)
(ex) EKITAI - NO IRO
(liquid) (color)
4) (noun) + (prepositional noun)

(ex) SHIKENKAN -~ NO NAXA
(test tube) (in)

(ex) HANNOU - NO MAE
(reaction) (before)

5) (anaphoric noun) + (noun)

(ex) MOTO - NO BUSSHITSU
(former) (material)

-61-

Table 2 (continued).

6) (attribute noun) + (entity noun)
(ex) (lo0gr -NO) SHITSURYOU - NO DOU
(mass) (copper)

(TAKAI) ONDO - NO EKITAI
(high) (temperature) (liquid)

In this usage, the attribute noun should be modified by another noun
or adjective, which specifies the value of the attribute.

7) (noun) + (action noun)

(ex) SANKADOU - NO KANGEN
{oxidized copper) (deoxidization)

IRO - NO HENKA

(color) (change)
8) (time) + (noun)
(ex) (HANNOU ~ NO) MAE - NO DOU
(reaction) {(before) (copper)
The noun-noun combination, "(reaction)-NO (before)" expresses the

"time" before the reaction.

9) (place) + (noun)
(ex) (SHIKENKAN - NO) NAKA-NO EKITAI
(test tube) (in) (liquid)
The noun-noun combination, " (test tube)-NO (in)" expresses the "place"

in the test tube.

10) (noun) + (conjunction noun)

(ex) SANKA - NO TAME
(oxidization) in order to
by reason of

(ex) HANNOU - NO TOKI
(reaction) {when)

In Japanese, some nouns are used to elucidate the case relationships
between a noun phrase and a verb. The noun "TAME" in the first example
expresses the cases such as CAUSE, PURPOSE, and so on, and the noun "TOKI"
in the second example expresses the case TIME.

-62-

Table 2 (concluded).

11) (entity noun) + (entity noun)
(ex) Natrium - NO KAGOUBUTSU
(compound)

The first entity noun expresses the element of the object expressed by
the second noun.

12) (entity noun) + (entity noun)
(ex) SANKADOU - NO SANSO
(oxidized copper) (oxygen)

The second noun is the element of the object expressed by the first noun.

13) (entity noun) + (entity noun)
(ex) SHIKENKAN - NO SOKO
(test tube) (bottom)

The second noun is the part of the first noun.

14) (entity nouns) + (entity noun)
(ex) Karium, Natrium - NADO - NO KINZOXU
(etc.) (metal)

The nouns "Karium"” and "Natrium" are the lower concept nouns of the
last noun "metal."

15) (name) + (noun)

(ex) SHITSURYOUHOZON - NO HOUSOKU
(the conservation of mass) {(law)

16) Others

(ex) 1lcm? ATARI - NO CHIKARA
(per lem2) (pressure)

The noun "MAE" is a prepositional noun, and the semantic
description of it is shown in Figure 4. It is easily seen that
this word has two different meanings.

-63-

JIKKEN-NO MAE
experiment time: before
place: in front of

The function for the analysis of this kind of phrase checks at
first whether the second noun "MAE" is a prepositional noun.

If it is not, then this function fails, and returns the value
NIL. In this example, because the word "MAE" is a prepositional
noun, the checking proceeds further. The description in Figure
4 shows that if the preceding noun is an action noun, that is,
if it is a nominalization of a verb, then "MAE" has the first
meaning. Because the noun "JIKKEN" (experiment) satisfies this
condition, the checking succeeds, and the function returns the
value T. The result of the analysis is shown in Figure 9,a.

On the other hand, if the input is:

TSUKUE-NO MAE
desk before, in front of ,

then the word "TSUKUE" (desk) satisfies the condition of the
second meaning, and the result is such as shown in Figure 9,b.

In this way, the sixteen checking functions not only test
whether a certain semantic relationship holds among input words,
but also disambiguates the meanings of input words.

a) JIKKEN -NO MAE
experiment. (of) before: time
in front of: place
TIME
before
experiment
b) TSUKU - NO MAE
desk (of) {before: time }
{ in front of: place
PLACE

in front of
desk

Figure 9. Results of analyses.

-6lU4-

3.2 Analysis of a Noun Phrase

We analyze a noun phrase by using the above sixteen checking
functions and the projection rule. As stated before, the phrases
"noun + postposition NO" and adjectives can modify only the
succeeding nouns. We stack in the temporary pile the noun
phrases and adjectives which require the noun to be modified by
them. The analysis of a noun phrase is carried out by scanning
words one by one from left to right. If we scan an adjective
or a determiner, we stack the word in the temporary pile. If
we scan a noun, we pick up a word from the stack and check
whether it can modify the noun. This checking is done by the
above functions if the picked-up word is a noun. We also have
the checking functions between a noun and an adjective or a
determiner. The dictionary content of an adjective is just the
same as that of a value noun. The semantic checking function
between an adjective and a noun will test whether the noun can
have the attribute which is modifiable by the adjective.

The checking of the determiner is a little different and is
explained later. The checking process will stop when there are
no words in the temporary pile or a picked-up word fails to
modify the noun. Then the noun is stacked in the temporary pile.
If the temporary pile contains only one noun and there are no
words to be scanned in the noun phrase, the analysis succeeds
and returns the noun in the stack as the result. The returned
noun is called the head noun of the noun phrase. These processes
are illustrated in Figure 10.

SHIKENKAN- NO NAKA-NO AKAIRO-NO EKITAI
test tube- NO in -NO red -NO liquid

1) Temporary stack = empty
test tube-NO in-NO red-NO liquid

scanned word

2) TS = test tube

test tube-NO in-NO red-NO liquid
scanned word

Checking semantic relationship between "test tube"” and "in" is
performed.

Figure 10.

-65-

5 15 - Jpiace

test tube-No in-NO red-NO liquid
scanned word

The phrase "test tube-NO in" is transformed into the form
PLACE

in
test tube

Checking semantic relationship between "place" and "red" is performed.

o -

test tube-NO in-NO red-NO liquid
scanned word

The checking between "red" and "place" failed to establish a new
concept. Therefore, the TS contains the two words--"red" and "place."

test tube-NO in-NO red-NO liquid

scanned word

There are no words to be scanned, and the TS contains only one word.
So the analysis of this noun phrase succeeds.

The result is as follows: The head noun of this noun phrase is
"liquid.”

liquid
PLACE COLOR
place red
in test tube

Figure 10 (concluded).

-66-

If there are no words to be scanned next and the temporary
pile contains more than one word, then the analysis fails and
backtracks to the decision points of the program. A decision
point in the analysis of a noun phrase is the point at which
two nouns have been related by a certain semantic relationship.
The established relationship between two nouns during the
analysis is by the function which succeeds first. Because the
order of checking functions is somewhat arbitrary, in some cases
the relationship which has not been checked may be more
preferable than the established relationship. We will show such
examples.

EKITAI- NO JOUTAI~-NO HENKA
liquid (of) state (of) change

(the change of the state of the liquid)

EKITAI- NO JOUTAI-NO SANSO
liquid (of) state (of) oxygen

(oxygen in the liquid state)

In the first example the word "JOUTAI" (state) designates
the attribute of "EKITAI" (liquid). And the "EKITAI" corresponds
to a visible, real object. On the other hand, "JOUTAI" (state)
in the second example designates the attribute of "SANSO"
(oxygen), and the word "EKITAI" does not correspond to a real
object. It is used to specify the attribute "state" of the
oxygen. These examples show that the word "EKITAI" . (liquid)
has two different usages. According to these usages, there are
two different semantic constructions of the phrase "EKITAI-NO
JOUTAI" as shown in Figure 11.

EKITAI (liquid) ~-NO JOUTAI (state)

1) STATE 2) STATE
IA TR -ATR VALUE
liquid LIQUID
indicates

an object

Figure 11. Two different deep structures for
the phrase EKITAI NO JOUTAI.

-67-

Because we analyze a noun phrase from left to right, we
cannot determine which one is correct until we recognize the
next word "HENKA" (change, transition) or "SANSO" (oxygen) in
the above examples. However, a semantic checking function
disambiqguates the multiple meanings of the word "EKITAI." If
the disambiguation is recognized to be incorrect in the following
processing, we must be able to backtrack to the decision point
at which this temporary disambiguation was made. We implemented
such a process by using PLATON's backtracking facilities. This
process is illustrated in Figure 12.

Input: EKITAI - NO JOUTAI -NO HENKA
liquid - NO state -NO transition

result: Transition

SUBJECT

state

IATR-ATR
liquid

Input: EKITAI - NO JOUTAI -NO SANSO
liquid - NO state - NO oxygen

Steps of analysis

1) TS empty
liquid - NO state - NO oxygen

scanned word

liquid - NO state - NO oxygen

scanned word

Figure 12. Example of backtracking in the
analysis of a noun phrase.

-68-

liquid - NO state - NO oxygen
scanned word

At this point, the first meaning of "liquid"” is adopted. That is,
the word "liquid" indicates a physical object.

The semantic check between "state" and "oxygen" fails because the
attribute noun "state" has been linked to the liquid by the relation IATR-ATR.

So the program will go back to step 3.

4) TS = |liquid
liquid - NO state - NO oxygen
scanned word
The semantic check between "liquid" and "state" proceeds further. The

semantic checking function "VALUE ATRCHECK" succeeds. This function adopts
the second meaning of "liquid."

5 75 - Jotare]

liquid - NO state — NO oxygen
scanned word
At this time, because the noun "state" is linked to the liquid by the
relation VALUE, the check between "state" and "oxygen" succeeds. The

result is as follows. Notice that the noun "liquid" does not express a real
object but the value of the attribute "state."”

oxygen

STA
TE LIQUID

Figure 12 (concluded).

-69-

3.3 Analysis of Conjunctive Phrase

The words in Japanese which correspond to "and" and "or"
in English are categorized as special postpositions shown in
Table 3. We call these postpositions conjunctive postpositions.

Table 3. Conjunctive Postpositions in Japanese.

Postposition Corresponding English
TO and
YA and
MO and
KA or

In Japanese as well as in English, it is difficult to determine
the scope of a conjunction. There are some phrases which have
the same syntactic structure but semantically different construc-
tions. Some examples are shown in Figure 13. On the other

hand, some phrases have different surface structures but convey
the same meaning. Examples are shown in Figure 14. As there
are few syntactic clues in these examples, we must analyze them
by using semantic relationships among words.

At the first stage of the analysis of a noun phrase, we try
to find out conjunctive postpositions in the noun phrase. If
we cannot find them, the normal analysis sequence described
above is applied on the noun phrase. If there is a conjuncitve
postposition, the following steps are performed.

Step 1: Because the conjunctive postposition "TO" often has
another corresponding postposition "TO" in the succeeding part
(Figure 14), we search for this latter postposition in the
succeeding part when we find a postposition "TO." 1If the
corresponding postposition "TO" is found, then the noun before
the first postposition and the noun phrase interposed between
the first and the second postpositions are parallel. The

normal noun phrase analysis is applied on this interposed phrase.
Go to step 4. If we cannot find out such a postposition, then
go to step 2.

Step 2: If the postposition which is found in the phrase is not
TO," or there is not the corresponding "TO," we will undertake
the following substeps. (In the following explanation, we use

~70-

!
RYUKADOU -NO
{copper sulfide) (of)

-~ —¥ ——
DOU -TO I0oU
(copper) (and) {sulfur)

i
— —]
RYUKADOU ~-NO 0 -TO SANSO
(copper sulfide) (of) (copper) (and) (oxygen)
copper copper
P
ELEMENT PARA ELEMENT ARA
sulfur oxygen
ELEMENT
copper sulfide copper sulfide
I L R
SUI1SO ~TO SANSO -NO TAISEKI -NO HI
(hyrdrogen) {and) {oxygen) (of) (volume) (of) (ratio)
r Yy —3
SUISO -TO BEAKER -NO NAKA -NO EKITAI
(hydrogen) (and) (beaker) (of) (in) (of) (liquid)
number hydrogen
%
RATIO
liqui
(volume volume) iquid
PLACE
IATR-ATR IATR-ATR place
IN
hydrogen oxygen beaker
1

I
ENKANATOR IUM-NO

(sodium chloride) (of)

v
SUIYOUEKI-TO
(solution)

ENSOSAN~-NATORIUM.
(and) (sodium chlorate)

ENKANATORIUM -NO

(sodium chloride) {of)

solution
SOLVENT, PARA

sodium
chlorate

sodium chloride

r
TAISEKI -TO
(volume) {and)

_V

1
SHITSURYOU
(mass)

volume

IATR-ATR PARA

mass

IATR-ATR
sodium
chloride

Figure

13.

-71-

SANSO -NO TAISEKI -TO SUISO -NO TAISEKI - (TO)
(oxygen) (of) (volume) (and) (hydrogen) (of) (volume)

SANSO -TO SUISO ~NO TAISEKI
(oxygen) (and) (hydrogen) (of) (volume)

volume
IATR -ATR PARA
volume
n
oxyge hydrogen

SANSO -NO SHITSURYOU-TO SANSO -NO TAISEKI -(TO)
(oxygen) (of) (mass) (and) (oxygen) (of) (volume)

SANSO -NO SHITSURYOU -~ TO TAISEKI - (TO)
(oxygen) (of) (mass) (and) (volume)

mass

IATR - ATR PARA
volume

IATR - ATR
oxygen

Figure 14.

Noun-1 to designate the noun to which the first conjunctive
postposition is attached.)

a)

b)

c)

We try to find out the same noun in the succeeding part
as Noun-1. If we can find it, let it be Noun-2, and
go to step 3.

If Noun-1 is not an entity noun, then we try to find
out the noun which belongs to the same category as
Noun-1. 1If we can find out such a noun, let it be
Noun-2, and go to step 3.

We try to find out the noun which as an upper concept
in common with Noun-1. If we can find out such a noun,
let it be Noun-2 and go to step 3.

-72-

Step 3: The phrase between the postposition and Noun-2 are
analyzed by the normal sequence of the analysis of a noun phrase.
This is the second phrase which constitutes the parallel phrases.

Step 4: The phrase before the postposition is analyzed.

Step 5: We have not determined the left end of the first phrase
(Figure 15). 1In order to determine it, we pick up words one by
one from left to right, and check whether each word can modify
Noun-2. If we find the word which cannot modify Noun-2, it is
considered as the left end of the phrase.

For example, we show the analysis of the following phrase
in Figure 16.

RYUKADOU-NO DOU-TO IOU-NO SHITSURYO-NO HI
copper sulfide(of) copper{and) sulfur(of) mass (of) ratio

(The ratio between the mass of the copper and the sulfur which
constitute copper sulfide.)

Conjunction phrase:

SHIKENKAN - NO NAKA - NO ENSAN - TO DOU - (TO)
(test tube) (in) (hydrochloric acid) (copper)

Two different constructions according to the two different
determinations of the left end of the conjunction.

hydrochloric acid hydrochloric acid

PLACE PARA PLACE PARA
place copper place copper
IN IN : PLACE
test tube m place

test tube

Figure 15.

-73-

Phrase:
RYUKADOU - NO DOU - TO I0OU -NO
(copper sulfide) (copper)-(conjunctive pp-—-and) (sulfur)
SHITSURYOU -NO HI
(mass) (ratio)

meaning:

the ratio of the masses of copper and sulfur
of copper sulfide

sequence of analysis:

1) Find the conjunctive postposition "“TO."

RYUKADOU - NO DOU

TO
(copper sulfide) (copper)

IOU -NO SHITSURYOU -NO HI
(sulfur) (mass) (ratio)

former part latter part

2) Find from the latter part the noun which belongs to the same
category as "copper."”

In the above phrase, the noun "sulfur"
is found.

RYUKADOU - NO

(DOU - TO IOU -NO)
(copper sulfide)

SHITSURYOU - NO HI
(copper)

|
temporarily determined scope
of the conjunctive phrase

3) Analyze the part before the postposition "TO."

(copper = TO IOU - NO)

SHITSURYOU - NO HI
(sulfur)

(mass) (ratio)
ELEMENT

¢

copper sulfide

Figure 16 (continued).

—7h-

4) The second noun of the conjunctive phrase, "sulfur" is checked
against the noun "copper sulfide,"” which is related to the
first noun of the conjunctive phrase, "copper;" we know

"copper sulfide" is also closely related to "sulfur." We
obtain,
(o copper - TO sulfur - NO) SHITSURYOU - NO HI
l (mass) (ratio)
ELEMENT ELEMENT

latter part

lcopper sulfide ,

conjunctive phrase

5) The two nouns, "copper" and "sulfur,” in the conjunctive
phrase are checked against nouns in the latter part. Because
the noun "mass" can be related to only one physical object,
we produce the new noun "mass" for "sulfur."

(mass ? mass)~ NO HI
IATR-ATR IATR-ATR
A v
copper sulfur
7
ELEMENT ELEMENT

&

copper sulfide

6) The noun "ratio" can be related to a conjunctive phrase.
So we obtain the following result.

© number

RATIO
(mass mass)
IATR-ATR IATR-ATR
copper sul fur
ELEMENT ELEMENT

copper sulfide

Figure 16 (concluded) .

-75-

3.4 Analysis of a Simple Sentence

Japanese is a typical example of SOV languages, in which
ACTOR, OBJECT, and other case elements of a verb usually appear
before the verb in a sentence. This makes Japanese very dif-
ferent from English and European languages. A typical construc-
tion of a Japanese sentence is shown in Figure 17. A verb may
govern several noun phrases--case elements--preceding it. A
relative clause modifying a noun may appear in the form "- - -
verb + noun - - -." The right end of the scope of the clause
is easily identified by finding out the verb, but the left end
of it is syntactically ambiguous. In Figure 17, the noun phrase
NP, 4 is a case element of the verb V4. On the other hand, the
noun phrase NP; is governed by the verb V,. Because the
projection rule is kept in Japanese as in other languages, all
noun phrase between NP;,q and V, are governed by V4, and the
noun phrases before NP; are governed by V,. However, in the
course of analysis, such boundaries cannot be determined uniquely
by syntatic clues alone. To determine them, we must use
semantic relationships such as case relationships between noun
phrases and verbs.

In English, the case marker in a surface structure is the
order of phrases. In Japanese, the order of phrases in a
sentence is arbitrary, except that the main verb of a sentence
comes at the end of the sentence. A postposition attached to a
noun phrase usually shows the case which the noun phrase plays
in the sentence. The postpositions usually used in Japanese
and the deep cases corresponding to them are tabulated in Table
4., From this table, one can see that a postposition in a
surface structure does not necessarily correspond to a unique
deep case. In the course of analysis, we must choose an
appropriate case by considering the case frames of the main verb
and the head noun of the noun phrases.

A postposition also plays the role of a delimiter which
shows the right end of a noun phrase. The outline of the
analysis of a simple sentence is as follows.

1) At first the program tries to find a verb in the input
sentence. Because there may be embedded sentences,
which modify nouns in the main sentence, there are
usually more than one verb in the input sentence. The
program picks up the leftmost verb of the sentence.

2) The part before the verb is segmented into several parts
by finding postpositions.

3) Because each segment is supposed to form a noun phrase,
they are passed to the program which analyzes a noun
phrase.

-76-

f [
Ex. 1) KARE-WA GAS - BURNER- DE SHIKENKAN-NI IRETA
(He) (all cases) (gas-burner)-(inst) (test tube)- (PLACE) (put in)

______l F&—-relative clause
13

EKITAI-O NESSURU
(liquid)~ (OBJ) (heat)

meaning: He heats the liquid which is put in the test tube.

Ex. 2) KXARE-GA BEAKER-NI NESSITA EKITAI-O IRERU.
(He) - (ACT, SUBJ) (beaker)- (IN, PLACE) (heat) (liquid)-(OBJ) (put in)

relative
$ F_
clause

meaning: He puts the heated liquid in a beaker.

—
Ex. 3) ENSOSAN-NATRIUM-O GAS-BURNER-DE (ENSOSAN—NATRIUM—O)l
(natrium chlorate)-(0OBJ) (gas-burner)-(INST) (natrium clorate)- (OBJ)

_y

SHIKENKAN-NI TRETE NESSURU.
(test tube)- (IN, PLACE, etc.) (put in) (heat)

meaning: (Someone) puts natrium chlorate in a test tube and
heats it.

lUsually this phrase is omitted.

Figure 17.

-77-

Table 4. Postpositions in Japanese and case relationships.
Postposition Case
-GA ACT. SUBJ
-NO NMOD (ACT. SUBJ)
-0 OBJ
-NI RESULT, IN, IOBJ, TO, PLACE, CAUSE, TIME
~HE TO
-TO FACT, RESULT, TAISHO
-KARE FROM, SOURCE, CAUSE, METHOD, PLACE, TIME
-YORI FROM, SOURCE
~MADE TO
-WA all cases
-DAKE
-MO all cases
-SHIKA
4) When all the segments are analyzed and the head nouns

5)

are determined, the program checks each noun phrase
against the verb, asking whether a case relationship
will be satisfied between the noun phrase and the verb.
The checking is carried out backward from the phrase
nearest to the verb.

When there are no noun phrases to be checked, or we
find a noun phrase which cannot be a case element of
the verb, the checking is finished. 1If there remains
an intrinsic case of the verb which has not been
filled in yet, we search for an appropriate noun to
fill in the case in the preceding or succeeding
sentences. This searching process will be explained
in section 4.

We determine, based on the following syntactic and semantic

1)

2)

3)

clues, whether a noun phrase can be a case element of a verb.

The postposition, which follows the noun phrase. This
is a case marker in the surface structure.

The case frames of the verb.

The head noun of the noun phrase.

-78-

The postposition gives a set of possible cases by which the

noun phrase is related to a verb. We must choose an appropriate
one from this set, by using the second and third information.
The case elements in a case frame of a verb are relatively upper
concept nouns. Because a real sentence is considered to be an
instantiation of a case frame, the nouns in a sentence are lower
concept nouns of the nouns in the case frame.

Suppose we analyze the sentence:

SHOKUEN-O MIZU-NI TOKASU.
salt-(object) water-(in, result, time, etc.) melt, dissolve

(Someone dissolves salt in water.)

We check whether the sentence matches against the case frame of
"TOKASU:"

TOKASU: ((ACT human) (OBJ material) (IN liquid)) .

The checking is performed by considering whether "salt" is a
lower concept noun of "material,” and whether "water" is lower
concept noun of "liquid."

Because a case frame contains only intrinsic cases of a
verb, we check extrinsic ones when a noun phrase is found not
to be an intrinsic case element of the verb. That is, we check
whether the postposition can be TIME or PLACE cases, and whether
the noun phrase is an instance of the noun "place" or "time."

The above process is somewhat straightforward. But a real
sentence has several ambiguities according to the following
reasons.

1) A verb may have more than one different usage, i.e., a
verb may have several case frames.

2) A postposition can indicate more than one case. Some
postpositions can take almost all the cases. "WA" is
such an example.

3) The noun modified by an embedded sentence is usually
a case element of the sentence, but we have no syntactic
clues as to what case the noun phrase takes in the
sentence. Therefore, the program derives all possible
relationships between nouns and the verb. We choose
the most preferable one by using an evaluation function
which is empirically established in the following form.

. _ 6 x Cl +2xC3 ,C2
f(CFN, c1, c2, c3) = FN + =5

-79-

CFN: numer of intrinsic cases in a case frame

Ci: number of intrinsic case elements which are filled
in by the noun phrases in the sentence

C2: number of extrinsic case elements which are filled
in by the noun phrases in the sentence

C3: number of intrinsic case elements which are filled
in by the noun phrases in the preceding sentences

The value of this function indicates the degree of matching
between sentence and a case frame. Among possible case relation-
ships between noun phrases and a verb, we choose the one which
gives the highest matched value, and proceed to the analysis

of the remaining part. If it is found to be wrong during the
succeeding analysis, control comes back to the point at which

the decision was made, discards it, and chooses the one which
gives the next highest value.

4., Contextual Analysis

4.1 Basic Approach to Contextual Analysis

A man reads sentences from left to right, and understands
them in succession. When he cannot understand a sentence
satisfactorily, he goes back to the preceding sentences in
order to obtain the keys for understanding. If he cannot
discover the keys, he puts this pending question in his memory and
proceeds to the next sentence. If he discovers a phrase or a
sentence which seems to solve the question, he checks whether
it can really resolve the question. If so, he properly organizes
it into the previous context and deletes the question from his
memory. However, this pending question does not stay in his
memory very long. As time passes, the question disappears from
his memory.

We think this understanding process of language is not so
complicated. It can be realized in an artificial intelligence
approach. Though we recognize that some kinds of problems can
be solved only by using complicated logical operations, we think
most problems in language understanding can be solved by
relatively simple operations. Logical operations can be applied
only on the complete data base in which all the necessary axioms
(corresponding to the human knowledge) are declared and no
contradictory axioms exist. In the course of reading sentences,
a man has only partial knowledge about the context, and,
therefore, his knowledge is not complete. However, he can
understand the meaning of sentences before he reads through all
of them. This means that a man always does incomplete deductions.
Because of this reason, we use, instead of logical operation,
heuristically admissible operations which use a memory structure
similar to that of human intermediate term memory, and various
semantic relationships described in the dictionary.

~80-

We can summarize our approach as follows.

1) We memorize context in the form similar to the inter-
mediate term memory of human beings.

2) Two kinds of memories are prepared. One.is to represent
the current content, and the other is to sustain the
pending problems. The former is further divided into
the noun stack (NS) and the hypothetical noun stack (HNS).
The latter is called the trapping 1list(TL).

3) Contextual analysis will be performed when a syntactic
unit, such as a noun phrase and a sentence, which
converys a unit of certain definite idea, has been
extracted.

4) NS has the organization from which the theme words of
the sentences can be easily retrieved. Here "theme
words" mean the key subjects mentioned in the sentence.

5) Sometimes we have to refer to the succeeding sentences
in order to understand a sentence. In such cases, we
do not immediately refer to the succeeding sentences,
but instead, reserve a pending question in TL, and the
question will be resolved in the course of analyzing
the succeeding sentences.

4.2 Memory Structure for Contextual Information

The analysis of a sentence is primarily guided by the
semantic description--case frame--of a main verb, while the
contextual analysis is mainly guided by the information about
nouns. What objects or concepts are the themes of the sentences,
and what has been described about them are usually reflected by
the nouns which appear in the sentences and offer important
clues for the contextual analysis.

We assign a different LISP atom (produced by the LISP
function "gensym") to each noun in the sentences, and put various
information about the noun on the property list. We call this
LISP atom a "noun atom.” The flags tabulated in Table 5 are
used. We can retrieve all the descriptions about an object
expressed by a noun. We stack these LISP atoms on NS and HNS.

-81-

Table 5. Information attached to a noun atom.

Relation Content
LEX link to the lexical descriptions
SATR (A V) pairs which specify this object
CASE link to the case-frame in which the

object appears

PRE link to the noun atom which appears in
the previous sentence, and which repre-
sents the same object as this atom

POST the inverse relation of PRE

SMOD link to the relative clause which
modifies this object

PARA link to the noun atoms which appear in
a conjunctive phrase together with this
object

4.2.1 Noun Stack(NS)

When we start to analyze a sentence, we stack a list of noun
atoms which are assigned to the nouns in the sentence. These
noun atoms are reordered according to their degree of importance.
NS has the construction shown in Figure 18.

((noun-atom-1,- ~ - - - , noun-atom-i) (- - - -) {- -~ =))
| _

list of noun atoms corresponding to nouns
which appear in the most recent sentence

Figure 18. Construction of NS.

To decide how a word is important, we use the following
heuristics:

-82-

1) In Japanese, a theme word is often omitted or expressed
by a pronoun in the succeeding sentences after it appears
once in a sentence. In other words, the word which is
omitted or expressed by a pronoun is an important word
for the understanding of a sentence.

2) A theme word is also used as a "subject" in the surface
structure. If we want to emphasize a word in OBJ-case
of the deep case structure, or if a word in ACT-case
is not worth mentioning, we express a sentence in the
passive voice in order to put the stressed word in
subject position of the sentence.

3) The importance of a head noun in a noun phrase is greater
than that of other nouns.

A simple example is shown in Figure 19. By seeing this example,
one can understand that the copper appears in all the sentences,
and it is the theme word in these sentences.

Input sentence:

N1l N2 N3
RUTSUBO -NI 100gr-NO SHITSURYOU-NO
(melting pot)~(PLACE, TIME, IOBJ, etc.) (mass)

N4 NS
AEN -0 IRETE , GAS-BURNER-DE

(zinc) - (0BJ, IOBJ) (put in) (gas burner)-(PLACE, INST, etc.)

NESSHI, TOKASHITA,
(heat) (melt, PAST TENSE)

Meaning of input sentence:

S1: (someone) put 100gr of zinc in a melting pot.
S2: (someone) heated it by a gas burner.
S3: (Someone) melted it.

Changes of NS

Beginning of the analysis of S1: ((N4 N3 N2 N1))

End of the analysis of S1: ((N4 N1 N3 N2))

Beginning of the analysis of S2: ((N5)(N4 N1 N3 N2))

End of the analysis of S2: ((N4 N5)(N4 N1 N3 N2))

Beginning of the analysis of S3: (NIL (N4 N5)(N4 N1 N3 N2))
End of the analysis of S3: ((N4) (N4 N5)(N4 N1 N3 N2))

Figure 19. Changes of NS.

-83-

4.2.2 Hypothetical Noun Stack (HNS)

We first show examples which cannot be properly analyzed
without HNS.

a) SUISO-TO SANSO-0 2:1-NO WARIAL-DE

hydrogen-(and) oxygen (object) two to one-(of)ratio-(by)
KONGO-SHI
intermix

(Someone intermixes hydrogen and oxygen by the ratio of
two to one.)

KONO KONGOUKITAI-NI - - - - -
this blend gas (place)- - - -

(- - - -=1n this blend gas.)

b) SHOKUEN 5gr-0 MIZU 100cc-NI TOKASU.
salt 5 gr -(object) water 100cc-(in) dissolve

(Someone dissolves the salt of 5 grams into the water of 100cc.)

KONO SUIYOUEKI-WA - = = - =
{the) solution

In these two examples, though the word "KONO," which corresponds
to the determiner "the" or "this" in English, is used, the
referred object does not exist explicitly in the preceding
sentece. The referred object is produced as the result of the
event, which is expressed by the preceding sentence. As mentioned
before, we attach to a case frame in the verb dictionary what
object may be created if the case frame is used.

"TOKASU" (dissolve) has the case frame
((ACT human) (OBJ material) (IN liquid}),
and this case frame has an additional description

(NTRANS (CREAT 'solution ('solvent (*IN))
('solute (=OBJ)))).

The symbol " # " in this description is a LISP function, which
retrieves the case element indicated by the argument from the
current specialization of the case frame. The sentence,

SHOKUEN 5gr-0 MIZU 100ccNI TOKASU ,
salt (object) water (in) dissolve

-84-

invokes a specialization of the above case frame as the following,
i.e., a new object has been produced, a solution whose solvent is
water and whose solute is salt. We put this newly produced
object in HNS instead of NS because of the following two reasons.

a) As the description is based on uncertain knowledge,
it is likely, but not necessary, that the object is
produced in the real world. If we find out some
descriptions about this object in the succeeding
sentences, we will decide it really exists and
transfer it from HNS to NS.

b) Because the newly produced object is referred to in
the succeeding sentences sometimes by different words
or by syntactically different forms, it is convenient
to stack them individually in HNS.

4.3 Estimation of the Omitted Words

In the analysis of a Japanese sentence, it is important
to supply the omitted words from the preceding or succeeding
sentences. To do this we must be able to, a) recognize that a
word is omitted, and b) search for an appropriate word to supply
the omitted part.

We think that a certain syntactic unit such as a noun
phrase and a simple sentence conveys a definite idea; a noun
phrase may designate a certain definite object, a concept, and
so on, and a simple sentence may express a definite event. 1In
order that a simple sentence expresses a definite event, each
case element of the case frame must be specified by the objects
in the sentence. So we can detect an omitted word by finding
an unspecified case element in a case frame. Moreover, we can
suppose from the case frame what kind of noun should be supplied
to the vacancy.

In such a manner, we can detect and fill in an omitted
word properly by using the semantic descriptions in the dictionary.

4.3.1 Omitted Word in a Simple Sentence

1 When we have finished the analysis of a simple sentence,

we check whether there remain some intrinsic cases to be supplied.
If there remain some, we search for appropriate words through

the preceding sentences. The searching .process is carried out

in the following way.

a) We search through HNS first, because the newly created
object by the preceding event is often the theme object
of the present event.

b) 1In Japanese, the sentences in succession are apt to omit
the same case elements. So we search for the same case
in the previous sentence as the omitted case in the
present sentence through NS.

-85~

c) If the above processes fail, then we check the words
in NS one by one until we find out a semantically
admissible word or all the words appeared in the three
previous sentences.

d) If we cannot find out a suitable one, we set up a
problem in the trapping list TL (mentioned in the next
section,)

Some results of the processing are shown in Figure 20.

a) Input sentence:

AMMONIA - O MIZU -~ NI
(ammonia) (OBJ, IOBJ) (water)-(PLACE, TIME, IOBJ, etc.)

TOKASHI , RITOMASUSHI - O TSUKERU
(dissolve, melt) (litmus paper) (OBJ, IOBJ) (soak, put, etc.)

meaning: {(Someone) dissolves ammonia in water, and puts a
litmus paper (in it).

Analysis process:

result of the analysis of the first sentence

V=TOKASU (dissolve)

PLACE

; water
(someone) ammonia (N2)
(N1)
NS= ((N1 N2)) . HNS= ((N3))
ammonia water mixture

solution-N2

solvent-N1

intermediate result of the analysis of the second sentence

V=TSUKERU (soak, put in)

ACT PLACE
(someone) litmus paper (liquid)
N4

Figure 20 (continued).

-86-

final result obtained after searching process

V=TSUKERU (soak, put in)

ACT PLACE
(someone) litmus paper mixture
(N4) (N3)

b) Input sentence:

NAPHUTHALINE -O SHIKENKAN - NI
(naphthalene) - (OBJ, IOBJ) (test tube)-(PLACE, IOBJ, IN, etc.)

IRE , GAS-BURNER -DE NESSHITE, TOKASHI,
(put in) (gas burner)-(INST, METHOD) (heat) (melt)
KANSATSUSURU.

(observe)

meaning: (Someone) puts naphthalene in the test tube.
(Someone) heats (it) by a gas burner.
(Someone) melts (the naphtalene).

(Someone) observe (the naphtalene).

Analysis process:

result of the analysis of the first sentence

PUT
Al OBJ IN
N1l N2
(someone) (naphtalene) (test tube)

NS = ((N1 N2)); HNS = NIL
temporary assertion: EXIST

SUBJ, IN

N1 N2

Figure 20 (continued)

-87-

intermediate result of the analysis of the second sentence

HEAT
ACT OBJ INST
N3
(someone) (matérial) (gas burner)

final result after searching process

EAT
ACT OBJ INST
N1 N3
(someone) (naphtalene) (gas burner)

NS = ((NL N3)(Nl N2))

Through the third and fourther sentences have alsc blank
cases, they are properly filled in. The following result
is obtained.

- EXIST

T MELT BSERVE

3
ACT ACT NST ACT OBJ ACT OBJ

(someone) @ (someone)

gas burner

(someone)

(someone)

naphtalene

Fiqure 20 (concluded).

-88-

4.3.2 Omitted Word in a Noun Phrase

A noun is classified as either an entity word or a relational
word. Most nouns have definite menaing by themselves, and are
regarded as entity words. However, some kinds of nouns have
relational meaning. That is to say, they have some slots in
their meaning to be filled in by other words, in order that they
express definite ideas. Sometimes a relational noun is used
alone in a noun phrase. In this case, the relational noun must
be semantically connected with other words which are omitted in
the noun phrase. Such examples are shown in Figure 21.

1) I0U -0 NESSURU TOKI IRO - GA HENKASURU.
(sulfur)-(OBJ, IOBJ) (heat) (when) (color)-(SUBJ) (change)

meaning: When (someone) heats sulfur, the color (of sulfur) changes.

The phrase "IRO - GA" is a noun phrase, but it is an incomplete
(color) (SUBJ)

one by itself. We can easily understand the color mean "the

color of the copper."

2) ENSAN SHIKENKAN-NI
(hydrochloric acid)-(OBJ) (test tube)-(PLACE, TIME, etc.)

20cc IRERU.
(put in)

meaning: (Someone) puts 20cc of hydrochloric acid in a test tube.
The word 20cc is put on a separate position from the ENSAN

(hydrochloric acid) in the sentence. It, however, specifies
the attribute of the acid, VOLUME.

Figure 21.

At the final step of the analysis of a noun phrase, we
check whether there remains a relational noun which does not
have a definite meaning. If there is, we search through NS for
a word which is suitable to fill in the slots of the noun. The
searching process is the same as the omitted words in a simple
sentence. Sometimes the omitted words exist in the succeeding
sentences. So we can set up a problem in TL, if we cannot find
out appropriate word in the preceding sentence.

-89-—

4.3.3 Detailed Description of Trapping List (TL)

Most of anaphoric expressions and omitted words are well
analyzed by searching through the preceding sentences. However,
we need sometimes to refer to the succeeding sentences in order
to analyze a sentence properly. The sentences shown in Figure
22 are such examples. Because the preceding sentences have
already been analyzed and both HNS and NS have been set up, it
is easy to refer to the preceding sentences. To the contrary,
we cannot refer to the succeeding sentences immediately when
it is necessary.

1) NESSERARETE, JOUTAI -GA HENKASURU KAGOUBUTSU-O - - -
{be heated) (state)- (ACT, SUBJ) (change) (compound)- (OBJ)

"what" is heated of "what state chanqe;}

meaning: - - - the compound which is heated and whose state
changes - -~ -

2) ONDO - O ITTEI -NI SHI, ATSURYQOKU -~O
(temperature) (constant)-(PLACE, RESULT, etc.) (pressure)-(OBJ)

KUWAETA TOKI, KITAI-NO TAISEKI-WA - - -

(increase) (when) (gas) (volume)
f of "what" pressure
[;f "what" temperature is kept constant is increased

meaning: When the temperature is kept constant and the pressure is
increased, the volume of gas - - -

Figure 22. Examples that omitted words appear in
the succeding sentence.

To solve this we set up a trapping list TL. The basic
crganization of TL is shown in Figure 23. A trapping element
is a triplet and corresponds to a pending problem. When we
cannot find out an appropriate word in the preceding sentences
for an omitted word or an anaphoric expression, we put a new
trapping element in TL. At this time the first of the triplet,
N, is set to zero. When a noun phrase in the succeeding
sentences is analyzed, we pick up a noun from the noun phrase

-90-

one by one and check whether the present noun can resolve a
pending problem in TL by evaluating the function FNI in a
trapping element.

N:
N1:
N2:

N (Fl1 arguments) (F2 arguments)) - - - - -)

a trapped*element

number
arbitrary lisp function

arbitrary lisp function

Figure 23. Construction of TL.

We defined several LISP functions for the function FNI.
These functions work as follows.

a)

b)

They check whether a noun at hand can answer the problem
in TL.

If it can, they update the data (for example, if the
function FNI is the function which searches the words
in TL for filling in the omitted case element, then
the function will put the present noun in the case
frame), and return the value "DELETE." Then the
system will delete the trapping element from TL.

If it cannot, the system adds 1 to N, the first
element of the trapping element. When N exceeds five,
the trapping element is deleted from TL. That is, the
problem corresponding to the trapping element can not
be solved at all. Before the deletion of a trapping
element, the third element of it, the function FN2, is
evaluated.

By using the idea of TL, we can separate various checking
mechanisms from the main program. They can be invoked automat-
ically when a noun appears in a sentence.

4.4

Processing of Anaphoric Expressions

In Japanese, an anaphora is expressed by using the articles

"KONO , "

"KORE," or "KORERA," which correspond to the definite

-91-

article "the," "this," or "these" in English. The pronoun
"KORE" is used to designate a single object in the preceding
sentences, and the pronoun "KORERA" is used to designate plural
objects. The article "KONO" is used as a constituent of a noun
phrase. Though the article "the" in English modifies the noun
directly following the article; "KONO" often modifies a noun
far removed from it. An example is shown in Figure 24,

noun noun noun
KONO SHIKENKAN - NO NAKA-NO DOU
(the) (test tube)-NO (in) -NO (copper)

(the copper in a test tube)

Figure 24.

In this example, three nouns following the article can be
modified syntactically by it. We must decide by using contextual
information which noun is modified by the article. As stated
in the analysis of a noun phrase, we scan the words in a noun
phrase one by one from left to right. When we find the article
"KONO," we put it in the temporary stack. The word in this
temporary stack will be checked as to whether it can modify a
noun in the following noun phrase. In the above example, when
we scan the noun "SHIKENKAN" (test tube), we check whether the
object indicated by it was already mentioned in the preceding
sentences. If it was, then the article "KONO" is regarded as
modifying the noun "test tube." If not, the article is stacked
again. In this way, the article will be check against the nouns
in the noun phrase until the noun modified by it is found.

The article "KONO" is used in the following two different
ways.

a) SANSO-GA ARU. KONO SANSO-O - - - -
oxygen-(sub. act) exist oxygen- (object)
(There is oxygen.) (The oxygen —------)

The noun "SANSO" modified by the article "KONO" is the same
entity noun which is already mentioned in the first sentence.

b) SANSO-GA ARU. KONO TAISEKI-O
volume- (object)

(There is oxygen.) (The volume of the oxygen----)

-92-

In this case, "KONO" itself designates that the entity noun
"SANSO" appeared in the first sentence. The category of this
usage is permitted only if the noun modified by it is a rela-
tional one. If the noun has only a relational meaning, the
second usage appears more often than the first.

The meaning descriptions of these articles and pronouns are
procedurally expressed by LISP functions. The functions in the
dictionary will be evaluated if we find such words in a sentence.
The function for "KONO" performs its task in the following way.

1} It checks whether a succeeding noun is a relational
one. If the noun has only a relational meaning, the
function regards at first that the article "KONO" is
of the second usage. Go to step (3). If not, go to
step (2).

2) The first usage has the following three varieties.
a) SANSO - GA ARU KONO SANSO-O0 -----
(There is oxygen) (The oxygen—-—-----)

The noun modified by the article is the same noun
which appeared in the preceding sentence.

b) SANSO-GA ARU. KONO KITAI-O
(There is oxygen) (The gas - - - - -)

The noun "gas" modified by the article is an upper
concept noun of the referred noun "oxygen."

c) SANSO - TO SUISO -0 KONGOUSURU.
(oxygen) (and) hydrogen (obj) mix

(Someone mixes oxygen and hydrogen.)

KONO KONGOUKITAI-O
blend gas (obj)

(The blend gas - - - -)

After the first sentence is analyzed and it instantiates
the case frame of the verb "mix,"” we evaluate the NTRANS
description of the case frame and obtain a new inferenced object
"mixture," whose element is the oxygen and the hydrogen. The
noun "blend" modified by the article is a lower concept noun of
the inferenced noun (mixture) in HNS.

According to these three varities, we perform the following
three check routines. The order of checking is shown in
Figure 25.

-93-

check 1: whether there is in the list the same noun as
the noun modified by "KONO."

check 2: whether there is in the list the lower concept
noun of the noun modified by "“KONO."

check 3: when the list is from HNS, whether there is in
the list the upper concept noun of the modified
noun, and the properties of it are consistent
with those of the modified noun.

Figure 25.

If we can find out the noun which satisfies one of these three
conditions, we decide that it is the referred noun. If we
cannot, the function for "KONO" returns the value NIL.

3) 1If the noun which follows the article has a relational
meaning, the meaning description of the noun has slots
which must be filled in by other words. What kind of
noun is preferable for the slots is described in the
meaning description. We search through NS and HNS for
the object which satisfies the description.

For example, suppose the input is,

SANSO-GA ARU. KONO TAISEKI - - - .
oxygen (act. subj.) exist volume

The. noun "TAISEKI" is an attribute noun. So we look for the noun
which may have the attribute and recognize the oxygen is appro-
priate. Another example is,

SHIKENKAN - GA ARU. JONO NAKA-NI - - - .
test tube (act. subj.) exist in (place, result)

(There is a test tube.) (In the test tube - - -)

-9l4-

The noun "NAKA" (in) is a prepositional noun which requires a
"container." We can easily recognize that "test tube"” is a
lower concept noun of container. Therefore we regard that the
word "KON" is used for the test tube. If we cannot find out
such nouns, we suppose that the article "KONO" is not of the
second usage but of the first. So we will go to step 2.

The pronoun "KORE" (this, it) is used in a sentence as a
case element. We can expect the kind of objects designated by
the pronoun by using the case frame description of the verb in
a sentence. The postposition attached to the pronoun indicates
a set of possible cases. By means of taking out from the case
frames the cases which belong to the set, we can obtain the
semantic descriptions which are satisfied by the object
designated by the pronoun. So we search through HNS and NS for
the object which satisfies the descriptions. A simple example
is,

MIZU 500cc - GA ARU. KORE - NI SHOKUEN

water (act, subj) exist place, result salt
time, - - -

2gr -0 IRERU .

(obj) put in

(There are 500cc water.) (In this water (someone) put in
salt of 2 grams.)

The set of possible cases of the postposition "NI" is (PLACE,

RESULT, TIME, BENEFICENT,- - - -), and the case frames of
"IRERU” (put in) have the case "PLACE." We can expect the
pronoun "KORE" (this, it) fills in the PLACE case in the
sentence. The semantic description says that a lower concept
noun of "container" or "liquid" is preferable as the PLACE case
of the verb "IRERU" (put in). The object "water" which is a

lower concept noun of "liquid" is found in NS, and is determined
to be the object designated by the pronoun.

We have some other pronouns and articles in Japanese which
are analyzed in the same way. We provide different LISP
functions according to different pronouns and put them in the
dictionary definitions of these words.

5. Analysis of Complicated Sentences

In the previous sections, we described the semantic and
contextual analysis procedure of our system. 1In this section,
we explain, by using example sentences, how these functional
units are organized in order to analyze fairly complicated
sentences.

Suppose the input sentence is,

~95-

ASSHUKU-SARETE TAISEKI-GA HENKA-SURU TOKI-NO
be compressed volume (subj. act.) change time, when
SANSO-NO JOUTAI-O KANSATSUSHI, SONO ATSURYOKU-0O
oxygen state (obj) observe the pressure {obj)
its

SOKUTEISHI, SORE-0O GRAPH-NI ARAWASU.
measure it (OBJ) graph {(place express.

result)

(Someone observes the state of the oxygen when it is compressed
and the volume of it changes, measures the pressure, and
expresses it by a graph.)

The sentence is analyzed by the following procedure.

a) The program first tries to find out the leftmost
verb, and analyzes the sentence part governed by the
verb. The phrase "ASSHUKU-SARETE" (be compressed) is
analyzed first. This has an irregular structure in
the sense that there are no explicit case elements
before the verb. All case elements are omitted in
this sentence part. By seeing the inflection of the
verb ("ASSHUKU~SURU" (to compress)-—-"ASSHUKUSARE"
(to be compressed)), we recognize that the sentence
is expressed in passive voice. The lexical
description of the verb in the word dictionary
indicates that it takes two intrinsic cases in the
field of chemistry, ACTOR and OBJECT. 1In a Japanese
sentence, especially in the field of chemistry, the case
elerment of ACTOR is apt to be neglected. Therefore, we
adopt the dummy assignment for the ACTOR as the author
of the sentence or some other human being. As there are
no preceding sentences, we cannot fill in the OBJECT
case immediately. So we set up the pending problem in
TL which will watch the analysis of the succeeding
sentence part to f£ill in the case.

b) The sentence part "TAISEKI-GA HENKA-SURU" will be
analyzed next. The verb "HENKA-SURU" ({(change)
requires only SUBJ case. The postposition "GA"
attached to the noun "TAISEKI" (volume) possibly

implies the case "SUBJ." The noun "TAISEKI" is a
lower concept noun of "attribute," which satisfies
the semantic condition of the case element. So this

sentence is analyzed in a straightforward manner.
However, because the noun "TAISEKI" is an attribute
noun, we must find out the entity noun which corre-
sponds to the noun "TAISEKI." That is, we must
identify the object whose volume is meant by the word.
As we cannot find out such an object in the preceding
sentences, we set up a pending problem in TL. By

-96-

checking the inflection of the verb "HENKASURU"
(change) and the word order "--- verb + noun ---.
it is syntactically recognized that this sentence is
an embedded sentence and modifies the noun "TOKI"
(time, when). We then connect this sentence part with
the noun "TOKI" by using the relation "SMOD"

(MODified by a Sentence).

c) When we analyze the next sentence part,

TOKI - NO SANSO-NO JOUTAI-O KANSATSU-SURU
time oxygen-(of) state-(obj) observe
when - (of)

we first perform the analysis of the noun phrase
"TOKI-NO SANSO-NO JOUTAI." The combination of the two
nouns "TOKI" and "SANSO" is semantically permissible
because "oxygen" is a lower concept noun of "material,"
and can be modified by a word which designates a
special point of time. The noun "TOKI" is modified

by the sentence part analyzed at step (b), and
designates the time when the event expressed by the
sentence part occurs. The combination of "SANSO"
(oxygen) and "JOUTAI" (state) is also permissible.

The nouns "TOKI," "SANSO," and "JOUTAI"™ in the noun phrase
activate the trapping elements in TL. The noun "SANSO"
satisfies the conditions of the two trapping elements set up
by step (a) and (b). That is, "SANSO" fills in the case OBJ
of the first sentence part. "TAISEKI" (volume) in the second
sentence is regarded as the volume of the oxygen.

d) The next sentence part "ATSURYOKU-O SOKUTEISHI" can be
processed easily. However the noun "ATSURYOKU"
(pressure) is used alone without "of what." We must
find out the corresponding entity noun in the preceding
sentences. "Oxygen" is easily found to satisfy the
condition, and "ATSURYOKU" (pressure) means "of the
oxygen."

e) The remaining steps will be easily understood. We
show the result of the parsing of the whole expression
in Figure 26.

The next example shows how HNS is used. Suppose the input
sentence is,

SUI1SO - TO SANSO -0 KONGOUSHI, KONO KONGOUKITAI-NI
hydrogen- (and) oxygen- (obj) mix the blend gas
TENKASURU-TO BAKUHATSU-SHI, MIZU-GA DEKIRU.
fire (if, when) explode (water (subj, act)be made

(If someone mixes hydrogen and oxygen, and fires the blend gas,
then (it) explodes and water is made.)

-97-

result of the
Emmmsnmamnn
stat
hbmx
TRUCT dene TRUCT
OBSERVE MEASURE wmmwmmze
vna wne

TATR-ATR

oxyge «
TIME OBJ >OH INST
nwam4lbmx|||uMU%\ Amoamo:mv Amoamo:mv K
N5
IATR-ATR (someone)
SMOD LEX
pressure
STRUCT TRUCT grap
ACT
Am%Emonmv IATR-ATR
OBJ
Input sentence:
ASSHUKUSARETE, TAISEKI -~ GA HENKASURU TOKI -NO
(be compressed) (volume) - (ACT, SUBJ) (change) (when)
SANSO ~ NO JOUTAI - O KANSATSUSHI, SONO ATSURYOKU-O
(oxygen) (state) ~ (0OBJ) (observe) (the) (pressure)-(0BJ)
SOKUTEISHI, SORE-O GRAPH-NI SURU.
(measure) (it)~(0OBJ) (graph)-(IOBJ, RESULT, etc.) (represent)

meaning: (Someone) observes the state of oxygen which is
compressed and whose volume changes. (Someone)
measures the pressure and represents it as a graph.

Figure 26.

-98-

The following steps are performed.

a)

b)

When the analysis of the first sentence part, "SUISO-
TO SANSO-O KONGOUSHI" is finished, the case frames of
the verb "KONGOUSHI" are instantiated. We will
evaluate the NTRANS expression of the case frame which
obtains the highest matched value. As the result, a
new object "mixture" is created and the elements of
the mixture are the hydrogen and the oxygen. This
newly created object is put into HNS.

Because the noun phrase "KONO KONGOUKITAI-NI" (to the
blend gas) in the sentence part is modified by the
anaphoric determiner "KONO" (the), it requires the
object which is designated by this phrase. The noun
"KONGOUKITAI" (blend gas) is a lower concept noun of
"mixture,” and the components of it are gaseous
objects. We search for it in HNS and NS and find the
object "mixture" in HNS, whose elements are the
hydrogen and the oxygen.

The object "blend gas" is the theme object in the
succeeding sentences. It fills in the omitted case
ACT of the third sentence part and FROM case of the
fourth sentence. Figure 27 shows the result of the
parsing.

Table 6 shows the score of the results obtained by
applying our analysis scheme to the sentences in a textbook of
junior high school chemistry.

Table 6. Score of result.

Total number Success Failure

Noun phrase 312 286 26
Conjunctive
phrase 372 349 23

Sentence 280 254 26

(52 D

STRUCT LEX STRUCT STRUCT
[MIX | mi):{:ure IGNITE be PRODUCED
ACT OBJ ELEMENT// ACT OBJ INST SUBJ MANNER FROM SUBJ

(sgﬁéone)

(someone) (instrument) violently

POST

LEX
water
LEX
blend gas
hydrogen
Input sentence:
SUISO - TO SANSO - O KONGOUSHI
(hydrogen) - (conjunctive pp - - -and) (oxygen)-(OBJ) (mix)
KONO KONGOUKITAI~-NI TENKASURU -TO
(this) (blend gas)-(0OBJ, 10OBJ, PLACE, etc.) (ignite)-(conjunctive pp
- - - if, when)

HAGESHIKU KAGAKUHENKASHI, MIZU - GA DEKIRU.
(violently) (react) (water)-(ACT, SUBJ) (be produced)

meaning: If (someone) mixes hydrogen and oxygen and ignites it,
then the gas violently reacts and water is produced.

Figure 27.

66

-100-

6. Conclusion

We can summarize the above procedure of our language analysis
in the following way.

a) By introducing the idea of case, we described the
patterns of activities in the verb dictionary. The
descriptions also contain the information as to how
activities are connected with each other and how an
activity changes the objects.

b) The meaning descriptions of nouns are based upon the
upper and lower concept relationships and the attri-
bute value pairs. Some kinds of nouns are regarded
as having relational meanings. Their meaning
descriptions are similar to those of verbs, adjectives,
and prepositions. By using these descriptions, we
can analyze fairly complicated noun phrases where
there are few syntactic clues.

c) We do not use logical expressions to represent
context. Instead, we represent contextual information
in the memory structure similar to that of human
intermediate term memory. The combination of it with
the semantic descriptions of words has enabled us to
perform efficient contextual analyses.

d) We have developed a programming language which makes
it easy to write natural language grammar and to
control the analysis procedure. By using this
language, we can incorporate semantic and contextual
analyses with semantic ones. Semantic and contextual
checking functions are rather simple and small.

Our analysis program has obtained a fairly good result.
However, the contextual analysis program can treat only a local
context. In order to treat a more global one, we should improve
our program in the following ways.

a) Corresponding to human long-term memory, we must
provide our system with an appropriate scheme to
represent the state of the world. The system must
have frameworks to express spacial relationships
among objects, time relationships among events, and
SO on.

b) At the present stage, we have only one relationship
"CON" to connect one activity with others. However,
human knowledge of the world contains various kinds
of relationships among activities, such as cause,
purpose, reason, and so on. These relationships may
play an important role not only in the analysis
process of sentences, but also in the inference process
in answering a question.

(1]

2]

[31]

[4]

[5]

[6]

(7]

[8]

[39]

-101-

c) In order that a system can communicate with a man in
a flexible and natural manner, it must be able to
perform inferences from incomplete data bases.
Therefore, we will not use a uniform proof procedure
such as the resolution proof procedure.

d) It is necessary to apply our method on fields other
than chemistry, and to test whether our semantic
description method should be changed or not.

References

Charniak, E. "Toward a Model of Children's Story Com-
prehension." Tech. Rep. MAC TR-266, Massachusetts
Institute of Technology, 1972.

Fillmore, C. "The Case for Case." In Bach and Harms, eds.,
Universals in Linguistic Theory. New York, Holt,
Rhinehart, 1968.

Hunt, E. "The Memory We Must Have." 1In Schank and Colby,
eds., Computer Models of Thought and Language, 1973.

Martin, W. "A System for Building Expert Problem Solving
Systems Involving Verbal Reasoning." OWL Notes,
Massachusetts Institute of Technology, 1974.

Sandwall, E. "PCF-2, A First-Order Calculus for Expressing
Conceptual Information." Computer Science Report of
Uppsala Univ., 1972.

Schank, R.C. "Margie: Memory, Analysis, Response,
Generation, and Inference on English." Proc. 3rd
IJCAI, 1973.

Simmons, R. "Semantic Networks: Their Computation and
Use for Understanding English Sentences." In Schank
and Colby, eds., Computer Models of Thought and
Language, 1973.

Wilks, Y. "Understanding without Proofs." Proc. 3rd IJCAI,
1973.
Winograd, T. “Procedures as Representation for Data in a

Computer Program for Understanding Natural Language."
Tech. Rep. MAC TR-84, Massachusetts Institute of
Technology, 1971.

-102-

Parsing in QAS

W.H. Paxton

The activity of the parsing system can be described as the
step-by~step construction of "interpretations" of utterances.
An interpretation is a phrase of the root category of the language
that spans the utterance and includes attributes such as semantic
representation. Phrases are created either by (a) recognizing a
word in the input, or (b) applying a composition rule to constit-
uent phrases. In the parser's search for an appropriate interpre-
tation, phrases are incrementally formed, evaluated and combined.
As this process goes on, the parser builds a data structure called
the parse net, representing the growing collection of phrases,
and maintains another structure, called the task queue, encoding
the alternative operations available for taking another step
toward understanding the input. Each entry in the task queue
specifies a procedure to be performed at a particular location
(node) in the parse net. The performance of such a procedure
typically entails both modifying the parse net and scheduling
new tasks to make further modifications. By factoring the
parsing process into tasks that first make incremental changes
and then spawn other tasks to be performed at unspecified later
times, the parser is given a means of controlling the overall
activity of the understanding system. Other components of the
system, such as semantics, may carry out large portions of a task,
but it is the responsibility of the parser to decide when the task
will actually be performed. Thus, instead of having a separate
"control" component in the system, decisions regarding what to
do next are made by the parser on the basis of a complex, heuristic
parsing strategy described at length below.

The control aspect of the parser's role is of great
importance because only a subset of the scheduled tasks will
actually prove to be necessary to understand the input; the
others will be "false steps" leading toward potential interpre-
tations but proving to be inappropriate for the particular
utterance being parsed. Ideally, in deciding which task to
perform next, the parser would always choose one of the necessary
tasks and never take a false step. The utterance would be
understood with the unnecessary tasks still left in the queue.

To approach this ideal, the actual system must spend some of its
effort deciding which task to perform next. Such effort is well
spent if it produces a net decrease in processing time. 1In

other words, the efficiency of the system will be improved by
decisions regarding the order in which tasks are performed if

the cost of the decisions is less than the cost of the false-step
tasks that would have otherwise been performed. Since the

-103-

potential for wasting effort on unnecessary operations is
particularly large in natural language understanding, the system
can afford to carry out rather complex computations in deciding
what to do next, and still get a big improvement in overall
efficiency. In the current system, the decisions are based on
the relative priorities assigned to the various tasks waiting

in the queue.

In establishing priorities, the parser gets important
guidance from the "values" the language definition assigns to
different interpretations. In addition to defining the possible
phrases, the language definition also associates with each phrase
a set of factors to be used in establishing its score with
respect to particular inputs and contexts. In particular, each
interpretation, being a root category phrase, gets a score in
this manner. The interpretation value is a simple function of
this root score. Other things being equal, a task will be
favored if it appears to lead toward an interpretation with a
higher value. To achieve this ranking, task priorities assigned
by the parser tend to reflect the maximum value of the interpre-
tations whose construction the task would lead to.

In addition to interpretation value, response time is also
an important concern. The parser must balance the goal of
finding the interpretation with the highest value against the
goal of making a prompt response. Our approach in dealing with
these conflicting goals is to maintain a set of phrases, in the
parser called focus phrases, that have been constructed in the
parse and to concentrate on finding ways to extend them to a
complete interpretation. This focusing of activity is brought
about by inhibiting tasks looking for replacements for any of
the focus phrases, unless the potential replacement promises to
lead to a significant improvement in value for the final inter-
pretation. Tasks conflicting with the focus of activity have
their priority temporarily lowered so that the parser is biased
toward building up a complete interpretation using phrases in
focus rather than exploring competing interpretations that would
not use focus phrases. If the focus is wrong, then the attempts
to extend it to a complete interpretation will be unsuccessful.
Eventually a task that conflicts with the focus will become the
highest priority operation for the parser to perform in spite of
the bias against it. As a result, the focus set will be modified
so that it is consistent with the new task, and the parser will
then concentrate on using the revised set of phrases.

In addition to calculating priorities of tasks on the basis
of interpretation values and focus of activity, the parser must
ensure that the information gained through the performance of
the tasks is used effectively. This is done by structuring the
parse net and the tasks that operate on it in a way that brings
together related activities and coordinates them to eliminate
duplication of effort. By avoiding duplication, the system
reduces the 111 effects of the false steps it will inevitably
take. Work done on a false path is not necessarily wasted, since

-104-

it may produce a phrase that can be used in some other way. For
example, a phrase constructed as part of an unsuccessful search
for one type of sentence may later appear in the final interpre-
tation as part of different kind of sentence. Also, false steps
are not repeated, since the system only makes one attempt to
build a particular type of phrase in a particular location in

the utterance, regardless of how many large phrases might include
it. Mistakes are inevitable, but at least the system will not
make the same mistake twice in one parse.

To summarize, the parser balances the desire to find the
highest value interpretation of an utterance against the need
to make a prompt response. In a step-by-step manner, phrases
are created, evaluated, and combined. The choice of the next
operation to carry out takes the form of assigning priorities
to alternative tasks. Priorities reject both the expected values
of interpretations toward which the task would lead and the
relation of the task to the current focus of activity. Finally,
the entire process is organized so that information gained in
performing a task is shared and recorded in such a way that it
does not have to be rediscovered.

Acknowledgment

This report has been extracted from D.E. Walker et al.,
Speech Understanding Research, Annual Report, Project 3804,
Artificial Intelligence Center, SRI, Menlo Park, California,b1975.
Work reported herein was supported at SRI by the Advanced
Research Projects Agency.

-105-

Input Processing in a German Language

Question-Answering System

Egbert Lehmann

1. Introduction

For fact retrieval, it seems desirable to develop a truly
multipurpose question-answering system (QAS) accepting as input
written natural language text. By providing different factual
data bases and dictionaries to such a system, it could be adapted
to satisfy the needs of very different groups of users. User-
questions and also a great part of the stored factual information
(including, if necessary, pragmatic information and definitions
of field-specific notions) should be given to the system in a
uniform and convenient manner, at least very similar to a natural
language. The system should be able to provide the user, on
request, the factual information he needs.

Because ultimately a lot of knowledge must be incorporated
in such a system, which may become enormously complex, an
evolutionary approach starting with a minimum of linguistic and
world knowledge seems appropriate in developing it. Development
{design, coding, testing, debugging) of a carefully predefined
general knowledge base as well as an application-oriented data
base is a formidable task. It can be considerably simplified
if the QAS is already principally able to work in a simple manner
when only a very limited knowledge is available. It has to
understand literally the meaning of ordinary, not too complicated
sentences (at the risk of sometimes seeming a little stupid in
doing so!). In this way, the system would be able--by storing
facts and finding answers to posed questions by inference from
stored facts--step by step to extend and adapt its knowledge base.
So, mainly by its own experiences, it would in time hecome more
and more qgualified. Working with the system in an experimental
way can be extremely valuable for the designer because he gains
a vivid impression from the actual working capabilities and short-
comings of the system at each stage of development. I considered
evolutionary principles important in designing the input language
and the language processor of our QAS. The program for input
analysis was programed by the author in LISP and has been running
on a RJAD R-40 computer with 512K byte core memory. It is
part of a complete German language gquestion answering systemn.

The ideas of Sandewall, Palme, Woocds, Winograd, Schank, and
Simmons have strongly influenced this work.

-106-

2. The Input Language: An Evolutionary Approach for Developing

the Input Language

Because in the beginning the input processor has only a very
poor semantic and factual knowledge, is has to rely strongly on
syntactic considerations. First, in the spirit of Montague
(1970), a simple but sufficiently powerful formal language was
developed, which corresponds to a certain extent to the German
language and constitutes a possible skeleton of it. This so-
called core language has a rather small vocabulary of structural
words or particles (comparable to the reserved symbols of a
programing or logical language). These words are of fundamental
importance for language analysis and interpretation and must be
known absolutely to the language processor.

This strictly formal language layout decreases the risk of
misunderstanding (which otherwise would be very large in absence
of a voluminous knowlege base) and permits a straightforward,
very efficient process of language analysis. Our core language
is comparable to and of the same level as the language of
Sandewall's (1972) PFC-2.

By successive extensions of the grammar, the dictionary, and
the parser, we then tried to make our input language more and
more similar to the German language. We obtained what we call
a stylized written German language. By continuing this effort,
it ultimately seems possible to cover the full natural language.
In comparison with the German language, our sylized fact input
language FES (Fakten-Eingabe-Sprache) has some not so severe
restrictions (concerning some complicated or extravagant language
constructs, which cause difficulties in language processing) and
a few additional language elements for avoiding lexical or
syntactic ambiguities (for instance, parentheses for explicit
structuring of complex subordinated sentences or complex noun
phrases). All these extensions and restrictions together only
lead to a moderate deviation from German. So the input language
FZ5 remains comprehensible to a native speaker/listener of German
and has nearly the same expressive power. Imbedded in the FES
is the more restricted and artificial looking core language,
which is not only easier to implement, but is also valuable in
many communicative situations for avioding ambiguities. Because
both languages can be intermingled, there are, at the disposal
of the user, very flexible language tools covering a wide range
between the core language and nearly the full natural language.

3. Elements of the Core Language

Most German content words used in sentences of the core
language are unknown to the language processor. Therefore, the
user has to mark the lexical category of word class of each
unknown word by putting one of the following reserved artificial
morphemes in front of it:

-107-

: (for proper names of individuals),

V (for infinitives of verbs),

* (for nouns characterizing countable objects),

+ (for nouns characterizing substances (mass terms)),
/ (for adverbs and adjectives),

F (for substantives with a functional meaning, as "father,"
"capital") ,

R (for substantives denoting relations, as "part,"
"property").

All German concept words are used in the core language only
in the basic form; inflected forms are not permitted. The
frequently used particles are very important for understanding
the core language. They are mostly adopted from German, and
they are partly designated by a modified or artificial name. 1In
the syntactic position of determiners, we distinguish the
following five particles:

D (analogous to the English "the"), definite determiner,
E (English "a"), specific indefinite determiner,
C (not explicitely available in German and English), acts

as a placeholder in NP's that describe concepts in-
stead of individuals),

IRG ("any"), unspecific determiner; quantifier, producing
existential quantified variables, and

JED ("each"), quantifier, producing universal quantified
variables.

Semantically, "E" introduces new individuals in the semantic
representation; "D" is very important as a frequently used
reference-establishing mechanism, crossing the sentence boundaries
in the discourse to refer back to a previously mentioned (or
known) individual. BAll determiners can be considered formally
as functions acting on concept descriptions. The basic auxil-
iaries are the particles:

IST (English "is"), the basic auxiliary expressing pre-
dication by attaching concepts (properties) to
individual objects (e.g., "Peter is teacher," "the
girl is pretty"),

TUT (engl. "does"), the basic auxiliary for describing
events, and

PASS (describing events in passive mood.)

-108-

The basic model auxiliaries are: KANN ("can"), WILL ("will"),
SOLL ("shall"), DARF ("is allowed"), MUSS ("must"), MAG ("may").
Prepositions in the core language mainly characterize, in a
nonambiguous way, deep-case relations, e.q.,

MIT ("with"), the INSTRument;

IN ("in"), AUF ("on"), AN ("at"), the LOCation;
NACH ("to"), the DIRection,

BEI the CIRCumstances, and

UEBER the THEMA of an action.

This set of German prepositions is extended by modified prepo-
sition names (e.g., ALS-T (SIMULTaneous), NACH-T ("after")) and
by the original names of the appropriate deep-case relations
(e.g., INSTR, LOC, DIR, CIRC, THEMA as well as AG, OBJ, DAT, etc.)
appearing in the semantic representation. Conjunctions and
interrogative particles also characterize deep-case relations.
Numerals always are written as ordinary numbers.

In the core language, there already are a few pronouns,
which are coreferent in a simple way with language constructs
mentioned before (usual NP's):

DIESY ("this), is coreferent with the whole preceding
sentence,

ERY ("it"), is coreferent with the first NP on the
top level of the preceding sentence (normally the
grammatical subject of this sentence),

D@ is coreferent with the last NP on the top level
of the preceding sentence,

D1 is a kind of relative pronoun refering to the NP
appearing immediately left of it,

DORT ("there”), is coreferent with the last location
mentioned in the preceding text,

DANACH ("then"), establishes a relation of temporal order
between the time moments of both events described
in the actual and in the preceding sentence.

SICH ("oneself"), is coreferent with the first NP (subject)
of the same sentence it appears in, if it is not
dominated by a reflexive verb.

Moreover, there is the pronoun ES@ (unpersonal "it"), which
is only a syntactic placeholder for the subject position in a
sentence. MAN or JEMAND ("someone," for persons), and ETWAS
("something," for impersonal entities) with the corresponding

-109~

sentence-negating forms NIEMAND ("nobody") and NICHTS ("nothing")
are unspecific (variable-generating) pronouns.

Some unique artificial morphemes are used for explicit
characterizing of some special grammatical phenomena:

PLUR (plural of nouns, appropriate only for compound
individuals, i.e., finite sets of single indi-
viduals),

PRAET (past tense of verbs),

FUT (future tense),

KONJTV (subjunctive mood)

INF (infinitive constructions),
NICHT ("not", negation).

Because it is not possible here to describe the core language

in greater detail, some additional remarks and an example must
suffice for the moment. (For a formal description of the syntax
see Figure 1, in section 8, page 124.

An input text is a sequence of main sentences. A main
sentence may be a prepositional sentence, an open guestion, a
closed question, or a command. Subordinate sentences (sub-
sentences) appear normally at the end of other (main or sub-
ordinate) sentences. They can be recursive up to an arbitrary
depth. Subsentences, which are part of other subsentences,
are surrounded by a pair of parentheses in order to facilitate
the interpretation of the whole sentence. When more than one
noun phrase (NP), not preceded by prepositions appears on the
top level of an arbitrary sentence, normally the first one will
be considered as describing the syntactic SUBject, the last one
the direct OBJect, and the middle one (if available) the DATive
(indirect object) case of the sentence.

4. Syntax of the Core Language

Text ::= (main sentence...)
main sentence ::= ({[praep]{np|?w|?welch subst}aufz!aufz np|
|BITTE} [NICHT]
{ [praep]l {np|advp}}...[vi...|praep]

[,{ss|infc}l...{.|2|t})
ss ::= subkonj{[praep]l{np|advp}}...[vi]...aux[({ss{infc})]...

infc :: = [{UM|INF}]{[praep]l{np|advp}}...[vi]...2U vi
[({ss|infc})]...

-110-

np ::= proper name|refword|{det|number} [PLUR] [adjp]...{subst|vi}|
[substanzmod |det | number{unitofmeas|subst}] [adjp]...substanz]|

<np-{ [praeplnp|rels}>

rels ::= ([praeplrelpron{(praepl{np|advpl}}...[vi]...aux
[({ss|infc})]...)

adjp ::= [grad|quant]adj
advp ::= [grad|quant]adv
quant ::= number unitofmeasure

Meaning of the syntactic metavariables (written with small
letters, angle brackets are avoided): ss = subordinated sentence
introduced by a conjunction, infc = infinitive construction,
np = nominal phrase, rels = relative sentence, adjp = adjective
phrase, advp = adverbial phrase, quant = quantity, praep = prep,

aux = auxiliary; ?w = interogative0 (as "who", "where", “when"),
? welch = interogative 1 (as "which", "how many"), vi = verb
infinitive, subkonj = subordinating conjunction, refword = refer-

ential word, det = determiner, subst = substantive (count term),
substanz = substantive (mass term), substanzmod = modifier for
portions of substances (as "much"), unitofmeas = unit of measure-
ment, relproun = relative pronoun, grad = gradual modifier of
adjectives/adverbs (as "very").

As metalanguage, we utilize a BNF notation extended by
square brackets (surrounding facultative consituents), special
parentheses "{" and "}" for factorization of substrings and for
the Symbol "...", describing the possibility of iterated appear-
ance of the constituent left of it. Look, for example, at the
following compound sentence, reexpressing the German sentence,
"Columbus glaubte, dass er Indien erreicht hatte, als er 1492
Amerika entdeckte." ("Columbus believed that he had arrived in
India, when he discovered America in 1492.")

: COLUMBUS TUT PRAET V GLAUBEN . DASS ER@ : INDIEN

Columbus does believe that he India
X ERREICHEN PRAET KONJTV TUT . ALS-T ER@ : AMERIKA
arrive does when he America

MOM 1492 V ENTDECKEN PRAET TUT .

discover does

The reserved words of the core language are underlined in this
example.

Complex MNP's consisting of other NP's also are allowed. Their
recursive structure is explicitly expressed by use of angle brackets

-111-

and by inserting a dash behind the first NP-constituent:
np ::= < np - rels > | < np - [praep] np > .
Apparent by this notation, the greatest source of ambiguity in
German sentences is removed. For instance, the core language
expression:
< D F ANZAHL - < D * EINWOHNER - (D1 MOM 1964
the number the inhabitant that

IN < D F HAUPTSTADT - VON : OSTERREICH > V LEBEN
in the capital of Austria live
PRAET TUN) > > ,
reexpresses the German NP, "die Anzahl der Einwohner, die 1964

in der Hauptstadt von Osterreich lebten" ("the number of inhabi-
tants living in the capital of Austria in 1964").

5. The Stylized Fact Input Language FES

I1f we proceed from the artificial core language to the
stylized natural language, many new problems appear. Ambiguous
syntactic constructions will become possible if some grammar
rules are relaxed (e.g., by deleting some artificial language
elements used in the core language for explicit structuring)
and many new rules are added. Therefore, a backtracking
mechanism will be needed for input analysis. Semantic ambiguities
also appear by use of homonymous words. Therefore, it is
important to distinguish different word meanings of homographs
in the dictionary. For inflected word forms (in German more
multiform and frequent than in English), the language processor
has to find the basic word form with the aid of the dictionary
and eventually also find procedures for morpholeogical analysis.

Because the vocabulary of a natural language grows with
time and therefore is considered as potentially unlimited,
we need mechanisms for handling words, so far unknown to the
system, at least in a preliminary and inductive way. Sentences
containing such words must be understood by the system, and
the position of the unknown word in the sentence and its
morphological properties must be observed.

Mechanisms for resolving anaphoric references are of great
importance for a language for the description of arbitrary facts.
More sophisticated devices of backward reference not only enable
the language user to formulate his ideas in a shorter and more
economical way, but are also necessary to express the unknown
word, so that the same object, which was not identified previously
by a proper name, is indicated by descriptions in different
places in the text or discourse.

-112-

The following fragment of a simple text in FES may serve
as an illustration. We have (a) the text in FES for processing
with an extended dictionary, (b) the English translation, and
(c) the text translated into the core language) :

1.
(a)

(b)

(c)

(a)
(b)

(c)

(a)
(b)

(c)

(a)
(b)
(c)

(a)
(b)

(c)

WIEN IST DIE HAUPTSTADT VON OSTERREICH.
Vienna is the capital of austria.

: WIEN IST C F HAUPTSTADT - VON : OSTERREICH.

ES LIEGT AN DER DONAU UND IST EINE SEHR SCH6NE STADT.
It is located on the Danube and is a very beautiful city.
ERg@ TUT AN : DONAU V LIEGEN.

ERg IST C SEHR / SCHON * STADT.

IN WIEN GIBT ES EINE ALTE UNIVERSITAT - (DIE
In Vienna there is an old university, which

< E / ALT * UNIVERSITAT - (D1 MOM 1365 V GRUNDEN

1365 GEGRUNDET WURDE).
was founded in 1365.

PRAET PASS) TUT IN : WIEN V EXISTIEREN.

WANN WURDE DIE UNIVERSITAT - IN WIEN GEGRUNDET?
When was the university in Vienna founded?

WANN PASS PRAET < D * UNIVERSITAT - IN : WIEN >
V GRUNDEN?

6. The Semantic Representation

General princivles

Before we begin to design special procedures for input
processing, we have to set up general principles for the (essen-
tial language-free) semantic representation of the content of
factual information. Before we ask how to represent and imple-
ment the conceptual meaning of texts, we first have to ask

-113-

what to represent at all. This means, we have to reflect on
the diverse nature of the parts of reality described by natural

language and to classify them along general lines. In doing so,
our thoughts were strongly formed by the valuable work of
Sandewall (1972) and Schank (1972). We believe that, in a

semantic description, objects of the physical world as well

as concrete situations and events and also arbitrary complex
conceptual structures, characterizing classes of each kind, should
be explicitly representable. This makes possible the formal
description of all the different interrelations among and proper-
ties of the phenomena dealt with in a discourse.

Our most important distinction of these phenomena is between
individuals and concepts. As individuals, we consider not only
things and persons but, in an extended sense, also each kind of
particular; entities existing in reality or in the human imagi-
nation. Special portions of substances, locations (places), and
ensembles (consisting of several single individuals), institutions,
particular situations, and events, and also objects of human
thought or feeling mostly will be handled as individuals. Concepts
are essentially abstract in nature. They are used as instruments
of human cognition for grasping and ordering the parts of the
reality by establishing their properties and interactions. Most
things (and also most concepts in use) are not designatable by
proper names (or other single words of a language), but must be
described with the aid of more complex language constructs by
use of concept words. Logical interpretation of concept words
as names of predicates or relations is obvious and can be con-
sequently done if the notion of individuals is used in an extended
sense as outlined above. The same should be also true of more
complex concepts. Concepts can (analogously as individuals) be
classified to characterize classes of individuals (as countable
objects, situations, events, etc.) as well as functions, relations,
properties of arbitrary phenomena, numbers and measurable
quantities.

For modeling and analyzing semantic structures, we tried to
set up a rather small (but not minimal and thereby too unspecific)
set of basic semantic relations. Deciding what sort of method-
ological framework should be used for the description and/or
implementation of the semantic representation of natural language
discourse was only the second step. Nowadays, candidates for
such a framework are:

a) the clean and academic looking world of first order,
predicate calculus strongly connected with resolution-
oriented theorem proving,

b) the action- and heuristic-oriented world of high-level
lanqguages of artificial intelligence such as PLANNER
and QA.4 (respectively, QLISP) where all can be
programed in a pragmatic, sometimes rather violent,
way and where nothing is impossible,

c) the more restricted and humanlike, intuitive, appealing,
and efficiently manageable world of semantic networks.

-114-

The last of these was selected as a basis of our semantic
representation for input texts.

I shall now describe what the available program actually
produces as semantic representation, and not what it eventually
will produce in the future. I am conscious that many important
problems are open at present. Other problems seem to be under-
stood from a theoretical point of view, but troubles arise in
the practical application of some of the better ideas, because
the general knowledge of the system is too restricted yet. Often
it proves difficult to devise a satisfactory mechanism for
extracting, from the given natural language text, all information
necessary for a good meaningful representation. The difficulties
only increase with the often diffuse, obscure, and fragmentary
traits of human thought and language use.

For example, if we look at verbs as concepts usually repre-
senting classes of events or actions, it seems impossible to
define how many (deep-case) arguments each verb must have and
of what special sorts its arguments should be. Undoubtedly,
such definitions are possible and useful within a fixed, rather
limited universe of discourse such like Winograd's (1972) block
world, or in dealing with texts describing vital actions of
human actors in common situations, principally known to all
human readers/listeners (as analyzed by Schank (1972, 1974)).

But for a more general context (including, for example, the widely
used jargon of scientific writing, and also newspapers which

use many common words in a less literal sense), too severe
restrictions on the use of words would be unwise and unrealistic.

The semantic representation of our input language will not
be different from that of ordinary German and will also be
essentially similar to that of other natural languages. Because
the application area of our QAS will be the general area of fact
retrieval, our input language and its semantic representation are
focused on particular true facts, not on arbitrarily structured
general prepositions. The semantic network paradigm seems to
be a reasonable representational framework for such facts.

Our semantic network is a twofold labeled directed graph.
Its nodes represent individuals and concepts that can both be
subclassified into different sorts. The arcs of the network
are labeled by the names of some basic two-place semantic
relations, which we consider to be the most significant relations
for human thought. More specific two-place relations as well as
one-place relations, three-place relations, etc., usually will
be represented by more complex network configurations, using
concept nodes as representatives for such relations.

Our network stored in the computer is symmetrical insofar
as for each stored link between two nodes n1 and n2 there also
exists an (inverse) link between n2 and nl1 in the network. Both
links are labeled by the name of the same relation, but the
firsc label is marked outgoing and the second incoming.

-115-

From a purely logical point of view, our network was a
special schema for the efficient storage and retrieval of large
masses of propositions in a heavily restricted predicate cal-
culus (without variables and guantifier and without logical
connectives different from the logical "and" ("A ") and the
negation sign on the lowest level. 1In spite of its simplicity
and small expressive power, this schema proved to be almost
sufficient as a base for logical interpretation of simple facts.
Recently, the expressive power was significantly increased by
adding variables as well as some constructions of a higher-order
logic to our network formalism. However, until now we have no
fully general method for representing first order, predicate
calculus formulas as network structures.

7. Semantic Relations

In selecting a limited number of basic semantic relations,
we freely used or borrowed names and/or meanings of relations
also used by other authors (for example by Simmons (1972},
Sandewall (1972), Palme (1973), Rumelhard (1973)). To begin
with, there is a single relation, IST ("is"), defined between
individuals and concepts that acts as the usual device for
predication. If x is an individual and P a concept, then IST
(x,P) means that P (x) is true ("x has the property P"}.

IST (Vienna, city) means that an individual called "Vienna"
is a member of the class of "cities."

IST ("Peter is sleeping now", sleeping) means that the so
described particular event is a member of the class of "sleeping-
acts" (that are named by the verb "sleeping" or "sleep").

If a predication is not really true but only believed or
supposed to hold, the relation IST has to be replaced by the
relation SEI ("may be"). The negated variants of IST and SEI
are the relations "-IST" and "-SEI".

In drawing the semantic representation of simple facts, for
each pair of arcs we only draw the outgoing arc and, for con-
venience, avoid the incoming one. So we obtain, for instance,
the following representations:

STADT {(city) SCHLAFEN (sleep)
IST IST
NS Moy
WIEN [Vienna) PETER ‘now'
(moment)
("WIEN IST EINE STADT.") ("PETER TUT NUN SCHLAFEN !")

("Vienna is a city.") ("Peter is sleeping now.")

-116-

STERBEN (die)

126/3/1827"

BEETHOVEN
WIEN (Vienna)

("BEETHOVEN STARB AM 26 TEN MARZ 1827 IN WIEN.")

The relation SUB links two concept nodes (as "cat" and
"animal"), if the first concept is included in (subsumed by)
the second one. Modification of established concepts by other
ones leading to new conceptions is very important for human
reasoning. For concept modification three relations exist:
GRAD (GRADually modifying, e.g., by adverbs as SEHR ("very"),
KAUM ("scarcely")), QUANT (QUANTitative modifying by quantities
(e.g., 30 METER)), and MOD (general MODification of concepts,
mostly by adding of adjectives or adverbs (e.g., "beautiful
city," "great composer”)).

In the following examples, we always symbolize the explicit
representatives of the language units under consideration by
two small concentric circles.

(interesting)

INTERESSANT LANG (long)
30
SuB SUB 1z
SEHR T
nD \§)s
GR (very) Q ME METER
"SEHR INTERESSANT" "30 METER LANG"

("very interesting") ("30 meters long")

-117-

{(composer)
concept: KOMPONIST

'‘great composer’

o GROSS
(great)

"DER GROSSE KOMPONIST : BEETHOVEN"

("the great composer Beethoven")

Locations in the simplest case can be considered as identical
to physical objects or are defined in natural language (using
propositional phrases) in relation to such objects, utilizing
prepositions with a local meaning as "above," "near," "beside."
For the semantic representation of locations, we use the relation
NOM (between locations and physical objects) and the relation
PR (between locations and special relational concepts named by
local prepositions), e.q.,

NAHE NEBEN (
(near) o (beside) opera-
PR house)
NOM OPERNHAUS
WIEN
(Vienna)
"NAHE WIEN" "NEBEN DEM OPERNIHAUS"
(near Vienna") ("beside the opera house")

Quantities are concepts defined by utilizing the relations
MZ (number of measurement) and ME (unit of measurement) as in
"100 GRAD CELSIUS" or "220 VOLT," represented by:

220 100
Mg VO

ME ME
VOLT GRAD CELSIUS
(centigrade) .

-118-

Finite sets consisting of several single individuals can
be represented as compound individuals (ensembles). The number
of their members is characterized by utilizing an undefined
numeral (as "many," "some," etc.) or stated exactly by a natural
number as the second argument of the relation NUM. 1If single
members of such a set are explicitly represented as network
nodes, they are linked to the compound individual by the relation
ELEM. Examples are:

(composer)
KOMPONIST
NUM
———>0
SUB

HAYDN BEETHOVEN NUM (many)
———>0 VIELE
MOZART
"HAYDN, MOZART UND BEETHOVEN" "VIELE KOMPONIST(EN)"

("many composers")

EINWOHNER (inhabitants)

IST

1640000
NUM

"1640000 EINWOHNER" ("1640000 inhabitants")

For representation of substances, look at the following examples:

(gasoline)
BENZIN TEE (tea) KOHLE (coal)
3 35000
SUB SUB sUn
MZ
(much)
QUANT " VIEL
B ME™Sg (oypy QUANT ME TONNE
TASSE (ton)

"VIEL BENZIN" "DREI TASSE(N) TEE" *35000 TONNEN (M) KOHLE"

("much gasoline") ("three cups of tea") ("35000 tons of coal")

-119-

Some often used primitive relations characterizing indi-
viduals by immediately relating them to other entities are:

ELEM: member of a finite set of physical objects,

IN : relates an (immovable) object to the place where it
exists,
MAT : relates a physical object to the material (substance)

it consists of,

NAM relation between an individual and his (not unique)

name,

PART: relation between two single physical objects whereof
the first is part of the second one,

P0OSS: characterizes an object as POSSessed by a person or
institution,

PROD: relation between an individual (perhaps of abstract
nature, e€.g., a work of literature) and the person
who produced it,

UTIL: characterizes an individual as utilized mainly or
exclusively by a special person,

ATTR: characterizes a (mostly abstract) individual (e.qg.,
a particular attribute or feature) as belonging to
or marking another individual (e.g., "the illness
of Napoleon," "the history of Vienna").

For instance, the fact, "There is a car possessed by John,"
could be implicitely represented as:

AUTO (car)

JOHN

POSS

Because a car customarily has no (external) proper name, an
artificial name, for instance G0000093, would be created by

the program for the node representing "the car of John" in the
semantic network. In this way, all nodes without external names
in the network will get an artificial internal name.

Avoiding for convenience the relation NAME and directly
identifying the individual John by the name JOHN, we get as
implicit representation of the fact considered above,

-120-

POSS

G0000093 JOHN

If we want to represent facts on facts, we need an explicit
representation for facts. Network nodes representing intensions
of factual prepositions can be created by the system and can
play the role of arguments of other prepositions. For example,
to represent the fact, "Peter was told that this car is
possessed by John," for the fact, "this car is possessed by
John, " an explicit representation such as,

n "n
Peter was told... o

G0000093

is needed.

Arbitrary n-place relational expressions of the kind R(a,b,c)
can be explicitly represented, using the primitive relations
A1, A2, A3 for successively marking the arguments, by structures
of the kind,

For attaching a value v to a functional term f(a,b) the
implicit representation of f(a,b) = v is:

-121-

Example: "Vienna is the capital of Austria."

HAUPTSTADT (capital)

WIEN o OSTERREICH
(Vienna) (Austria)

"WIEN IST DIE HAUPTSTADT - VON OSTERREICH."

Definite time moments (dates) of events are represented by
numbers, which are to be interpreted in a special way. For
instance, the date "26 th March 1827" is represented by the
number 1827032600.

The relations EQ (equality), GR ("greater than"), and
GREQ ("greater than or equal") are defined for two numbers,
quantities or time moments. For instance, time moments, if not
explicitly known, can be interrelated by these relations. Two
concepts, differently described and represented before, can be
defined to be equivalent (EQUIV) or to characterize two dis-
jointed (DISJ) sets of individuals. Two individuals, differently
described and represented before, are identical, if linked by
the relation IDENT.

Events are explicitly represented by nodes that obtain
their meaning by subordination under an event class concept
(named mostly by a, perhaps modified, verb) and are specified
by a number of deep-case arguments. Actions are events, (usually
consciously) performed by animate individuals as actors. If
no restrictions (e.g., depending on the dominating verb) are
known to the system, an arbitrary number of many deep-case
arguments is permitted. We did not try to restrict the number
of utilized deep-case relations so far as possible (as other
authors did). At present we use the following deep-case
relations (the first argument is always an event, the second
one we characterize in parentheses):

AG (AGens, actor, causal actant; causing or performing
an action; not restricted to persons),

DAT (DATive-deep-case, specifying an entity (mostly a
person) the event is directed or related to),

DEST (DESTinated person, not present on the place of an
event, the event is directed or related to this person)

DIR

INSTR

LoC

MATC

MOM

OBJ

ORIG

ROL

-122~

(DIRection or intended end-vnoint (place) of an
event, particularly specifying a movement of a
physical object)

(INSTRument of an action)

(LOCation of an event)

(MATerial used for an action of producing something)
(time-MOMent of an event)

(OBJect relation, its meaning is strongly dependent
on the special properties of the dominating verb;
the deep-case object is usual an individual that is

affected by the described event).

(place of ORIGin or direction a moved object is
coming from)

(ROLE an actor (or, in passive sentences, object)
is playing in the event)

Related to deep-case relations are the following relations

between two

CAUS

CIRC

CONC

CONDIT

DAN

INT

MENT

MODC

METH

SIMULT

THEMA

events:
(CAUSal relation between two events)
(CIRCumstances, surrounding conditions)

(CONCordance; for events, occurring according to a
fixed or prescribed event pattern)

(CONDITional relation; "if-then-relation" between
two classes of events)

("then-relation", temporal ordering of events)
(INTention or purpose of an event)

(emotional condition or state of mind of the actor
in an event)

(MODe or manner in which an event takes place)
(method of an action)

(temporal relation between events occurring
SIMULTaneously)

(THEMA or topic of a cognitive, communicative or
perceiving activity).

-123-

Significant difficulties arise in interpreting natural
language sentences with regard to the theoretically important
distinction between events (individuals) and event classes
(concepts). Mostly the decision is highly context dependent,
and, until now, the difference is not always sufficiently
regarded by the program. Our network also allows the represen-
tation of variables produced, for instance, in processing the
quantifiers IRG and JED or the pronouns MAN, JEMAND, NIEMAND,
ETWAS, NICHTS of the core language. There are two additional
sorts of nodes representing respectively existential and universal
quantified variables. So some not too complicated and often
used general prepositions which can be handled by the deductive
mechanisms of the system, can be represented. What has not been
possible to represent as network structures until now are general
prepositions with many quantifiers different in scope. Diffi-
culties will also be caused by the logical connector V (inclu-
sive or).

Finally, look, for example, at the semantic representation
(consisting of three event nodes) of the compound sentence
concerning Columbus ("Columbus believed he had arrived in India,
when he discovered America in 1492.").

(believe)

GLAUBEN
(arrive) {discover)
ERREICHEN ENTDECKEN

1492
GREO 000000

INDIEN AG

(India) AMERIKA

COLUMBUS

8. The Language Processing Program

-124-

The overall structure of the input-processing program is
shown in Figure 1.

Input text
Lexicon of . Morphological
Idioms Preprocessing Analysis
normalized text
 ctiona
Dictionary ¢ Pattern
Transformation
Grammarx .
Analysis
\L] Pattern
Mechanisms dee N N Ma;iglng
of reference p structure) s
\II \1'7 Transformation
T 3
Assimilation Partially
of L 3 assimilated —>
facts |gGestions guestion pattern
L

semantic representation

of factual input

L

direct network
search

Semantic

networik

Figure 1.

9. The Network Parser

Our network parser is a recursive LISP program. It
as arguments the top-level grammar net for main sentences (a
voluminous data structure) and the normalized sentence to be

analyzed.

of atomar words only.

Transforma-
tion into
clause form
(acceptable
by a theorem
prover.)

takes

Sentences are represented as simple lists consisting
This parser can be considered. as a kind

-125-

of general interpreter of network grammars. The analysis could
be done more efficiently by working in a compilerlike manner
(first compiling the network grammar to a LISP program, then
compiling this program once more), but, for purpose of grammar
testing and continuing modification of the analysis process,
the interpretative mode seems favorable.

The parsers has different working modes selectable by
switches. It can proceed

a) 1in a straightforward manner completely without back-
tracking,

b) in a smooth backtracking mode, terminating its work,
if a first apparently acceptable analysis result has
been found,

¢c) 1in a strong backtracking mode for exhaustively discovering
ambiguities, searching through all possible ways of
analyzing the given sentence.

In analyzing FES texts as input, we normally used mode (b) as
most appropriate; for the core language mode (a) is sufficient.

The parser also has many other test facilities for tracing
the flow of analysis, for producing (as a luxurious by-product
of the complex analysis process) a kind of plain surface structure
of analyzed sentences (which can be printed out for aesthetic
reasons, but is not practically used anywhere in further pro-
cessing).

The often very complex deep structure produced by the
analysis of a sentence (without assimilation) can be pretty-
printed, showing the treelike structure in a satisfying two-
dimensional arrangement easy to survey. If the analysis of a
given sentence was not successful, the parser tries to localize
the place in the sentence where the trouble occurred by printing
out the shortest nonanalyzed remainder of the sentence as well
as additional information characterizing the temporal content
of the network registers and the state of the analysis at the
time when the parser had most deeply penetrated into the sentence.

10. The Preprocessor

Before the text is analyzed sentence by sentence with the
network parser, a preprocessor for common idioms that do not
fit into the input language grammar (or would be semantically
misunderstood) is activated. In processing a sentence word
by word from left to right, the preprocessor tries to apply
replacement rules that are stored in a lexicon of idioms. These
replacement rules are basically similar to the well-known
rewriting rules appearing in type 0 Chomsky grammars. But the
power of our rules is substantially enlarged by mechanisms for
substitution of variables and additional sophisticated facilities
for pattern matching.

-126-

11. The Network Grammar

For the analysis of our input language, we use an augmented
recursive transition network grammar specially designed along
the lines described by Woods (1970). This network grammar is
always rather large and sophisticated and, in fact, accepts
a great part of normally formed German sentences.

According to my own experience, this kind of grammar model
seems well suited for the task of language understanding because
it has a sufficiently transparent syntactic skeleton and, at
the same time, offers unlimited computational power. Arbitrary
actions for normalization of inflected word forms by morphological
analysis, for context-dependent handling of unknown words, for
resolving references, for performing grammatical transformations,
and for building complicated structures as analysis results can
be incorporated.

Our network grammar consists of eight single networks for
different types of language units (see Figure 2). In traversing
a network, if the analysis proceeds along a PUSH-arc, another
(or the same) network will be (recursively) called (analogous to
a procedure call). The top-level network accepts all kinds of
main sentences (prepositions, gquestions, and commands).

main
sentences

subsentences NPs

Adjectiv
phrases

[Adverb phrase;]

dates and
time intervals

Quantities

Figure 2. Hierarchical structure of
the network grammar.

Although our network grammar is a large data structure, it
can be considered as a nondeterministic analysis program. There-
fore, the algorithmic properties of these grammars can be utilized
to increase the efficiency of the analysis process. Structure
building actions described in the network grammar (and invoked
by the parser) produce the treelike deepstructures for successfully

-127-

analyzed parts of the input text. We want to use the term
deep structure without special linguistic connotations (as in
the sense of interpretative semantics) simply for a kind of
intermediate representation of single sentences.

It should be stressed that our approach to formalizing a
grammar seems a little odd from a theoretical point of view.
The grammar describes only an acceptor (and in no way a generator)
for sentences. It is very liberal in accepting sentences because
the system reasonably can suppose that from common users who
are vitally interested in obtaining answers to their guestions,
no senseless or strongly ungrammatical questions will be posed.
Also the input texts will be at least sequences of correct
German sentences. So the program tries so far as possible to
understand what is given to it and accepts some slightly ungram-
matical sentences.

12. The Deep Structures

The produced deep structures can be syntactically described
as having the form:
<deep strucure> ::= <word>|<variable> |
(<sort functor> (<relation><deep structure>)
Y
(<special functor>[<deep structure>]...) .
Sort functors characterize the special sort of the semantic
representant and mostly produce concepts. Special functors are
for instance the functors named by the determiners of the core
language: E, D, C, IRG, JED. Special functors will be evaluated
during the assimilation and then produce representants of indi-
viduals. E produces new individuals, D searches individuals
(already stored in the network) sometimes by complicated mecha-

nisms, IRG and JED are producers of quantified variables, and
C delivers concepts.

For example, for the sentence:

"DAS BUCH WURDE IHR VON PETER GEGEBEN"

("The book was given her by Peter"),

the analysis would produce the deep-structure representation
(AUSSAGESAT?Z
(IST GEBEN)
(TEMP PRAET)
(AG PETER)
(DAT MARIA) (if the referent of the pronoun IHR
(0OBJ ("her") in the actual context was MARIA!)

(D BUCH))) .

-128-

After complete assimilation, this deep structure will be
explicitly represented by a node that obtains its meaning
by the following small part of the semantic network:

(give)

GEBEN (book)

BUCH

O’jfi,,;0$~\ IsT

~ IST
Mo —
1975000000 O

G0001708

PETER MARIA

Mow, a more complicated sentence is considered:

"DIE PLUR_TERRORISTEN VERSUCHTEN (DAS FLUGZEUG ZU SPRENGEN),
ALS DAS LOSEGELD NICHT VON DER REGIERUNG BEZAHLT WURDE."
("The terrorists tried to blow up the airplane when the
ransom was not paid by the government.")

As deep structure representation is pretty-printed:

(AUSSAGESAT?Z2
(IST VERSUCHEN)
(AG
(D
(MENGE
(IST TERRORIST)
(NUM PLUR))))
(TEMP PRAET)
(THEMA
(SUBSATZ
(SEI SPRENGEN)
(AG
(D
(MENGE
(IST TERRORIST)
(NUM PLUR))))
(OBJ
(D FLUGZEUG))))
(SIMULT
(SUBSATZ

(IST BEZAHLEN)
(TEMP PRAET)

(AG(D REGIERUNG))

(OBJ
(D LOESEGELD)))}))

-129-

The following semantic representation results:

(blow up)
(try) SPRENGEN
(ransom) (VERSUCHEN
" pay) .
LOSEGELD BEZAI)';LEN (airplane)
FLUGZEUG
o]
IS8T IST
(government) O TERRORIST

REGIERUNG

O PLUR

13. The Dictionary

Of great importance for our dictionary and the recognition
of word classes is the distinction between open and closed
classes of words. The analysis of the FES is done on the
assumption that all particles of the language were known to the
system (i.e., stored in the dictionary or specially handled by
the program). Therefore, the different classes of particles
are "closed."

So we developed a basic version of a dictionary containing
only these particles and a few of the most frequently used
content words. Particles appear with a high frequency, covering
more than 50 percent of the words in a normal text and are most
important for understanding the basic structure of utterances.

Because our classification of words is oriented by semantic
as well as syntactic aspects and will simplify the task of
analysis, we distinguish a greater number of word classes than
the traditional grammarians did. Often our criteria for estab-
lishing special word classes resulted from pragmatic considera-
tions. Because the utilized strategy for analysis permits
dealing with word forms (lexemes) belonging to more than one main
word class, the classes we obtained can overlap, and a finer
subclassification was settled wherever feasible. The decision
as to what class or meaning of a word was intended in an utterance
always depends on the context of the questionable word.

Some kinds of properties can be inscribed in the dictionary
for different classes of words and were marked by the following
labels:

FEAT attaches word classes to words,

-130-

BASF attaches a basic word form to an inflected word
form (mainly for irregularly formed inflected word
forms of verbs and deviant plural forms of nouns),

CASE attaches possibly intended cases to a particle
(these are to be considered as deep cases for prepo-
sitions, conjunctions, and interrogative particles,
and as surface cases for determiners and pronouns),

TEMP attaches a tense specification to conjugated verb

formes,
GEN specifies the gender of a substantive,
SYN specifies a synonymous word,

AMBIG attaches different word meanings to an ambiguous word.

14. Morphological Analysis

If, in the analysis process, a word is encountered not known
before to the program, then it will always be supposed that it
would be a member of an open word class. For uncommon content
words, not supposed to be in the systems dictionary, the user
can put an artificial morpheme in front of the unknown word for
marking the intended word class.

For handling words that are not marked and are not included
in the dictionary, the program has a rich arsenal of (partly
heuristic and sometimes fairly risky) techniques for forming
assumptions concerning the possible class membership of the
guestionable word. By morphological analysis, a word is divided
into a string of letters. Suffixes (and, if necessary, also
prefixes) are stripped and the resulting reduced forms are
compared with the always stored words. Lists of common suffixes
characterizing German adverbs, nouns, adjectives, and verbs are
used for the morphological analysis.

A list of common German prefixes (although normally less
significant for word class recognition) is available too.
Particular procedures of morphological analysis are combined
with considerations of the word context in a delicate way to
form assumptions concerning the possible class membership of
unknown words.

-131-

A Formal Framework for Unitary Approach to

the Theory of Problem Solving

Giovanni Guida, D. Mandrioli, A. Paci, and M. Somalvico

1. Introduction

Computer science, considered as that unitary discipline
which deals with all the basic problems tightly interconnected
with the existence of the computer, has been developed in the
last thirty years under the stimulating pressure of many theo-
retical and applicative exigences.

The rapidity and extension of the technological progress
has, therefore, produced a quite tumultuous and badly organized
development of computer science which, at the present moment,
still lacks a well-structured understanding of the fundamental
notions on which this new discipline is based.

It is, in fact, very surprising that only recently, i.e.,
in the last ten years, a theory of programs (also indicated as
mathematical theory of computation) has been proposed and con-
spicuously developed over the basic notion of program.

Still more recently, the research work stimulated within
the domain of artificial intelligence in general, and within
the domain of problem solving in particular [1,3,4,8,9], has
awakened the need for a new theoretical effort centered around
the notion of problem which more and more appears to be of
central importance within computer science.

This newly developing theory of problems provides a better
understanding of the path followed by computer science in its
development, which now seems to be coming out of its prehistoric
phase [10-12].

The studies about the theory of problem solving to which
belongs the algebraic approach that we shall present in this
paper [2,5-7] are intended to achieve the following main goals:

a) a rather precise understanding of human behavior
in problem solving;

b) a clear definition of what we mean by an automatic
problem solver (APS);

c) a proposal of an internal structure of an automatic
problem solver which can perform the three basic
activities of selection, search, and learning;

d)

e)

£)

-132-

a constructive comparison between the theoretical
possibility of an absolutely general automatic problem
solver and the practical requirement of a tool useful
for the man;

the formulation of a theory of problems which can be
helpful as a theoretical base in the design of an
automatic problem solver;

further investigations about the automatic problem
solver as a nondeterministic interpreter of a high-level
representation language and as an automatic programmer.

The proposal of the unitary approach that we are going to present
may be seen as a first step toward a complete formulation of

the theory of problems and a better understanding of the basic
concepts about the automatic problem solver.

This paper is devoted to present:

a)

b)

c)

d)

e)

£)

in section 1, a description of the role and of the
implication of problem solving research in computer
science, together with the outline of the basic functions
and fundamental structure of problem solvers and
representation languages interpreters;

in section 2, the basic definitions about the notions
of problem and of solution, strictly related to the
state-space approach -to problem solving; these notions
have been formalized in order to provide a general base
upon which to develop successive investigations;

in section 3, the detailed investigation of the state-
space S with the purpose of supplying it with an
appropriate framework, utilized for developing con-
siderations on the problem-solving methodology;

in section 4, the illustration of the problems which
arise when costs are taken into account; in this way,
the quality of the solutions obtained is illustrated
as well;

in section 5, some preliminary results which are
related to the problem of comparing different represen-
tations of problems; in particular, the conditions
which allow us to consider two problems, although
obtained by semantic domains of different nature, as
substantially equivalent, are described as well;

in section 6, general notions and criteria designed to
confront and compare different problems represented
within various approaches to problem solving (namely
state-space approach and problems-reduction approach),
together with different types of relations between
problems and properties based on these notions;

-133-

g) in section 7, the description of the unitary aspect of
our theory presenting the main implications of the
outlined formal approach on problem solvers and
representation languages design criteria; a general
and formalized description of the structure of a
problem solver is proposed as well;

h) 1in section 8, a brief insight into the semantic descrip-
tion of our unitary approach which is now being investi-
gated and which is not yet completely developed; other
conclusive remarks and promising research directions
are presented at the end of the section as well.

In this section, we are now going to illustrate the impli-
cation of problem-solving research in computer science. The
standpoint of our considerations is the following one: computer
science is an experimental discipline which is centered around
a unitary and global goal: man-computer interaction in solving
problems.

As any experimental discipline, therefore, computer science
can be viewed as involved in the passage between two distinct
worlds, namely, the world of reality, and the world of cognition
of reality. Between these two worlds, a gap exists which can be
overcome only by human ingenuity and creativity, but absolutely
not by means of any mechanical or artificial technique. The
activities required by any experimental discipline can be very
well exposed within the framework of many philosophical models.

We will utilize, for our purposes, the Galilean inductive-
deductive experimental method. The Galilean method is repre-
sented by a direct graph with three vertices and three arcs.

In Figure 1, we illustrate such a graph in the case of physics
as an example of an experimental discipline. In such an example,
the three vertices of the graph correspond to the notion of
phenomenon (in the physical reality), of model (of such a pheno-
menon), and of law (which can be derived within such a model).
The three arcs represent three conceptual activities, which are
related to the interaction between the world of reality and the
world of cognition of reality.

Formalization is the first activity, which is exclusive of
human creativity and invention and which enables man to substitute
the informal and intuitive notion of phenomenon with the rigorous
and precise concept of model within a selected formal framework.

Induction-deduction is the second activity, which lies
within the world of cognition of reality, and which allows
both man and mechanical tools to infer a law as a conseguence
or property of a formalized reality.

Matching is the third activity which allows man, again by
means of human creativity, to confront the validity and the
utility of the formally obtained law with the phenomenon, con-
sidered as the source of the whole experimental cognition
process.

‘PoyISU TPIUDWTISDAXD
SATIONPIP-9ATIDNPUT UBSTTITEH 9YL | 2aInb1g
dyo

weTqOIJd
poATOY MmET

N

SNDTIITID

-134-

WaTqoId SATITNIUT
uouLWOUdYJ

ALIIVHY d0
NOILINDOD J0 daTd0M

A m A D OLUHHO Z
H Z2 A Db LU BH H O &

weTqOoId

Po31UIsS3Iady TOPONW _ ALTTIVEA 40 ATHOH

-135-

The whole cycle is under the scrutiny of the man by means
of continuous critique which may bring up the convenience of
an improved repetition of the whole cycle itself.

The new experimental discipline of computer science can be
embedded in a similar way by simply introducing new conceptual
notions in correspondence to each vertex of the graph. More
precisely, with respect to the case of physics, we have the
following substitutions:

a) for the notion of phenomenon, we substitute the notion
of intuitive problem;

b) for the notion of model, we substitute the notion of
represented problem;

c¢) for the notion of law, we substitute the notion of
solved problem.

The intuitive problem is an entity which independently
faces the man and can be viewed as an undefined and unlimited
source of information.

From it, through the activity of formalization, the man
operates an extraction of a finite and precisely described amount
of information, namely the represented problem (i.e., the repre-
sentation of the problem). This information is chosen as valu-
able and sufficient in order to provide--through mechanical, or
interactive, computation--the construction of the solved problem
(i.e., the solution of the problem).

It is very important to observe that, because of the overall
meaning of the Galilean method, the whole passage between the
represented problem and the solved problem lies within the world
of cognition of reality, i.e., within a completely defined and
formalized environment.

Hence, in principle, such a passage, i.e., the solution
construction, can be performed in an artificial and completely
automatic way. On the other hand, the two other activities of
formalization and matching belong exclusively to the man. These
are the fundamental conceptual considerations which illustrate
the role of an automatic problem solver within computer science.

In the same way, it has been shown what can be considered
as the ultimate expandibility of the role of the computer within
the man-computer interaction in solving problems.

However, this ultimate goal can be considered only as the
final target of the development of automatization within computer
science. On the other hand, it is important to observe that at
the present state of the art, the passage between represented
problem and solved problem still requires, in the practical and
available technological impact of computer science, a widely
extended and intense cooperation between man and computer.

-136-

The role of the man in such cooperation, while avoidable in
principle, bears on itself the responsibility of the conceptually
most important activities. The trend of computer science research
therefore can be considered, with an overall synthesis of its
historical development, as based on the criterion of continuously
reducing the impact of man, and increasing the ability of the
computer. In particular, the trend of artificial intelligence
research can be considered as centered on the aim of completely
eliminating the role of man in such a construction of a solved
problem for a represented problem. In Figure 2, we illustrate the
present state of such a cooperation process. The responsibility
of the man is shown to be:

a) Invention of the representation of the problem;

b) invention of an algorithm for the construction of the
solution of the problem as it has been represented;

c) construction of a source program written in a symbolic
and, generally, high-level programing language;

d) critical matching of the solution of the problem with
the intuitive problem embedded in its semantic domain.

Please note that because of the previously exposed philo-~
sophical considerations while activities a) and d) belong always
to the man, activities b) and c) can potentially be taken over
by the computer.

The responsibility of the computer is shown to be:

a) translation of the source program into an object program
written in machine language,

b) execution of the object program,
c) construction of the solution of the problem.
During its growth, computer science has been based and
guided by appropriate theories in order to understand and organize

the methodology followed by human activities and to construct
specific artificial systems responsible for the computer activities.

Specifically, the following theories have been particularly
important:

a) theory of computability, for understanding the limit
and power of invention of algorithms;

b) theory of complexity, for providing a basis for critical
evaluation of efficiency in the invention of algorithms;

c) theory of formal languages, for providing frameworks
and tools useful in order to design and to construct
such artificial systems as the translators (compilers,
assemblers, interpreters) from source programs to object
programs;

Intuitive
Problem
GAP

Critique qu?
ij
lfred

CONMPUTFR

11

MAN
Construction Translation Execution ResoIQ n
fepresented Sclution Source Object Executed Solved
Problem Algorithm Program Program Proaram Problem
Theory of Theory of Theory of Programs Theory Switching Theory of
Problems Computability {(Mathematical of Formal Theory Proflems
Theory of Theory of Computa- Languages
tion

Complexity

Hardware System

Program Checker Translator
Program Verifier (Compiler Firmware System
Assembler
Interpreter)

Interactive Problem Solver
Automatic DProblem Solver

in man-computer interaction in solving problems.

Figure 2. Present state of art

~LEL-

-138-

d) switching theory, for providing frameworks and tools
useful in order to design and to construct such
artificial systems as the hardware systems and fire-
ware systems capable of the execution of object pro-
grams and the construction of the problem solution.

More recently, a new theory has been proposed and embryon-
ically developed, namely:

e) theory of programs (mathematical theory of computation),
for providing a basis for critical evaluation of
invention of programs, and for providing frameworks
and tools useful in order to design and to construct
such artificial systems (though not yet available, at
the present state of the art) as the program checkers
and the program verifiers.

The recent results of problem solving within artificial
intelligence research make the development of a new theory
increasingly more necessary. In principle, a new theory can
provide us with the bypassing of all the classical and also the
quite recent theories. Such a new theory can be defined as:

f) theory of problems, for providing a basis for critical
evaluation of the techniques capable of directly and
automatically obtaining the solved problem from the
represented problem, and for providing frameworks and
tools useful in order to design and to construct such
artificial systems (considered as becoming available
in the not too distant future) as the interactive
problem solvers and the automatic problem solvers.

In this way, we have achieved the purpose of illustrating
the role of problem solving within computer science by means of
an illustration of its meaning and importance in the scenario
of development of computer science.

Let us now present a more detailed understanding of the
functions and of the structure of an automatic problem solver.
We shall illustrate first the basic conceptual functions in-
volved in an automatic problem-solving activity, and we shall,
by consequence, present a structure for an automatic problem
solver.

We want to point out that all the considerations that we
are going to illustrate can be more deeply understood in a
critical way if one thinks of semantic domains from whence
intuitive problems arise, which are not already set up by means
of any rigorous description (e.g., such as semantic domains
originated from the world of mathematics, or of logic).

Namely, one should think of such kinds of semantic domains
{(e.g., robotics, natural languages understanding, human situ-
ations, actions, behaviors, etc.) where:

-139-

a) the representation of any problem is a real invention
for the man, requiring an effort of creativity and
ingenuity;

b) any represented problem still leaves completely unidenti-
fied, also in an implicit way, the solved problem
(that might eventually be obtained), which may as well
be completely out of reach even of human imagination.

The formalization activity, performed by the man, provides,
as it has been previously supposed, the represented problem as
an artificial object which is obtained from, and is the substi-
tute for, the intuitive problem.

The invention of the represented problem consists in the
precise description of a finite quantity of information which
the man formulates by means of the observation of two distinct
entities, namely:

a) the intuitive problem, embedded in its semantic domain,
and considered as an unlimited source of formalizable
or representable information; this entity, considered
as a "natural" entity, is provided by the world of
reality;

b) the automatic problem solver, intended as a general-
purpose tool which can deal with represented problems
originating from various semantic domains; this entity,
considered as an "artificial" entity, is provided by
the artificial-intelligence scientist.

The invention of the represented problem requires that
the man performs two basically different activities in its
formalization process.

The first activity is devoted to the specification of the
methods and ways which shape the automatic problem solver, con-
sidered as an originally general-purpose tool, into a well-
precised special-purpose tool which is oriented by the semantic
domain from which the intuitive problem is originated.

In other words, this activity is devoted by the man to "tune"
the general-purpose tool into a special-purpose tool, by way of
utilizing the human ingenuity and understanding of the best mode
in which the artificial tool works more efficiently in attacking
the solution process for the particular intuitive problem. By
means of this activity, the general-problem solver 1is trans-
formed into a special-problem solver.

The information described by consequence of this first
activity is called control information, and it is the first part
of the information contained in the represented problem.

The second activity is dedicated to the selection from the
intuitive problem of a finite quantity of information, well
defined, which is considered by the man as useful, and, hope-
fully, efficient and sufficient in order to allow the special-
problem solver to achieve its goal of providing an automatic
solution of the problem.

-140-

The information described by consequence of this second
activity is called problem information, and it is the second
part of the information contained in the represented problem.

It is conceptually important to observe that both the two
previously described activities are done by the man conscious
of being faced by ignorance of three different types, namely:

a) whether the control and problem information, contained
in the represented problem, is sufficient in order to
make the computer able to solve the problem;

b) what part of this information is actually relevant to

the computer and should be utilized in order to solve
the problem;

c) what is the actual way in which the relevant part of
this information should be processed (possibly efficiently)
in order to construct the (possibly optimum) solved
problem, in the event that such a construction might be
attainable.

It is important to observe that the first type of ignorance
is a direct consequence of the existing gap between the world of
reality and the world of cognition of reality.

In order to overcome this ignorance, the man needs to wait
for the end of the whole experimental cycle; by means of the
activity of matching, he will be able to check if an acceptable
solution of the intuitive problem has been obtained, and, thus,
he will be able to overcome this first type of ignorance.

The two other types of ignorances are very important
because they are useful to point out two functions, performed
by the automatic problem solver, which are intended to give
artificial answers to this ignorance.

The first function, which is devoted to produce an auto-
matic answer to the second type of ignorance, consists of an
appropriate selection of one part of the information contained
in the represented problem and considered, by the automatic
problem solver, as useful and relevant for its activity of
solving problems.

This activity is performed by a first part of the auto-
matic problem solver, called selector, as it is shown in
Figure 3, where all the structure of an automatic problem solver
is illustrated.

Therefore, we will call'the global represented problem
the input of the selector, and the selected represented problem
the output of the selector.

The second function, which is devoted to produce an auto-
matic answer to the third type of ignorance, consists of a
skillful search of the cooperation process, embracing the
already selected information, which essentially makes up the
solution algorithm and, thus, yields the solution of the problem.

-141-

s19ATOS waTqoxd OT3IPWOINE U 30 2INIONIIS

weTqoId
psaTog

Isuges]

[}

IoYydaesasg

g

wa TqoIdg
pojuasaxday

p®309T1as

waTqoadq
9AT3ITNIUT

¢ 9anbtg
s Tqoxd
I0308Tesg ——— po3juasaaday
TeqoT1d

-142-

This activity is performed by a second part of the auto-
matic problem solver, called searcher, as it is shown in
Figure 3. Therefore, while the input of the searcher will be
the selected represented problem, the output of the searcher
will be the solved problem.

As it has been previously illustrated, the control infor-
mation is the information which enables the man to specify the
special configuration of the problem solver oriented toward a
particular semantic domain. Therefore, by means of the control
information, the structures of the selector and searcher are
completely defined and specified.

In other words, the selector and searcher are two general
purpose, artificial metasystems which, by means of the control
information, are specialized into two special purpose, arti-
ficial systems.

This specialization of the structure of the selector and
of the searcher by the man can be considered just as an initial
specification which, during the ongoing solution process, can
possibly be changed and improved.

This modifying and enhancing activity is the typical
activity of learning which is able to provide a dynamic evolution
of the structure of the selector and of the searcher.

This self-changing activity is performed by a third part
of the automatic problem solver, called learner as it is shown
in Figure 3.

Therefore, the inputs of the learner are constituted by the
global represented problem, by the selected represented problem,
and by the solved problem.

In this way, the inputs of the learner are obtained not only
from the human activity of formalization of the intuitive problem
into a represented problem, but also from the artificial activity
of the problem solver itself; in this second case, these inputs
can take account both of partial and of total results obtained
from the artificial activity. The outputs of the learner are
the automatically constructed and modifiable specifications of
the selector and of the searcher.

Thus, also the learner can be considered as a general pur-
pose, artificial metasystem which is able to specify the selector
and the searcher into two special systems. Thus, the kernel of
an automatic problem solver appears to be an artificial meta-
system which is initialized by the man as an initial system,
and, afterward, can evolve itself in a way appropriate to enhance
its artificial performances in solving problems. Therefore,
learning can be viewed as the ability of self-awareness of the
whole automatic problem solver.

In fact, in principle, the learner itself can be considered
as an automatic problem solver, which has been tuned on the
semantic domain of problem solving, and which has to automatically
solve the problems of constructing (or, better, specifying)
selectors and searchers.

-143-

Thus, such sophisticated level in designing a learner can
envisage automatic problem solvers acting completely as self-
development artificial systems. 1In conclusion, we can assert
that an automatic problem solver can operate on a represented
problem and can provide a solved problem. Whichever has been
the method followed by the man in performing the formalization
task for the construction of the represented problem, it is
necessary for him to choose an appropriate formalism adapted
both to provide a "good" represented problem and to catalyze
a "valid" artificial activity for the automatic problem solver.

Therefore, we can rightfully call such formalism a repre-
sentation language which man needs for cooperating with the
computer.

While the classic programing languages have been conceived
to channel to the computer the human invention of solution
algorithms, the representation lanquages can be conceived to
channel to the computer the human invention of represented
problems.

Therefore, we can look at automatic problem solvers as the
interpreters of the representation languages in which the repre-
sented problems have been communicated to the computer.

Thus, it is natural to look at first-order predicate logic
and at the PLANNER-like goal-oriented languages, as preliminary
examples of representation languages. The interpreters of such
representation languages (e.g., the theorem provers, in the
case of first-order predicate logic) need, in the present state
of the art, to be conceived and structured on the more formal
basis of a theory of problems.

This paper is, indeed, centered around a part of this
developing new theory, and the presented results provide more
understanding for the design of both automatic problem solvers
and representation language interpreters.

2. Basic Definitions

In this section, we present the basic definitions about
the notions of problem and of solution which are strictly related
to the state-space approach. These concepts are formalized here
in order to provide a general base upon which to develop our
successive investigations.

Definition 1

A (deterministic) problem schema M is a triple M = (S,IL,T)
where:
s = {50,51,...,sn_1} is a finite set of elements called the
states of M;
£ = {0,s0qr--s0y 4} is a finite set of elements called the
inputs of M;
r = {yoo,yo1,...,yom_1} is a finite set of mappings of S into S

called the operators of M. []

-1h4=-

Definition 2

A (deterministic) problem P is a quintuple P = (s,:,T,1i,f),
where (S5,Z,T) is a (deterministic) problem schema, and:

i € S is called the initial state;

f € S is called the final state.

[

Definition 3

. A (deterministic) extended problem P is a quintuple
P=(s,%,T,I1,F), where (S,Z,T') is a (deterministic) problem
schema and:

ICS is called the set of the initial states;

FCS is called the set of the final states.]

Definition 4§

A solution of the problem P = (S,I,T',1i,f) is a string:

X = 0, O, ... 0, €2ZI* , (2.1)
1 12 Tk

such that:

(2.2)

where:

Y, = YO. Yd. ee. YO B (2.3)

(i.e., Yy is made up by the composition of operators), and

Ye is the identity function on §, if e is the null string.

O

Definition 5

A solution of the extended problem P = (S,,l,I,F) is a
string x€ I* such that:

(di) (df) ((i€1) /\(iYx = f) A(fE€F)) . (2.4)

[l

The solution set of a(n) (extended) problem P (P) is the set
ng z*(xf)gz*) which contains all the solutions of P (P). D

We outline that the solution set X, of a problem P is not

Definition 6

necessarily finite. We are now able to introduce some initial
formal properties of these notions.

-145-

Theorem 1.

Given an extended problem p = (s,2,T,I,F) we have:
5 = U X (2.5)
I
i~"p
where
Ej = iPl (py = (S,Z.F.i,f))/\(iCI)/\(fCF)f . (2.6)

Proof. We have that:

X5 = ix‘(xCZ*)/\ (i) @) (L€ 1) A (iy, = £ A (fCF)))z < (2.7

Moreover,

_f « oL (2.8)
%o, —}x‘(XCZ YA (i, = D} -

Therefore, by the definition of union of sets, we have that:

U X, = M(xc I¥) A (1) (FE) ((A€T) A iy, = f)
p.€E; 1
. . (2.9)

A(EEF))) .
Hence, we conclude that:

Xi =) X . (2.10)
i~ *®p J

Although this theorem states a close relation between the
solution of an extended problem and the solution of a set of
problems, there is no indication about the methods of how to
"reduce,” in a general case, the solution of an extended problem
P to the solutions of the set of problems Eﬁ.

In fact, this "reduction" is closely related to the search
strateqy adopted in the problem-solving process.

Conversely, we want to focus our interest in the following
pages only on problems and their properties.

-146-

Definition 7.

The length 1 of a string x€I* is defined as the measure
function of r* into N (set of natural numbers) such that:

1(ag) =1 (¥o) (0 €1) (2.11)

T(xy) = 1(x) + 1(y) (¥x) (¥y) ((x€L*) A (YEZH*)) .

O

We have, then, this well-known property of the null string.
Theorem 2.

We have that:

1(e) =0 . (2.12)
Proof. 1(xy) = 1(x) + 1(y) (¥x) (¥y) ((XE€T*) A(yE€I*)) . (2.13)
But when x = €, we have that:
1(ey) = 1(e) + 1(y) . (2.14)
Since,
(2.15)
EY = Y

we obtain that:
1{y) = 1(e) + 1(y) . (2.16)
This equation between natural variables has the only solution:
1(e) =0 . (2.17)

[

Definition 8.

A simple cost ¢ is a measure function of I* into R (set of
real numbers) such that:

c{xy) = c(x) + c(y) (¥x) (¥y) ((x € Z*) A(y€I*)) . (2.18)

Il

-147-

Theorem 3.

We have that:
c(e) =0 . (2-19)

Proof. The proof is similar to the proof of Theorem 2.

Theorem 4

A simple cost ¢ is completely determined by its restriction
to L.

Proof. Because of Definition 4 and (2.1), we have that:

X = 0. 0, <.. O. (¥x) (x €1%) . (2.20)
2 1k

Therefore, because of Definition 8, we obtain that:

c(x) =c(o,) +c(o,) + ... + c(0, Y(¥L) (xET*) . (2.21)
i, i, i

The theorem has thus been proved. []
Definition 9

A composite cost k is a measure function of (Sx L)¥* into
R such that: [:

k(xy) = k(x) + k(y) (¥x) (Vy) ((x €({SxI)*) A (y €(5xX)*)) . (2.22)

Theorem 5.

We have that:
k(e) =0 . (2.23)

Proof. The proof is similar to the proof of Theorem 2.

[

-148-

Theorem 6.

A composite cost k is completely determined by its restric-
tion to S x I.

Proof. The proof is similar to the proof of Theorem 4. []
We conclude this introductory section by outlining the

close relation existing between our definition of problem and
the classical definitions of automaton and graph.

Definition 10.

A (deterministic) automaton A is a gquintuple A = (S,E,M,so,F)
where,

s = {so, SRR S { is a finite set of elements called the states of A;
L= {00, see s Op 4 } isa finite set of elements called the inputs of A;
M= {MO peee My } is a finite set of mappings of S into S;

o) m-1

§,E 8 is called the initial state;

FCS is called the set of final states. O

Definition 11.

A (directed, labeled) graph is a triple G = (V,A,R) where,

v = {Vo, “ee 'Vn-a} isafinite set of elements called the vertices of G;
A= {ao, - 'am—1} isa finite set of elements called the labels of G;
R = 4R, ,...,R is a finite set of mappings from V into V.

o n-1

O

The following two definitions illustrate the relations
existing between the theories of problems, automata, and graphs.

Definition 12,

The automaton associated to the problem P = (S,I,T,i,f) is
the automaton A = (s,I,l,i,{f}). D

-149-

Definition 13

The graph associated to the problem P = (S,Z,T,i,f) is
the graph G = (S,Z%,T). E]

In the next sections, we shall introduce new concepts
based on the notions which have been introduced here. In this
way, the results of the developing theory of problems, useful
for obtaining concrete applications, will be exposed in a
gradual and natural way.

3. The Resolvent Set H

In this section, we investigate in detail the state-space S
with the purpose of supplying it with an appropriate framework,
utilized for developing considerations on the problem-solving
methodology.

Definition 14

A state sjEZS is reachable from the state si€:S if:
* =
(x) ((x €2%) A (siYx sj)) . (3.1)

Definition 15

A state stZS is k-reachable from the state siC s if:

(x) ((x €I*) A (s;y, = Sj) A((x) = k)) . (3.2)

[

Definition 16

The reachable set from the state si€:S is the set Rs cs
such that: i

R =

(stS) A (dx) ((x€5*) A (siyx = sj)); . (3.3)

O

S,
J

Definition 17

k

The k-reachable set from the state s.€ S is the set R. TS
i S.
such that: i
R];‘ = gs. (s.€S)A Ux) ((XxE€CZ*¥)A (s Y. = s.)A (1(x) = k))
i J] ix j
(3.4)

O]

-150-

Theorem 7.

We have that:

R = U RZ . (3.5)

i k=0 i D
Proof. The proof is directly obtained from Definitions 16 and 17.

O

The reachable set of the problem P = (S,I,T,1i,f) is the set

RCS such that R = R, . I:[

Definition 18

Definition 19

The k-reachable set of the problem P = (S,Z,T,i,f) is the
k k

set RkC1S such that R = R".,.
. i]

Definition 20

A state sj€ZS is generating of the state si€:S if:
*) A =
(dx) ((x € T*) (SjYX Si)) . (3.6)

Definition 21

A state st S is k-generating of the state siC S if:

(dx) ((x € %) A (SjYx =s)A0(x) =Kk) . (3.7)

Definition 22

The generating set of the state s.€ S is the set 0_ C S
i s, =
such that: i

0 o= sia(st S) A (Ux) ((x€ L*) A(sjyx = Si)) . (3.8)

-151-

Definition 23

The k-generating set of the state siEZS is the set Oz cSs

such that: i
kK _). | - -
0Si = sjl(sj€ZS)A (x) ((x €I*) A (sjyx = si)A (1({x) = k))
(3.9)
Theorem 8. []
We have that:
- U ok
Os_ = U 0S . (3.10)

i k=0 i

Proof. The proof is directly obtained from Definitions 22 and 23.

]

Definition 24

The generating set of the problem P = (S,I,T,i,f) is the
set 0CS such that 0 = Of. [j

Definition 25

The k-generating set of the problem P = (S,Z,T,i,f) is the
k k _ Ak
set 07 C S such that 0" = Of. []

We now present two necessary and sufficient conditions for
the solvability of a problem.

Theorem 9.

A problem P = (S,Z,T,i,£f) is solvable if f CR.

Proof.

a) Only if part.

P is solvable, hence it has a solution x, i.e., because of
Definition 4:

(Hx) ((x€ %) A (iyx = £f)) . (3.11)

Therefore fCRi and f €R.

-152-

b) If part.

f € R, hence, because of Definition 18, f€ZRi. Hence,

(Hx) ((x € £%) Aliy, = £)) . (3.12)

Therefore, because of Definition 4, x is a solution of P, and
P is solvable.

[l

Theorem 10.

A problem P = (S,%,I',i,f) is solvable if i€0.

Proof. The proof is similar to the proof of Theorem 9. []

Let us now define the resolvent set H and outline its
importance and its algebraic properties.

Definition 26

The resolvent set of the problem P = (S,%,I,i,f) is the set
HC S such that:

H=RNO . (3.13)

L]

Definition 27

A k-step solution of the problem P (s,z,I,i,f) is a
solution x € £¥ of P such that 1(x) = k. []

I

Definition 28

The (k-step) solution sequence generated by the (k-step)
solution x = O; --- 0y of the problem P = (S5,%Z,T,i,f) is the
1 k
sequence of states:

eS)

> = (i,s1,52,...,sk_1,f) , (3.14)

such that:

-153-

Sq = i Y0,
1
S, = S, YO,
2 1 12
. (3.15)
S, _ S, _5 YO,
k-1 k-2 iyq

K 0

Theorem 11,

Each state gik)

problem P = (S,Z,T,i,f) belongs to H.

of every k-step solution segquence Gik) of a

Proof. Because of Definitions 19, 25, and 28 we have that:

k
g’ik) € u R"cr , (3.16)
n=0
and
k
g)((k) € u ot co . (3.17)
n=0
Hence,

gik) € RMNO and, therefore, g;k)C H

[

Theorem 12.

Every state h€H of the resolvent set H of a problem
P = (5,Z,I'i,f) belongs at least to one k-step solution sequence
of P.

Proof. For each element h€ H, we have that:

(h€R) A (h€CO) . (3.18)

-154-

Hence, we draw that:

(xy) (g €26 A iy, = 0)) (3.19)

and,

(sz)((x2€f2*)(hyx2 = f)) . (3.20)

L.et us consider:

X = XX, . (3.21)

Then we obtain that:
(Ux) ((x€L*) A(iy = £)) . (3.22)

Therefore, x is a solution of P. Let us suppose that:

1(x1) = k1 ’ 1(x2) = k2 , 1(x) = k1 + k2 =k
The k-step solution seguence Gék) is such that:
. k
Sy = iy, = h , hence thG;)

Theorem 13.

Given a problem P = (S5,I,T,i,f) we have that:

H = jh‘h is a state of a solution sequence GX . (3.23)

Proof. Because of Theorems 11 and 12 we have that (¥x) (3.24)

{(h is a state of a solution seqguence G_) -+ {(h€&€ H))
pecause of Theorem 11. x

-155~

Moreover, (¥h) ((h&€H) » (h is a state of a solution sequence
Gx)) because of Theorem 12. Hence, we obtain that: (3.25)

H = {h’h is a state of a solution sequence Gx} . (3.26)

[l
This last theorem emphasizes the importance of the resolvent
set H which appears as the natural base for further investigation
of the properties of the state-space representation. We point
out that a bidirectional algorithm incrementally building up the
resolvent set H can easily be defined on the ground of Defini-
tion 26.

We can now further investigate some algebraic properties of H.

Definition 29

An arc of a problem P = (S,%,T,1i,f) is a couple of states
u = (so,s15 such that:
(o) ({(c € 2) A (soyo = s1)) . (3.27)

The state 8o is called the initial state, and the state sS4 is

called the final state of u. []

Definition 30

A loop is an arc u = (50’51) such that So = S1. []

Definition 31

A path of a problem P = (S,Z,T,i,f) is a finite sequence
of states u = (so,...,sk) such that:

(dx) ((x€2+) A(x = 011 oik) A(s, = soyoi1)

Al A (sk = 8,9 Y0,)) (3.28)
k
where,

sto= gt {e} i (3.29)

Such string x is called a generating string of u. []

-156-

Definition 32

The length of a path u = (so,...,sk) is the length of a

generating string of it. Please note that while any path can
have more than one generating string of itself, the lengths
of all these generating strings are all equal amgng themselves.

Definition 33

A circuit is a path u = (so,...,sk) such that So = 8

Definition 34

A ring is a path p = (so,s1,...,sk) such that:

Sy = 89 T ... =5 . (3.30)

Definition 35

Given a problem P = (s,,l',i,f), we define the binary
relation € on H, in this way:

h. < h. , (3.31)
whenever,

h.

’ n

hiCR (Vhi)(th)((hi€ H) A (hj€H)) . (3.32)

Theorem 14.

The binary relation £ on H is a partial preorder.

Proof. We have that:
h<€=h (vh)(h€H) , (3.33)
and

h& Ry (vh) (h€H) . (3.34)

-157-

Therefore,

h < h (¥h)(h€H) . (3.35a)

Hence, the reflexivé property holds. Moreover, if

(hy < hy) A(hg < h) (3.35b)
we have that,

(h; € Ry) (hy€Ry) (3.36)

j k

and,

(dxy) ({(xq€ I*) /\(ijox1 =hn) (3.37)
and,

(dxy) ((x, € Z*) A (hyyo, = h.)) . (3.38)

1 j

Therefore, if x = XXy then hkox = hi.

Therefore, h.€ R, , and, hence, h. < h, .
i K i-=-"k
Therefore, we have proved that the transitivity property holds.

L

Theorem 15.

Given a problem P = (S,>,T,i,f) if a state h€H is an
element of a circuit of P, then all the elements of the circuit
belong to H.

Proof. Letbe h€H, and y = (51,...,sn,h,s ,...,sk) with
—_— n+1

Sq = Sk (i.e., v is a circuit of P).

Because of Definition 26, we have that h€ R, and, hence,

{sn+1,...,sk}g.R; moreover, we have that h€ 0, and, hence,

{51,...,sn}§ 0. But since s; = s,, we have that {sn+1,...,sk}g 0,

-158-

and we have that {51,...,sn}§ R. Therefore, we conclude that
for each element su of y, it holds that,

(SU€ R) A (su€ 0) . (3.39)

Therefore, each element s, of u belongs to H. []

Theorem 16.

The binary relation < on H is a partial order if H doesn’'t
contain circuits (it may contain loops and rings).

Proof. In Theorem 14, we have already proved that reflexivity

and transitivity properties hold for <. We must now prove that
antisymmentry property holds. We will prove such property if H
doesn’'t contain circuits.

a) Only if part.

We will prove that if antisymmetry property holds, then H doesn't
contain circuits. We will prove this case by absurdum. 1In
fact, let us suppose that antisymmetry property holds, i.e.:

(((hy < hy)A (hy < hy)) » (hy = hy)) (3.40)

2) 2

(Vh1)(Vh2)((h1€H)/\ (h2€ H))

and, let us suppose, by absurdum that it exists, a circuit
of H, u = (Sy,85s..-48,_4+84). We will have, under this assump-

tion and because of Definition 35, that both (31 < sz) and

(s2 < s1). But, also, S4 # S,i SO the antisymmetry property has
been contradicted.

b) If part.

We will prove that if H doesn't contain circuits, the antisymmetry
property holds. We will prove this case by absurdum. Let us

suppose that H doesn't contain circuits. And, let us suppose,
by absurdum, that the antisymmetry property doesn't hold, i.e.:

(h1 < hZ) A (h2 < h1) A (h1 # h2) . (3.41)

-159-

Because of Definition 35, we have that:

(h1€ ha) A (h2€ Rh1) A (hy # hy) . (3.42)

Hence, it exists, by construction, as a circuit u = (hz,...,
h1,...,h2) which contradicts the hypothesis that H doesn't

contain circuits.

Theorem 17.

Given a problem P = (§8,Z%,T,i,f),if H doesn't contain circuits,
then i is the maximum for the partially ordered set (H,<).

Proof. We have that:

hERi (¢h) (h€R) (3.43)

and therefore, because of Definition 35:
h < i (¥h) (h€H) . (3.44)

Theorem 18.

Given a problem P = (S,2,T,i,f), if H dgesn‘t contain
circuits, then f is the minimum for the partially ordered set
(H,2).

Proof. The proof is similar to the proof of Theorem 17. [j

We outline that even if H doesn't contain circuits the
couple (H,<) is not, in general, a lattice. We can illustrate
such fact by means of an example. In Figure 4 we show the dia-
gram of a particular resolvent set H and of its partial order <,
which is not a lattice. For instance, it is clear that it
doesn't exist at least upper bound for the two states hi and

hj; also it doesn't exist at greatest lower bound for the two
states k., and k..
3 J

Definition 36

In correspondence of every (k-step) solution sequence G;k)

= (i,s1,...,sk_1,f) which doesn't contain circuits, we associate

(k) ..,sk_1,f} . []

a (k-step) solution setf?x = {i,s1,.

-160-

Figure 4. Diagram for a particular resolvent set H.

-161-

Theorem 19.

The binary relation < defined on H is a total order on
(k)

every (k-step) solution setéﬁx = {i,s1,...,sk_1,f}

Proof: We have that,é?ik) is a subset of H, i.e.:

@Ky c g | (3.45)
X
because of Theorem 11. Moreover, < is a total order on @ik)
because of Definitions 28 and 35. []

Theorem 20.

The couple ($ik), <) is a lattice.
Proof. The proof is obvious because of the properties of set
—— < »
union and set intersection.

We outline that we can easily construct an algorithm which
allows one to "open" all the circuits which could possibly exist

in the resolvent set H if they happen to exist, so that a set H*
without circuits could be deduced.

Definition 37

Given a problem P = (S,Z,T,i,f), we define the distance 4,
of two elements h€H and k€ H of the resolvent set H, as a
mapping from H x H into N (set of natural numbers) such that:

d (h,k) is the minimum of the lengths of the paths from h to K;
d (h,k) =4 (k,h) = 0, if k = h.]

It is obvious that the above defined distance d doesn't exist
for every couple (h,k) such that h€ H and h€ K.

Theorem 21.

The distance d (h,k) of two states h€H and k€ H exists if
k < h.

Proof. The proof can be easily obtained because of Definitions
31, 35 and 37. t]

-162-

Definition 38

Given a problem P = (5,Z,l,i,f), the height g of a state
h&€ H is defined in the following way:

g(h) = d(h,£f) (¥h) (h€H) . (3.46)

O

Definition 39

Given a problem P = (S,Z,T,i,f), the depth p of a state
h€H is defined in the following way:

p(h) = d(i,h) (¥h)(h€&€H) . (3.47)

0

Theorem 22,

For every state h€ H, there exists a unique depth and a
unique height of h.

Proof. The proof can be easily obtained because of Definition 37
and because of Theorem 21. []

The last two definitions introduce in a natural way the
concept of "level" in the resolvent set H. The great importance
of H as the set which contains all and only the states which
belong to solution seguences was already shown in Theorems
11, 12, and 13. We now briefly outline the two most important
reasons for defining levels in H.

The first reason is that the existence of levels in H
allows an easier and more natural definition of the "intersection"
point and an easier "welding" in the bidirectional search algo-
rithm. Intersection and welding are, in fact, the most critical
topics in the design of any bidirectional algorithm.

The second reason is that, if we look at a search strategy
in the statespace as at a kind of wave expanding from i or
from f into the resolvent set H, then the above-defined levels
allow us to set a quantitative measure of the depth and of the
breadth of the wave front at every instant during the search
process.

4. Optimality

In this section, we investigate the problems which arise
when costs are taken into account. It is possible in this way
to investigate the quality of the solutions which are obtained.
In particular, the property of existence of "good" solutions is
illustrated. We first briefly investigate the cardinality of

-163-

the solution set Xp of a problem P. C(Clearly Xp is not finite
in general although H is always finite.
Theorem 23.

The solution set Xp C I* of a problem P = (§,%,T,i,£f) is

finite if H doesn't contain circuits.

Proof. The proof is a direct consequence of the finiteness of
the resolvent set H. t]

Theorem 24.

Given a problem P = (S,%,T,i,f), the solution set X_ is a
countable set. P

Proof. We have that XPC L*¥., Since t* is a countable set, then

xp is a countable set as well. []

Definition 40

A solution x €I* of a problem P = (S,L,T,i,f) is minimal if:
1(x) = min {1(x)} . (4.1)
x€X
P O

Definition 41

A solution x €I* of a problem P = (§,%,T,i,f) is simply
(compositely) optimal for a simple cost ¢ (composite cost k) if:

c(x) = min {c(x)} (k(x) = min {k(x))} . (4.2)
xCXp xCXp []

We outline that, in general, neither the existence nor the
uniqueness of a simply (compositely) optimal or minimal solution
of a problem can be proved.

Theorem 25.

Given a problem p = (S,%,T,i,f), if Xp # ¢ and H doesn't

contain circuits, at least one minimal and one simply (compos-
itely) optimal solution of P exists.

-164-

Proof. The proof is a direct consequence of Theorem 23 which

states the finiteness condition of X . .
P O
Theorem 26.
Given a problem P = (§,I,T,i,f) if xP # #, at least one

minimal solution of P always exists.

Proof. The proof is a direct consequence of Definitions 7
and 40. []

Theorem 27.

Given a problem P = (s,I,l,i,f), if XP # @ and the simple

(composite) cost ¢ (k) has values only in RY (nonnegative real
numbers), at least one simply (compositely) optimal solution of
P always exists.

Proof. The proof is similar to the proof of Theorem 26. []

Definition 42.

Given a problem P = (§,I,T,i,f), the minimal resolvent set H'
of P is the set of all states of the resolvent set H which are
(k)
X

, where x is a minimal solu-

0

in a (k-step) solution sequence G
tion of P.

Theorem 28.

The minimal resolvent set H' doesn't contain circuits.

Proof.

The proof is a direct consequence of Definitions 40
and 42, and of the property of minimum. In fact, the existence
of a circuit in a solution x would yield another solution x'
obtained from x by excluding the circuit. Hence, the length of
X' would be less than the length of x, which is against the
assumption that x is a minimal solution of P. []

Theorem 29.

The binary relation <' defined as the restriction of < on H'
is a partial order on H'.

Proof. The proof of the theorem, because of Theorem 28, is a
direct consequence of Definition 35 and of Theorem 16. We outline
that the partially ordered set (H', <') is not in general a lattice.

L

-165-

We can illustrate such fact by means of an example. 1In Figure 5,
we show the diagram of a particular minimal resolvent set H' and
of its partial order <', which is not a lattice. For instance,
it is clear that it doesn't exist at least upper bound for the
two states h'i and h'j; also it doesn't exist at greatest lower

bound for the two states k'i and k'j.

Definition 43.

Given a problem P = (S,Z,T,i,f), the simply (compositely)
optimal resoclvent set H"(H"') is the set of all states of the
resolvent set H which are in a (k-step) solution sequence

Gik), when x is a simply (compositely) optimal solution of P.

O

We outline that H" (H"'), in general, can contain circuits.

Theorem 30.

The simply (compositely) optimal resolvent set H" (H"')
doesn't contain circuits if the simple (composite) cost c (k)
has values only in R%* (set of the nonnegative real numbers).

Proof. The proof is similar to the proof of Theorem 28 (i.e.,
we can repeat, in the case of simple (composite) cost ¢ (k)
which has values only in Rt (set of nonnegative real numbers),
the same considerations related to the notion of length, made
in the proof of Theorem 28). []

We have investigated in this section the conditions for
the existence of "good" solutions of problems, which are, of
course, the most interesting ones from a practical point of view.
Algorithms can be defined which allow one to test, in an effi-
cient way, the "goodness" of a solution or to search directly
only the "good" solutions, as well.

5. Morphisms

In this section, we will outline some preliminary results
which are related to the problem of comparing different repre-
sentations of problems.

More precisely, in this section we investigate the con-
ditions which allow us to consider two problems, although ob-
tained by semantic domains of different nature, as substantially
equivalent with respect to their algebraic (or syntactic) struc-
ture, and with respect to the effort which is required to solve
them (when the heuristic aspect is ignored).

In the following sections, the exigence of stating in a
formal way some criteria for comparing different problem repre-
sentations will be examined with more detail, in the direction
of achieving a unitary presentation of different approaches to
problem solving.

-166-

£

Figure 5. Diagram for a marticular minimal
resolvent set II'.

-167-

In this way, the different alternatives which are offered
to a problem solver's activity are examined, compared, and
exposed, as, substantially, the operation made of a represen-
tation language interpreter.

Definition 44

The problem P" = (s",Z",I'",i",f") is a homomorphic image
of the problem P' = (§',IZ',T',i',f') if there exists a mapping ¢
of S' onto S" and a mapping £ of I' onto I" such that:

Yo'¢ = ¢yc'E (¥o')(o'€L') |, (5.1)
and,
i'e = iv , f£'¢ = £ . (5.2)

The couple (¢,£) is said as a homomorphism of P' onto P".

O

Theorem 31.

Given a homomorphism (¢,%{) of a problem P' = (S8',Z',T',i',f")
onto a problem P" = (s",z",I'",i",f") if £ is one-to-one, then
I" can be renamed in such a way as to become equal to I'; in

this way § is reduced to the identity function.

Proof. The proof is a direct consequence of Definition 44, []

Theorem 32.

Given a homomorphism (¢,£) of a problem P' = (s',Z',T',i',f")
onto a problem P" = (s",Z",I",i",f") if ¢ is one-to-one, then
S" can be renamed in such a way as to become equal to S'; in

this way ¢ is reduced to the identity function.

Proof. The proof is similar to the proof of Theorem 31. t]

Definition 45

The problem P" = (S",Z",T",i",f") is an isomorphic image of
the problem P' = (s8',Z',T',i',f') if there exists an homomorphism
(¢,£) of P' onto P" such that both ¢ and { are one-to-one mappings.
The couple (¢,£) is said as an isomorphism of P' onto P".

1

Theorem 33.

If two problems P' and P" are isomorphic, the first one can
be obtained from the second one by merely renaming the states

-168-

and the inputs.

Proof. The proof is a direct consequence of Theorems 31 and 32
and Definition 45. E]

The results illustrated in this section are simply prelimi-'
nary, and merely constitute a sketched outline for further
investigations. However, they appear to be very general for
their implications, and can be specified, in some particular
cases of semantic domains, in order to enhance their significance.

6. Relations Between Problems

In this section, we introduce general notions and criteria
designed to confront and compare different problems represented
within various approaches to problem solving (namely state-space
approach and problem-reduction approach). Different types of
relations between problems are illustrated, and properties based
on these notions are presented. The formal framework introduced
here constitutes the substantial background on which, in the
following section, we have founded a unitary description of the
theory of problem solving, which constitutes the goal of the
whole paper, and which, at the same time, provides the most useful
results which have been achieved.

Definition 46

A source problem is a gquadruple U = (S,%,T,i) where:
(S,z,T') is a problem schema;

1€8S is a particular element of S called the initial state.

Definition 47

An object problem is a guadruple B = (S,L,T,f) where:
(S$,Z,T) is a problem schema;

f€ S is a particular element of S called the final state.

Definition 48

Two problems P = (s,Z,l,i,f) and P' = (8',2',T'',i',£f') are
similar iff they share the same problem schema, i.e., iff:
s =8 , L=1%1' , I =1 . (6.1)
In this case, we shall write:
P = P' . (6.2)

~169-

pefinition 49

Two problems P = (5,I,T,i,f) and P' =

(s',z',r',i',£') are

j-similar iff they share the same source problem, i.e., iff:
§=g%" , =23 , I'=71T"' , 1=1i"'" . (6.3)
In this case, we shall write:
P *P' . (6.4)
]
Definition 50
Two problems P = (S,%Z,l,i,f) and P' = (8',L',T',i',f') are

f-similar iff they share the same object problem,

r=2:" , T £

]
—
~
H

]

In this case, we shall write:

Rrh

P P' .

Definition 51

Two problems P =
equal iff:

(Slzlrlilf) and P' =

s=s', 8 =1', T =

In this case, we shall write:
P =P .

Definition 52

' The universal problem set # is the set of all
l1.€e.:

¢ = {p’p = (S,Z,F,i,f)} .

i.e.,

iff:

. (6.5)

(6.6)

D

(s',2',r',i'f') are

(6.7)

(6.8

O

the problems,

(6.9)

O

-170-

Theorem 34.
. . i f
The binary relations =, =, =, = , between problems, are
equivalence relations on the universal problem set /.

Proof. The proof is obtained directly because each one of

3
Py

. . f .
the four binary relations on # =, =, =, and = is based on the
notion of equality between sets which is a well-known equivalence
relation.

Definition 53

A state-subproblem P' of a problem P = (S,%,T,1i,f) is a
problem P' = (s',z',I'*,i',f') such that:
' .
s'cC s; (6.10)
' = I;
' =T restricted to S';

i'‘t€s’, fregs'.

We shall write:

Mo
L

P! (6.11)

If,
s'Cc s , (6.12)

then P' is said as a proper state-subproblem of P, and we shall
write:

P'ZP . (6.13)

N

Definition 54

An input-subproblem P" of a problem P = (s,z,7,1,f) is a
problem P" = (s",:i",I",i",f") such that:
s" = §; (6.14)
le g Z;
I-\ng I-\;

1

i, f" = £ .

-171-

We shall write:
i
P'"C=P . (6.15)
If,
(rrC Ly A(r*'cry , (6.16)

then P" is said as a proper input-subproblem of P, and we
shall write:

PPEP . (6.17)

Il

Definition 55

A (input-state) subproblem P"' of a problem P = (S,%,T,i,f)

is a problem P"' = (g"', f"',r"',i"',£f"') such that:

s e s (6.18)
T g I;

rne g F;

i"'CS"', flll€ Slll

We shall write:
P"'— P . (6.19)
If,
(S"'E S)YA ((Z"'C) A(I"'ET)) , (6.20)

then P"' is said as a proper (input-state) subproblem of P,
and we shall write:

P"'—m P . (6.21)

|

Theorem 35.
s i .
The binary relations =, L=, [among problems are partial
ordering relations of the universal problem set #.

-172-

Proof. The proof is obtained directly because each one of the

s i
three binary relations on # =, =, and = is based on the notion

of inclusion between sets which is a well-known partial ordering
relation. []

Definition 56

The null problem P is a problem Pv = (sv'zv'rv'lv'fv)
where:
s,=L,=T,=¢ , (6.22)
and, therefore, iv and fv don't exist. []

Definition 57

An empty problem PE is a problem Pe = (SE,EE,Fe,iE,fE) where:

Ze = Fe =g . (6.23)

O

Definition 58

that-A complete problem P, is a problem P, = (SI'zI’FI'lI'fI) such

siER; (¥s;) (V) (s, €5 A (55, €5)) (6.24)

O

Definition 59

A compact problem P

is a problem P, = (S,,Z ,I ,i.,f) such
that: H H H'“H'"H' H'H

SH =H . (6.25)

O

Definition 60

A trivial problem PT is a problem PT

1

(STIZTIFTIlTIfT)

where i = fT. D

-173-

Theorem 36.

Given a trivial problem PT = (s ,x_,r_,i_,f_), we have

that:

. (6.26)

O

Proof. The proof is a direct consequence of Definitions 4 and 6.

EE:XP

We present now a very general definition which is compre-
hensive of all the possible relations between problems which
can be based on the comparison of their solution sets.

Definition 61

An implicant of a problem P is a couple L = (w,y) where:

™ = (P1,P2,...,Pk) is a finite sequence of problems;

Y is a mapping of XP1 X xP2 X .. X ka into xP.

We shall write:

T Yp . (6.27)

If ¥ is a mapping onto X, then L is said as a full implicant
of P. 1In this case, we shall write:

¥
fp (6.28)

O

Let us now present some particularly important and usual
cases of this general definition.

m

Let us suppose that 7 = (P1) and that ¢ is a one-to-one

mapping I of X onto XP defined in the following way:

P

1, 1 1, ,.1
I (x;) =x; (¥x)(x;€X,) . (6.29)

1

In this case, it is useful to introduce the following definition.

-174-

Definition 62

A problem P1 is eaguivalent to a problem P iff XP = XP.

We shall write: 1
I
P, <> P . (6.30)

Let us suppose that 1 = (P1) and that ¢ is a one-to-one mapping
I of XP into XP defined as in relation (6.29). 1In this case, it
is useful to introduce the following definition.
Definition 63

A problem P1 is dominant of a problem P iff XP = XP'
We shall write: 1

I
P, <> P . (6.31)
Let us suppose that wn = (P1,P2,..4,Pk) and that ¥ is a mapping C
of X x X X ... x X onto X_ defined in the following way:
P1 P2 Pk P
C(xl ,xi ,...,x?) = xl ,xi ee x? (6.32)
1 2 "7k 1 2 k
1

(vx|) (2 Yoo e k] €%,) (x2 €xp) vvn (XX €X,0) .

1 2 k 1 1 2 2 k k

In this case, it is useful to introduce the following definition.

Definition 64

A finite sequence of problems 7 = (P1,P2,...,Pk) is a full
covering of a problem P iff:

XP XP ... X =X ' (6.33)
1

where, in the first member of relation (6.33), we have used the
operation of composition of sets of strings, defined in the
following way:

-175-

- - i] i B
xP_ XP. = {x‘(x = Xy xh‘) A(Xh.e:xp.)'\(xh.e XP_)} . (6.34)
i 3 i 3 i i 3j 3
We shall write:
C

(P1,P2,...,Pk) > P . (Giéi)
Let us suppose that m = (P1,...,Pk) and that ¢ is a mapping C of
X X X X ... X X into X_ defined as in relation (6.32).

P1 P2 Pk P
In this case, it is useful to introduce the following definition.

Definition 65

A finite sequence of problems 7w = (P1'P2""’Pk) is a

partial covering of a problem P iff:

X, X ... X =X_ . (6.36)

We shall write:

C
(P1,P2,...,Pk) > P . (6.37)

Definition 66

A solved problem is a couple T = (P,Y) where:
P= (s,z,T,i,f) is a problem;
YCxP .

If Y =X T is said as a completely solved problem.

P’ []

The notion, here introduced, of a solved problem T is con-
sidered as a helpful tool when problems, which are related with
T, have to be solved by utilizing the information contained in T.
This implication with a type of learning activity, will be
exposed with greater detail in the following section.

We now investigate some interesting properties of particular
subsets of the universal problem set.

-176-

Definition 67

The subsidiary problem set of a problem P is the set P:(:P
such that:

P15>={Pi

S
(P,EP) A (P, = P) . (6.38)

OJ

Definition 68

The auxiliary problem set of a problem P is the set é; cé
such that:

i i
Pp = {Pi (P, €8)A (P = p)} . (6.39)

0

Definition 69

The coproblem set of a problem P is the set PPC:P such that:

- .|
Pp = Pil(PiEP)/\(PiEP) . (s.uﬁ
. . L s i
It is obvious that, because of the definitions of —, [,

and =, we have:

S

PP c &P (¥vP) (P EP) (6.41)
i [
fpg PP (VPY(PC #) .

Theorem 37.
. i 1iP ip
Given a problem P, the couple (PP,E;), where — is the

i .
restriction of the relation [over £ to ﬁ;, is a partial order.

Proof. The proof is similar to the proof of Theorem 35. []

Theorem 38.

P P
Given a problem P, the couple (PP,E;_), where [1is the
restriction of the relation = over é to bp, is a partial order.

-177-

Proof. The proof is similar to the proof of Theorem 35.

1

Theorem 39.

Given a problem P, the sets &i, p;, and pP are finite sets.

Proof. The proof is directly obtainable from the finiteness
of S and from Definitions 53, 54, and 55. []

Theorem 40.

Given a problem P, P is the max1mum for each one of the

three partial orders (P;,Ef Y, (& E:) and (P E;).

Proof. The proof is directly obtainable because of Definitions
53, 54 and 55.

O

Theorem u41.

Given a problem P, the null problem P is the minimum for

the partial orders (fP,E:) and (PP,[:). [

Proof. The proof is directly obtainable because of Definitions
53, 55 and 56. []

Theorem 42.

Given a problem P, the empty problem P is the minimum
P
for the partial order (P —).

Proof. The proof is directly obtainable because of Definitions
54 and 57. []

Theorem 43.

. . s SP i iP
Given a problem P, the partial orders (£°,[_), (" ,Z).
and (f,,=) are lattices.

Proof. The proof is obtained directly because each one of the

three Sets Ps P;, and IP is based on the notion of power set on
s i

a given set, each one of the three binary relations = , = ,

is based on the notion of inclusion between sets, and the power
set on a given set is a well-known lattice under the relation of
inclusion. []

-178-

Definition 70.

Given a problem P, we define the s-distance d° of two problems
P1€IP; and PejP; in the following way: ds(P1,P2) = min {lengths
of the chains connecting P, to P, in the diagram of the lattice
(sSP
pr=)y¢- [j
Please note that the various definitions of distances,
introduced in this paper and based on partial orders, have to be

intended not in a topological way. We recall that the length of
a chain in a diagram of a lattice is the number of arcs in it.

Definition 71

Given a problem P, we define the i-distance d' of two problems
P1€.ﬁ; and'P2€:I; in the following way: dl(P1,P2) = min {lengths
of chains connecting P, to P, in the diagram of the lattice

i 1P
(PIJ;IE)} . D

Definition 72

. 14
Given a problem P, we define the p-distance 4" of two prob-
. P
lems P1€2?P and P2€1PP in the following way: 4 (P;,P,)
min { lengths of chains connecting P, to P2 in the diagram of the

S P
lattice (PP,EQ)}. []

It is obvious that given a problem P and two problems
P1€ZP; and P2€10:, the s-distance dS(P1,P2) doesn't necessarily

exist.

Conditions for the existence of ds(P1,P2) can easily be
i 4
stated. Similar remarks hold for a' and 4 , as well.

Definition 73

s
Given a problem P, we define the s—depth p~ of a problem
s . i i - P
P1C pp, the i-depth p~ of a problem P,€ pp, and the p-depth p
of a problem P3€ZPP in the following way:

ps(P1) = a%(,p,) (6.42)
i i

p'(p,) = d (P,P,)

pP(py) = aP(e,py . 0O

-179-

Definition 74

Given a problem P, we define the s—helght g of a problem
P, € ép, the i-height g of a problem P Eij, and the p-height g
of a problem P €PP in the following way:

gs(P) = a%(p,,P) (6.43)
9 Yp,y = dat(p,,P)
g (P) = a¥(py.p) : 0

Theorem 44.

Given a problem P for every P EZP there exists one and
only one p° (P4) and g (P)i for every P EZPP there exists
one and only one p (P) and g (P); for every P3€:PP there exists
one and only one p (P) and g (P).

Proof. The proof is obtained directly because of Definitions 70,
71, 72, 73, 74 and because of Theorems 41, 42, and 43. E]
The last definitions and properties presented are very
interesting because they introduce a natural base for further

investigation of the following topics:

a) understanding and measurement of the complexity of a
reduction strategy:

b) computation of a heuristic measure function to guide
an expansion strategy;

c) comparison of the complexities of different represen-
tations of a problem in order to obtain "good" solu-
tions by means of an appropriate search strategy.

In conclusion, the computation effort required for solving
any kind of "auxiliary" problem, useful for a more efficient
solution of a given problem, has to be considered in order to
evaluate the overall computation effort involved in the whole
solution process.

7. The Unitary Approach

In the preceding sections, we have presented a formal approach
to problem solving which is comprehensive of both the state-space
and problem-reduction approaches.

This observation is based on the fact that in section 2 we
have presented a formalization of the state-space approach to
the notion of problem.

-180-

However, because of the algebraic structure which we have
developed in sections 2, 3, and 4, we have obtaines as well, in
sections 5 and 6, a formal definition of relationships between
problems and an algebraic structure of "problem spaces."

In this way, the necessary framework, in which problem-reduc-
tion approach can be usefully embedded, has thus been presented
as well. The adopted algebraic framework has allowed us to obtain
a synthetic, coherent, and unitary description of the matter.
However, algebra is an unsuitable representation language and an
inappropriate tool for describing the basic activities of an
automatic problem solver. Our point of view is that algebra
represents a useful framework for a "syntactic" description of
problem-solving approaches, whereas logic constitutes an appro-
priate tool for a "semantic" description which is itself a concrete
base for the design of representation languages and representation
language interpreters.

In fact, a semantic reformulation of the matter presented in
the preceding sections is now being done at the Milan Polytechnic
Artificial Intelligence Project.

In this section, we are going to point out the unitary aspect
of our theory by presenting the main implications of the above-
outlined, formal approach on problem solvers' and representation
languages' design criteria. Of course, because of the above-
mentioned reasons, this will be done in a partly informal way.

Our basic point of view is that a man can draw from the
intuitive problem and from its environment two different sets of
effective information: control information and problem information.
These two sets will constitute, expressed in an appropriate

representation language, the control base (BC) and the problem
base (Bp).

The automatic problem solver acts on these two bases of
information as an interpreter and can perform the three basic
activities of selection (S), search (R), and learning (L).

Its activities are controlled and organized by a monitor
system (M). We now examine in detail the above-outlined concepts,
which are graphically illustrated in Figure 6.

The problem base contains all informations on the problem
to be solved (P) and its environment, which the man thinks suffi-
cient for the solution of P. 1In fact, the problem base is built
up as a set which contains: P (possibly many different represen-
tations), implicants of P, auxiliary problems related to P,
solved problems, simple and/or composite costs for P or for the
other problems of the problem base. The problem base is first
submitted to an ordering process which gives to the information
contained in it a hierarchic ordering (e.g., a discrimination net

-181-

Control Base Problem
B Base
¢ B
D
Monitor X
M = (0,G,N) ’t
Attempts
Ao = (oo'po'xo)
By = (03005004)
) : Selector
§ = (g %)
‘ ’H\—
Searcher ¢
i > R = (&)
Learner
—_—
L= (((6gedp)s (9p,92)), (0p,0q) Hp
Figure 6. Schema of an automatic problem solver.

-182-

or a tree) with the purpose of allowing an easier and more effi-
cient exploration of it whenever it is required by the monitor
system. The basic characteristic of the problem base is that it
constitutes a dynamic set. In fact, whenever the automatic
problem solver achieves some useful results during its search
activity, this is inserted in the problem base, at its right
place, and can be used afterward as a datum of the problem.

All problems which are contained in the problem base may be
either active problems or passive problems. The active problems
(P.) are those problems which can be considered as reduction
opérators when a reduction strategy is used in order to construct
the solution of a problem. They may be implicants, coverings,
subproblems, auxiliary problems, etc. The passive problems (P_)
are the solved problems which consitute the "terminal nodes"
of a reduction strategy.

We want now to emphasize that the man doesn't exactly know if
the informations of the problem base are enough, short, or
redundant for the solution of the problem; or which of them are
to be used; or in which way the cooperation process among them
must be organized in order to solve the problem.

We now shall describe the basic activities of the monitor
systems (M). The monitor system can be considered as a triple:

M (0,G,N), where 0,G,N are functions which specify the
activities of the monitor M, namely:

0 = an ordering function which acts on the problem base B
and gives to it an appropriate hierarchic ordering;

G = a function which controls the generation of the attempts;

N = a function which manages the generated attempts by means
of "interrupt," "activate," and "call garbage collector"
signals.

The global activity of the monitor system is fixed by the
user of the automatic problem solver by means of the control
information.

The ordering activity of M has already been shown; we will
only outline that it also controls the insertion in the problem
base of the new information arising during the solution of the
problem.

The basic activities of the monitor system are the generation
(G) and management (N) of attempts. An attempt Ai is triple

Ay = (ci,pi,ki) where:

-183-

o5 constitutes an input signal for the selection activity;
oy constitutes an input signal for the search activity;
Ai constitutes an input signal for the learning activity.

The attempts are generated by G in a temporal sequence. The
signals OirPyr and Xi of an attempt Ai are generated as a conse-

quence of the initial control information and of the preceding
learning activity. 1In particular, it is clear that Ao = (oo,po,ko)
must be entirely specified in the control base.

The generated attempts, AO,A +A,,..., are organized by N in
an appropriate hierarchic structure %hich must allow an easier
management. The attempts must be managed in such a way that they
can be considered as coroutines: old attempts can be activated
and new attempts can be interrupted whenever it is useful. The
attempt management N is done by means of the control information.
In particular, the "activate" and "interrupt" signals are generated
on the basis of the computational effort done up to a certain
point estimated by means of functions contained in the control
base. The attempt management N must also provide a garbage
collector which destroys the o0ld unuseful attempts whenever it
is necessary.

We can now examine in detail the content of the control
base (BC). The control base contains all informations that a

man can draw from the intuitive problem and from his knowledge
of the operating way of the artificial automatic problem solver
in order to initialize the metasystem and to control its dynamic
development.

In other words, the problem solver--considered as a meta-
system--is an artificial entity, existing outside the user, which
has been provided by the artificial intelligence scientist as
a general-purpose tool.

However, the ingenuity and creativity of the user can be
exploited in order to "tune" such a general-purpose tool in
the direction of the semantic domain from which the problem arises.

Hence, such initialization (or specification) of the general-
purpose metasystem constitutes a way of defining a special-pur-
pose system. In particular B, must contain:

a) the three functions 0,G,N, which determine the activity

of the monitor system M;

b) the first attempt A = (0_,p /A,)s

c) the sets of functions ¢S,¢Z,¢P,¢A,¢E,¢T;

4)

-184-

the functions ¢S'¢X'¢P’¢A'¢E’¢T' and wB.

Now, we can precisely define the basic activities of the

selector,

of the searcher, and of the learner.

The selector, S, can be considered as a couple:

s = (fs1,f52), where fs1 and fSZ are functions which specify

the activities of the selector S, namely:

a)

b)

fs1 is a function which acts on the problem base and
which selects: either a set of states to be expanded,
if an expansion attempt is active at that time, or a
set of passive problems which must take part in a
reduction operation, if a reduction attempt is active

at that time; thus, either fs1€:¢s or f516:°§'

f52 is a function which acts on the problem base and

which selects: either a set of inputs for executing
an expansion operation, if an expansion attempt is
active at that time, or a set of active problems for
performing the reduction, if a reduction attempt is
active at that time; thus, either f52€:¢2 or f52€:¢A.

A better understanding of the operation mode of S is obtained

by considering in detail its input o.:

a)

b)

a)

b)

1

o5 is a triple;

Oi = (ulBIYO) where,

a is an activation function for the block S;

B is a function which specifies if the type of activity
of S must be tuned in the direction of expansion (E)

or reduction (T);

Yy = ((fS’fZ)’(fp'fA))' where:

ag

(fS'fZ) constitutes the functions (fs1’f52) of s if an

expansion attempt is active, i.e., (B = E);

(fp,fA) constitutes the functions (fs1,f52) of § if
a reduction attempt is active, i.e., (B = T).

-185-

Of course, a bidirectional exchange of informations between S
and the problem base is provided. The output of S is an input
of R. The searcher R can be considered as a “one-tuple":

R = (fR), where fR is a function which specifies the activity of

the searcher R. fR is a function which acts on that part of the

problem base selected by S and performs the expansion or reduction
operation; thus, either fR€:®E or fR€:¢T. Let us consider the
input of R,pi.

o is a triple;

p, = (a.B,Yp) where,

a) o and B have already been defined;
b) yp = (EE,fT) vhere,

fE constitutes the function fR of R, if an expansion

attempt is active, i.e., (B = E);
fT constitutes the function fR
attempt is active, i.e., (8 = T).

of R, if a reduction

Of course bidirectional exchange of information between R and
the problem base is provided. The learner L can be considered
as a triple:

L= (((8grby)s (000,00, (6,000, ¥p),

where,

a) each ¢j is a function which selects a function fj of
a given set ¢j = {fj}' (where the fj's have been pre-
viously defined);

b) wB is a function which selects a value for 8 from the
set © = {E,t} .
The selected functions fj and the selected value for B will be

used by the monitor in order to set up the next attempt. The
functions ¢j and the function wB are provided by the control

base and act on ¢j’ and @ by taking into account the informations

-186-

obtained from S and R which constitute the inputs of L, again

see Figure 6. The above exposed concepts, although not completely
formalized, give a clear and precise insight into the basic
structure of an automatic problem solver. It is also evident

that the design of an automatic problem solver is the design of

a representation language interpreter, as it has been shown in
section 1. We want to point out, as well, that none of the

now existing goal-oriented languages has all the properties
illustrated in the above schema (in particular, no interpreter

yet exists with an explicitely designed learning part).

It is reasonable to assert that the overall theoretical
structure, which has been briefly outlined in this section, 1is,
indeed, a source of many new research directions intended to
provide a more comprehensive and detailed description and under-
standing of the whole subject. On the other hand, we are
aware of having here presented a unitary and broadly compre-
hensive framework which we deem as capable of embracing the
important notions of problem solving and representation languages.

In conclusion, we believe that the time has arrived in which
it is necessary to orient future research trends and to base the
design of future representation languages and interpreters on
theoretical grounds which are very much needed.

In other words, we feel that the difficulties with languages
for representing problems, at present, are similar to the diffi-
culties which existed in the sixties--in the languages used for
describing algorithms.

_ The advent of the theory of formal languages and of syntax-
directed translators can now be followed in an analog style by
the development of the new theory of problems and of theoretically
structured problem solvers and interpreters.

- In conqlusion, this section represents, in our view, a
valid contribution toward these research goals.

8. Conclusions

In this section, we shall give a brief insight into the
gemantic description of our unitary approach which is now being
1nvestigated and which is not yet completely developed. Other
conclusive remarks and promising research directions are presented
gt the end of this section as well. The semantic description is
intended to be a more appropriate presentation of the unitary
approach for achieving the following goals:

a) a formal definition of the basic activities of automatic
problem solvers;

b) construction of a useful base for the detailed design
of representation languages interpreters;

-187-

c) outline of specific design criteria for representation
languages.

Following, we shall briefly sketch the most important
definitions which constitute an approach, called semantic,
which is alternative to the approach, called syntactic, which
has been presented in section 2.

'The reason for presenting these results here is related to
the need for giving a more careful and precise description of
the activity of selection, research, and learning, which belong
to the kernel of the metasystem (automatic problem solving).

Definition 75

The attribute set is a finite set A of elements Ai called
attributes, i.e.:

A= {A1,A2,...,An} . (8.1)

Definition 76

The value set bound to an attribute A, is a finite set V,
of elements v; called the values for the attribute Ai, i.e.:

v, =1v1v;v;} . (8.2)
1

Definition 77

An attribute-value couple (AVC) is a couple c; = (Ai,v;)
where A,€ A and vi€EV,.
i 3j i

Definition 78

The attribute-value couple set (AVC set) for an attribute
AiéﬁA is the set C; defined in the following way:

_ iy, i
(ci = (Ai'vj))(vjE:vi)} . (8.3)

-188-

Definition 79

An S-state is an n-tuple s of AVC's such that:
s = (€q4Cprenwicy) (8.4)
where,

C1CC1""’cn€Cn . (8.5)

Definition 80

The S-state-space is the set S of S-states such that:

S = C1 x C2 X ... X C . (8.6)

Definition 81

A legal condition (IC) on an S-state-space S is a binary
relation Li on S5, i.e.:

Li§§x§ .

and,

L; = {(s',s") (s'€ 8) /\(s“€§)APi(s',s"): , (8.7)

where P, is a predicate, i.e.:

Pi(s',s") : § x § » {1,F} . (8.8)

(T and F stand for true and false).

Please note that the nature of "property" Pi(s',s"), is

directly related to the core of the semantic aspect of the problem.
Therefore, it is natural to utilize, for the formal description

of this property, any appropriate semantically oriented language
as, for instance, the first-order predicate logic.

-189-

In this way, an interesting connection is being presented
here which shows an interaction between an algebraic framework
and a logic one.

This is a further example of the unitary effort on repre-

sentation languages which constitutes the main spirit of our
research activity.

Definition 82

A legal condition set on an S-state-space S (LC set) is a
finite set L defined in the following way:

{L - Lo,L1,...,Lt} , (8.9)

where,
Lo =8 x §;

L,, for i = 1,...,t, is an LC on s.

Definition 83

The constraint N related to an LC set L on an S-state-space
5 is the binary relation on S defined in the following way:

t
N= N L . (8.10)
i=

Definition 84

An S-problem schema M is a couple M = (S,N)where:

S is an S—-state-space;

N is a constraint on § .

Definition 85

il

An S-problem P is a guadruple P = (S,N,i,f) where:

(S,N) is an S-problem schema;

i€5 is an S-state called the initial S-state;

-190-

FE€S is an S-state called the final S-state.

The few definitions presented above are sufficient to
outline the main characteristics of the mentioned semantic
presentation of the unitary approach with respect only to the
state-space model.

We conclude this insight into this promising research matter
by showing how the basic activity of selection can be adequately
defined by means of this new formal framework in the particular
case of the state-space approach presented.

Definition 86

A global representation of a problem P is a quintuple

13G = (a,V,L,i,f) such that:
A = {A1,A2,...,An} is an attribute set:
vV = {V1,V2,...,Vn} is a set of value sets for the attributes of A;

L is a legal condition set defined on the S~state-space S obtain-
able from A and V;

i is the 1initial S-state;

i

is the final S-state.

The selector is intended as a system acting on a global
representation 'of a problem PG and yielding a new representation

called selected representation P_, which contains only the
"elements” selected for building up the problem to be expanded
(we recall that this description is related to the space-state
approach only).

Definition 87

A selected representation of a global representation of
3 prgblem P, PG = (A,V,L,i,f), is a quintuple PT = (AT,VT,LT,
i fT) such that:

H

<
n
< >

~e

el
=
]
el

i
A 3 A4

-191-

Definition 88

A selector is a couple T = (p,T), where p,T are two functions
such that:

Theorem 45.

A selector T {p,T) is a function such that:

T {ﬁc} > {ET} ’

where {EG‘ is the set of all global representations of problems

and {ET} is the set of all selected representations of problems.

Proof. The proof is directly obtained because of Definitions 86,

87, and 88.

These concepts are enough to point out that the most impor-
tant and promising research direction which arose during the
investigation of the matter presented in this paper is the devel-
opment of a complete and adequate semantic presentation of our
unitary approach. Other research directions have been presented
in the preceding sections. We recall the most promising ones:

a) understanding and measuring of complexity on the basis
of the rich algebraic structure of the resolvent set H

and of the subsets of #: ¢35, ¢Y, and é_;
P P P

b) 1invention of "intersection" and "welding™ methods for
bidirectional algorithms based on the "levels" defined
in the resolvent set H;

c) confrontation of different representations of a problem
by means of the concept of morphism;

d) design of more detailed problem solvers and represen-
tation languages' interpreters

e) deeper understanding of learning in problem solving.

We believe that we can conclude this paper by asserting
that the presented matter, although not completely formalized and
also not always deeply detailed on some important topics, can be
considered as a set of "first cut" results. Precise investi-
gation directions have been found out, some topics have been
investigated in more detail, and a few search methods have been
recognized as now promising ones.

-192-

Acknowledgment

The authors are indebted to the cooperation of the researchers
of the Milan Polytechnic Artificial Intelligence Project (MP-AI
Project) and, in particular, to Dr. A. Sangiovanni Vincentelli.

9.

(11

2]

[31]

(4]

[51]

(6]

[7]

(8]

[91]

[10]

(111

[12]

-193-

References

Banerji, R.B. Theory of Problem Soving, an Approach to
Artificial Intelligence. New York: Elsevier, 1969.

Berge, C. Theorie des Graphes et Ses Applications.
Paris: Dunod, 1958.

Bobrow, D.G., and Raphael, B. "New Programming Languagdes
for AI Research." Presented at the Third International
Joint Conference on Artificial Intelligence, Stanford
University, Stanford, California, 1973.

Coray, G. "Additive Features in Positional Games." ORME-
IP-IRIA-NATO, Nato Advanced Study Institute on
Computer Oriented Learning Processes, Procédures
Informatique d'Apprentissage, 1974.

Ginzburg, A. Algebraic Theory of Automata. New York:
Academic Press, 1968.

Hartmanis, J., and Stearns, R.E. Algebraic Structure Theory
of Sequential Machines. Englewood Cliffs, New Jersey:
Prentice-Hall, 1966.

MaclLane, S., and Birkhoff, G. Algebra. New York: MacMillan,
1967.

Nilsson, N.J. Problem-Solving Methods in Artificial Intelli-
gence. New York: McGraw Hill, 1971.

Pohl, I. "Bi-Directional and Heuristic Search in Path
Problems," SLAC Report 104. Stanford Linear Acceler-
ator Center. Stanford University. Stanford, Cali-
fornia, 1969.

Vincentelli, A., Sangiovanni, and Somalvice, M. "Formulazione
Toerica des Metodo dello Spazio degli Stati per 1la
Risoluzione Automatica dei Problemi." Relazione
Interna 72-74, MEMO MP-AIM-6, Politecnico di Milano,
Istituto di Elettrotecnica ed Elettronica, Laboratorio
di Calcolatori, Milan, 1972.

Vincentelli, A., Sangiovanni, and Somalvico, M. "State-
Space Approach in Problem-Solving Optimization."
Relaxione Interna 73-15, MEMO MP-AIM-12. Politecnico
di Milano, Istituto di Elettrotecnica ed Elettronica,
Laboratorio di Calcolatori, 1973a.

Vincentelli, A., Sangiovanni, and Somalvico, M. "Theoretical
Aspects of State-Space Approach to Problem-Solving."
Relazione Interna 73-16, MEMO MP-AIM-16. Politecnico
di Milano, Istituto di Elettrotecnica ed Elettronica,
Laboratorio di Calcolatori, 1973b.

-194-

Logic and Interpreters

Enrico Pagello

We want to suggest the idea of relating the process of inter-
preting the input statement of a program to a condition over a
complemented distributive lattice, which is the model of a propo-
sitional logic language--choosen as programing language--so that
an algebraic semantic definition of the programing activity and
interpretation process may be given.

Our point of view is to follow the idea [1] of using a
theorem proving system as an interpreter of a mathematical logic
language, so that we can consider propositional logic languages,
or predicate logic languages as programing languages with an inter-
preter. We have choosen the simplest branch of algebraic approach
to mathematical logic [4], the Boolean algebras, for developing a
definition of a simple programing language, based on propositional
calculus, through an algebraic semantic domain, following the
classical results of relations between lattice theory and propo-
sitional logic ([3].

To build semantical models of programing language, we can
consider the relations between programs, denoted by topological
relations in the function space in which the set of programs [5]
is mapped, and define the computations as the sequence of states
generated by the interpreter.

Therefore, we shall specify a syntactic domain for our pro-
graming language, i.e., we shall develop a general theory, and
we shall give a particular axiomatic system, i.e., the semantic
model, based on lattice theory. Also, we shall define the inter-
preter model on this semantic domain.

Therefore, if we consider the problem of interpreting a
valid sentence of programing language as the problem of accepting
the input sentence by generating a proof procedure of validity of
the theorem--where the statements of programs are the sequences
of input theorems, the computations are the derivations of the
proof procedure, and the interpreter is the theorem prover--then a
semantic model of this process will constitute an interpretation
of interpreter acting.

We shall consider the theory of axiomatic systems as a model
for our logic formula taken as programing statements because they
have the property for giving a complete characterization of all
those relations explicitly definable in them [2].

(1]

[2]

[3]

[4]

[5]

-195-

References

Kowalski, R. "Predicate Logic as Programming Language."
Proceedings of 1.F.I.P. 1974, Stockholm. In press.

Kreisel, G., and Krivine, J.L. Elements of Mathematical
Logic, Model Theory." Amsterdam: North Holland, 1971.

Ruthenford, D.E. Introduction to Lattice Theory.
Edinburgh: Oliver & Boyd Ltd., 1965.

Stone, M.H. "The Theory of Representation for Boolean
Algebras." Trans. Amer. Math. Soc. 40, 1936.
Wegner, P. "A Framework for Semantic Modelling."

Tech. Report No. 73-65, Center for Comp. & Inf. Sci.,
Brown University, Providence, Rhode Island, 1973.

-196-

Artificial Learning Systems and QAS

A.M. Andrew

1. Learning to Answer Questions

A person performing a gquestion-answering task will certainly
learn from experience as he operates. Not only will he have a
strong incentive to find out more about the subject matter on
which he is liable to be questioned, but also he will learn, for
example, how much detail his customers expect to receive in their
answers, and under what circumstances they will welcome a request
for clarification of the question before an answer is given.

Computer based gquestion-answering systems are usually able
to add to their store of information pertaining to the subject
matter with which they deal. In other words, they can extend
their data bases. Some of the very recent developments in
artificial intelligence stimulated by the development at MIT of
the programing language PLANNER have provided very powerful ways
of organising and modifying data bases.

In an automatic question-answering system with a very large
data base, such as is visualised as an IIASA project, there would
be advantages in letting the organisation of the data base be
influenced by the questions asked and by feedback indicating user
satisfaction with the answers given. One fairly simple way in
which the organisation could be improved as operational experience
was gained would be by arranging that parts of the data base which
are frequently wanted are so placed in store that they can be
rapidly accessed. Apart from this, a great many heuristic rules
could be developed which would speed up the process of locating
data base entries relevant to a particular enquiry; for example,
where the required entry is the intersection of a number of sub-
ject areas indicated by descriptors, the complexity of the search
could be strongly influenced by the order in which the descriptors
were applied to narrow the field, and heuristic rules for such
ordering would depend on operational experience.

Operational experience could also be used to alter the data
base quite fundamentally. As a subject area develops, the rela-
tionships among its component parts may change. For best results,
the structure of the data base should change accordingly, ~ven
though most of the information it contains may have been entered
when the relationships between subject divisions were in their
out-of-date form. An example of such a change in relationships
(and a data base insufficiently flexible to adjust to it) can be
seen in the classification of British patents, where computing
devices of all kinds are classified with mechanisms and linkages

-197-

rather than under the heading of electronics. This change in the
appropriate relationship has arisen over a period of some years
and is a particularly obvious one. However, there are subtle and
comparatively short-term changes in the associations of ideas in
any given field, and these could profitably be reflected in the
structure of the data base. Up-to-date information to determine
the changes could only come from analysis of user behaviour.

It is, of course, entirely possible that the system would
learn to "know" its different users, and would adapt its operation
to suit their idiosyncracies. It might then be interesting and
salutary if users could interrogate the system about its view
of their behaviour as users.

A feedback of a measure of user satisfaction might be ob-
tained simply by asking users to provide a satisfaction score
before "logging out"” of the system. It is possible it might be
difficult to persuade users to provide the feedback consistently,
and probably the times when they would be least cooperative would
be when their responses would have been most valuable, namely
when they are caught up in the excitement of some new development
in their field of study.

Some indication of user satisfaction might be obtained other-
wise than by asking the user to provide feedback. A user who
presents a new question fairly soon after receiving an answer is
probably satisfied with the first answer, one who goes away for
a long time may be either satisfied or frustrated, and one who
presents essentially the same question in a modified form was
pretty certainly dissatisfied with the first response. Possibly
an initial stage of learning would be to learn how to judge cus-
tomer satisfaction.

2. Types of Feedback

Where the feedback is in fact provided by cooperative users
of the system, it may be possible to obtain from them some indica-
tion of what would have constituted a more satisfactory response.
Any such indication can greatly facilitate a process of automatic
adjustment by indicating how the response can usefully be modified.
Without such an indication, it is generally necessary for the
system to superimpose experimental variations on its method of
operation.

A paper by Andrew [4] has some relevance here. It compares
learning systems with and without explicit internal models of the
environment, and shows that the two may be mathematically equiva-
lent. It is assumed that the feedback available to produce the
adaptation is of the "measure of satisfaction" type with no asso-
ciated indication of the direction in which the response could
profitably be changed. 1In a learning system embodying an explicit
model, the task of adjusting the model to correspond to the real
environment is one for which the "direction-of-change" information
is available, in contrast to the alternative approach of optimiz-
ing the system response without the intermediary of a model.

-198-

Gabor, Wilby, and Woodcock [12] adopted an operating princi=-
ple for their "learning filter" which made no use of "direction-
of-change" information. Presumably, their intention was to make
a highly versatile device equally suitable for applications in
which the "direction-of-change" information is present and those
in which it is absent. However, the main applications they de-
scribed were tasks of modelling or prediction, and for these
"direction-of-change" information is available. Because of this,
Lubbock (1961) was able to show that an alternative form of opera-
tion would converge much more rapidly than the Gabor filter.
Lubbock's method is similar to the process of "regression analysis"
in statistics, and to "stochastic approximation" in control
theory.

3. Credit-Assignment

As Minsky [16] points out, the operation of a complex system
to perform some task involved an enormous number of decisions.
When feedback of a measure of satisfaction or goal-achievement
in the task becomes available, it is not at all obvious how the
credit (or blame) should be assigned to the constituent decisions.
If the feedback is to produce "learning,” or automatic improve-
ment of performance of the task, it is necessary that credit
assignment be made in some way, so that favourable decisions can
be reinforced and unfavourable ones modified for future operations.

Since the ability to learn from experience is highly developed
in people and animals, it is natural to look to the nervous system
for clues about how to organise a learning system. Unfortunately,
in our present state of understanding, looking at real nervous
systems is not of much help. Many workers have built or simulated
networks having properties of self-organization, or at least
self-adjustment, and it is interesting and instructive to consider
how the credit-assignment problem is overcome or evaded in these
schemes.

The most widely-publicised type of self-adjusting network is
the perceptron due to Rosenblatt [21] and very clearly described
by Nilsson [18]. Minsky and Papert [17] have shown that there
are severe intrinsic limits on what can be done by a Simple Per-
ceptron. For the Simple Perceptron, the credit-assignment diffi-
culty is evaded by arranging that the adjustments made in the
course of learning are restricted to points which influence the
output of the net in a very direct way. Thus there is no diffi-
culty in determining the sensitivity of the output to a proposed
change at any of the adjustable points. The learning filter of
Gabor, Wilby, and Woodcock [12] and similar schemes proposed in-
dependently by Andrew [2] share this single-layer character.

There are, however, some systems described in the literature
which allow for adaptation throughout a complex net in which some
adjustable elements exert their effect on the output by acting
through other adjustable elements. It is because of the diffi-
culty of credit assignment, as discussed by Minsky, that work on

-199-

self-organising networks (sometimes termed the "Cybernetic
Approach to Artificial Intelligence") has not progressed further
than it has. Nevertheless, some methods can be referred to which
go some way toward solving the problem in that they do allow auto-
matic adjustment not restricted to a single functional layer.

Some of these methods will be briefly reviewed, with some ideas
for further study.

The methods are described, for the most part, in connection
with networks of threshold elements of the type usually termed
McCulloch-Pitts neurons. Their underlying principles can, however,
be adapted to networks of other kinds and to the embodiment of
a learning capability in a question-answering system. For various
reasons, there is a tendency among workers in this area to think
in terms of networks of model neurons. This is partly in the
hope of producing systems having some direct correspondence to
nervous-system functioning, even though McCulloch and Pitts [14]
made it clear that their seductively simple model neurons are
not purported to have properties corresponding closely to those
of real neurons. Apart from possible correspondence to real
neurons, however, these model neurons are attractive in their
own right as network elements. In spite of their simplicity,
they are, in fact, universal computing elements, since it was
shown by McCulloch and Pitts that networks of them can compute
anything which is computable. More important still, a given net-
work can produce a very wide range of forms of behaviour, the
transition from one form to another being produced by an accumu-
lation of small changes in thresholds and synaptic weights.

Some approaches to learning networks not restricted to single-
layer adaptation will now be reviewed.

4. Continuous-Discontinuous Adjustment

The "Pandemonium" scheme proposed by Selfridge [23] typifies
one way in which adaptive changes can be introduced throughout
a complex net. In this scheme, there is a primary adjustment
process which operates continuously and is, in fact, a "perceptron
training algorithm." This process is subject to the limitations
of the Simple Perceptron, but it operates in conjunction with
another (discontinuous) adjustment process as follows.

The elements of the net in which the primary adjustment
takes place are termed by Selfridge "cognitive demons," the word
demon being used in the same sense as in referring to a Maxwell
demon, i.e., to indicate a small creature. The cognitive demons
receive their input signals from "computational demons," and it
is a simple matter to compute, from the parameter settings
arrived at by the primary adjustment process, measures of the
"worth" of the respective computational demons to the final deci-
sion. Demons of low "worth," i.e., those whose outputs play
little part in the decisions taken at later stages, may be elimi-
nated and replaced by other, different demons. This rearrange-
ment of the computational demons according to the indications of
"worth" constitutes the secondary, discontinuous form of adjust-
ment.

-200-

There are difficulties in finding new types of "computational
demon" likely to have high "worth" to replace those which are
eliminated. Where the nature of the demons is simple, new ones
may be formed randomly; this is what is done in the extension of
the Simple Perceptron due to Roberts [19] in which the "computa-
tional demons" are perceptron association units receiving inputs
from a randomly chosen set of sensory units. When an association
unit proves to have low "worth," the connections it receives from
sensory units are dissolved, and a new set is chosen at random.

For more sophisticated types of "computational demon," totally
random generation is useless as it would have a negligible chance
of producing new demons with sufficiently high "worth” to survive.
Selfridge suggests two ways of generating new demons likely to
have high "worth"; these are by processes which he terms "conju-
gation” and "mutated fission."

The idea of "conjugation" is simple that the outputs of two
existing high-worth demons are combined (in any one of a number
of ways), and the combining element constitutes a new "computa-
tional demon." An interesting aspect of this idea (not commented
on by Selfridge) is that the measure of "worth" computed for the
combining element must somehow pass on through it to contribute
to the "worth" measures of the two elements whose outputs are
being combined. Thus there is a need for a simple form of what
will be discussed later on as "significance feedback."

The main thing to be said about "mutated fission" is that
nobody really knows how to achieve it. It is simple to arrange
if the changes constituting the "mutations" are of a simple pre-
conceived form, e.g., changes in parameter-values, but then no
qualitatively new demons can ever evolve. It is necessary that
the demons be represented in a way which allows a suitable form
of "heuristic connection" between the possible forms demons may
take [16].

Forms of self-improvement having the continuous-discontinuous
character typified by the Pandemonium could very readily be incor-
porated in a question-answering system. Points in the system at
which decisions are made can be made to compute measures of "worth”
for the subsystems from which they receive information. If the
totality of the measures of worth for a particular subsystem proves
to be small, the subsystem might be automatically modified or
annihilated.

However, it seems reasonable to suppose that an adjustment
mechanism operating in a uniform way throughout the system would
be more effective than the continuous-discontinuous form of opera-
tion, and there have been various attempts to devise such a
mechanism. Some of these will now be discussed.

-201-

5. Reduction of Redundancy

Barlow [9] and Uttley [26] have discussed ways in which
adaptive changes in a network might be determined independently
of any feedback from the environment indicating the effect of
the net's output. Their suggestion is that the changes should
operate to reduce the redundancy of signals passing through the
net. Andrew [5,6] has argued that such locally determined adapta-
tion can be of only limited value and must operate in conjunction
with a process of true feedback.

Input data to the nervous system is often highly redundant,
and the suggestion that redundancy is reduced in the early stages
of processing agrees well with experimental data on the nervous
system. The familiar observation that the response of many parts
of the nervous system to abrupt changes in signal level is much
greater than to sustained inputs is an example of redundancy
reduction. The change may be abrupt in either time or space.

A signal which does not indicate an abrupt change could have been
inferred approximately by extrapolation of other signals, so is
to some extent redundant and is therefore attenuated.

Reduction of redundancy of the requests for information must
be an important part of the operation of a question-answering
system, and consequently a self-modifying system might automat-
ically improve its own performances in this respect. As in the
case of nervous-system inputs, some simple forms of redundancy
could be eliminated without reference to the overall operation
of the system; for example, if there are pairs of words or phrases
which only appear together in the inputs, one member of each pair
is redundant. The recognition of other forms of redundancy must
depend on overall feedback to indicate what is useful and what
is redundant in the inputs. Nevertheless, the discussions by
Barlow and Uttley are probably well worth keeping in mind in the
development of a self-modifying question-answering system. Not
only does redundancy-reduction simplify processing requirements,
it may also facilitate the discovery of relationships between
signals which were previously obscured.

6. Methods of Widrow and Stafford

Widrow [27] has discussed ways of achieving adaptation in
neural nets not restricted to a single functional layer. 1In his
paper, he begins by discussing the adjustment of a single-threshold
element in a fashion very similar to that used in a Simple
Perceptron. (There is one slight difference in that he favours
a procedure in which an adjustment is made whether or not the
response of the network was "correct." The usual method for
perceptrons requires an adjustment only for "incorrect" responses).

Widrow then describes a method of adjustment for a net in
which a number of adjustable elements produce outputs which im-
pinge on one further threshold element whose output is the output
of the net. The basis of the method is the rule that the net must

-202-

be adjusted to give the "correct" response to each input pattern,
and that the adjustment needed to let this happen should be
achieved with minimal disturbance of previous adjustments.
Widrow requires that the number of adjustable elements which is
altered at all should be the minimum which will produce the re-
quired effect, and where there is more than one equally large
subset of elements which could be chosen, that which is used is
the one requiring the smallest total parameter changes.

Widrow also discusses the extension of these ideas to net-
works giving multiple outputs. The aim is always to achieve the
correction of the current response with small alteration of the
net, since such alteration represents a disturbance of previous
learning.

It is, of course, possible to adopt any of a number of dis-
tinct measures of the amount of disturbance represented by a
given set of changes in the network. The measure could be the
total amount of parameter change (where parameter is used to mean
a synaptic weight or a threshold level), or the maximum value of
parameter change, or the sum of squares of parameter changes.
Widrow uses a two-stage criterion, with a number of elements
affected as the primary consideration, and total magnitude of
the changes as the second. The second consideration is only in-
voked if the first does not indicate a clear choice.

An alternative method due to Stafford [24,25] is also based
on the general principle that the response to the current input
should be corrected with as little disturbance as possible of
the existing settings in tiie network. Stafford's methods (he
describes two variations) seem rather more suitable than that of
Widrow for incorporation in a neural net, since their operation
depends on activity distributed over the net. Widrow's method,
on the other hand, is difficult to implement without an "adapta-
tion centre" computing the changes. The distributed form of
operation seems more plausible as a possible model of nervous-
system functioning, but either type could be useful in suggesting
ways in which learning might be made to occur in a question-
answering system.

Methods which rely on distributed activity are likely to be
such that computational complexity increases approximately
linearly with network size. For methods depending on an "adapta-
tion centre," the complexity might increase much more steeply.

Andrew [7] has carried out simulation experiments in which
randomly formed networks of neuronlike elements were allowed to
modify themselves according to many variations of Stafford's two
methods. The results were, in fact, disappointing since none of
the variations solved the problem which was set.

-203-

7. Significance Feedback

Andrew [3,5-7] has used the term "significance feedback”
to indicate an adaptation principle which would operate in a
distributed fashion and avoids the need for "dummy runs" of the
network as required in Stafford's methods.

The essential idea of one form of significance feedback was
introduced when Selfridge's Pandemonium was discussed. In this,
the feedback was simply of a measure of "worth" or importance
attached to the signals in a pathway.

Another form of "significance feedback" indicates the cur-
rent sensitivity of the output of the net to activity in the
channel with which the feedback is associated. This can be
achieved by letting every primary pathway have a feedback pathway
associated with it, carrying a signal indicating the sensitivity
of the output of the net to activity in the primary pathway.

Every element in the net must perform a dual role; it must process
the primary signals appropriately and must also process the sen-
sitivity signals. For example, suppose an element has the primary
function of multiplying two signals x(t) and y(t) to produce an
output z(t) = x(t) - y(t). Suppose also that a feedback signal
s(t) is “associated with the pathway conveying z(t) this signal
being a measure of the sen51t1V1ty of the output to z(t). Then,
at least for small variations in the primary s1gnals, appropriate
measures of sensitivity for the pathways conveying x(t) and y(t)
are s(t) - y(t) and s(t) - x(t), respectively. If the multiplica-
tion element produces these feedback signals associated with its
input pathways, and all other elements in the net process feed-
back signals in ways appropriate to their primary functions,

there is a continuous automatic "sensitivity analysis" throughout
the net. The sensitivity measures can be used to determine adap-
tive changes at points throughout the net.

For small networks of linear and quasi-linear (e.g., multi-
plicative) elements, the method has been found to work very well.
However, the information-processing capabilities of such networks
are not very interesting. Interesting behaviour comes from networks
embodying strongly nonlinear elements such as threshold elements.
For these, it is Qdifficult to see how to implement "significance
feedback" since the appropriate sensitivity measures depend on
signal amplitudes. A variety of plausible variations of the
"significance feedback" principle have been devised, suitable for
application to networks of threshold elements. These have been
tried out in simple networks which were required to adapt to
perform a logical computation which could not be achieved as a
linearly separable function of the inputs. Adaptation was by
variation of the threshold levels and "synaptic strengths" in
the elements. The attempt was made to "train" the networks by
the presentation of a succession of random inputs together with
a "correct answer" for each.

~204-

The conclusion from these experiments was that networks
embodying these plausible approximations to the "significance
feedback" principle had adaptive properties in that they would
adjust themselves to perform the task after starting from various
initial states. From other starting states, the adaptation was
not successful; there are "trapping states" from which further
progress is impossible.

8. Interelement Negotiations

It appears that for effective adaptation, it is necessary
to have something else besides the feedback indicating the sen-
sitivity measures. It is also necessary to have some sort of
dialogue, or process of negotiation, between the elements of the
nets to decide how to apportion the necessary changes among them.

The idea of negotiation implies some sort of conflict, or
competition for something which might be called currency, among
the elements. 1In order that the net should adjust itself to give
the "correct answer" for all possible input states, its adaptation
to each input should produce the least possible disturbance of
the synaptic weights and thresholds previously existing. The
amount of such change constitutes a currency which can be bargained
over and which can form the basis of a "training algorithm" in-
volving a dialogue or process of negotiation.

Andrew [8] has made some suggestions about the form this
interelement dialogue might take. Simulation studies are being
undertaken.

It can be seen that there is a need to sort out some funda-
mental questions in connection with learning networks. The
general principle that adaptive changes should cause minimal dis-
turbance of previous learning seems essentially sound, but it is
not clear what measure of amount of change should be minimized,
nor whether it should be differently weighted in different parts
of the net according, say, to their proximity to input and output
pathways.

It is also unclear whether it is optimal to let the param-
eters of the net (threshold levels and synaptic weights) repre-
sent the only between-trials storage of information in the net.

In the usual perceptron training algorithm, as well as in the
schemes of Widrow and Stafford, these parameters do represent the
only between-trials storage. On the other hand, some learning
schemes require other information storage so that correlations

and other statistical measures can be computed, the net parameters
being altered only if these measures exceed some significant level.
The famous learning algorithm used by Samuel [22] to adjust the
scoring polynomial used by his checker-playing program depends on
the computation of correlation measures separately from the param-
eters adjusted.

It can be seen that there are some quite general questions
relating to the automatic adjustment of neural networks to which
we do not know the answers.

-205-

9. Other Approaches

A number of topics relating to learning or self-organizing
systems have not been touched on. Hierarchical schemes have not
been mentioned as such, though some of the discussion of multi-
layer networks could, perhaps, be rephrased in terms of one of
the kinds of hierarchical structure treated by Mesarovic, Macko,
and Takahara [15]. Also, there has been no mention of reverberat-
ing nets, as postulated by Hebb [13] for his "cell assemblies"
and studied in the early simulation studies of Beurle [10] as
well as Rochester et al [20]. For the learning of tasks not in-
volving any sort of pattern in time, there is no obvious advantage
of reverberating nets over static ones.

Farley and Clark [11] introduce a controlled amount of "noise"
or random variation into their system.

The highly individual approach of Aleksander [1] has also
been ignored. He has experimented with both static and reverber-
ating networks, particularly in tasks of pattern recognition.

He prefers to consider networks not consisting of model neurons
but of what he terms SLAM units (standing for Stored-Logic
Adaptive Microcircuit). Although this is a different type of
basic element, most of what has been said about learning in neural
nets remains applicable.

10. Discussion

It is, in fact, because the principles are applicable to
networks of elements other than model neurons that they are
believed to have relevance to question-answering systems. These
are multilayer systems in the sense that many parts exert their
effect on the output through other subsystems. If the different
parts are all capable of self-modification as the system operates,
the problems of multilayer adaptation will arise.

It would be useful to set up, as part of a program of work
on question-answering systems, an investigation into self-
organizing neural networks. Questions which would be studied
initially would include the following:

a) What measure of network change should be minimized to
preserve the effects of previous adaptation?

b) What form of "negotiation" between network elements
produces changes which do, in fact, produce adaptation
and are consistent with the requirements of (a).

c) Is there any advantage in letting statistical measures
be computed separately from the' network parameters to
be adjusted?

Many other questions would arise as the projected progressed
and the learning techniques were applied in the question-answering
task.

-206-

This work would be particularly relevant to the wider aims

of IIASA since all large systems achieve viability by adaptation
and can only be understood in terms of their adaptive properties.
Networks of model neurons provide a relatively simple environment
in which to look for general principles of adaptation in complex

systems.
References

[1] Aleksander, I. "Some Psychological Properties of Digital
Learning Nets." 1Int. J. Man-Machine Studies, 2, 189,
1970.

[2] Andrew, A.M. ‘"Learning Machines." In Mechanisation of
Thought Processes. London: HMSO, 1959.

[3] Andrew, A.M. "Significance Feedback in Neural Nets."

(4]

[5]

(6]

[7]

[8]

{91l

[10]

[11]

Report of Biological Computer Laboratory, University
of Illinois, 1965.

Andrew, A.M. "To Model or Not to Model." Kybernetik, 3,
272, 1967.

Andrew, A.M. "The Ontogenesis of Purposive Activity."
In A. Locker, ed., Biogenesis, Evolution, Homeostasis.
New York: Springer, 1973.

Andrew, A.M. "Significance Feedback and Redundancy Reduction
in Self-Organizing Networks." 1In F. Pichler and
R. Trappl, eds., Advances in Cybernetics and Systems
Research, Vol. 1. London: Transcripta Books, 1973.

Andrew, A.M. "Studies of Real and Hypothetical Nervous
Systems and Their Implications for Social Systems."
Conf. on Cybernetic Modelling of Adaptive Organizations,
Porto, Portugal, 1973.

Andrew, A.M. "Cybernetics and Artificial Intelligence."
Third Int. Congress of Cybernetics and Systems,
Bucharest, 1975.

Barlow, H.B. "Possible Principles Underlying the Transfor-
mations of Sensory Messages." In W. Rosenblith, ed.,
Sensory Communication. Cambridge, Massachusetts)

MIT Press and Wiley, 1961.

Beurle, R.L. "Functional Organization in Random Networks."
In H. von Foerster and G. Zopf, eds., Principles of
Self-Organization. Oxford: Pergamon Press, 1962.

Farley, B.G. and Clark, W.A. "Simulation of Self-Organizing
Systems by Digital Computer." Trans. IRE, PGIT-4, 76,
1954,

(12]

(131

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

-207-

Gabor, D., Wilby, W.P.L., and Woodcock, R. "A Universal
Non-Linear Filter, Predictor and Simulator Which
Optimizes Itself by a Learning Process." Proc. I.E.E.,

PT B, 13, 422, 1961.

Hebb, D.O. The Organization of Behaviour. New York:
Science Editions 1961. (Originally Wiley, 1949.)

McCulloch, W.S. and Pitts, W. "A Logical Calculus of the
Ideas Immanent in Nervous Activity." Bull. Math.

Biophys., 5, 115, 1943,

Mesarovic, M.D., Macko, D., and Takahara, Y. Theory of
Hierarchial, Multilevel Systems. New York: Academic
Press, 1970.

Minsky, M. "Steps Toward Artificial Intelligence." 1In
E.A. Feigenbaum and J. Feldman, eds., Computers and
Thought. New York: McGraw Hill, 1963.

Minsky, M. and Papert, S. Perceptrons. Cambridge,
Massachusetts: MIT Press, 1969.

Nilsson, N.J. Learning Machines. New York: McGraw Hill,
Chapter 5, 1965.

Roberts, L.G. "Pattern Recognition with an Adaptive Network."
IRE Int. Conv. Record, pt. 2, 66, 1960.

Rochester, N., Holland, J.H., Haibt, L.H., and Duda, W.L.
"Test on a Cell Assembly Theory of the Brain, Using a
Large Digital Computer." Trans. IRE, PGIT-2, pt. 3,

80, 1956.
Rosenblatt, F. "“Two Theorems of Statistical Separability
in the Perceptron." In Mechanisation of Thought

Processes. London: HMSO, 1959.

Samuel, A.L. "Some Studies in Machine Learning Using the
Game of Checkers." 1In E.A. Feigenbaum and J. Feldman,
eds., Computers and Thought. New York: McGraw Hill,
1963.

Selfridge, 0.G. "Pandemonium, a Paradigm of Learning."

In Mechanisation of Thought Processes. London: HMSO,
1959.
Stafford, R.A. "Multi-Layer Learning Networks." 1In

J.E. Garven, ed., Self-Or-anizing Systems 1963.
Washington: ONR, 1963.

Stafford, R.A. "A Learning Network Model.” 1In M. Maxfield,
A. Callahan, and L.J. Fogel, eds., Biophysics and
Cybernetic Systems. New York: Spartan Books, 1965.

-208-

[26] Uttley, A.M. "The Informon: A Network for Adaptive Pattern
Recognition." J. Theor. Biol., 27, 31, 1970.

[27] Widrow, B. "Generalization and Information Storage in
Networks of Adaline Neurons." 1In M.C. Yovits, G.T.
Jacobi, and G.D. Goldstein, eds., Self-Organizing
Systems 1962. New York: Spartan Books, 1962.

Appendix
The main argument of the paper is the heretical one that
there is still a great deal to be learned from the study of self-
organizing networks of neuronlike elements. In the context of
artificial intelligence studies, the argument is perhaps more
convincingly presented as follows than as in the main paper:

1. Relevance of SOS Studies

It has been argued that the computer programs produced by
AI workers are subject to a fundamental limitation which is
often expressed by saying they do not develop their own heuristics.
Certainly the brain shows a degree of flexibility of behaviour
which is far beyond anything shown by artifacts. The flexibility
is such that people can engage in such activities as philosophy,
mathematics, chess playing, or computer programing using brains
which evolved as specialised organs of survival under relatively
primitive conditions. One secret of the brain's success is un-
doubtedly its ability to switch rapidly among many different
approaches to a problem. It is presumably because of this ability
that people, even without special instructions, perform as well
as they do in scheduling tasks such as the planning of school
timetables or the operating of workshop or transport services.
It has proved to be quite difficult to devise algorithms for
computer programs to compete with human performance in these
areas.

What is probably a highly significant aspect of the brain's
versatility is its retention of its more primitive skills f(or
some of them) even when more advanced ones have been acquired.
Even the purest of mathematicians is not completely helpless if
he finds himself the sole survivor of a plane crash in the jungle.
Certainly he is initially at a considerable disadvantage compared
to people who have been jungle dwellers all their lives, but if
he is lucky enough to make no fatal mistakes in his first few
days, he will start learning the things they know.

There can be little doubt that human thinking depends on a
multiplicity of mechanisms, of which formal linguistic reasoning
is only one. Naturally these formal operations have received
particular attention from workers in AI, since digital computers
are themselves formal linguistic devices. The impossibility of
studying all human thought processes in these terms is illustrated

-209-

by the reply of a chess champion who was askgd_how many moves in
the look-ahead tree he considered before deciding his move in a“
game. His reply was reported to be: "Only one--the right one.

Poincaré [7] (see also discussion by Campbell [3]) refers
to the mysterious nature of his own thought processes which led
to his mathematical discoveries. Describing what happened when
(contrary to his custom) he drank strong coffee late at night
and could not sleep, he wrote: "Ideas rose in crowds; I felt
them collide until pairs interlocked, so to speak, making a
stable combination." He goes on to reflect on the mysterious
nature of the filter which recognises some of these combinations
as possibly useful and allows these to pass over the threshold
of full consciousness. The filter presumably depends on something
more fundamental, and, in a sense, more primitive than the formal
linguistic reasoning with which it interacts.

Electrophysiological studies of the visual systems of higher
animals provide some evidence for the coexistence of distinct
mechanisms which come into play as required. Hubel and Wiesel
{41 have found, in the visual cortex, neurons whose response is
related in four main ways to the stimuli presented in the visual
field. Some neurons, referred to as "concentric units" are in-
fluenced antagonistically by a small circular area and a concen-
tric annular area in this field; these are the cells which receive
inputs directly from the optic nerve (after its relay in the
geniculate body). Then "simple units" respond to edges, dark
bars, or light slits in the field, and must operate by combining
the outputs of concentric units. Similarly, "complex units,"
which respond to movement of edges, slits or bars, combine the
outputs of a number of simple units. "Hypercomplex units," which
respond only to moving edges, slits or bars of limited length,
must operate by combining the outputs of several complex units.
One way in which visual perception works is through the following
chain: concentric units to simple units, then to complex units
and then to hypercomplex units. However, as Lettvin (of frog-
vision fame, [6]) has pointed out, the whole mechanism revealed
by these studies can be bypassed when required, otherwise it
would be impossible to see the stars at night. (Hubel and Wiesel
report that fibres go from units of all types, including concen-
tric, into area 18 of the cortex for further processing.)

There is a case, then, for believing that a system to exhibit
artificial intelligence should be able to drop back, when appro-
priate, to modes of behaviour which are of more general applica-
bility than that which has evolved in connection with a specific
task environment.

Some workers in artificial intelligence have tried to work
at a very general level; work on conept formation by Amarel [1],
Banerji [2], and others is at a much more general level than
most approaches used in artificial intelligence. HRowever, even
the assumption that the operation of the system is to be described
in terms of concepts and properties implies some restriction of
generality as there are some tasks which are not readily described

-210-

in these terms. Examples are the acquisition of manual skill in,
say, riding a bicycle or wood carving, and certain aspects of
many tasks including that of satisfying the users of a question-
answering system.

To be more general, it is necessary to choose some basic
fabric to be modified by the learning process, and that of a
network of neuronlike elements has some attractive features.

One is that the networks studied may (but also may not) have some
useful correspondence to real nervous systems.

2. Evolution by Stages

An approach which would be completely general would be to
form a large network of model neurons, interconnected either
randomly or according to a pattern, and to let it be modified
by random mutations and selection according to a criterion of
task fulfillment. Usually the available measures of task fulfill-
ment will not be such that the system is "led in" by a hill-
climbing process to a state in which it performs the task. Find-
ing such a state must therefore depend on a search through a vast
number of states produced by the random mutations, and, in fact,
the approach is defeated by the "combinatorial explosion."

Living organisms are presumably the result of an evolutionary
process which has continued over a much longer period of time
than any artificial intelligence project can be allowed to consume.
This process has to some extent defeated the "combinatorial
explosion" effect by proceeding in stages, as the word "evolution"
suggests.

It is not only the level of functional organization which
has become greater at each stage; there has also been "adaptation
to adapt." That is to say, at the successive stages there is
selection of mechanisms which will facilitate further evolution.
Finally the brain superimposes the results of learning during an
individual's lifetime on those of the earlier "genetic learning."
The brain does this with the benefit of the earlier evolution of
mechanisms facilitating learning. The extreme versatility of the
brain indicates that some of these mechanisms are very general in
their applicability.

The aim of many workers who have tried to construct self-
organizing networks has been to embody some of the special mecha-
nisms so that adaptation may proceed without meeting a "“combina-
torial explosion.” The adoption of these mechanisms immediately
implies some compromise of the earlier insistence on extreme
generality; some generality is traded for speed of adaptation.

It is hoped that by a wise choice of the mechanisms embodied, a
large benefit in speed can be obtained without serious infringe-
ment of generality.

-211-

3. Inductive Inference

The review which is attempted in the main paper is essentially
of mechanisms which might be incorporated in networks to facilitate
learning.

An aspect which is not explicitly mentioned in the main
paper, nor in the papers it refers to, is the need for appropriate
generalisation of the results of learning. It is likely that
many of the workers quoted were tacitly assuming some kind of
generalisation, since their aim is to produce networks which will
learn complex tasks although the networks themselves are of modest
size. Generalisation is needed, both for economy of representa-
tion and to allow inductive inference. It is only by condensing
a large amount of experience into some fairly short description
that a network can make appropriate responses to input configura-
tions it has not previously experienced.

The problem of finding short representations which will allow
inductive inference has been discussed by Banerji [2] in terms of
predicate calculus, and by Amarel [1] in another formalism. The
general approach of Banerji is being vigorously developed by
Rothenberg [8].

The problem is far from simple, as it is not at all obvious
what measure of "shortness" of representation is likely to be most
conclusive to useful inductive inference. Banerji, in fact,
argues (if I understand him correctly) that the measure of short-
ness is so much a function of the task environment that it has to
be learned by experience.

Any scheme for self-organization in neural nets must have a
tendency to seek short representations. Preferably, also, it
should be able to evolve effective measures of shortness.

Methods for the automatic minimization of switching networks
and finite automata are well known (see, for example, Xohavi [5]),
and there is the possibility of an interesting field of study in
relating these to the work of Rothenberg and others on concept
formation. The switching- and automaton-theory approach is per-
haps of limited value since the methods tend to rely on a global
view of the network rather than the kind of locally acting mecha-
nism which is usually visualised for self-organization. (What is
more important in a practical application is that the amount of
computation needed to let the mechanism operate is likely to be-
come prohibitive for large nets if a method depending on a global
view is adopted.)

Locally acting methods for the minimization of networks may
in fact have much in common with the provosals for reduction of
redundancy which were rather cursorily dismissed in the main
paper. In a network which can undergo automatic simplification,
it might be advantageous to let the network grow in complexity
while new experience is being gained, and then to "digest" its

-212-

new structure into a simpler form when time permits. There have
been some suggestions that the need for sleep by humans is related
to some need to process sensory data, and that dreams are a side
effect of the processing.

It certainly appears that the neural net approach still
offers enormous and potentially fruitful areas of study.

References to Appendix

[1] Amarel, S. "On the Automatic Formation of Computer
Program which Represents a Theory." 1In M.C. Yovits,
G.T. Jacobi, and G.D. Goldstein, eds., Self-Organizing
Systems 1962. New York: Spartan Books, 1962.

[2] Banerji, R.B. Theory of Problem Solving. New York:
Elsevier, 1969.

[3] Campbell, D.T. "Blind Variation and Selective Survival as
a General Strategy in Knowledge Processes."” 1In
M.C. Yovits and S. Cameron, eds., Self-Organizing
Systems. Pergamon Press, 1960.

[4] Hubel, D.H. and Wiesel, T.N. "Receptive Fields and Functional
Architecture of Monkey Striate Cortex.” J. Physiol.
195, 215, 1968.

[5]1 Kohavi, Z. Switching and Finite Automata Theory. New York:
McGraw-Hill, 1970.

[6] Lettvin, J.Y., Maturana, H.R., McCulloch, W.S., and Pitts,
W.H. "What the Frog's Eye Tells the Frog's Brain."
Broc. I.R.E. 47, 1940, 1959.

[7] Poincaré, H. "Mathematical Creation." In H. Poincaré, ed.,
The Foundations of Science. Translated by G.B. Halstead.
New York: Science Press, 1913.

[8] Rothenberg, D. "Predicate Calculus Feature Generation.”
In T. Storer and D. Winter, eds., Formal Aspects of
Congnitive Processes. New York; Springer, 1975,

-213-

A Computer Interview Procedure Which Reconstructs

Generative Semantical

Structures of Human Beings Using Modal Sets

Salomon Klaczko-Ryndziun and Karl-Heinz Simon

The isomorphy between the definition of a concept in clas-
sical logics and the definition of a set in set theory is
applied to the computer-storage of judgments, originally for-
mulated in natural language. For this purpose, the judgments
are redefined as sets in intentional form.

The properties for such an intentional redefinition are
classified either as necessary ones, which determine the invari-
ant of the involved set, or as accidental ones. For n acciden-
tal properties Py each with a scale of m, different values,

imply a cyclic group of the order ﬂmi as a transformation domain.

This leads to the use of modal sets as an algorithmic tool for
a generative semantic.

Stochastic redefinition of one or more necessary properties
into accidental ones generates a more abstract superconcept than
the original one. Random redefinition of one or more accidental
properties into necessary ones generates a more concrete sub-
concept. The lattice of all the generable modal sets for a

given vector of p properties would contain theoretically 3"
elements, since each property would have three possible states:
necessary, accidental, or nonexistent. This is practically

reduced by an amount of 2" elements which would contain no neces-
sary properties and which would be, therefore, so called "objects
in themselves." From this sublattice, we extract the nonobject,
having only nonoccurrent properties, so that our pragmatic lat-
tice (hierarchical memory) would contain a generative potential
of

different properties.

different modal sets, generable out of
8026) .

n
(For n = 5, An = 212; for n = 10, An =5

-214~

An interactive computer program, written in the list-
processing language SIMULA, autonomously makes an interview with
a human being used as experiment object (EP). The computer asks
the EP to enumerate all the elements, organizations (persons,
animals, objects, devices), involved in a given situation. Also,
the properties--specified either as necessary or as accidental--
of these elements are asked. The EP responds typing this data
into the terminal which the computer uses for the interview.

A random subroutine produces intermittently a mix of proper-
ties of different objects and asks the EP if this mix (fictive
object) corresponds to a real object in this or in another situa-
tion. If the answer is positive, the name of the new object is
asked, and the object itself is stored in the cognitive memory.

If the object can only occur under another situation, also the
name of the new situation is stored, and another random sub-
routine can sometimes decide to ask questions about the objects

of this other situation (an overlapping of situations is possible).

"Impossible"” objects are stored in the "impossible situa-
tion." At the same time, the computer asks which attributes are
in contradiction with which others in each "impossible object"
in order to find the reason for the inconsistency of this object.
Thus, if an attribute a is contradictory with an attribute b,
then the negation of a must be consistent with b and may occur
together with b in the field of necessary attributes of a real
(existent or possible) object. Also, this type of element is
being stochastically generated and presented to the EP for con-
firmation. A random generator decides--when new "impossible
elements"” are produced and presented to the EP to test--if it
pays attention or if it is cognitively self-consonant. For this
purpose, the cartesian product of the set of attributes with
itself is used to mark those attribute pairs which were discovered
to be contradictory ones.

Another strategy to promote man-machine conversation is the
random selection of a set of names of elements to ask the EP
about the common attributes over this set and, if possible, to
ask if this set has a known name. The computer can also ask
about other elements which, in the opinion of the EP, may belong
to this random set. If these elements exist, their attributes
will also be required.

A further strategy consists of random selection of a defined
element and attachment to it of a nonprovided attribute. There-
by, it becomes possible either to confirm the self-consistency,
or to discover a contradiction, or to state the incompleteness
of the definition provided originally for the element.

Another subroutine contains the list of syllogistic forms,
and it generates from randomly chosen elements and syllogisms
different judgments, which are also offered to the EP for con-
firmation. Also chains of syllogistic inferences are generated
from this subroutine.

-215-

All the above strategies are applied to expand or to correct
systematically the lists of elements and attributes. Random
generators decide in which sequence the different strategies are
applied. For each element and property, an effective charge
value, scaled between -100 and +100, is requested from the EP.
This produces a projection of the motivational filters of the
EP onto its own cognitive structure. Such a kind of motivational
filter is of particular importance to another cognitive category
which is also requested from the EP: change or transformation of
elements or of situations. Also the feasibility of such a trans-
formation, scaled between 0 and 1, is asked during the interview.

Dependent on the fact of whether a transformed element will
remain in the original situation or not, the change will be con-
ceived as an immanent or as a transcendent one. If certain
elements are defined as instruments, being able to provoke a
change in a situation, as long as these instruments interfere
with the situation, then causal chains of transformations can be
formulated. Cyclic transformation chains and sets of such chains
(relationships) will correspond to stable situations (eventually
subsituations of a situation). The simplest cyclic transforma-
tion, the flow of time, characterizes static relationships.

Stored thought structures of an EP concerning two or more
cognitive fields and having different motivational charges are
useful for the dynamic simulation of processes of self-contradic-
tion and consciousness. Stored structures of two or more EP's
about the same cognition field are useful for the simulation of
cognitive intersubjectivity.

The system was implemented in the list-processing language
SIMULA on the CD-3300-Computer of the Universitat Erlangen-
Nirnberg.

=216~

Cognitive Information Retrieval

By Goal-Oriented Languages

Giuseppina Gini and Maria Gini

1. Introduction

Many programing tasks in artificial intelligence require the
manipulation of a small data base, for example in question-
answering and robot systems. These programs need to perform
complex retrieval operations in the data base, and they also
need some problem solving features.

Question-answering systems are complex systems with the
capability of memorizing and retrieving information and with
the possibility of inferring new information. A characteristic
of these systems is to have a set of procedures which makes
them capable of giving answers which are not explicitely present
in the data base but are logical consequences of the facts stored
there.

The information in the data base is not only about the facts
but also about the relations between them; these connections
have to be preserved in order to make the process of answer
generation easy.

Another important aspect of question-answering systems is
the facility of access to the system; an input language which is
too formalized in a way not related to the subject has to be
avoided in order to have a system which is easy to use.

The research in question-answering systems has been, for a
period, related to the research in natural language understanding.
The few results obtained at present in this difficult field and
the computational weight of a natural langquage understanding
system suggest leaving the natural language input in a question-
answering systemn.

The idea developed in this paper is to allow an input which
is formal but natural oriented. This is a feasible input which
allows a natural like communication with the computer and doesn't
present theoretical and practical difficulties.

The organization of the guestion-answering system in our
proposal is discussed in three steps:

a) Input translation: this is the process which transfer
the input language (natural-oriented) into the internal
language in order to allow the typical question-answering
functions.

-217-

b) Assertion: this is the process whose task is to
introduce in the data base the new sentence and to
define its links. This process must avoid the
possibility of inconsistency in the information
in the data base.

c) Answer extraction: this is the process for giving as
output an answer to a question. The search is made
in the data base to check whether the proposition
proposed as question is a consequence of the data base
or is in contradiction with it, or if the information
isn't sufficient.

The very crucial choice is in the programing language for
implementing the system; these steps are easy to program if the
"deep structure" of the input language and of the data base
sentences are expressed in the same language used for the
program.

The most classical way to obtain these capabilities is based
on first-order, predicate logic, theorem prover. The answer is
viewed as a theorem to demonstrate and the data base is written
in the form of expressions in the logical theory [3,8,22,23].

A more natural internal language is a PLANNER-like language.
The system obtained is not very general, but it is suitable for
representing and adding information expressed as procedures.
The question is posed in form of "goal” to achieve, and the
answer is then obtained by success or failure. During the
execution, the achievement of the goal is attempted by a direct
action; if that fails, it is then attempted by the introduction
of some lower-level goals [13]. Many experiences in this
procedural approach are analyzed, and the approach choice is
selected [6,17,29].

In section 2, the central problem of artificial intelligence,
i.e., knowledge representation in a computer, is discussed. The
most important directions using formal logic and programing
languages are analyzed.

In section 3, the project of a question-answering system
is approached. The input language for such a system is proposed.
The characteristics of a formal and natural-oriented language
are outlined, and the problem of its realization is discussed.
The implementation of a parser program is proposed as a way for
translating the input language into the internal one.

In section 4, the problem of the memory organization is
discussed, and some characteristics of existent goal-oriented
languages are investigated. In particular, the steps of
inserting new information and of extracting answers are examined.

Finally, in section 5, the most important research directions,
now attempted by the authors in the general problem of
programing tools for artificial intelligence, are proposed, and

-218-

their relationships with question-answering systems are pointed
out.

In the appendix, there is a listing of a small system
proposed as an example to this paper.

2. The Problem of Representing Knowledge in a Computer

The fundamental task of artificial intelligence is to
represent and to use knowledge in order to automatically solve
some problems [20]. Following the Nilsson definition, by
reasoning in artificial intelligence we mean the major process
involved in using knowledge-using it to make inferences and
predictions, to make plans, to answer questions and to obtain
additional knowledge.

The intelligent behavior of a system is also discussed in
an important paper by McCarty and Hayes [16]. This behavior is
based on an internal representation of the knowledge. The
representation must account for two facts:

a) The factual knowledge about the world and the laws
governing relationships and changes in it, which is the
epistemological aspect.

b) The pragmatic knowledge necessary for solving problems,
which constitutes the heuristic information.

In the design of such artificial intelligence programs, it
is crucial to find a good formalism for this representation.

2.1. Assertions or Procedures?

Many recent works in artificial intelligence have been
inspired by the discovery that a resolution-based theorem prover
can be easily adapted to the generation of constructive answers
to questions from data formulated in first-order predicate
logic [8].

This sort of data base consists of a set of predicate
calculus formulas. When the system is given an English sentence,
it adds a predicate calculus formulation of the sentence to its
data base. This method has been employed in question-answering
systems and also in plan formation and automatic programing.

A different approach, begun with PLANNER language, is based
on the idea of knowledge as being procedural rather than merely
factual. Procedural embedding [12] means that any piece of
knowledge has to be represented by a suitable procedure, which
is executed by the system when it is relevant to the current
problem. Hewitt argues that one must be able to discuss not
just facts but also techniques for using them. This idea also
supports the work of Winograd [29], whose system uses assertions
for atomic facts and procedures for expressing formulas with
quantifiers.

-219-

For a period, there was some controversy over whether
knowledge should be represented assertionally or procedurally.
The procedural approach began as one opposed to the logical
approach; the basis of the criticism is related to the fact that
the logical approach separates epistemological and heuristic
information in axioms and fixed resolution strategy of theorem
prover, while PLANNER-1like languages allow one to control,
partially or totally, the research of the solution.

This controversy seems to be settling down now to an
acceptance of the value of a combination of assertional and
procedural knowledge. There is not yet a theoretical basis for
knowledge representation because this problem is not separable
from the problem of using this knowledge.

Concerning heuristic information, there is also a lot of
useful controversy about how to build intelligent systems. One
direction is to use a universal system for all the tasks, for
example, a theorem prover based on Robinson's resolution
principle. An opposite proposal is to employ some adhoc methods;
in this way each task should simply be solved by a program written
in a suitable programing language.

2.2 Programing Languages for Artificial Intelligence

The programs for manipulating knowledge need to store, to
have access to, and to manipulate lists of symbolic information.
The first system for achieving several of these operations was
obtained by list-processing languages, such as LISP [15].

Another common need for solving problems is the performance
of operations such as search, expressions retrieval, and pattern
matching. This exigency is the basis of a new generation of
programing languages in which some of these operations are built
into the languages themselves [5,11,18,21,27]. The prototype of
these systems, in which the most typical features are already
present, is Hewitt's PLANNER. It is a substrate for special
purpose, theorem provers. It is also more data-base oriented
than the preceding systems, and uses the idea of associating
procedures with relation symbols, and executes these for storage,
retrieval, and deduction.

Information can be represented in two different ways in
PLANNER. First, a list of constantly called items can be stored
in the data base by thassert function. This method is suitable
for atomic facts which do not contain any variables or
quantifiers. Second, information can be represented by theorems,
i.e., programs called through pattern matching. Generally,
theorems express laws valid in the world, and they allow
obtaining new information from the assertions.

A PLANNER theorem is characterized by a pattern that
represents the meaning of the theorem and that is very important
in the process of system activation. A two-directions deduction
is present in PLANNER in which there are conseqguent and
antecedent theorems.

-220-

The most natural activation of a deduction process is the
top-down, which is realized by consequent theorems. In this
case, the theorem is written in a way that the body implies the
pattern. If we want to demonstrate the pattern, we must execute
with success the body of the theorem.

A PLANNER program is activated by assigning a goal to
demonstrate; it uses a general high-level control mechanism,
which is similar to a nondeterministic programing approach. If
there are some different assertions or theorem patterns which
can match with the assigned one, the system makes an arbitrary
choice, and maintains the possibility of making another choice
if there is a failure. This control mechanism is used in
PLANNER interpreter (automatic backtracking), and is also
modifiable in some ways by the user.

The criticism in this automatic control structure is one
of the most interesting sources of new ideas in goal-oriented
languages. A total user's control in his problem-solving
strategies is realized in CONNIVER [18], and it is viewed as a
central point in the project of new programing languages for
artificial intelligence.

For an illustration of the other existent goal-oriented
languages, there is a useful paper by Bobrow et al [1].

2.3 Interpreters and Proof Checkers

The processes of computation and deduction are substantially
equivalent, though they often have been developed in different
directions. The computation has been related to the construction
of compilers and interpreters for programing languages, while
the deduction has been developed in theorem provers for
mathematical logic.

According to a paper by Hayes [9] an interpreter for a
programing language and a theorem prover for a logical language
are structurally indistinguishable. Theoretical results about
this identity are present in the classical theory of computation.

In recent years, PLANNER and then its descendents have
proposed again, in some very new aspects, the relations between
programing languages and predicate lagic.

In the usual programing languages, the control information
is sometimes represented implicitly (for example in the order
of statements) and sometimes explicitly (for example in the
procedure call). A conventional interpreter operates
deterministically because it evaluates some definitions of
functions which contain both the logical information on the
function and the control information on the particular algorithm
for computing that function.

In a first approximation, the difference between a theorem
prover program and an interpreter is that in the latter case the

-221-

control is part of the input statements, while in the former the
control is fixed in a theorem-prover strategy.

In PLANNER, the rejection of the theorem prover approach
gives rise to a control structure that is, to a certain measure,
problem dependent and modifiable; a total degree of responsibility
for the user in defining his control structures is realized in
CONNIVER [18].

We can represent the conventional meaning of computation
and deduction in the following figure.

COMPUTATION

algorithm Compiler or ———solution———>
Interpreter

In this case, the input is an algorithm, i.e., logical and
control information about the problem.

DEDUCTION

Theorem
axiomatic-—o»—— ——-solution—
representation Prover

The input is only the logical information about the problem to
be solved. Theorem prover operates in an universal way, without
user-control information.

Figure 1.

PLANNER-like languages can be viewed as intermediate steps
between the two approaches.

2.4. Why a Goal-Oriented Language?

The use of goal-oriented languages became prevalent in
recent years as suitable tools in various artificial intelligence
fields. 1In particular, these languages are employed for
different reasons in question-answering programs.

One reason is their semantic power. Though some papers
[10,14] point out that the behavior of such languages is analogous
to that of theorem provers for first-order logic, they have some
expressive advantages. For example, they are a simplified nucleus
of higher-order logic languages, and, with them, one need not be
forced to make distinctions among predicate, function, or variable
symbols.

-222-

The interest in using higher-level logics for problem-solving
activity has been pointed out by several researchers [4]. At
the moment, there is the theoretical basis for a higher-order
logic, theorem-prover system, but these results are not
practicable. 1In using logical language, the solution is to
simulate the higher-order logic behavior in first-order,
predicate calculus.

The criticism about the rigid structure of theorem provers
caused interest in the programability of the control structure
of the system and in implementing new systems with the richness
of programing languages. Theorem provers can be viewed as a
first step in this evolution of artificial intelligence systems.

There are also some problems of efficiency, which are
difficult to solve in classical theorem provers, and which have
satisfiable solutions in goal-oriented languages. One of them
is the frame problem. Though some solutions have been proposed
[25], it is still a weak point in logic systems.

Another important feature for a question-answering system
is its modifiability, i.e., the degree to which new information
modifies the system. This feature, as illustrated in another
section, is guaranteed in a simple way by goal-oriented languages.

3. Input Language and Translation

The choice of the input language for a question-answering
system has to be connected with the general problem of
representing knowledge in a computer in order to allow some
reasoning activities.

In a paper by McCarthy and Hayes [16], some possible
criteria for adequacy of a notation are outlined, and the
following distinction is made: "A representation is called
epistemologically adequate for a person or a machine if it can
be used practically to express the facts that one actually has
about the aspects of the world. A representation is called
heuristically adequate if the reasoning processes actually gone
through in solving a problem are expressible in the language."

For a question-answering system, an epistemologically
adequate representation is, of course, the natural language, but
there are also some other representations which are more
suitable, we think, for the task of the question-answering system.
For example, first-order, predicate logic or a PLANNER-like
language are epistemologically adequate representations.

Besides, a PLANNER-like language integrates epistemological and
heuristic information and supplies an unique notation for
expressing these together.

In order to discuss the choice of the input language for a
question-answering system, we divide the problem of representing
data into three parts (8]:

-223-

a) Determination of the relevant semantic content of the
data. For example, we may decide that the semantics
of the sentence, "John is father of Jim," is expressed
by the binary relation "father of" applied to the
objects John and Jim.

b) Choice of a language in which to express this semantic
content. For example we may use the notation of

mathematical logic.

c) Choice of an internal representation for the language.
For example, a binary relation may be expressed by a
list of three elements: the first is the name of the
relation, and the other elements are arguments. A
crucial factor in selecting this internal language is
that one must be able to construct an answer computation
program which can effectively produce correct answers.
For this reason, the problems of input language and of
internal language are very closely related.

3.1 A Formal Language as Input

The use of predicate logic as input language for a question-
answering system has been proposed by Green, [8]. His system
uses as input first-order, predicate logic and, as deductive
mechanism, an internal language and a theorem prover based on
resolution principle.

Some of the problems that one encounters while expressing
natural language information in predicate logic are outlined by
Sandewall [24].

The first problem is in reducing the natural language
constructions, which are, in a certain sense, higher-order level,
to first order.

For example, if we want to represent the sentence, "m is
expensive," by the predicate expensive (m), then the sentence,
"m is more expensive than n," might be expressed by the function
"more (expensive) (m,n)." More is a second-order function which
maps a monary first-order predicate into a binary first-order
predicate.

The use of higher-order logic is useful in terms of human
understanding, but is very difficult in programing.

The technology of automatic theorem prover has been
developed slightly in theorem provers for higher-order logic.

There is a proposal for using these logic theories for plan
formation [4], but it is an exception. In general, the tendency
is to use present theorem provers for simulating higher-order
logic.

-224-

Also, the higher-order construction in natural language
should be expressed directly in first-order predicate calculus.
The method is to reexpress what used to be predicate as
individual, and to use a simple application predicate.

The first sentence of the previously proposed example is
then expressed by, "Is (m, expensive),” and the second one by,
"is (m, more than (expensive, n))," where "more than" is a
function,

more than: {properties x objects} — {properties}.

In this way, the representation of sentences is obtained
by the definition of a suitable set of functions, relations,
and axioms.

An automatic translation from a simplified natural language
to the first-order representation is proposed by Sandewall [24].
The well-known frame problem is present in these formal
approaches. Several authors have discussed the frame problem
and proposed solutions for it, particularly Raphael, Fikes and
Nilsson (1971), McCarthy and Hayes (1969,1971), [25].

The solution to this problem, obtained by Hewitt with
PLANNER, is very interesting because in his system the
representation of the world is updated in an automatic and
computationally simple way.

3.2 The Natural Language as Input

The first interesting example of a question-answering
system with natural language input can be viewed in the natural
language understanding system of Winograd [29].

This system contains the syntactic, semantic, and deductive
capabilities required for representing information about a world
of blocks. The key idea, which is typical of the procedural
embedding thesis, is that descriptions in English can be
translated into descriptions in the form of programs.

The system, written in LISP and MICROPLANNER for PDP-10,
operates with a vocabulary of 200 words. It is very interesting
to examine the organization of the system and its storage
allocation, which are illustrated in Figures 2a and 2b.

The system occupies 80K words of core with about 12K words
of free storage. All the information necessary for the deduction
requires 15, 6K words, while the information necessary for
understanding the natural language requires 36K words.

An evolution of Winograd's system can be viewed in
TOPLE [17]. This system attempts to understand new sentences
about a simple world by using a set of programs which embody a
logical model of that world. It doesn't deal directly with
English sentences but interprets simple semantic structures such
as might be produced by a natural language parser.

-225-

INPU

MONITOR

GRAMMAR —__"SEMANTICS <«———ANSWER

A

L

DICTIONARY PROGRAMMER SEMANTIC
FEATURES
PLANNER DATA
Figure 2a.
Parser Semantics Deduction Other
Interpreters PROGRAMMER PLANNER LISP,DISPLAY
26.1 K 5.8 K 5.5 K 14.8 K
Knowledge of GRAMMAR SEMANTICS
English
22.5 K 7.3 K 15.2 K
Knowledge of DICTIONARY DICTIONARY BLOCKS
subject
16.5 K 1.7 K 6.0 K 8.8 K
Data for Scene DATA DISPLAY
2.5 K 1.3 K 1.2 K
Total 67.6 K 14.8 K 21.2 K 15.6 K 16.0 K
Figure 2b.

There are now many other works on natural language
understanding problem and several systems based on an internal
language which is LISP or PLANNER-like or formal [24].
general, these systems are able to understand only a small
and there are many problems,
theoretical and practical, not yet solved, connected with the
increase of these systems.

subset of the natural language,

In

-226-

All the works done in this field can be interesting for a
question-answering system, but this subject isn’'t the main
argument of this paper. Besides, our opinion is that a natural
language comprehension problem is not related to question-
answering problems; instead, it is possible to solve the
problem of input in quite a satisfactory way by using a
particular language, which we call "natural oriented."”

This "natural-oriented"” language maintains the advantages
of the formal languages, since its "deep structure" is one of
the internal language. It also has the advantages of the
natural language in that it is easy and natural to express the
information and the questions in it. We shall now explain our
proposal.

3.3 A Natural-Oriented Language as Input

A PLANNER-like language can be viewed as a natural-oriented
language. In PLANNER, in fact, it is possible to express
directly some information in natural language which corresponds
to_a higher-level logic, i.e., the distinction between predicate
variables and functions doesn't exist without having a formal
language and all the related problems.

For this reason, a pattern in PLANNER is very similar to
an expression in natural language. The previous example can
be expressed by the pattern, " (m IS-EXPENSIVE)" and "(m
IS-EXPENSIVE-MORE-THAN 2)."

The way in which the information is expressed is important
for the deductive process because every pattern represents a
piece of knowledge or is a tag of a memory container, which
allows the deduction of the information expressed in its tag.
Therefore, it is important to have simple patterns and to have
the possibility of matching the patterns of the theorems or
assertions with those of the questions posed to the system.

It is also possible to have a system that is more natural-
oriented than PLANNER without introducing the problems of the
natural language.

The idea of this input for a question-answering system is
present in CROMOS, a system developed at Austin [2]. The
interesting aspect of this approach is in the translation from
the external to the internal language. The user gives
statements or questions in a stylized form of English. A simple
parser program translates the input into an internal language,
which is LISP, and, after the evaluation, a small unparser
program gives the output in an English form.

Also Davies's system is interesting along this line. The
system has a very limited English input, and a parser translates
it into POPLER, a PLANNER-like language [5]. In this system,
it is possible to use negation and "quantifier" words, such
as: each, every, any, all, some, a, not, there is, no one,
something, and so on [6].

-227-

The response to any question takes place in two stages: the
question is compiled into a piece of program which represents
the meaning of the gquestion, then the program runs and generates
the answer. The system automatically eliminates the old items
which conflict with new statements when new information is added
to it. In Figure 3, the sequence of the actions is illustrated.

Piece of run Action: store
>Program information or
understanding |in Popler|response answer question

Sentence compile
in Englis

v

Figure 3.

Along this line we are now proposing as a natural-oriented
language the actual implementation of PLANNER, called
MICROPLANNER, with a suitable parser program [27]

The proposed parser can be understood looking at the parser
'which allows the use of LISP in a more natural way, employing
the typical words of ALGOL, in a form which is called MLISP.

Figure 4 illustrates an example of a function in MLISP
and its translation in LISP.

In a similar way, we are thinking of constructing a
suitable parser for MICROPLANNER, which allows the reduction of
the number of the necessary parenthesis--a very troublesome
aspect of LISP!--and the introduction of some key words useful
to the application of the language, such as the words introduced
in Daevies's system.

The insertion of the parser in the MICROPLANNER interpreter
is very natural and doesn't present any particular problems.
The fundamental loop of the interpreter is based on the
application of the evaluation function THVAL to the READ
expression with the values of the variables memorized in the
stack THALIST. It is sufficient to substitute for the call of
the function READ, the call of the function PARSER, which
activates the program for realizing the parser. This change
is illustrated in Figure 5.

3.4 MICROPLANNER as Inout for a Small Question-Answering System

We are now proposing, for example, a small system realized
by MICROPLANNER, which memorises some information and extracts
answers about the relationships in a family. For this system,

-228~

UOM-STANFORD MLISP
BEGIN
NEW VAR;
VARS = 10;
WHILE VAR > 0 DO
BEGIN
PRINT VAR;
VAR$ = VAR - 1
END;
PRINT > >;

PRINT >ALL DONE>
END.

RESTART
¥k
LIST CODE? (Y OR N)
Y
(CSETO RESTART
(LAMBDA NIL
(PROG < VAR >
< SETQ VAR 10 >
< & WHILE 'PROG2
(PROG MIL
<PRINT VAR>

<SETQ VAR (SUBI VAR)>)>

< PRINT ' > >>
< PRINT ' >ALL DONE >>)))
0 ERRORS DETECTED, 0 FUNCTIONS REDEFINED
END MLISP. TIME: 244 MSEC.

' (GEQUAL VAR 0)'

Figure 4.

There is an
expression
to read?

(THVAL (READ) THALIST)

N
4
L

There is an
expression
to read?

(THVAL (PARSER) THALIST)

present loop of interpreter

new loop of interpreter

Figure 5.

-229-

we have employed MICROPLANNER both as input and as internal
language, but, at this point, we are mainly interested in the
problem of input language, i.e., the language in which new
information is introduced in the system and questions are
proposed.

The insertion of new information is realized in a standard
way by assertions such as:

(THASSERT (x SON-OF y z) gT) ,
(THASSERT (x DAUGHTER-OF y z) $T) ,

Whose obvious meaning is: " x is son (daughter) of y and z.
The father is y, and the mother is z.”

The symbol "8T" has the task of indicating to the system
that it is necessary to call some suitable theorems, which are
the "antecedent" theorems whose pattern matches the pattern of
the assertion. 1In this system, there are two theorems for
each type of assertions:

a) One inserts in the data-base the information that "y
is husband of z" and "z is wife of y." (The system
does not foresee the divorce, but it is possible to
introduce it!)

b) The other checks the data base in order to avoid
inconsistency. For example, if there is the assertion,
"X SON-OF y z," and we make the assertion, "x SON-OF
Yo z," the system, in order to avoid inconsistency,
erases the previous assertion and gives a message to
the user.

It is also possible to introduce the new information in
many different ways by using other relationships; but, in this
case, it is necessary to have a lot of suitable theorems in
order to check the data base for inconsistency and also in
order to try to express the information in the standard form.
In fact, the standard form is very appropriate for all the
following deductions and also for avoiding redundancy in the
data base.

The definitions of the relationships are yet to be defined
in the system, but it is possible to introduce some other ones
with some suitable theorems. We examine in the next section
the way in which to define the theorems.

The questions are posed to the system in the form of goals.
It i% possible to require information about the relationships
between different persons in different ways, and to have
different answers.

A typical form of the question is:

(THGOAL (x rel y) 8T) ,

-230-

whose meanlng is "if x is in the relationship rel with Y. then
the answer is the pattern of the goal, else the answer is

NIL." It is important to note a limitation of the PLANNER
system: the answer is "NIL" if the relationship isn't valid or
if the system does not have enough information.

Another useful form of the question is:
(THPROG (x) (THGOAL (x rel y) $T) (THRETURN x)) ,

whose meaning is, "if a value of x exists, by which x is in the
relationship rel with y, then the answer is the value of x or

else the answer is NIL," i.e., this form acts like an existential
quantifier on the variable x. 1In this case, the answer is
determined by the expression which is the arqument of the function
THRETURN, and it is also possible to have a fuller answer.

An interesting possibility is given also by the form:
(THFIND (min max result) expression (varlist)
(stepl)... (stepN)) ’

whose meaning is, "find a list of objects whose number is at
least equal to min and at the most equal to max, obtained by
the substitution for the variables in the expression, the
variables which cause the program (stepl).. (stepN) to succeed."
The (min-max result) can be substituted, for example, by ALL
when the names of all the persons which are in the relationship
rel with the assigned one are required.

In addition, it is also possible to use some Boolean
primitives, as THAND, THOR, THNOT, THAMONG, arnd THCOND, in order
to have different combinations of the goals.

Some shortened forms for the main functions are often
employed, for example:

(THASSERT) ¢—— gA
(THGOAL) «—————> 8G
(THTBF THTRUE} <——> gT .

The last expression is the simplest way to indicate to the
system the necessity of examining not only the data base of
assertions but also the theorems. There are other ways to give
a more precise indication to the system. For example, we can
give the name of the theorem to use or a filter, such that only
the assertions of theorems which pass through the filter are
employable. These informations, which are control informations,
permit modifying the deductive process.

There also some other functions which are useful for the
user. For example, THSTATE is a function which permits knowing

-231-

the state of the data base, i.e., it gives the names of all the
theorems and all the assertions present in the data base. It
is also possible to require only the assertions or the theorems
of a specified type. TIME, for example, is a function whose
value is the total execution time, expressed in msec. A third
function, MEMORY, is one whose value is the number of words of
memory currently being used from available memory.

For the relationships illustrated in Figure 6, we have
employed the system. (The definition of the system, the
insertion of the informations, the questions and the answers
with the execution time and the memory occupation are in the
appendix.)

STEVEN DONALD PATRICK GERALD AARON

Figure 6.

4. Organization of the Activity in a Question-Answering System

In this section, we examine the problems related to the
organization of the activity in a question-answering system,
i.e., two fundamental steps:

a) the introduction in the data base of new information
b) the extraction of the answer to a question.

These two aspects, which are related to the memory
organization and to the deductive process, are closely related,
and they must be considered together. A fundamental problem
in the design of a question-answering system is to decide "what,
how, and where" the information has to be stored in order to
have a suitable deductive process for the answer generation.

-232-

4.1 Memory Organization and Deduction

An important controversy among the designers of
question-answering systems concerns how much knowledge is
necessary to the program. At one extreme, there are some
researchers who insist that the program should be given only
some fundamental premises from which it must derive every bit
of intermediate knowledge necessary in order to arrive at an
answer. At the other extreme, there are some researchers who
think that the programs must be explicitly provided with
answers to all problems.

We think that it isn't possible to give a unique solution
to these choices because in every system there are different
problems and different requirements that determine its
structure; also the computer and the programing language
employed, the amount of data, the type of questions, etc., have
to be considered.

In order to clarify this question it is important to
emphasize the distinction between a general and a special-purpose
gquestion-answering system.

The goal in designing a special purpose question-answering
system is to achieve good performance, measured in terms of
running speed and memory utilization. In this case, the best
approach is to construct a special data base and subroutines
optimized for the particular area.

A general question-answering system, on the other hand,
has to be constructed in such a way as to allow the addition
of varied subject areas, and also to permit this during the
process of answering a question. 1In this case, the main problem
is not the optimization of time and memory ([8].

We can consider a question-answering system based on an
internal language such as predicate calculus and on a theorem
prover as a general system in the sense that the user must
provide only the factual knowledge about his domain and not
the control knowledge about the subroutines which operate on
the data base.

A question-answering system based on an internal language
such as PLANNER is considered, on the contrary, as a special
purpose system because the particular procedures necessary for
every domain have to be written, and the user can organize his
data base and the deductive process in the best way.

We don't consider now the totally special purpose systems,
i.e., the systems totally constructed for a particular problem,
because the internal language, the whole memory organization,
and the deductive subroutines are designed for the particular
domain and aren't employable for other domains.

We think that the second approach based on a language such
as PLANNER is the most suitable for a question-answering system

-233-

because it unifies the flexibility and modifiability, typical

of a general system, with the possibility of optimization given
by the introduction of the control information and by the
elimination of the problems connected with the use of the formal
logic.

An important problem is related to the inconsistency of
the information stored in the data base. In formal logic
systems, the new information is checked for consistency before
acceptance, while in nonformal systems there are no controls,
and this task is given to the user.

Another important problem is related to the average amount
of computation necessary to answer a question. One obvious
measure of difficulty is the average distance of the answer
from the question, measured, for example, in terms of the
number of steps of inference necessary. This measure can be
called depth of the question [8].

Another factor contributing to the search effort is the
number of different questions that are answerable. Here we
again find the initial controversy about the amount of
information necessary to the system, and also the relation
between the memory organization and the deduction process, which
is the fundamental subject of this section.

In fact, to increase the number of different questions
answerable, without increasing the depth of questions, it is
possible to increase the size of the data base, or else to
expand the capabilities of the answer computation mechanism,
or at least to find a reasonable compromise between the two
possibilities.

A very interesting feature is also the degree to which new
information modifies the system. As the new information is
entered, the performance of the system is modified. The new
information can have an effect on how the questions are
answered; for example:

a) The new information provides the answer to a new
question.

b) The new information provides the information needed
to get the answers to a new class of questions.

c) The new information provides a new procedure for
answering a class of questions.

d) The new information modifies the representation of the
information.

e) The new information modifies the strategies of the
program.

The modifiability is realized in a very simple way in a
system based on a PLANNER-like language. This aspect will be
illustrated later.

-234-

4.2 Features of LISP and MICROPLANNER

In LISP, there is an interesting feature which permits
memorizing of relations between different objects and which
can be proposed as an example of the memory organization.

This feature is related to the use of the property list
(p-1list). In LISP, in fact, each atom can have a list of
properties, i.e., a list of couples (indicator, value) which
characterize the atom.

When we have a relation such as, "Jane, daughter of
Gerald and Kate," we may place on the p-list of the atomic sym-

bol, "Jane," the value, " (Gerald Kate)," under the attribute
"daughter." The atomic symbol provides an entry point to the
information, "Jane daughter of Gerald and Kate." The first

argument of the relation, "Jane," is not stored explicitly
with the relation, but is implied by the fact that the
attribute-value pair occurs on the p-list of "Jane."

It is clear, at this moment, that in this way it is easy
to find the information about the parents of Jane, but it is
difficult to find the information necessary for answering a
question about the name of "the daughter of Gerald." It is
necessary, therefore, to have some cross references. This idea
is on the basis of the memory organization in MICROPLANNER.

Assertions and patterns are stored on a list on the p-list
of the items which appear in them; thus each item points to
all the assertions and theorems in which it appears. Occurrences
of variables are stored on the global atom named THVRB, just
as 1f THVRB were an item at each variable occurrence.

An assertion is consigned to NIL or to something that is
a property of the assertion. For example the assertion,

(THASSERT (JANE DAUGHTER-OF GERALD KATE)) ,

yields the structure ((JANE DAUGHTER-OF GERALD KATE)) which
appears within the property of the items JANE, DAUGHTER-OF,
GERALD and KATE under the attribute THASSERTION.

All the assertions or all the theorem names which have
assertions or patterns of a certain length and which have an
occurrence of a certain item at the same position within their
assertions or patterns are on a list which is prefixed with
two integers. The first integer is the length of the assertions
or patterns, and the second integer is the count of the
assertions or theorem names in this list. In the previous
example, we have in the p-list of the atom DAUGHTER-OF:

(4 1 ((JANE DAUGHTER-OF GERALD KATE))) .

If we have defined a theorem FATHER, whose pattern is
(x FATHER-OF y), we find, in the p-list of the atom FATHER-OF,

-235-

the structure--(3 1 FATHER).

All the previous structures which have a certain item
occurring in the same position are posed in another 1list,
prefixed with an integer which is the occurrence position of
that item. In the example we have,

(2 (4 1 ((JANE DAUGHTER-OF GERALD KATE))))
(2 (3 1 FATHER)) .

At the end, all these lists are kept sorted into one of
four possible lists, with a NIL consigned on the front, depending
on whether the occurrence came from an assertion or from one
of the three kinds of theorems. 1In this way, we have the
structures which are illustrated in the appendix.

The deductive process in MICROPLANNER is closely related
to this memory organization. The mechanism for the deduction
is in the theorems of CONSEQUENT type. Each theorem of
CONSEQUENT type is characterized by a pattern, like (x FATHER-OF
y). and by a sequence of instructions, as in the previous
example, (THOR (THGOAL (y SON-OF x z)) (THGOAL (y DAUGHTER-OF
X z))). The theorem is written in a way such that "the body
implies the pattern"; if we want to demonstrate the truth of
the pattern, we must demonstrate, i.e., execute succesfully,
the body of the theorem.

Every step of the theorem is an instruction whose
evaluation gives "success" or "failure" as result. The
possibility of accomplishing successive deductions is given
because it is possible with these instructions to call other
theorems. It is possible also to guide the search process by
giving some information about the theorems to call.

When a question is posed to the system in form of goal,
the system researches by pattern matching among the assertions
(and later among the theorems) the piece of knowledge which
allows the gquestion to be answered. 1If there are different
assertions or theorems whose pattern matches the one of the
goal, the system makes an arbitrary choice, backing up and
trying another automatically if one of them leads to a failure.
In this process the importance of the organization of the
knowledge previously discussed is particularly clear.

The solution proceeds normally in top-down or goal-oriented
way. It reduces problems to subproblems, with the goal of
reducing the original problem to a set of solved subproblems.

There is also the possibility of bottom-up behavior. 1In
this case, new assertions are derived from the old ones with
the goal of deriving a solution of the original problem. This
behavior is realized by the use of ANTECEDENT theorems and of
ERASING theorems, but it isn't suitable from the point of view

-236-

of memory and of time. In general, the CONSEQUENT theorems
are employed for making the deductions, while the ANTECEDENT
theorems allow expanding an assertion and ERASING an erasure.

From the point of view of the modifiability, a MICROPLANNER
system is very flexible in a natural and simple way.

a) With the introduction of a new assertion, it can provide
the answer to a new question.

b) With the introduction of a new theorem, it can provide
the answer to a new class of questions.

c) With the introduction of a new theorem, whose pattern
is the same as an existent one, it can provide a new
procedure for answering a class of questions.

d) With the request of erasing present information
(assertion or theorem) or of modifying it, it can
modify the representation.

e) With the request of modifying a theorem, it can modify
the strategies of the program.

4.3. Organization of a Small Question-Answering System

The proposed system, which allows answering questions
about the relationships in a family, is totally realized in
MICROPLANNER (compiled version) and runs on UNIVAC 1108.

The knowledge is memorized in:

a) assertions, which define the relationships "SON-OF"
and "DAUGHTER-OF",

b) theorems of CONSEQUENT type, which allow deducing the
other relationships on the basis of the informations
supplied by the assertions,

c) theorems of ANTECEDENT type, which define the relation
"WIFE-HUSBAND" and which check the data base for
inconsistencies.

An interesting feature of this system is related to the
inconsistency problem. This is a very difficult problem to
solve in MICROPLANNER because the system isn't a formal
system and therefore doesn't provide this analysis. 1In this
case, the choice of having a standard form for the assertions
in input allows us to define a suitable ANTECEDENT theorem
which erases the assertion nonconsistent with the newly introduced
one and gives a message to the user.

In the appendix, this system is shown with particular
attention given to the execution times, memory occupation and

-237-

organization, and with some questions and their related answers.

There is another important note: the way in which the
theorems are defined is very important for the deductive process.
Below is a simple example.

We can define a theorem GRANDFATHER in this way:

(PUT 'GRANDFATHER' 'THEOREM' (THCONSE (X Y 2)

(x GRANDFATHER-OF X)

(THGOAL (x FATHER-OF z) gT)

(THOR (THGOAL (E FATHER-OF y) 2T)

(THGOAL (z MOTHER-OF y) gT)))) ,

or in this way:
(PUT 'GRANDFATHER' 'THEOREM' (THCONSE (X Y Z V W)
{(x GRANDFATHER-OF y)
(THGOAL (z w PARENTS-OF y) @T)
(THOR (THGOAL (z SON-OF x V))
(THGOAL (w DAUTHTER OF x v)) ,
for achieving the goal:
(THFIND ALL x (X) (THGOAL (x GRANDFATHER-OF ROBERT) 8T)) .

With the first theorem, 99 subgoals are activated, while with
the second only 6.

5. Conclusions and Further Goals

There are now two important directions for developing the
outlined results. The first one is based on an improvement of
the existent systems in order to have a more suitable system
for the question-answering problem.

In this paper, we have not discussed a complete question-
answering system, but only some ideas for organizing such a
system, and we have shown some choices for the internal and
external language. The implementation of the proposed language
can be obtained by writing a parser program, which allows a
natural-oriented input language. A simple syntax is sufficient
in order to have a reasonable facility for the user, and there
are no theoretical difficulties.

Further important goals can be outlined not only for the
question answering, but also for a general improvement of the
artificial intelligence software.

At the moment, we are thinking of inserting the parser
program in MICROPLANNER interpreter, but our intention also is

-238-

to employ another language equipped with a richer and more
programable control structure. For this reason, we are now
studying the use of MAGMALISP [19], a LISP-like language with
a general control structure implementing the Bobrow and
Wehbreit model for control structures.

MAGMALISP is intended as a machine language for artificial
intelligence. Its use can produce some interesting results
because it is possible, for example, to write in it an
interpreter of a simple goal-oriented language whose behavior
is very similar to the CONNIVER one.

The interest is in the fact that the writing of this
interpreter is simpler in MAGMALISP than in conventional LISP.
In this way, it is possible to have a tool which acts like the
bulk of CONNIVER, but which is simpler and therefore,
intelligible. We remember that a very important problem of
CONNIVER is related to its semantics [7].

The second direction is related to the project of new
systems, and it is based on some new results obtained in
software and in computational logic.

The results are related to the analysis of the relations
between computation and deduction, given by Kowalsky [14], and
to the investigation of the sematic meaning of the representation
formalism by Hayes [10].

In order to obtain a new qualitative step in software, it
can bg useful to formalize some concepts of model logic; this
idea is proposed again by the implementation of FOL [28], a
nonresolution theorem prover, which also can be applied to
some extensions of the predicate calculus. The mechanization
of nonclassical logics is then proposed again.

The cr@ticism in classical theorem provers and the
experlience 1in goal-oriented languages and control structures
models alsg can be a useful basis for the implementation of a
new goaloriented language--one semantically more rich than
flrstjorder, predicate logic, more rigorous than PLANNER [97],
and with a programable control structure which can interact
with the factual information.

References
{11 Bobrow, D.G., and Raphael, B. "New Programing Languages
for Artificial Intelligence Research." Tutorial lecture,

3rd IJCAI. Stanford, California, 1973.

[2] Bruce, B.C. fA Model for Temporal References and Its
App;lcatlon in a Question-Answering Program."”
Artificial Intelligence 3, 1972.

-239-

[3] Colmerauer, A., et al. "Un systéme de communication homme
machine en frangais." Rapport du groupe de Recherche
en Intelligence Artificielle, UER de Luminy.
Université d'Aix Marseille, France, 1973.

[4] Darlington, J.L. "Deductive Plan Formation in Higher-Order
Logic." In Moltzer and Michie, leds, Machine
Intelligence, vol: 7. Edinburgh: Edinburgh
University Press, 1972.

[5] Davies, D.J.M. "POPLER 1.5 Reference Manual." TPU Report
1. Edinburgh: Edinburgh University Press, 1973.

[6] Davies, D.J.M. "Representing Negation in a PLANNER system."
Proc. AISB Summer Conference, University of Sussex,
England, 1974.

[7] Gini, G., and Gini, M. "CONNIVER Programs by Logical Point
of View." Proc. MFCS 1975, CZECHOSLOVAKIA, 1975.

[8] Green, C.C. "The Application of Theorem Proving to
Question-Answering System."” Tech. Report CS 138, Memo
AI-96. Stanford, California: Stanford University
Press, 1969.

[9] Hayes, P.J. "Computation and Deduction." Proc. MFCS 1973,
Czechoslovakia, 1973.

[10] Hayes, P.J. "Some Problems and Non-Problems in Representation
Theory." Proc. AISB Summer Conference, University of

Sussex, England, 1974.

[11] Hewitt, C. "PLANNER: A Language for Proving Theorems in
Robots." Proc. 1st IJCAI. Washington, D.C., 1969.

[12] Hewitt, C. "Procedural Embedding of Knowledge in PLANNER."
Proc. 2nd IJCAI. London, 1971.

[13] Hewitt, C. "Description and Theoretical Analysis (using
Schemata) of PLANNER: A Language for Proving
Theorems and Manipulating Models in a Robot." AI Memo

251. Cambridge, MASSACHUSETTS: M.I.T. Press, 1972.

[14] Kowalski, R. "Logic for Problem Solving." Dept. of
Computational Logic Memo 75. Edinburgh: Edinburgh
University Press, 1974.

[15] McCarthy, J., et al. "LISP 1.5 Programmer's Manual."
Cambridge, Massachusetts: M.I.T. Press, 1965.

[16] McCarthy, J., and Hayes, P.J. "Some Philosophical Problems
from Standpoint of Artificial Intelligence.” Machine
Intelligence, vol 4. New York: Elsevier, 1969.

-240-

[17] McDermott, D. "“Assimilation of New Information by a Natural
Language Understanding System." Workshop on
Information Processing and Psychology, Carnegie-Mellon
University, Pittsburgh, Pennsylvania, 1973.

[T8] McDermott, D.V., and Sussman, G.J. "The CONNIVER
Reference Manual." A.I. Lab. Memo, 259a. Cambridge,
Massachusetts: M.I.T. Press, 1972.

[t9] Montangero, C., Pacini, G., and Turini, F. "MAGMA LISP:
A Machine Language for Artificial Intelligence."
Internal Note I.E.I. and I.S.I. Pisa, Italy, 1975.

[20] Nilsson, N.J. "Artificial Intelligence."” IFIP Congress
1974. Stockholm, Sweden, 1974.

[21] Rulifson, J.F., Derksen, J.A., and Waldinger, R.J. "QAl:
A Procedural Calculus for Intuitive Reasoning."”
A.I. Center, Tech. Note 73, Stanford Research Institute,
Menlo Park, California, 1972.

[22] Sandewall, E.J. "A Programming Tool for Management of a
Predicate Calculus Oriented Data-Base." Proc. 2nd IJCAI.
London, 1971.

[23] Sandewall, E.J. "Formal Methods in the Design of Question-
Answering Systems." Artificial Intelligence, 2, 1971.

[24] Sandewall, E.J. "Representing Natural Language Information
in Predicate Calculus." In Maltzer and Michie, eds.,
Machine Intelligence, Vol 6. Edinburgh: =Edinburgh
University Press, 1972.

[25] Sandewall, E.J. "An Approach to the Frame Problem and Its
Implementation."” In Meltzer and Michie, eds.,
Machine Intelligence, Vol 7. Edinburgh: Edinburgh
University Press, 1972.

[26] Sussman, G.J. and McDermott, D.V. "From PLANNER to CONNIVER.
A Genetic Approach."™ Proc. FJCC, 1972.

[27] Sussman, G.J., Winograd, T., and Charniak, E. "MICROPLANNER
Reference Manual." A.I. Lab., AI-TR-203. Cambridge,
Massachusetts: M.I.T. Press, 1970.

[28] Weyrauch, R.W., and Thomas, A.J. "FOL: A Proof Checker for
First Order Logic." A.I. Lab., Memo AIM-235.
Stanford, California: Stanford University Press, 1974.

29] Winograd, T. "Procedures as a Representation for Data in
a Computer Program for Understanding Natural Language."
MAC TR-84, (Thesis). M.I.T. Cambridge, Massachusetts.

-241-

Appendix

?THE VALUE IS THE NUMBER OF WORDS OF MEMORY CURRENTLY BEING USED
? FROM AVAILABLE MEMORY
(MEMORY)

VALUE:
2

EXPRESSION TO EVALUATE:
? THE VALUE IS THE TOTAL EXECUTION TIME IN MSEC
(TIME)

VALUE:
9

EXPRESSION TO EVALUATE:

? THE VALUE IS THE OCTAL ADDRESS OF THE LAST WORD OF MEMORY
? CURRENTLY ALLOCATED TO THE SYSTEM

(GROW)

VALUE:
105777Q

EXPRESSION TO EVALUATE:
(LOAD ' (LISP.PLNR))

VALUE:
PLNR LOADED

EXPRESSION TO EVALUATE:
? THE SYSTEM ADD 30 BLOCKS OF 512 WORDS TO THE MEMORY AVAILABLE
(GROW 30)

VALUE :
143777Q

EXPRESSION TO EVALUATE:
(PLNR)

THVAL:

? THIS IS A METHOD FOR KNOWING THE STATE OF THE DATA-BASE
? THERE ARE NO INFORMATIONS IN THE DATA BASE

{(THSTATE)

VALUE:
DONE

THVAL:
(MEMORY)

-242-

VALUE:
10063

THVAL:
(PUT 'FATHER 'THEQREM '(THCONSE (X Y Z)
((THV X) FATHER-OF (THV Y))
(THOR (THGOAL ((THV Y)SON-OF (THV X) (THV 2)))
(THGOAL ((THV Y) DAUGHTER-OF (THV X) (THV 2))))))))))

VALUE:
FATHER

THVAL:
(MEMORY)

VALUE:
10175

THVAL:
? THE THEOREM IS MEMORIZED IN THE P-LIST OF THE ATOM FATHER
(GET 'FATHER 'THEOREM)

VALUE:
(THCONSE (X Y 2) ((THV X) FATHER-OF (THV Y)) (THOR (THGOAL
((THV Y) SON-OF ((THV Y) DAUGHTER-OF (THV X) (THV 2)))))

THVAL:

? THE THEOREM IS NOT ASSERTED. THERE IS NO INFORMATION IN THE

? P-LIST OF THE ATOM, WHOSE NAME IS IN THE PATTERN OF THE THEOREM
(GET 'FATHER-OF 'THCONSE)

VALUE:
NIL

THVAL:
(THASSERT FATHER)

VALUE:
FATHER

THVAL:
(MEMORY)

VALUE:
10328

THVAL:

? WHEN THE THEOREM IS ASSERTED THERE IS AN INFORMATION STORED

? IN THE P-LIST OF THE ATOM FATHER-OF UNDER THE INDICATOR VALUE
(GET 'FATHER-OF 'THCONSE)

VALUE:
(NIL (2 (3 1 FATHER)))

-243-

THVAL:

? FOR THE VARIABLES THE SYSTEM EMPLOYES AN UNIQUE ATOM, WHOSE
? NAME IS THVRB

(GET 'THVRB 'THCONSE)

VALUE:
(NIL (3 (3 1 FATHER)) (1 (3 1 FATHER)))

THVAL:

? THIS IS A METHOD FOR KNOWING THE STATE OF THE DATA-BASE OF
? THEOREMS THCONSE

(THSTATE ZTC)

(FATHER)

VALUE:
DONE

THVAL:
(TIME)

VALUE:
949

THVAL:
(PUT 'MOTHER 'THEOREM ' (THCONSE (X Y 2)
((THV X) MOTHER-OF (THV Y))
(THOR (THGOAL ((THV Y) SON-OF (THV 2Z) (THV X)))
(THGOAL ((THV Y) DAUGHTER-OF (THV Z) (THV X))))))))))

VALUE:
MOTHER

THVAL:
(TIME)

VALUE:
966

THVAL:
(THASSERT MOTHER)

VALUE:
MOTHER

THVAL:
(TIME)

VALUE:
976

THVAL:
(GET 'THVRB 'THCONSE)

-244-

VALUE:
(NIL (3 (3 2 MOTHER FATHER)) (1 (3 2 MOTHER FATHER)))

THVAL:
(MEMORY)

VALUE:
10663

THVAL:
(TIME)

VALUE:
989

... there are the definitions of the other theorems

THVAL:
(MEMORY)

VALUE:
13620

THVAL:
(TIME)

VALUE:
1435

THVAL:

? THIS IS A METHOD FOR KNOWING THE STATE OF THE DATA-BASE OF
? THEOREMS THCONSE
(THSTATE ZTC)
(AUNT)

(UNCLE)
(FATHER-IN-LAW)
(SON-IN-LAW)
(DAUGHTER-IN-LAW)
(SISTER- IN-LAW)
(BROTHER-IN-LAW)
(GRANDSON)
(GRANDDAUGHTER)
(NIECE)

(NEPHEW)

(COUSIN)
(GRANDFATHER)
(GRANDMOTHER)
(BROTHER)
(SISTER)

(MOTHER)

(FATHER)
(PARENTS)

-245-

VALUE:
DONE

THVAL:

? THIS IS A METHOD FOR KNOWING THE STATE OF THE DATA-BASE OF
? THEOREMS THCONSE (THSTATE 38TA)

(DCHECK)

(SCHECK)

(WIFE)

(HUSBAND)

VALUE:
DONE

THVAL:
(MEMORY)

VALUE:
14860

THVAL:
(TIME)

VALUE:
1796

THVAL:
(8A (SCOTT SON-OF IRA CAROL)82T)

VALUE:
((SCOTT SON-OF IRA CAROL))

THVAL:
(MEMORY)

VALUE:
15251

THVAL:
(TIME)

VALUE:
1844

THVAL:
(GET 'SON-OF 'THASSERTION)

VALUE:
(NIL (2 (4 1 ((SCOTT SON-OF IRA CAROL)))))

THVAL:

? THIS IS A METHOD FOR KNOWING THE STATE OF THE DATA-BASE OF
? ASSERTIONS

(THSTATE THASSERTION)

((SCOTT SON-OF IRA CAROL))

-246-

VALUE:
DONE

THVAL:
(MEMORY)

VALUE:
15341

THVAL:
(TIME)

VALUE:
1906

THVAL:
(GET 'SON-OF 'THASSERTION)

VALUE:
(NIL (2 (4 1 ((SCOTT SON-OF IRA CAROL)))))

THVAL:
(A (IRA SON-OF ALAN JANE) 8T)

VALUE:
((IRA SON-OF ALAN JANE))

THVAL:
(8A (SYLVIA DAUGHTER-OF ALAN JANE) 8T)

VALUE:
((SYLVIA DAUGHTER-OF ALAN JANE))

THVAL:
(8A (JAMES SON-OF STEVEN MARY) 8T)

VALUE:
((JAMES SON-OF STEVEN MARY))

THVAL:
(A (ANNE DAUGHTER-OF DONALD SUSAN) gT)

VALUE:
((ANNE DAUGHTER-OF DONALD SUSAN))

THVAL:
(8A (IRENE DAUGHTER-OF DONALD SUSAN) g2T)

VALUE:
((IRENE DAUGHTER-OF DONALD SUSAN))

THVAL:
(8A (JACK SON-OF AARON MARGY) gT)

-247-

VALUE:
((JACK SON-OF AARON MARGY))

THVAL:
(8A (ALAN SON-OF PATRICK MAY) 3T)

VALUE:
((ALAN SON-OF PATRICK MAY))

THVAL:
(8A (JANE DAUGHTER-OF GERALD KATE) gT)

VALUE:
((JANE DAUGHTER-OF GERALD KATE))

THVAL:
(8A (DAVID SON-OF CARL SYLVIA) 8T)

VALUE:
((DAVID SON-OF CARL SYLVIA))

THVAL:
(8A (SAUL SON-OF CARL SYLVIA) BT)

VALUE:
((SAUL SON-OF CARL SYLVIA))

THVAL:
(gA (JOHN SON-OF CARL SYLVIA) 2T)

VALUE:
((JOHN SON-OF CARL SYLVIA))

THVAL:
(A (CAROL DAUGHTER-OF JACK IRENE) gT)

VALUE:
((CAROL DAUGHTER-OF JACK IRENE))

THVAL:
(8A (JANET DAUGHTER-OF JACK IRENE) gT)

VALUE:
((JANET DAUGHTER-OF JACK IRENE))

THVAL:
(gA (ROBERT SON-OF JACK IRENE) BT)

VALUE:
((ROBERT SON-OF JACK IRENE))

THVAL:
(THPUTPROP 'JANET 'JAY 'WIFE)

-248-

VALUE:
JANET

THVAL:
(THPUTPROP 'JAY 'JANET 'HUSBAND)

VALUE:
JAY

THVAL:

? IN THIS WAY IT IS POSSIBLE TO HAVE A TRACE OF THE THEOREMS,
? ASSERTIONS ERASURES AND BREAKPOINTS

(THTRACE THEOREM THGOAL THASSERT THERASE THBKPT)

VALUE:
T

THVAL:
(82 (CARL SON-OF J1M MARY) gT)
>ASSERTING A1: (CARL SON-OF JIM MARY)
>THANTE SCHECK: (CARL SON-OF JIM MARY)
>GOAL G2: (CARL SON-OF (THV F) (THV M))
<G2 SUCCEEDED: ((CARL SON-OF JIM MARY))
<G2 FAILED
<SCHECK FAILED
>THANTE HUSBAND: (CARL SON-OF JIM MARY)
<HUSBAND SUCCEEDED: THNUVAL
<A1 SUCCEEDED

VALUE:
{ (CARL SON-OF JIM MARY))

THVAL:
(gA (CARL SON-OF JAMES ANNE) gT)
>ASSERTING A3: (CARL SON-OF JAMES ANNE)
>THANTE SCHECK: (CARL SON-OF JAMES ANNE)
>GOAL G4: (CARL SON-OF (THV F) (THV M))
<G4 SUCCEEDED: ((CARL SON-OF JAMES ANNE))
<G4 SUCCEEDED: ((CARL SON-OF JIM MARY))
>ERASING ES5: (CARL SON-OF JIM MARY)
<E5 SUCCEEDED
>BKPT B6: THE ASSERTION CARL SON-OF JIM MARY HAS BEEN ERASED
<SCHECK SUCCEEDED: THNOVAL
>THANTE HUSBAND: (CARL SON-OF JAMES ANNE)
<HUSBAND SUCCEEDED: THNOVAL
<A3 SUCCEEDED

VALUE:
((CARL SON-OF JAMES ANNE))

THVAL:

(THSTATE)

((DAVID SON-OF CARL SYLVIA))
((JOHN SON-OF CARL SYLVIA))

-249-

((SAUL SON-OF CARL SYLVIA))

((JAMES SON-OF STEVEN MARY))

((CAROL DAUGHTER-OF JACK IRENE))
((TANET DAUGHTER-OF JACK IRENE))
((IRENE DAUGHTER-OF DONALD SUSAN))
(MOTHER- IN-LAW)

(AUNT)

(UNCLE)

(FATHER- IN-LAW)

(SON-IN-LAW)

(DAUGHTER- IN-LAW)
(SISTER-IN-LAW)

(BROTHER-IN-LAW)

(GRANDSON)

(GRANDDAUGHTER)

(NIECE)

(NEPHEW)

(COUSIN)

(GRANDFATHER)

(GRANDMOTHER)

(BROTHER)

(SISTER)

(MOTHER)

(FATHER)

(PARENTS)

(DCHECK)

(SCHECK)

(WIFE)

(HUSBAND)

((SCOTT SON-OF IRA CAROL))

((IRA SON-OF ALAN JANE))

((ROBERT SON-OF JACK IRENE))

((JACK SON-OF AARON MARGY))
((ALAN SON-OF PATRICK MAY))

((JANE DAUGHTER-OF GERALD KATE))
((CARL SON-OF JAMES ANNE))

((ANNE DAUGHTER-OF DONALD SUSAN))
((SYLVIA DAUGHTER-OF ALAN JANE))

VALUE:
DONE

THVAL:
(MEMORY)

VALUE:
21202

THVAL:
(TIME)

VALUE:
2834

-250-

THVAL:
(THPROG (V 2) (THGOAL ((THV V) (THV 2Z) PARENTS-OF JACK) £T)
(THRETURN (LIST (THV V) (THV 2))))))))))))))
>GOAL G7: ((THV V) (THV Z) PARENTS-OF JACK)
>THCONSE PARENTS: ((THV V) (THV Z) PARENTS-OF JACK)
>GOAL G8: (JACK SON-OF (THV X) (THV Y))
<G8 SUCCEEDED: ((JACK SON-OF AARON MARGY))
<PARENTS SUCCEEDED: THNOVAL
<G7 SUCCEEDED: ((AARON MARGY PARENTS-OF JACK))

VALUE:
(AARON MARGY)

THVAL:
(MEMORY)

VALUE:
21602

THVAL:
(TIME)

VALUE:
2888

THVAL:

(THUNIRACE THEOREM THGOAL THASSERT THERASE THBKPT)
(THBKPT T NIL)

(THERASE T NIL)

(THASSERT T NIL)

(THGOAL T NIL)

(THEOREM T NIL)

VALUE:
T

THVAL:
(THFIND ALL (THV X) (X) (8G((THV X)GRANDFATHER-OF ROBERT) gT))

VALUE:
(DONALD AARON)

THVAL:
(MEMORY)

VALUE:
22125

THVAL:
(TIME)

VALUE:
2970

-251-

THVAL:
(8G (IRA BROTHER-IN-LAW CARL) gT)

VALUE:
((IRA BROTHER-IN-LAW CARL))

THVAL:
(8G (JOHN COUSIN-OF SCOTT) 8T)

VALUE:
((JOHN COUSIN-OF SCOTT))

THVAL:
(THPROG (V) (8G((THV V)MOTHER-IN-IAW SYLVIA) @T) (THRETURN (THV
\ARRRDR.

VALUE:
ANNE

THVAL:
(THFIND ALL (THV X) (X) (8G((THV X)BROTHER-OF DAVID) gT))

VALUE:
(SAUL JOHN)

THVAL:
(THFIND ALL (THV X) (X) (8G((THV X) NEPHEW-OF DONALD) gT))

VALUE :
NIL

THVAL:
(8G (JAMES UNCLE-OF CAROL) $T)

VALUE:
((JAMES UNCLE-OF CAROL))

THVAL:
(8G (SYLVIA NIECE-OF IRENE} gT)

VALUE:
NIL

THVAL:
(8G (CARL NEPHEW-OF IRENE) 8T)

VALUE:
((CARL NEPHEW-OF IRENE))

THVAL?:
(MEMORY)

VALUE:
28926

-252-

THVAL:
(TIME)

VALUE:
3876

THVAL:

:STOP
END LIST. TIME: 3879 MSEC.

-253-

An Experimental Environment for the Implementation

of Question-Answering Systems

Georg Nees

1. Introduction

Question-answering systems (QASs) can be defined as advanced
information retrieval systems which are distinguished by the fol-
lowing special features:

a) Input to and output from the QAS is formulated in subsets
of a natural language.

b) A structured data base conserves the knowledge, which
has been fed to the QAS in the form of explicit input
sentences or which has been gathered by the QAS by help
of its inductive and deductive capabilities.

c) The QAS answers queries by searching its data base for a
direct answer, or by considering the guery sentence as a
theorem which has to be proved using the data base as an
axiom system. Thus it follows that the QAS must possess
searching and/or theorem-proving apparatus.

Information exchange with the QAS happens by way of dialogs.
It is feasible, therefore, to consider QASs as special artificial-
intelligent dialog systems. This paper describes a general tech-
nique for the construction of intelligent dialog systems which is
based on the following assumptions and demands:

a) Very often there is a thesaurus of algorithms already
available that are qualified to serve as building stones
of a dialog-system-kit, e.g., a theorem prover might
exist that is strong enough to deliever the necessary
inferential power for the dialog or QA system. The task
is then to assemble the parts of the kit and to frame them
by a dialog-organizing routine. It is desirable that at
least sometimes noncomputer scientists should be able to
perform this task. Hence, the implementation method must
be comfortable, and the implementation language should be
easy to learn.

b) In most cases, noncomputer scientists are the people who
order the needed dialog system. Experience proves that
it is necessary that the orderer share in the responsi-
bility for the features of the system in order to minimize
later complaints. Very often the dialog behavior is the

-254-

feature of the system which is decisive for its practi-
cal usability. Therefore, the source code has to be
explained to the orderer on a macroscopic level. If this
is possible, the source code can be used as the obliga-
tory text for documentation.

c) The implementation language will have modes of expression
rich enough to enable the analysis of complicated input
texts.

Item (a) can be fulfilled by making the implementation langu-
age as simple as, e.g., the language BASIC. Item (b) leads to the
use of the description of dialogs by state diagrams [3]. States
are mapped onto labels in a DIABAS program. A simple situation
M (i.e., a state or vertex M) in a dialog will be taken as an
example, where a set of keywords controls the branching of the
program.

For example, the input 'Bonn' has a jump to label Bonn as
its consequence, etc. Figure 1 shows the graphical representation
as well as the translation of this situation to DIABAS bv means of
a switch statement,

Finally, item (c) is fulfilled by DIABAS by the structure of
any DIABAS program, which is a system of procedures where one
procedure may call another one quite arbitrarily, e.g., recur-
sively.

The DIABAS compiler translates the source code to an inter-
mediate language called Dzs, which is evaluated by interpretation.
The Dzs procedures are reentrant and the procedure body is strictly
separated from its corresponding data block. This allows the con-
struction of a control mechanism that does not follow a stack
discipline. Section 5 deals with a mechanism of this kind.

2. Syntax and Semantics of Dialog Systems

DIABAS procedures analyze the input line in a dialog and start
processes accordingly. The set of algorithms, which are controlled
in this way, together with data structures interacting with them,
is called the semantical base. There is a unique interface between
the DIABAS procedure and the semantical base that consists of an
integer array of suitable length. The front segment of this array
contains the input text. Figure 2 shows the structure of the
DIAGIP system in a way which is independent of any special imple-
mentations. The system is portable, especially when coded, e.g.,
in FORTRAN 1IV.

The semantical base is called by statements of the format
(1) Basis(p1,...,pn) ,

where n may be #. A consequence of a call (1) is the storing of
Pqre--/Py in the upper half of the interface. 1In a FORTRAN

-255-

"BONN' Bonn

N ' ERLANGEN' Erlangen
'ESSER"’ Essen
'MUENCHEN' Muenchen

procedure Stadt(x); &X;

M:
switch x = ('BONN')/Bonn,-
(*ERLANGEN') /Erlangen, -

('ESSEN') /Essen, -
("MUENCHEN ') /Muenchen; go to

Bonn: Basis(1); ...
Erlangen: Basis(2); ...
Essen: Basis(3); ...

Muenchen: Basis(4); ...

N: ..

N;

Figure 1.

-256-

DIABAS - Compiler

Intermediate

‘L Code

111

[TTTTITTTTTITI

Dzs-
Interpreter
Y
Inter - Face
TT T -- o] [e-- o]
Input Line
.
Algorithms
of the

Semantical Base

Semantical Base

Figure 2.

-257-

environment, a DIABAS application might have the structure shown
in Figure 3, where the common-area Regist is identical with the
interface.

3. The Language DIABAS

The left column of Table 1 shows the primitive DIABAS state-
ments. The right column contains the translation to Dzs.

Every DIABAS procedure begins with a line
(1) procedure P(q1,...,qn) ;

where P is the procedure name. The parameter list in (1) may be
empty. Names of parameters and other variables may consist of

as many significant characters as one likes, a feature which is
very important for the easy understandability of the program text.
Every procedure is finished by the full-stop character. The
procedure head (1) is followed by a sequence of declarations of
the local variables

(2) BV eea Vs

where V, is of the structure V or V(n), where n is nonnegative.
For example, in the case of the declarations

(3) EA(z)IBIC(g)ID(3)7
the corresponding data block will contain the registers

(4) A(g),A(1),A(2),B(0),C(2),
D(gy,D(1),D(2),D(3) .

Hence it follows that the array, determined by an indexed variable,
begins with place @. At the same time, every variable is an array
so that, e.g.,

(5) B(3) = ('ABC') ,

is meaningful and has as its consequence the storing of the address
of the string 'ABC' in place D(1). Every variable may be indexed
by any other variable or by an integer constant. If, for example,
(A has the value 3, then A(A) addresses B (see (3) and (4)).

Besides local declared variables, every procedure has access
to global variables, denoted by $j, where j is an integer. The
value of $j is the content of register j of the interface to the
semantical base (see Figure 2).

The DIABAS statements in Table 1 are almost self-explanatory.
If declaration (3) is valid, then, e.q.,

(6) A =D(g..2) ,

is equivalent to,

-258-

(2) program Diagip
common Regist
integerx2 Regist(1999)

call Interp

end

subroutine Interp
C This is the Dzs-Interpreter
call Basis(p1,...,pn)

end

subroutine Basis
common Regist
integerx2 Regist(1999)

C Conditioned calls

C of procedures P1,...,Pk

C follow

Call P1

Call Pk

end

Figure 3.

-259-

Table 1. Primitive DIABAS statements and their translations
to the intermediate language Dzs.

DIABAS Dzs

1. Counters
+ n,x 19,n,x

- n,x 11,n,x

2. Assignments

2 =X 1,z,x

z(a) = x 2,z,a,x

x = 2z (b) 3,z2,b,x

x(a) = z(b) 4,z,a,x,b

x = z(b..c) 5,z,b,c,x

x(a) = z(b..c) 6,z,a,x,b,c

z = (AfA) where A is string- 7,2,h where h is the
quote, f string string f

z(a) = (AfA) 8,z,a,h

3. VUnconditioned jumps

GOTO g 4g,q

GOSUB q(p1,...,pk) where 6ﬂ,k,q,p1,...,pk
k = @ is allowed

BASIS(p1,...,pk) where 2ﬂﬂ,k,p1,...,pk
k = # is allowed

RETURN 78

4, Conditioned jumps

(x.W.y)GOTO g bw,g,x,¥Y

(x(a) .W.y)GOTO g 4wl,q,x,y,a
(x.W.y(b))GOTO g 4w2,q9,x,Y.b
(x(a) .W.y (b))GOTO g 4w3,g,x,y,a,b
(x.W.y(b..c))GOTO g 4wl ,g,x,y,b,c
(x(a) .W.y(b..c))GOTO ¢ 4wS,q,x,y,a,b,c
(x.W(AfA))GOTO g 4w6,g9,%,h

(x(a) .W. (AfA))GOTO g 4w?7,g9,%x,a,h

-260-

Table 1 (continued).

DIABAS Dzs

5. Input statements
GET 9y

6. Output statements

PUT x(a..b) 96,x,a,b
Out h 95,h
*AfA 95,h

7. Stop statement
STOP 788

~261-

(7) A(g) = D(f)
A(1) = D(1)
A(2) = D(2) .

GOSUB calls another procedure by call by name. GET gets the
next input line. PUT prints the text which is stored character
by character in the places a to b. OUT(h) prints the string which
is addressed by h.

Figure 4 shows a DIABAS program that checks the correctness
of a bracketing, the semantical base being empty in this case.
A general feature of DIABAS is the eguivalence of $ to $1; this
is used in the third line of Figure 4. The highest procedure in
a hierarchy of DIABAS procedures is called by the interpreter
itself. 1In the program of Figure 4, the codings 44, 41, 48 are
used for the characters '(', ')', '.'. The DIABAS system is using
its own character code, which results from the enumeration of the
sequence of characters,

(8) #123456789
ABCDEFGHIJKLMNOPQRSTUVWXY?Z
+-/=0%, (TEIT#3%: ;0 20 []7

beginning at #.
Table 2 contains the remaining two nonprimitive DIABAS state-
ments which are translated into sequences of Dzs instructions

(see section 4.1). A nonprimitive DIABAS statement is used in
Figure 4, a switch in Figure 1.

Table 2. Nonprimitive DIABAS statements.

1. HNonprimitive conditioned jumps
(---.W.---)s where s is nonconditioned

2. Switch
SWITCH x = e1/g1_,...,ek/gk

4. The Intermediate Language Dzs and Its Interpretation

4.1 The Intermediate Language

The DIABAS compiler takes DIABAS procedures as input and
generates Dzs procedures as output. Table 1 shows the primitive
statements and their translation into Dzs instructions. Each
primitive statement is mapped onto one Dzs instruction. Nonprimi-
tive statements are mapped onto sequences of Dzs instructions.

-262-

*PROCEDURE RAHMEN; &S
*$589 =-1; GET; GOSUB KG;

*s = $($500); (S.EQ.u4f) GOTO KORREKT;
** ('2U VIELE RECHTE KLAMMERN'); STOP;
*KORREKT: *('KLAMMERGEBIRGE KORREKT'); STOP.

*PROCEDURE KG; &S

*A: + 1,3$594; ($508.GT.72) GOTO ERROR;

*S = $($500); (S.EQ.44) GOTO DOWN;

* (S .EQ.41) GOTO UP; (S.EQ.ud) RETURN; GOTO A;
*DOWN: *('DOWN'); GOSUB KG; GOTO A;

*UP: *('UP'); RETURN;

*ERROR: *('ZU WENIG RECHTE KLAMMERN'); STOP.

*(().

DOWN

DOWN

up

ZU WENIG RECHTE KLAMMERN

*(X0))Y.
DOWN
DOWN

ZU VIELE RECHTE KLAMMERN

*O.

DOWN

up

KLAMMERGEBIRGE KORREKT

Fiqure 4.

-263-

Branching operations of the format
(1) (-—=.W.--=)s

are nonprimitive. 1In (1), s must be neither a conditioned jump
nor a switch; W is one of the six conditions EQ, NE, LE, GE, LT,
GT that are mapped one by one onto the integers w = 1 to w = 6
(see Table 1).

For any W, let Q be the negation of W. Statements (1) are
mapped onto the Dzs equivalent of the sequence

(2) (-—--.Q.——-)GOTO g; s; g:
A very comfortable nonprimitive statement is the switch

(3) SWITCH x = e1/g1, e2/g2,...,ek/gk
which is mapped onto

() (s.NE.e,)GOTO 1,; GOTO g,;

1;
11:(X.NE.62)GOTO 12; GOTO 9,7

lk:(x.NE.ek)GOTO g; GOTO 9yi 9:¢

The translations (2) and (#) of (1) and (3) are advantageous
because their consequence is a shorter running-time of the Dzs
program if some branching coadditions of the corresponding source
statement are not fulfilled. This can, for example, be seen in
the case of the switch

(5) (x.EQ.("HAMBURG')) y = 1 .

The statement which follows (5) is reached at once if the string
to be compared with does not begin with an 'H’'.

Every Dzs instruction in Table 1 begins with an operator,
which is followed by no or some operands. Each operator or operand
is stored in exactly one machine word. The implementation for the
SIEMENS u4004/151 computer is tuned to halfwords, i.e., 16-bit-bvtes.
DIABAS is suited also for cross-compilations, especially to mini-
computers which use a 16-bit-word. Certainly the target computer
of the cross-compilation must be able to lodge a DIABAS inter-
preter, perhaps in the form of firmware.

4.2 The Structure of the Dzs-Procedure

The structure of any procedure in the Dzs-intermediate lan-
guage, is the following:

(1) wWord g: begin-token
1 to 3: procedure-name

-264-

: address 1 of last word

: address of first instruction

: address c of the pool of constants

: length s of the data block

: address of last parameter (in the data
block, beginning with #)

2: reserved for later use

1: instructions

1: constants

1l: end token

The storage block (1), consisting of 1 + 1 words, is called
procedure block. The procedure block consists of the procedure
head (words § to 12), the instruction block (words 13 to c-1),
the constant block (words ¢ to 1-1(and the end token. Any use
of the term procedure, as far as we deal with the intermediate
language Dzs, 1Is to be prefixed by "intermediate-" or "Dzs-" by
definition.

During the time in which the Dzs interpreter has access to
a procedure, the content of the procedure block is never changed.
All variables or addresses of variables, which are used by the
procedure, are stored in a data block that has a length of s
words. When a procedure has been called and is running, there is
an incarnation of the procedure defined, which can be considered
to be the ordered pair of the procedure block and a data block.
If coroutines or collateral processes are organized by the DIABAS
mechanism, there may exist many incarnations for some procedures
at interpreting time.

As an example for a DIABAS-procedure consider
(2) *PROCEDURE P(A); GB(1);
*(A.EQ.('DM')) GOTO M; B = 1322; A = B;
¥*RETURN; M: $2 = 9999; RETURN .

The compiled version (augmented by some comment in DIABAS) of
(2) is

(3) g.. -32767
1. 2599
2.. 9999
3.. 9999
4.. 3g
5. 13
6.. 28
7.. 3
8.. g
9. 2

19.. P
11.. [
12.. [
13.. 32416 | (A.EQ.('DM')) GOTO M
14, , 24
15.. g

-265-

16.. -28
17.. 32081 | B = 1322

18.. 1

19.. -28

20.. 329P1 | A =B

21. 9

22.. 1

23.. 320879 | RETURN

24.. 32991 | M: %2 = 9999
25.. -39@@2

26.. -29

27.. 32979 | RETURN

28.. 1322 | copE

29.. 9999 | oF 'pM’

3g.. -32768

Any data block used by (3) consists of s = 3 words:

B(#)

(4) g: A

1:

2: B(1) .

The address @ of the single parameter A in the data block (4)

is equal to the address of the last parameter in this special
case, which address can be found in word 8 of (3). The information
of whether a variable is a parameter or not is used by the inter-
preter for its organizing the procedure calls by name.

It should be mentioned that the constant block, which begins
at word 28 of (3), is used multiply. The two words which code the
string 'DM' are at the same time constants addressed by words 19
and 26. In Dzs, constants are discriminated by a minus-sign
prefix. Word 25 contains the address of the global variable $2.
If $n is global, then -(n + 3@@@PP) is the Dzs address of $n.

4.3 The Compiler and the Interpreter

A closer inspection of Table 1 will prove that the implemen-
tation of a compiler from DIABAS to Dzs can be very easily done.
The 4004-DIABAS~-compiler is written in FORTRAN IV.

In order to understand the working of the interpreter, one
has to know some details of the way procedure blocks and data
blocks are stored. Both types of data areas are contained in a
one-dimensional array, which is called main stack. The main stack
has the following structure:

(1) area of the global variables
area of the data blocks

area of the procedure blocks .

-266-

If the interpreter is implemented in a higher programming
language, then one and the same symbolic index can address any of
the three different types of data in the main stack: on the one
hand global variables, parameters, and local variables in the
data blocks, on the other hand constants in the procedure blocks.
By way of the differentiation of addresses, which was explained in
section 4.2, the interpreter can decide, for any address, in which
part of the main stack the addressed piece of data is situated.

Before the interpreter starts, all procedure blocks are
input to the main stack. The procedure name of each procedure is
entered in the list of procedure names, together with the address
of the procedure in the main stack. If a procedure call

(2) GOSUB P (Qq,.-.,qp)

occurs, at first the address of the procedure block, which belongs
to P, is taken from the list of procedure names. 1In a second

step, the interpreter finds in word number 7 of the procedure block
the length of the data block wanted. Hence, the interpreter is
able to claim space for the data block on the main stack. 1In a
third step, the address of the data block of the calling procedure
and the value of the instruction counter of the interpreter is
stacked.

5. An Escape-Resume Mechanism

When communicating with the computer, it is often desirable
to be able to escape one spot of operation and to go elsewhere,
at a later time to be able, however, to resume and to continue the
previous work at the old state of completion. Such a situation
can be described in a slight extension of the hitherto version of
DIABAS. 1If, for example, control went to a procedure g by a call

(1) GOSUB q(p1,...,pn) ’
it is possible to initiate inside q an escape by an instruction
(2) ESCAPE k .

In (2), k is the identification of the k-th escape-resume
mechanism organized in this way since starting the program. Figure
5 shows the scheme of the control and data flow that has to be
handled. The numbers in the small circles count the successive
steps to be performed:

1 GOSUB q(p1...,pn)

2 A data block for g is claimed on the stack of data
blocks

3 The return address of the GOSUB is stacked

4 Control goes to procedure q

-267~

GOSUB a(...)

Control

A 4

a Return-

v

v

address stack

ESCAPE
b: . . . <::>
@ Data block ‘H
. for q Copy
Stack of

data blocks

data blocks

k Table of
a | escape-
quadruples
b
h |e
Heap of

Figure 5.

Escape mechanism identified by k.

-268-

5 ESCAPE k

6 A quadruple is claimed on a heap, and k is
stored

7 The return address a is transferred to the quadruple
8 The return address stack is popped up
9 A resume address b is transferred to the guadruple

10 The data block of g is copied to a heap of data
blocks

11 The stack of data blocks is popped up

12 The address of the new data block of g is transferred
to the quadruple

13 Control goes back to the procedure which called g

In this, moment g is transformed from a subprocedure to a copro-
cedure.

If at a later stage control will resume at state b in the

coprocedure, the operations shown in Figure 6 must take place:

[

{2]

{31

{4]

1 RESUME k

2 By a search on the table of quadruples (which is a
heap) for k, the resume address b is found

3 So is the data block of coprocedure g which has been
retained

4 Control goes to the coprocedure.

References

Conway, M.E. "Design of a Separable Transition-Diagram
Compiler."” Comm. ACM 6, 1963.

Nees, G. "Beschreibung Kognitiver Systeme mit Hilfe des
A-Kalkiils." In Lecture Notes in Economics and
Mathematical Systems, Heidelberg: Springer, 1973

Newman, W.M. "A System for Interactive Graphical Program-
ming." Spring Joint Computer Conference, AFIPS,
Montvale, N.J., 1968.

Woods, W. "Augmented Transition Network Grammars for
Natural Language Analysis." Comm. ACM 13, 1970.

-269-

ESCAPE k

Data block
retained

Heap of
data blocks

Figure 6.

Resume mechanism identified by k.

-270~

PLATON - A New Programing Language

for Natural Language Analysis

Makoto Nagao and Jun-Ichi Tsujii

1. Introduction

In this paper, we describe a new programing language which
is designed to make the writing of natural language grammars
easy. A simple structural analysis program using this language
is given as an example. There are two key issues in analyzing
natural language by computer: one is how to represent the
knowledge (semantics, pragmatics) and the state (context) of
the world. The other is to program technology appropriate to
the syntax-sematics, syntax-context interface. The point in
designing a programing language is to make such programing
less painful.

Traditional systems, which represent grammars as a set of
rewriting rules, usually have poor control mechanisms, and
flexible interactions between syntax and other components
cannot be expressed in them. On the other hand, the systems in
which rules of grammars are embedded in procedures make it
possible to intermix the syntactic and semantic analyses in
an intimate way. However, these systems are apt to destroy the
intelligibility and regularity of natural language grammars
because in these systems both the rules and their control
mechanisms are contained in the same programs.

Recently various systems for natural language analysis
have been developed. T. Winograd's "PROGRAMMER" is a typical
example of procedure-oriented systems. In this system,
syntactic and other components are able to talk together
closely in the course of analyzing sentences. However, details
of the program are lost in the richness of this interaction.
LINGOL, developed by V. Pratt at MIT, is a language appropriate
to the syntax-semantics interface. With LINGOL, it is easy
to write grammars in the form of rewriting rules. The TAUM
group at Montreal University has evolved a programing language
named System-Q, in which expressions of trees (strings and
lists of them) can be matched against partial expressions
(structural patterns) containing variables, and they can be
transformed in an arbitrary way. The augmented transition
network (ATN) proposed by W. Woods gives a good framework
for natural language analysis systems. One of its most
attractive features is its clear distinction between grammar
rules and the control mechanism. We can evolve the model by
adding various facilities to its control mechanism.

-271-

This model has the following merits:

a) It provides power of expression equivalent to
transformational grammars.

b) It maintains much of the legibility of the context-free
grammars.

¢) Rules of a grammar can be easily changed. So we can
improve them through a trial and error process while
writing the grammar.

d) It is possible to impose various types of semantic and
pragmatic conditions on the branches between states.
By doing this, close interactions between syntax and
other components can be easily accomplished.

It, however, has the following shortcomings, especially
when we apply it to the parsing of Japanese sentences:

a) It scans words one by one from the leftmost end of an
input sentence, checks the applicability of a rule,
and makes the transition from one state to another.
This method is well suited for English sentences.

But because the order of words and phrases in Japanese
sentences are relatively free, it is preferable to
check the applicability of a rule by a flexible
pattern-matching method.

b) Without a pattern-matching mechanism, a single rewriting
rule of an ordinary grammar is to be often expressed
by several numbers of rules belonging to different
states in Woods' ATN-parser.

c) ATN-model essentially performs a kind of top-down
analysis of sentences. Therefore, how it recovers
failures of its predictions is one of the most difficult
problems. Wood's ATN-parser seems to pay no attention
to this problem.

Considering these factors, we developed PLATON (Programing
Language for Tree Operation), which is based on the ATN-model
and has various additional capabilities such as pattern matching,
flexible backtracking, and so on. As in System-Q and LINGOL,
PLATON's pattern-matching facility makes it easy to write a
rewriting rule. Moreover, it extracts substructures from the
inputs and invokes appropriate semantic and contextual checking
functions which may be arbitrary LISP functions defined by a
user, and arguments of which are the extracted substructures.

A backtracking mechanism is also necessary for language
understanding as well as for other fields of artificial
intelligence. During the analysis, various sorts of heuristic
information should be utilized properly. At each stage, the
information which may be driven from the syntactic, semantic,
or contextual consideration may give an ureliable criterion,

-272-

but the result which fulfills all the criteria will be a correct
one. The program may choose each time the most satisfactory
rule from many candidates by certain criteria at hand. But

in further processing, if the choice is found to be wrong by
other criteria, the program must be able to backtrack to the
point at which the relevant decision was made. In PLATON, we
can easily set up arbitrary numbers of decision points in the
program. And if the processing results in some failure, the
control will come back to the points relevant to the cause of
the failure.

2. Pattern-Matching

Before proceeding to the detailed description of the
specifications of PLATON, it is necessary to explain the
representation scheme of input sentences and parsed trees. The
process of analyzing a sentence, roughly speaking, may be
regarded as the process of transforming an ordered list of words
to a tree structure, which shows explicitly the interrelationships
of each word in the input sentence. During the process, trees
which correspond to the parts already analyzed and lists which
have not been processed yet may coexist together in a single
structure. We, therefore, should be able to represent such a
coexisting structure of trees and lists. A list structure means
one in which the order of elements is not changeable. On the
other hand, a tree structure consists of a single root node and
several nodes which are tied to the root by distinguishable
relations. Because such relations between the root and the
other nodes are explicitly specified, the order of nodes in a
tree, except the root which is supposed to be placed on the
leftmost end in our expression, is changeable. Different
matching schemes should be applied on trees and lists.

Now we show the formal definition of such a coexisting
structure. The <structure> is the fundamental data structure
into which all of the objects processed by PLATON must be
transformed. Hereafter, we call it simply structure.

Formal definition of <structure> is as follows.

<structure> :: = <tree>|<list>

<list> :: = (*<structures>)

<structures. :: = |<structure> <structures>
<tree> :: = “node>r | (<node> <branches>)
<branches> :: = -branch>|<branch> <branches>
<branch> :: = (-relation: <tree>)

<node> :: = <list>|ARBITRARY LISP-ATOM
<relation> :: = ARBITRARY LISP-ATOM

A simple example following this definition is shown in
Figure 1. Two lists which have the same elements but a dif-
ferent order of them--for example, (*A B C) and (* AC B)--

-273-

should be regarded as different structures. On the contrary,

two tree structures such as (A (R1 B)(R2 C)) and

(A (R2C){(R1 B)) are regarded as being identical. Besides
the usual rewriting rules which treat such strings, structural
patterns which contain variable expressions are permitted in
PLATON. PLATON~-interpreter matches such structural patterns
against the structure under processing, and checks whether the
specified pattern is found in it. At the same time, the variables
in the pattern are bound to the corresponding substructures.

Variables in patterns are indicated as :X (X is an
arbitrary LISP atom), and the following parts can be expressed
by variables in the above definition of <structure>:

a) arbitrary numbers of <structures>, that is to say,
list elements in the definition of <list> (Figure 2,
example 1). We can also specify the number of list
elements by using the variables :X + number. For
example, the variable :K2 will match with two elements
in a list.

(A i P
(* A (B (R1 C)) (D (R2 F)
R1 R2 R3 (R3 (* F G))))
c E (F G)
Coexisting Structure of Corresponding Expression
Trees and Lists in PLATON

Figure 1. Expression of Structure in PLATON.

b) arbitrary numbers of <branches>, in the definition of
<tree> Figure 2 example 2).

¢) <tree> in the definition of <branch> Figure 2,
example 3).
We shall call such structural patterns <structure-1>. By means
of using the same variable several times in a pattern, we can

-274~

d o
hd £y
g N:)
SSEIINS
a o
[4:! 19
) g:)
SSEIONS
2
(-1
a a *) M:)
SSIDINS

putyoslzen 3o s3jTnssy

*bUTYoIeW JO UOTIRAISNTII °Z 2anbTg
a 35 N: d
€y
4 (R
g g
Ly 41 v
A4
a g o} g
7y Y (R a: Y
A4 A4
a o] o] a o}
o (R 1 41 (R
o8 ¢ gé v » (Og M Vo)

s$3aaN3oNI3Sg suaslijed Teanlioniis

€ oTdwexd

z oT1dwexg

| atdwexgy

-275-

express a structure in which the same substructure appears in
two or more different places. The character ! in a list
indicates that the next element following the character is
optional.

3. Basic Operations of PLATON

A grammar, generative or analytical, whichever it may be,
is represented as a directed graph with labeled states and
branches in which there is one distinguished state called the
start state, and a distinguished set of states called final
states. Each branch is a rewriting rule and has the following
elements:

a) applicability conditions of the rule, typically
represented as a structural pattern,

b) actions which must be executed, if the rule is
applicable,

c) structural pattern into which the input structure
should be transformed.

Each state has several numbers of branches ordered according to
the preference of the rules. When the control jumps to a state,
it checks the rules associated with the state one by one until
it finds an applicable rule. If such a rule is found, the
input structure is transformed into another structure specified
by the rule, and the control makes the state transition.

In addition to the above basic mechanism, the system is
provided with push-down and pop-up operations. 1In
applying a rule, several substructures are extracted from the
whole structure by variable binding mechanisms of pattern
matching, and each is analyzed from a different state (push-down).
After each is analyzed appropriately, the control will come back
to the suspended rule and continue to execute it (pop-up).
Using these operations, embedded structures can be easily
handled (Figure 3).

Table 1 shows the formal definition of a grammar of PLATON.
It shows that branches or rewriting rules in an ATN-parser
correspond to six-lets, that is, <pcon>, <strx>, <con>, (<trans>),
(<acts>), and <end>, <strx> of a rule corresponds to the left
side of a rewriting rule and indicates a structural pattern on
which the rule is applicable. By definition, <strx> is,

a) / or
b) structure-1i

Definition a)/, shows that the rule is applicable whatever the
structure under processing is. The variables used in <structure-1>
are bound to corresponding substructures when the matching
succeeds. The result of example 1 in Figure 2 indicates that

the variable :K is bound to the substructure (*(B(R1 C))D).

-276-

Figure 3. State diagram.

-2717-

Table 1, Formal definition of grammar in PLATON.

<grammar> :: = (<states>)

<states> :: = <state>|<state><states>

n

<state> :: (<state-name><rules>)

<rules> :: = |<ru1e><ru1es>

<rule> :: = (<pcon><strx><con>(<trans>) (<acts>) <end>)

<trams> :: = |<transit><trans>

<transit> :: = ((<state-name><structure-2> <reg%ster—name> <errorps>
<variable-name>

<errorps> :: = |<errorp><errorps>

<errorp> :: = (<failure-message><act><pros>)

<pros> :: = <pro>|<pro><pros>

<pro> :: = (EXC <trans>)|(TRANS (<state-name><stry>))

<end> :: = (NEXT <state—name><stry>)

| (NEXTB <state-name><stry>)

|(POP <stry>)|(FM <failure-message>)
<acts> :: = |<act><acts>
<act> 3 = <form>|(SR <register-name><form>)
SU <register—-name><form>)
SD <register—name><form>)

<strx> :: = <structure—1>r/

<stry> i <structure-2>/
<pcon>,<con> :: <form>
<form> :: = (GR <register—name>)|(GV <variable-name>)

| (TR <structure-2>)| (TR /) |ARBITRARY LISP FORM

<variable-name> :: :X(X is an arbitrary LISP-atom.)

<register—name> :: /X(X is an arbitrary LISP-atom.)

-278-

The scope of this binding is limited to the inside of the
rule. The same variable name in different rules has different
interpretations. In this sense, :X-type variables in
<structure-1> are called local variables. On the other hand,
we can store certain kinds of results of a rule in registers
and refer them to different rules. These kinds of variables,
which we call registers, are represented by symbols /X(X is an
arbitrary LISP atom).

Besides the pattern matching, <pcon> and <con> can also
check the applicability of a rule. Certain parts of the
results of previous rules are contained in registers, not in
structure. We can check the contents of these registers by
using <pcon>-part functions such as GR, GU, and so on (these
functions are listed in Table 2) and other LISP-functions which
were defined by the usual LISP-function, DEFINE.

We can check semantic and contextual coordination between
substructures by using appropriate functions in <con>-part of
a rule. Semantic and contextual analyses cannot be expressed
in the form of a simple rewriting rule. These analyses require
different frameworks, such as lexical information of words which
may represent the knowledge of the world, and a contextual one
which may express the state of the world. We can use arbitrary
LISP-forms in <con>-part, according to whichever semantic and
contextual models we choose.
For example, suppose:

strx = ((ADJ(TOK :N)) (N TOK :N1l)) :I)
con = (SEM :N :Nl).
Here TOK 1is a link of a word and its part of speech. :N and :Nl

are the words of an input sentence. SEM is a function defined

by the user which checks the semantic coordination between the
adjective :N and the noun :N1. By this SEM function, we can search,
if necessary, through both lexical entries and contextual

data bases.

In this manner, it is possible that if a certain syntactic
pattern is found in the input structure, an appropriate semantic
function will be called. So the intimate interactions between
syntactic and semantic components can be easily obtained without
destroying the clarity of natural language grammars.

Arbitrary LISP-forms can be also used in <act>-part. They
will be evaluated when the rule is applied. If necessary, we
can set intermediate results into registers and variables by
using the functions listed in Table 2.

-279-

Table 2. Functions of PLATON.
Function Argument Effect Value
SR <register-name > SR stores the result of the The result of the
LISP - <form> |evaluation of the second evaluation of the
argument in the register. second argument
sV <variable-name >|SV stores the result of the The result of the
LISP - <form> |evaluation of the second evaluation of the
argument in the variable. second argument
GR <register-name>|GR gets the content of the The content of
register. the register
GV <variable-name>|GV gets the value of the The value of the
variable variable
TR <structure~2> |TR transforms the variables The transformed
or [/ and registers in the structural | structure
pattern into their values.
SuU <register-name>|SU sets the register of the The result of the
LISP - <form> |higher-level processing.* evaluation of the
second argument
SD <register-name>|SD sets the register of the The result of the
LISP - <form> |lower-level processing.* evaluation of the
second argument
GU <register—name>|GU gets the content of the The content of
register of the higher level*. the register
PUSHR <register-name>|PUSHR is defined as: The result of the

LISP - <form>

(SR register—name
(CONS form

(GR <register-name>)))

evaluation of the
second argument

-280-

The <end> type comprises four varieties, and rules are
divided into four typ?s according to their <end> types.
*

a) NEXT-type: The <end> is in the form (NEXT<state-name>
<stry>). The <stry> corresponds to the right side of
a rewriting rule, and represents the transformed
structure. A rule of this type causes statetransition
to the <state-name>, when it is applied.

b) NEXTB-TYPE: rule which also causes state-transition.
But unlike the NEXT-type, state-saving is done and
if further processing results in some failures, control
comes back to the state where this rule is applied.
The environments, that is, the contents of various
registers, will be restored, and the next rule belonging
to this state will be tried.

c) POP-type: <end>-part of this type is in the form
(POP<stry>). When it is applied, the processing of
this level is ended and the control returns to the
higher level with the value <stry>.

d) FM-type: <end>-part of this type is in the form
(FM<failure-message>). The sideeffects of the
processing at this level, that is, register settings
and so on, are cancelled (See section 4.).

In <stry>, we can use two kinds of variables, that is, the
variables used in <strx> and registers. This structural pattern
is called <structure-2>. This expression is more suitable for
writing a transformational rule than Wood's BUILDQ-operation.
For example,

input string = (*CDE (A (R1(*B))) FG)
strx = (*:I (A (Rl :N)) :3J)
stry = (*(A (Rl (* :N))(R2 /REG)) :J)

the content of /REG (G (R3 H)) .
As the result of matching, the variables :I, :N, and :J are
bound to the substructures (*CDE), (*B), and (*FG), respectively.
The result of evaluating the <stry> is,

(* (A (Rl (*CDEB))(R2 (G (R3 H)))) FG).
If the rule is a POP-type one, then this structure will be
returned to the higher-level processing. If it is NEXT- or

NEXTB-type, then the control will transit to the specified state
with this structure.

4., Push-Down and Pop-Up Operations

By means of NEXTB-type rules, we can set up decision points
in a program. We can also do this by using push-down and
pop-up operations. A rule in PLATON will find out a certain

-281-

syntactic clue by its structural pattern<strx>, and, at the
same time, extract substructures from the input string. The
structural pattern predicts that those substructures may
have certain constructions, that is, they may compose noun
phrases, relative clauses, and so on. Therefore, it is
necessary to transfer them to the states appropriate for
analyzing these predicted constructions, and to insert the
resultant structures given back from these states into the
appropriate places. In PLATON, these operations can be
described in the <trans>-part of a rule. For example, suppose
<trans>-part of a rule is,

{ ({81 :K :K)) ((S2 (* :I :J)/REG))) .

when the control interprets this statement, the substructures
corresponding to the variable :K and (* :I :J) are transferred
to the states S1 and S2, respectively. If the processings from
these states are normally ended (by POP-type rules), then the
results are stored into the variable :K and the register /REG.
In this manner, by means of push-down and pop-up mechanisms,
substructures can be analyzed from appropriate states.
Processing from these states, however, may sometimes result in
failure. 1In other words, predictions such that certain
relationships must be found among the elements of substructures
may not be fulfilled. 1In this case, the pushed-down state will
send up an error message according to the cause of the failure
by FM-type rule. BAn FM-type rule points out that a certain
error occurs in the processing. If the NEXTB-type rules are
used in the previous processing at this level, the control

will go back to the most recently used NEXTB-type rule. If the
NEXTB-type rules are not used at this processing level, the
error message specified by the FM-type rule will be sent up to
the <trans>-part of the rule which directed this push-down
operation. (See Figures #4a and i4b.).

According to these error messages, the control flow can
be changed appropriately. For example, we can direct such
processings by describing the trans<trans>-part in the following
way:
{ ((S1 :K :K)(ERRI (EXEC ((S5 :K :K)) ((S6 (* :1 :J) /REG))))))
(ERR2 (TRANS (S8 /)))
((S2 (* :I :J) /REG)) .
In the above example, the processing of the substructure :K from
the state S1 will result in one of the following. (According
to the type of the returned value, the appropriate step will be
taken.)
a) Normal return: the processing of :K is ended by a
POP-type rule. The result is stored into the variable
:K and the next push-down is performed, that is,
(* :I :J) will be transferred to the state S2.

b) Return with an error message: the processing of :K
results in some failure, and a FM-type rule sends up
an error message. If the message is ERR1, then :K and
(¥ :I :J) will be analyzed from the states 5 and Sé6,

*bButyoealsoeq 30 UOTIIRAISNTTI
19491 STY3 uT poaTttraae

ey 2anbtg
jou 9I9M saTnx adi3-g ILXIN

-282-

-t

| butrsseooad raasT-aaMO7
!

mmmmmmWVWM:ﬁﬂmm czomwsmﬂm
N /
// /
\ /

putssoooxd TaasT x3aybtH

-283-

Higher level processing _

/
/

vaWmeis

Lower level processing

This rule will be applied next.
Figure 4b.

Illustration of backtracking.

-284-

respectively (EXEC-type). If it is ERR2, the interpreter
will give up the application of the present rule and

pass the control to another state S8 (TRANS-type). If

it is neither ERR1 nor the same step as (c) will

be taken.

c) Return with the value NIL: the processing from the
state S1 will send up the value NIL, if it runs into
a blind alley, that is there are no applicable rules.
The interpreter will give up the application of the
present rule and proceed to the next rule attached to
this state.

Mechanism in which the control flow can be appropriately
changed according to the error messages from lower-level
processings are not found in Woods's ATN-parser. We can obtain
flexible backtracking facilities by combining these mechanisms
with NEXTB-type rules.

5. A Simple Example

We are now developing a deductive guestion-answering system
with natural language inputs--Japanese sentences. The internal
data-base is assumed to be a set of deep case structures of
input sentences. We adopted and modified Fillmore's case
grammar to analyze the input Japanese sentences. Japanese is
a typical example of a SOV language in which object and other
constituents governed by a verb usually appear before the vert
in a sentence. This makes Japanese very different from
English and European languages. A typical construction of a
Japanese sentence is shown in Figure 5. A verb may govern
several noun phrases preceding it. A relative clause modifying
a noun may appear in the form "--verb + noun--." The right end
of the scope of the clause is easily identified by finding the
verb. But the left end of it is often ambiguous. 1In Figure 5,

the noun phrase NPi+1is a case element of the verb V1. On the

other hand, the noun phrase NPi is governed by the verb V.
Because the projection rule is kept in Japanese as in other
languages, all the noun phrases between NPi+1and V1 are governed

by V1, and the noun phrases before NPi are governed by V2.

However, in the course of analysis, such boundaries cannot be
determined uniquely. The analysis program fixes a temporary
boundary and proceeds to the next processing. If the temporary
poundaries are not correct, the succeeding processing will fail,
and the control will come back to the point at which the
temporary boundary was fixed.

Now, we will show a simple example of strucutral analysis
by PLATON. The example explains how the backtracking facility
is used in analyzing Japanese sentences. Because we want to
visualize the operations of PLATON without bothering with micro-
scopic characteristics of Japanese sentences, we will take an
imaginary problem as an example.

-285-

Figure 5. Typical construction of a Japanese sentence.

An input string is assumed to be a list. The elements of
the list are integers and trees in the form of (X (SUM 0)).
Here X may be regarded as a term modified by SUM O. These two
kinds of elements are arranged in an arbitrary order, except
that the last element is the tree (X(SUM 0)). Figure 6. is an
example of an input string.

(* 5213 (X (SuM0)) 31 (X (SUM 0))2 2 (X (SUM 0)))

Figure 6. An example string to be analyzed.
The result of the transformation is expected to be in the
following form:
(* (X (SUM 4)) (X(SUM 6) (X (SUM 9)))

This result is regarded as representing the following relation-
ships between integers and X:

[

l,——él — | ——
(5213 (X (SsuM0)) 31 (X (SUhlo)) 2 2 (X (;;L 0))) .

The number associated with an X by the relation SUM shows the
sum of the integers which are governed by the X. We can look
upon the relations between integers and an X as the relations
between noun phrases and a verb in Japanese sentences. The
result of the analysis is assumed to satisfy the following
conditions:

-286~-

a) Governor-dependent relationships between integers and
an X must obey the projection rule.

b) As an imitation of a sematic restriction, we attach a
condition that the sum of the integers governed by an
X should not exceed ten.

c) As an imitation of a contextual restriction, we attach
a condition that a result (* (X (SUM num-1))
(X (SUM num-2))....(X (SUM num-N))) should maintain
the relation, num-1<num-2<....<num-N.

A set of rules is shown in the following. The corresponding
statediagram is shown in Figure 7.

SUMUP 1: strx (* :I :I1 (X (SUM :N)) :J)

con (GREATERP 10 (PLUS :N :I1))
act (SV :N (PLUS :N :1I1))
(PUSHR /REG :I1))
end = (NEXT SUMUP (* :I (X (SUM :N)) :J))
2: strx = (* :I (X (SUM :N)) :J)
cén = (CONTEXTCHECK /RESULT (TR (X (SUM :N))))
act = NIL
end = (NEXT BACKTRACK /)
3: strx = (* :I (X(SUM :N)) :J)
con =T
act = NIL
end = (FM ERROR)
4: strx = (*)
con =T
act = ((SR /RESULT (CONS 'X /RESULT)))
end = (POP /RESULT)

BACKTRACK 1: strx (* :I (X(SUM :N)) :J)

con T
act ((SR /REG NIL)
(SR /RESULT (APPEND /RESULT (TR (X (SUM :N))))
end = (NEXTB SUMUP (*:I :J))
2: strx = (* :I (X (SUM :N)) :J)
con =T
act = ((POPR /TEMP /REG)

(SVv :N (MINUS :N /TEMP)))
end = (NEXT BACKTRACK (* :I /TEMP (X(SUM :N)) :J))

The input string is supposed to be the list shown in Figure 6.
Since the start state is SUMUP, the first rule attached to this
state is applied. This rule will find the leftmost X and an
integer just before the X (by SUMUP-1-, strx). The variable :I1
is bound to this integer. This integer is added to the sum of
the integers, :N, if the total does not exceed ten (SUMUP-1-, con).
PUSHR used in <act>-part is a PLATON function which puts the
second argument on the head of the first argument (SUMUP-1-, act).
After this rule is applied, the control will enter the state
SUMUP again (SUMUP-1-, end). That is, this rule is applied until
there are no integers before the first X or the sum of the
integers exceeds ten. As a result, the environment is the
following:

-287-

POP

Figure 7.

NEXT B

State diagram for a simple example.

NEXT

-288-

structure under processing
= (*5 (X(SUM 6)) 3 1 (X(SuM 0)) 2 2 (X (suM 0)))

’

relationships temporarily fixed between integers and X
=(5 2 1 3 X 3 1 X 2 2 X) B

content of /REG

= (2 1 3)

The second rule of SUMUP will be applied next. This rule checks
by its <con>-part whether the result at hand satisfies the third
condition, that is, the contextual restriction. Because the
content of /RESULT is NIL, the function CONTEXTCHECK returns

the value T (SUMUP-2-, con). So this rule is applicable. The
control makes the state transition to the state BACKTRACK
(SUMUP-2-, end). Because the first rule of BACKTRACK is a
NEXTB-type rule, state saving is performed. That is, the
following environment is saved:

content of /REG = (2 1 3) R
content of /RESULT = NIL ,
structure under processing
= (*5 (X (SUM 6)) 3 1 (X (SUM 0)) 2 2 (X (SUM 0)))

By this rule, the registers /REG and /RESULT are set as follows
(BACKTRACK 1, act):

/REG = NIL
/RESULT = ((X (SUM 6))) ,

and the structure is transformed to:
(* 531 (X (SUM 0)) 2 2 (X (SUM 0))) .

A NEXTB-type rule causes the state transition as a NEXT-type
rule. So the control returns to the state SUMUP (BACKTRACK-1-,
end). At this state, the similar process as described above is
performed. As the result, the following governor-dependent
relationships are established:

[T =y =

(s 2 1 3 X 3 1 X 2 2 X) .

Here, the bold lines indicate the newly established relationships.
By the first rule of BACKTRACK, the following environment is
saved: :

content of /REG = (5 3 1) B
content of /RESULT = ((X (SUM 6))) ,
structure under processing = (* (X (SUM 9)) 2 2 (X (sum 0))) ,

-289-

and /REG and /RESULT are set as the following (BACKTRACK 1

/REG ; = NIL.
/RESULT ; = ((X (SUM 6)) (X (SuM 9))) .

The transformed structure is (BACKTRACK-1-, end):
(* 22 (X (suMm0))) .

The control is transferred to the state SUMUP. By applying the
first rule of this state repeatedly on the above structure, the
following structure is obtained:

(* (X SUM 4))) .

However, this result does not satisfy the contextual
restriction. So the application of the second rule of SUMUP
fails because the function CONTEXTCHECK used in <con>-part
returns the value NIL (SUMUP-2-, con). That is,

CONTEXTCHECK [((X (SUM 6)) (X (SUM 9))); (X (SUM 4))] = NIL
The third rule, therefore, will be applied next. Because this
rule is a FM-type rule (SUMUP-3-, end), it causes an error, and
the control comes back to the point at which a NEXTB-type rule
was most recently applied. The saved environment is restored.
That is,

JREG ; = (53 1) ,
/RESULT ; = ((X (SUM 6))) ,
structure under processing; = (* (X (SUM 9)) 2 2 (X (SUM 0)))

Then, by means of applying the second rule of BACKTRACK, the
governor-dependent relationship last established in the previous
process is cancelled. The structure and the register /REG are
changed as below (BACKTRACK-2-, act):

/REG;=(31) ’
Structure under processing; = (* 5 (X (SUM 4)) 2 2 (X (SUM 0}))

The control enters to the state BACKTRACK again. The
application of the first rule saves the environment such as:

content of /REG = (3 1) R
content of /RESULT = ((X (SUM 6)) ’
structure under processing = (¥ 5 (X (SUM 4)) 2 2 (X (SUM 0)))

That is, the relationship indicated by the dotted line in the
following is cancelled:

The control transits to the state SUMUP (BACKTRACK-1-~, end), and
a similar process is performed. However, because the governor
and dependent relationship between the integer 5 and the second
X is canceled, the sum of the integers governed by the first X,

-290-

(2 1 3), is greater than that of the second X, (3 1). The
contextual condition, therefore, is not fulfilled, and the
application of the second rule of SUMUP will not succeed. So
the temporarily established relationships will be cance led one
by one as follows:

(5 2 1 3 X 3 1 X 2 2 X)
| —1
(5 2 1 3 X 3 1 X 2 2 X)
I
!
(5 2 1 3 X 3 1 X 2 2 X)

After these relationships have been canceled, the desirable
result is obtained by the following sequence :

—) i

(5 2 1 3 X 3 1 X 2 2 X)

ot ol

(5 2 1 3 X 3 1 X 2 2 X)
T |

(5 2 1 3'—ux 3 1?& 2 2 X)
) - —

(5 2 1 3 X 3 1 j 2 2 X)

| | |
(5 2 1 3 X 3 1 X 2 2 X)

’||

—w
(5 2 1 3 X 3 1 X

At the final stage of the processing, the fourth rule of
SUMUP, a POP-type rule, is applied and returns the value,

(* (X (SUM 4)) (X (SUM 6)) (X SUM 9))).

6. Conclusion

We have described a programing language for natural language
processing. The language has several additional capabilities
using the ATN-parser of W. Woods.

Grammars written by the language not only maintain the
clarity of representation but also adequately provide the
natural interface between syntax and other components. By
means of the pattern-matching facility, we can write grammars in
a guite natural manner, and, by its variable binding mechanism,
semantic and contextual LISP functions are easily incorporated
in syntactic patterns.

-291-

Flexible backtracking mechanisms and push-down operations
make the complicated nondeterministic processing possible in
a very simple way.

We are now developing an analysis program of Japanese
using this language. The program can accept fairly complicated
sentences from a textbook of elementary chemistry. It can
utilize the lexical and contextual information of chemistry
adequately during the analysis. Such information in our system
is expressed in the form of a semantic network similar to that
of R. Quillian.

Perhaps, PLATON itself must be equipped with more
semantics and context-oriented operations such as specified
lexical descriptions and functions using these. However, what
description method is most efficient, and, moreover, what
semantic information must be stored in lexicon are still not
clear enough. So, as the first step, PLATON leaves many parts
of these problems to user's specification by LISP programs.
PLATON is written in LISP1.5 and implemented on FACOM 230-60
at Kyoto University computer center and a mini-computer TOSBAC-40
in our laboratory. The interpreter of PLATON itself requires
only 4.5 Kcells.

References

[1] Bobrow, D. and Fraser, B. An Augmented State Transition
Network Analysis Procedure. Proc. 1st IJCAI,
557-68, 1969.

[2] Colmerauer, A. "Les systemés-g ou un formalise pour analyser
et synthétiser des phrases sur ordinateur." University
of Montreal, TAUM 71, 1971.

[31 Filmore, C.J. "The Case for Case." 1In Bach and Harms, eds.,

Universals in Linguistic Theory. New York: Holt,
Rinehart 1968.

[4] Hewitt, C. "PLANNER: A Language for Manipulating Models

and Proving Theorems in a Robot." 1In Artificial
Intelligence, 1969
[5] Nagao, M. and Tsujii, J. "Mechanism of Deduction in a

Question-Answering System with Natural Language Input."
Proc. 3rd IJCAI, 1973.

[6] Nagao, M. and Tsujii, J. “Programming Language for Natural
Language Processing - PLATON." J IPSJ, 15 654-61, 1974.

[7) Pratt, V. "A Linguistic Oriented Programming Language."
Proc. 3rd IJCAI, 372-81, 1973.

(8}

[91

(10]

(11]

(2]

Rulifson, J. et Al.

Solving Programs."

"QAU4-A Language for Writing Problem-
Technical Note 48,

-292-

Research Institute, 1970

Throne, J. Brately,
Analysis of English by Machine."
Machine Intelligence vol 3.

P.

Winograd, T.

"Procedures as a Representation for Data in
a Computer Program for Understanding Natural Language.'

, and Dewar, H.

"The

Stanford

Syntactic

In Michie, ed.,
Elsevier, 1968.

New York:

Massachusetts Institute of Technology Thesis, 1971.

Woods, W. "Augmented Transition Network Grammars for
Natural Language Analysis."

Woods, W.
Machine.”

Proc.

FJcc.,

vol.

CACM, 13, 591-602, 1970.

33,

457-71.

"Procedural Semantics for a Question-Answering

-293-

APPENDIX

Mechanism of Deduction in a Question-Answering

System with Natural Language Input

Abstract

We have constructed a deductive question answer-system
which accepts natural language input in Japanese. The
semantic trees of assertional input sentences are stored in
a semantic network and interrelationships--conditional,
implicational, and so forth--are established among them. A
matching routine looks for the semantic trees which have
some relations to a query, and returns the mismatch infor-
mation (difference) to a deduction routine. The deduction
routine produces subgoals to diminish this differences. This
process takes place recursively until the difference is com-
pletely resolved (success), or there is no other possibility
of matching in the semantic network (failure). Standard
problem solving techniques are used in this process. As the
result, the system is very powerful in handling deductive
responses. In this paper, only the part of the logical
deduction is explained in detail.

Descriptive terms: question answering, deduction, natural
language, semantic network, problem solving.

1. Introduction

There are a few deductive question-answering systems using
natural language, almost all of which use logical expressions,
especially the first order predicate calculus expression, as an
intermediate language. However systems which use formal logics
have problems:

a) Syntactic and semantic analyses of natural language
input are necessary to transform the input to logical
expression without ambiquity.

b) The axiom set must be clearly defined and must not be
contradictory.

c) Predicates and variables must be fixed beforehand.
This is a problem for the system's expansion. Also
this prevents mixing the first and higher order,
predicate calculus systems.

e)

-294-

Deduction using the resolution principle is cumbersome.
Usually question answering does not require a deep
deductive process.

Good quality of natural language output is very hard
to obtain from a logical expression.

To avoid the above problems we have used a kind of semantic
reprsentation of natural language sentences as an intermediate
expression. Our system has the following characteristic features.

a)

b)

c)

4)

The qdestion-answering system is a composite of
subsystems for language analysis, deduction, and
language generation.

The parsed trees of sentences are permitted to have
some ambiguities. Ambiguities are resolved in the
process of logical deduction.

During the question answering process, the deduction
ability is increased and the area which the system can
deal with is also expanded. The deduction ability of

a system depends on how many theorems the system can
use, and on how efficiently it can deal with them.

We have constructed a system in which the available
theorems increase during the question-answering process.

Facts can play the role of theorems. We think the
distinction between facts and theorems is not clear
enough. A statement can be used as a theorem at one
time and as a fact at another time. For example,

A human is an intelligent animal.
plays the role of a theorem to answer
Is Smith intelligent?

because Smith is an instance of a variable "human."
On the contrary it plays the role of a fact to the
question

Is a man an animal?

because "a human" is treated as an instance of a vari-
able "man." In our system the assertions given by a
user, which correspond to facts in usual systems, can
play the role of theorems. This is accomplished by
allowing a higher-concept term to be a variable to its
lower-concept term. There is no distinction between
them, and both facts and theorems have the same struc-
tures in the data base. This is the most significant
character of the system we have developed.

-295-

e) In order to deal with a large data base, the system
has a well-organized data structure and relevant infor-
mation to a question is accessed by a technique of
indexing and retrieval.

f) The deduction process is similar to that of humans.
It allows introducing many heuristics into the
deduction process.

In this paper, the details of deduction subsystem alone are
explained. The other two subsystems will be published else-
where in the near future.

2. System Organization

A block diagram of our system is shown

in Figure 1. The
internal data base of the system is divided

into two parts:

a) semantic representations (semantic
sentences

trees) of input

b) network (mutual connection) of a).

input
sentences
querny
r.network of I deduction
sentences| | routine
network |] sentence
parsing administration | : eneration
routine routine | | routine output
| | response
| trees of |
sentences } execution
L — 1 routine
semantic network
Figure 1. Organization of the system.

The mutual connection consists of interrelationships such as
conditional, implicational, and so forth. An input sentence is
analyzed into a semantic tree, and it is read into the semantic
network if it is an assertion and is not in the network yet.

-296-

Thus knowledge accumulates in a very natural way in the question-
answering process. An inverted file of keywords makes it easy
to extract information relevant to the question.

The parsing routine performs syntactic and semantic analyses
of an input query sentence, and produces the parse tree. A
network administraction routine accepts the tree and relates it
to the semantic network which contains sentences already accepted.

To accomplish a deduction, there are two main parts: the
execution routine and the deduction routine. The execution
routine, which plays the central role in the deduction process,
searches through the network for sentences relevant to the cur-
rent goal and matches them one by one against it. The deduction
routine manages the global information in the problem-solving
process such as goal-subgoal relationships, variable bindings
{(for example the word man is bound to the word Smith), and so
forth. This routine also directs the execution routine to
determine which sentence must be verified first.

3. Knowledge Structure

3.1 Semantic Trees

We have applied a kind of dependency analysis to the input
Japanese sentences. A noun modified by an adjective is trans-
formed into a kernel sentence having another kernel sentence
related to the noun. The sentence

KINBEN NA HITO WA SEIKO SURU
(A diligent man will succeed.)

is divided into two sentences like

HITO WA SEIKO SURU
(A man will succeed.)

and,

HITO WA KINBEN DA
(A man is diligent.)

The parsed tree structure of this sentence is shown in Figure 2.

Some sentences in Japanese have two possible subject phrases,
that is, one which contains the reference particle "GA" and the
other which contains "WA." We consider the relational phrase
with the particle "WA" as indicating what the sentence talks
about; the phrase with "GA" is the subject phrase corresponding
to the predicate in the sentence:

Z0 WA HANA GA NAGAI
(Elephant has a long nose.)

-297-

is a typical example. Its literal translation is, "As for ele-
phant the nose is long." The tree structure of it is shown in
‘Figure 3.

e T ~—
P seiko suru 5
(succeedb'

7
e

Figure 2. Kinben na hito wa seiko suru.
(A diligent man will succeed.)

sent

nagai (long)
2o

(elephant) sub

hana (nose)

Figure 3. 20 wa hana ga nagai.
(Elephant has a long nose.)

Sentences connected by and or or are represented in the
tree structure as shown in Figure 4.

A sentence which contains upper concept terms replaceable
by their lower concept terms is considered as a theorem available
to prove a statement which has the lower concept terms in it.
So upper-lower concept relationship among words plays an impor-
tant role in our system. The input sentence in the form of

-298-

" A WA B DA" meaning A is a lower concept of B, and B is an
upper concept of A, has a special structure to express the
relationship clearly. "NINGEN WA KASHIKOI DOBUTSU DA" (A man
is an intelligent animal.) is parsed as shown in Figure 5.

simply

implya implyc

seiko suru
(succeed)

sub

sand
and

hito
(man)

kinben da
(diligent) -

-

kenko da
(healthy)

.-

sub

—

-

sub
hito (man)

hito (man) ~ -

Figure 4. Kenko de kinben na hito wa seiko suru.
(A man who is healthy and diligent will

succeed.)

imply

ningen
(man)

dobutsu (animal)

smod

kashikoi (intelligent)
sub

dobutsu (animal)

Figure 5. Ningen wa kashikoi dobutsu da.
(A man is an intelligent animal.)

Properties of sentences are attached to the top node of the
parsed tree structure. The properties we treated are potential,
active, passive, subjective, tense, and so forth. The assertion
sentence is regarded as true, so that a sign T is given to the
property part of the parsed tree. The signs E and U in the
property part indicate false and undetermined respectively.

-299-

3.2 Semantic Network

The network is constructed in the following way.

a) In the case of an assertion sentence S1, it is stored

in the form shown in Figure 6a.

b) In the case of a negation sentence, schematically
written as "not SZ’" it is stored in the same form
as Figure 6a, but the property part is written as F.

S.," it is stored in the

c) If a sentence is "If S 27

1'
form shown in Figure 6b.

S.,," it is stored in the

d) If a sentence is "Because S 27

1'
form shown in Figure 6c.

e) If the sentences S1 and 52 in (1)--(4) are found in

the semantic network, they are not stored newly, but
the stored ones are used. For example, the following
sentences are stored in the network as shown in

Figure 6d.
Because 51, 52.
If S1, then 53.

In this case because S1 is asserted as true, 53 is also true.
The network and parsed trees have the following internal
constructions.

a) Branches in the network and trees are bidirectional
for flexible transformation and for efficient search
in the deduction process.

b) Words are not stored in nodes of the parsed trees but by
a pointer to the lexical entry of the word (Figure 7).

c) The lexical entry of a word, called NLIST, contains
not only lexical information about the word, but also
a list of sentences (pointers to the entries of the
sentences in SLIST) which contains the word. NLIST
is a kind of inverted file of keywords.

d) The node of the network is indicated by a pointer from
a table, called SLIST, which contains information
about the sentence. The information of whether the
sentence is true (T), false (F), or undetermined (U},
and so forth, is stored in this list.

,I .\‘ 'lS \‘
'Sl N \ 2 '
‘__/ . ’
(6a)
(T)
(T
.’S ‘\| / >,
) \\ 2
(6c) .t

-300-

Figure 6. Relations in semantic network.

properties of

SLIST _- sentences

Network

lexical
information
of words

pointers to the
sentences which
contain the word

Figure 7. Internal data base structure.

-301-

e) Different nodes in the network correspond to different
sentences. As a result, information about a sentence
can be retrieved from a single node in the network.

4. Execution Routine

1

Among many intellectual abilities of humans, we have imple~
mented in this study the deduction ability based on the use of
"the law of substitution" and "the law of implication." This
is realized by the exectuion routine and the deduction routine.
The execution tries to match a sentence structure against
another one, regarding an upper concept as a variable over its
lower concepts. The deduction routine produces subgoals and
tells the execution routine which sentence must be verified
first. The execution routine searches through the network for
the sentences which are equivalent to the goal sentence given by
the deduction routine. It consists of three main parts: key-~
word search, matching, and resolving differences.

4.1 Keyword Search

The system has an inverted file of words called NLIST. By
using this file, the execution routine takes out the sentences
which contain words in the goal sentence. These selected
sentences are presumed to be relevant to the current sentence.

4.2 Matching Method

The matching algorithm is constructed so that two parsed
trees which are different in the sequence of branches (Figure 8)
will be matched successfully by the branch labels on the parsed
trees. Matching between two parsed trees fails for various reaso:

yuku (go) yuku (go)
sub mod mod sub
kare gakko e gakko e kare
(he) (school) (school) (he)
kare wa gakko e yuku gakko e kare wa yuku

Figure 8. Change of word order.

The causes of mismatch, named differences, are classified into
the following four classes.

-302-

a) N-difference: The words which are attached to the
corresponding node are different in the two sentences.
Figure 9a shows an example, where the difference is
expressed as (N (*C *D)). *C shows the pointer to the
node C.

b) S1-difference: One structure (first argument) has
extra branches which the other does not have. Figure
9b shows an example of this category, abbreviated as
(S1 ((*R4) *B)), which shows the branch RU4 is the extra
one.

c) S2-difference: One structure (second argument) has
extra branches. Figure 9c is an example and this
difference is shown by (S2 (*C (*R5))).

d) SoO-difference: Both structures have extra branches.
An example is shown in Figure 94.

The matching subroutine tries to match its first argument
against its second one. If the matching succeeds, the subroutine
returns "success" to the deduction routine. If not, it returns
the differences.

4.3 Resolving Differences

The execution routine first picks up sentences expected to
be relevant to the given sentence by using NLIST, and then tries
to match them against the given sentence. If the same sentence
is stored in the data base, the execution routine picks it up
and the matching ends in success. If there is no complete match,
but a difference, N-routine or S-routine is activated according
to the kind of difference to resolve the difference.

a) N-routine

An N-routine arises from mismatch of words. Let us
suppose that the sentence

TARO WA SEIKO SURU
(Taro will succeed.)

is what the deduction routine tells the execution rou-
tine to prove, and the sentence

NINGEN WA SEIKO SURU
(A man will succeed.)

is stored in the data base. The matching between these
does not succeed and the difference is (N (*TARO
*NINGEN)). This difference is transferred to N-routine
and the routine tries to check whether the word TARO is
a lower concept of NINGEN (man) by searching through

-303-

2 R
c B
R3
R3
E

(N (*C *D))

A
1 R2
9a)
A

A
R1 R
B
A
R1l
B
A
R1
B
A
R5
Cc
R1
D

R2 R1 R2
[of B [of
R4 R3 R3
E
D E
(S1 ((*R4) *B))
9b)
A
R2 RL R2
C
R3 B C
R3 R5
E D
(52 (*C (*RS)))
9c)
R3
R2
E

A
R3 RS
B C
R4
D

(SO ((*R1 *R2) (*R4)))

9d)

Figure 9. Differences in matching.

al)

In

-304-

the network for the sentence "TARO WA NINGEN DA," which
means "TARO is a lower concept of NINGEN." If such a
sentence is found, NINGEN can be looked upon as a
variable which can take the value TARO, and then the
difference is resolved. This is considered as the
process of substitution. By this process, the system
can deduce specific facts from generalized knowledge.

N-routine basically searches the sentence "A WA B
DA," which means "A is B," in order to resolve the
difference (N (*A *B)), but many sentences in the net-
work are in such forms as “A WA b NA B DA," which means
"A is B modified by b," and "aNA A WA B DA," which
means "A modified by a is B." The differences to be
resolved also take the forms of (N (¥(a NA A) *B)) and
(N (*A *(b NA B))). Four cases are possible.

Difference : (N (*a NA A) *B))
In the data base : A WA B DA
logical representation,

the goal to be proved is: a(x) A A(x) - B(x),
the fact in the network is: A(x) -~ B(x).

and the difference is resolved immediately.

az)

Difference : (N (*A *(b NA B)))
In the data base : A WA B DA

In a logical representation,

the goal to be proved is: A(x) + b(x) A B(x),
the fact in the network is: A(x) =+ B(x).

In this case whether A satisfies the condition b or not is
produced as a subgoal.

b1)

Difference : (N (*A *B))
In the data base : A WA b NA B DA

In a logical representation,

the goal to be proved is: A(x) - B(x),
the fact in the network is: A(x) =+ b(x) A B(x).

So the difference is resolved.

b2)

Difference : (N (*A *B))
In the data base : a NA A WA B DA

In a logical representation,

the goal to be proved is: A(x) » B(x),
the fact in the network is: a(x) A A(x) - B(x).

In this case a subgoal is produced.

-305-

b) S-routine

S-routine resolves S1-, S2-, and S0- differences. These
differences arise from mismatch of branches. S-routine
is given two different sentence structures, one is
called S-structure and the other is called T-structure.
Using grammatical rules (especially transformation
rules), this routine transforms the S-structure into
several transformationally equivalent structures, and
matches them against the T-structure. At present not

so many transformational rules are prepared. Figure 11
is an example (as shown in Section 6). If the matching
succeeds, the two structures, S-structure and T-
structure, are equivalent and the difference is resolved.

5. Deduction Routine

The deduction routine controls the whole of the deduction
process. This routine has a global knowledge of the process.
This knowledge contains the goal-subgoal organization, variable
binding, and so forth. The deduction routine tells the execu-
tion routine which sentence must be verified and which sentence,
if the first trial fails, has to be verified next.

5.1 Goal Organization

The deduction method in our system takes a question Q as a
goal and tries to verify it by means of matching it with the
sentences stored in the network. If the trial fails, the deduc-
tion routine searches through the network for such sentences as
P » Q. Those sentences P's, if any, are considered as subgoals
to accomplish the previous goal. In the same manner, sub-subgoals
are produced to accomplish the subgoals. As the process
advances, many goals are produced hierarchically. An AND-OR
tree structure is used to remember the hierarchically organized
relationships among goals.

Subgoals are created in various cases.

a) 1If a goal sentence G can not be determined to be true
or false, subgoals are created by means of searching
through the network for the sentences which are ante-
cedents of G.

b) In the same case of a), the negations of consequences
of G are taken as subgoals. If they are proved to be
true, the sentence G is determined to be false.

c) If the matching between two parsed trees is incomplete,
subgoals to diminish the mismatches are created.

In addition to these cases, subgoals are also produced when
a goal is divided into several subgoals. For example,

-306-

"KARE WA KINBEN DE SHOJIKI DA" (He is diligent and honest.) is
divided into, "KARE WA KINBEN DA" (He is diligent.) and,
"KARE WA SHOJIKI DA" (He is honest).

The goals are tried one by one, and when there remains no
goal, the deduction process stops with a failure message. A
goal which has several subgoals will succeed or not, depending
upon whether the subgoals will succeed or not. A goal keeps
some information for itself. For example, it has the information
of whether it is an AND-type or an OR-type. Depth of goal shows
the depth between the top-goal (that is, a qguestion given by a
user) and the present goal. The depth of the top-goal is O and
the depth of the immediate subgoal is 1.

The deduction routine chooses a goal, the depth of which is
the smallest of all, and tells the execution routine to verify
it. The indicators such as KOTEI (positive assertion), HITEI
(negative assertion), MATCH (to be matched), and so forth show
the effects of the goals' results to be transferred to their
previous goals. KOTEI (HITEI) shows that if this goal succeeds,
the sentence corresponding to its previous goal is proved to be
true (false). The subgoals which are produced in order to
resolve the mismatch between two parsed trees have the indicator
MATCH.

5.2 Variable Binding

To use the law of substitution is one of the most important
abilities in this system. This is carried out by considering an
upper concept as a variable over its lower concepts. A word
behaves as a constant when it is a lower concept of another word,
and as a variable when it is an upper concept of another word.

We do not introduce unary predicates such as "human(x),"
“animal (x) ," which are usually used in the predicate calculus
system in order to restrict the range of variables.

We regard all words as variables which have their own domains
of values. We illustrate this by the following example.

(1) HITO GA KENKO NARA-BA HITO WA SEIKO SURUR
(If a man is healthy, the man will succeed.)

(Q) Smith WA SEIKO SURU KA?
{(Will Smith succeed?)

The system searches through the network to find out the sentence
(1) which is expected to answer the given question. The matching
between the consequent part of (1) and the question fails at
first. The cause of mismatch is N difference between "Smith"

and "HITO (man)." N routine is called to find out that HITO is
an upper concept of Smith, which is proved by the information
"Smith -is a man" in the network. Thus a subgoal, the ante-
cedent of (1), in which HITO is replaced by Smith is produced,

-307-

that is, "Is Smith healthy?" As the deduction process proceeds,
several such bind conditions are produced. Each goal must be
tried taking into consideration the related bind conditions
produced during the former process.

The deduction routine has a stack to remember these condi-
tions. This stack is illustrated in Figure 10. Each goal has
a pointer to this stack and the routine can retrieve the corre-
sponding bind condition of a goal. If a goal fails, then the
bind condition generated during the trial of the goal is aban-
doned. On the other hand, if a goal succeeds, its condition
is memorized for use in the succeeding process.

Ill |

(man Jim)

—3
m

(man John)

Ly (animal Jim)

(animal John)

Figure 10. Stack for variable binding.

6. Comparison with the Systems Using Predicate Calculus

Those systems which use predicate calculus translate the
input into a predicate calculus formula, store it in the data
base, and use a universal method of deduction such as the reso-
lution method. 1In those systems, common subexpressions appearing
in different sentences are stored as many times as thev appear
in different logical formulas. This is not efficient. 1In our
system, the same subexpressions are stored only once, and their
relations to the other parts of sentences are stored by links.
So these interrelationships can be utilized in the deduction
process. Especially when the system deals with a great amount
of data and only a relatively small portion of the data has a
direct relation to the given question, the guick access to these
related expressions is very important in the deduction process.

Which sentences or formulas are available for the current
problem needs to be recognized easily, and to do this, a well-
organized data base is necessary. It is tempting to try to
incorporate the use of property lists to speed up resolution.
For example, one may find it useful for each object symbol c
to have access to a chained list of all literals or clauses
where ¢ occurs.

-308-

A difficult but more important problem is to recognize how
a meaningful unit is related to another unit. It is desirable
for the data base to contain information about the interrelation-
ships among the meaningful units. In our system, the deduction
procedure can retrieve from a node those sentences which have
some relation to the sentence corresponding to the node.

Another is that disambiguation is done not only in the
parsing phase but also in the deduction phase. For example,
the sentence "A NO B WA..." may have more than four different

structures in deeper levels, according to the words A and B.
That is:

KARE NO KANE the money which he has
(he) (money)

KYOSHI NO KARE he, who is a teacher
(teacher) (he)

KYONEN NO SENYO the election which was taken place
(last {(election) last year
year)

The parsing and translation program in predicate-calculus system
must choose one of these structures at the input and parsing
stage because predicate-calculus formulas never permit ambiguous
expressions. But it is almost impossible to classify each word
into a certain semantic category, and to decide which of the
above structures is proper to the sentence according to the
information that the word A belongs to a certain category and

B belongs to another.

In our system, "A NO B WA ..." is stored as shown in

Figure 11. The ambiguity is left in its structure. The matching
routine transforms the sentence into several different structures
by using grammatical knowledge, and tries to match them one by
one against the object structure. All of them except one correct
structure may not match against it. Thus, ambiguous structures
are resolved during the deduction process. This is also one

of the excellent features of using semantic structures of sen-

tences which permit ambiguous structures as an internal data
representation.

7. Examples

Example 1

Input sentences:

HITO WA KENKO DE KINBEN NARA SEIKO SURU.

(If a man is healthy and diligent, the man will succeed.)
HITO WA sportsman NARA KENKO DESU.

(If a man is a sportsman, the man is healthy.)

Jim WA sportsman DESU.

(Jim is a sportsman.)

-309-

kane (money) kane (money)
smod \\\
ho motsu \have)
7
kare (he) sub obj/
kane (money)
kare (he)
A1)
kare (he) kare (he)
no smogz’
/ .
sub/ 1mp;¥
: ! obj
kyoshi (teacher) kare (he)]
kyoshi
(teacher)
A2)
senkyo (election) senkyo (election)
e
o
no ’ aru (exist)
!
sub/ time
kyonen (last year) !
kyonen
senkyo (last year)
(election)
A3)
A
no
B
B)

Figure 11. A) Several possible deep structures
for "A no B."
A1) the money which he has.
A2) he, who is a teacher.
A3) the election which took place
last year.
B) 1Internal representation in our system,

(11

-310-

Jim WA KINBEN DESU.

(Jim is diligent.)

Jim WA KASHIKOI HITO DESU.
(Jim is a clever man.)
Question given to the computer
Jim WA SEIKO SHIMASU KA?

(Will Jim succeed?)

Response from the computer
Jim WA KENKO DE KINBEN KA? (Is Jim healthy and diligent?)

Jim WA KENKO KA (Is Jim healthy?)

Jim WA sportsman KA? (Is Jim a sportsman?)
Jim WA KINBEN KA? (Is Jim diligent?)

HAI, Jim WA SEIKO SURU. (Yes, Jim will succeed.)

These outputs except the last are the intermediate ones
from the computer, to which no answers are necessary.

Example 2

Input sentences

Jim was killed by John.

A man-A who killed a man-B is punished.
Jim is a man.

John is a man.

Question given to the computer
Is John punished?

Responses from the computer
Did John kill a man-B?

Yes, John is punished.

Example 3
Input sentences

Whale bears a child.

An animal which bears a child is a mammal.
If an animal is a mammal, the animal is a vertebrate.
A vertebrate has a backbone.

Question given to the computer

Has whale a backbone?

Responses from the computer

Is whale a vertebrate?

Is whale a mammal?

Does whale bear a child?

Yes, whale has a backbone.

In these examples, intermediate responses are to show the
deduction processes, which do not need answers from a man.

References

Quillian, M.R. "The Teachable Language Comprehender; A
Simulation Program and Theory of Language." CACM, 12,
456, 1972.

[2]

[3]

[4]

-311-

Raphael, B. and, Green, C. "The Use of Theorem Proving

Techniques in Question Answering System." JACM,
169, 1968.
Sandewall, E.J. "Formal Methods in the Design of Question-
Answering System." J. Art. Inter., 237, 1972.
Shapiro, S.C. "A Net Structure for Semantic Information
Storage, Deduction and Retrieval." AI Conf., 71,

512, 1971.

-312-

The TGS-4000 Translator - Generator System

D.D. Alexandrov

1. Introduction

The implementation of a compiler is a task that involves
a considerable amount of effort. A large number of programing
systems called compiler-compilers (or translator-generators)
have been developed in an attempt to make the production of
compilers a less onerous task. An overall view of techniques
used in such systems is given by Feldman and Gries [3]; that
report also contains a large number of reférences.

A compiler-compiler can be considered as a programing system
in which a source program is the formal description of a language
and the object program is the translator for that language. As
such, the source program for a compiler-compiler is merely a
formalism for describing a translator. Consequently, the source
program must contain explicitly or implicitly a description of
the lexical analyzer, the syntactic analyzer, the code generator
and/or interpreter, and the various other phases of the transla-
tor to be constructed. The translator-generator is a tool
providing an environment in which these descriptions can be
easily written down.

This paper presents a translator-generator system for

RC-4000 computer, producing syntax-directed translators for
context-free languages.

2. Architecture of the Generator

Figure 1 represents the striucture of the TGS-4000 system.

fource text for the translator TM is the formal definition of

the syntax of a language L in terms of metasyntactic language vy,
and the definition of the semantics in terms of metasemantic
language gk,

The translator T& transforms this text into machine-oriented

tables {1}, representing the syntax of the language in compact
form, and text {A} of syntax-directed translator for the language
L in terms of the programing language). Futhermore, the compiler

T\ translates the text {A} into object code--translator TL for

The language L, driven by the tables {711}.

-313-

{L}
|

{v3 {1} » e

{c™} () T

Figure 1.

The scheme above is implemented by the author on the compu-
ter RC-4000 [5]. 1In this implementation, the metasyntactic
language y is a machine-oriented version of the Backus-Naur Form
(BNF) [9); the metasemantic language o is an extension of the
language ALGOL-6_ [4]; the intermediate language A is ALGOL-6;

the translator Té is written on ALGOL-6 and FP-language [7]; and,

for compiler T,, the highly efficient Regnecentralen's ALGOL-6
compiler is used. Beginning with a translator TM written by hand,

the system was boot-strapped onto a more efficient and powerful
one.

3. TGS-4000 Metalanguage

The metalanguage for defining languages in the system
TGS—-4000 will be described by means of a modified Backus nota-
tion. The new metalanguage element introduced is:

< string 1 >] b

string n ~] a

The meaning is that any sequence of these strings may appear
at this place in the construction; a and b give the minimum and
the maximum number of strings in the sequence. Where either
index is represented by a variable, the domain of the variable
is all metaexpressions. So,

-314-

< language definition > :: =
< any sequence not containing a >
< syntax definition >
< semantics definition > .
The metalanguage is a concatenation of two languages--meta-
syntactic and metasemantics languages. This permits the indepen-

dent use of the two languages when there is a need to change only
the syntax or the semantics for a given language.

3.1 Metasyntactic Language

In order to make BNF sentences suitable for input to a
computer program, their form is slightly modified.

3.1.1 Syntax

<syntax definition> ::= @ syntax: < list of rules >
nrules

< list of rules > ::= | < rule > |1

< rule > ::= < left-hand part > = < right-hand part >.

A

left-hand part > ::= <identifier >

A

right-hand part > ::= < part of right-hand > !
< right-hand part > ! < part of right-hand >

< part of right-hand > ::= < element > 1!
<part of right-hand> <element>

<element> ::= <identifier> !
<basic symbol> !
<unsigned number>

<basic symbol> ::= <string>
3.1.2. Semantics

The basic symbols (=) and (!) stand, respectively, for the
metasymbols :: = and 1 of the strict BNF; < identifier >,
< string >, <unsigned number >, ard < basic symbol > have their
usual meaning; the first three are considered here as terminal
symbols. The characters SP (space) and NL (new line) may be
inserted freely everywhere except inside terminal symbols. Text
between two symbols is ignored.

3.2 Metasemantics Language

3.2.1 sSyntax

< semantics definition > :: =

-315-

2 environment: < environment description >
@ translator: < translator description >
?d interpreter: < interpreter description >

< environment description > ::=

< statement > @ N

< block head >
L< empty > 0 0

< translator description > 1 = [< statement >] Nrules

1
< compound tail > N
L 0

< interpreter description > ::

Here Nrules is the number of syntax rules in the syntax defini-
tion. The definitions above must be considered in the context
of the description of the language ALGOL-6.

3.2.2 Semantics

The environment description contains declarations of simple
variables, array variables, switches, procedures, etc., which
are used in the translation and/or interpretation phase. It
may also contain statements describing some initial computations,
preprocessing, communications with the operating system, and
other processes.

Every statement in the translator description corresponds
to one rule only in the syntax definition. It represents the
step, which is executed in the parsing phase, if the correspond-
ing syntactical unit is recognized. This step may be an immediate
interpretation (one-pass translator) or a translation into an
internal language (multipass translator).

The interpreter description may contain statements defining
next passes of the translator and the termination of the transla-
tion.

Quantities, declared in the environment description, may
be used in the corresponding blocks. In all phases of the
translator special TGS-4000 quantities, standard identifiers in
ALGOL-6 language, library procedures, and the RC-4000 list-proces-
sing system [1] may be used.

4, Nucleus of the TGS-4000 Generator

The translator Tﬁ proceeds as follows:

a) translates {y} into machine-oriented form:

- constructs the terminal Vt and nonterminal Vn
vocabulary of the language L;

-316-

- codes the syntax rules for the langquage L into
table t;

b) computes the precedence matrix M for the language L,
containing the relations <. , = , .> and - [2];

¢) if the grammar of L is not in precedence form, then
transforms t to precedence form [8] and continues from
step [b);

d) constructs an inverted indexed array I with pointers
to t;

e) transfers the arrays't, I, Vt, and M (the set {1} in
an indexed sequential file, which is common for all
translators, generated by TGS-4000 system. The set is
saved under key equal to the name of the defined language,
so an old version is deleted;

f) translates {ox} into {A}.

The generated syntax-driven translator {A} has the following
structure:

< operating environment description >

< environment description >

< parsing phase >

< interpreter description >

< terminating phase > ,

< operating environment description > :: = | < block head >]3
el

< terminating phase > :: = [< compound tail >]3
3
The words used for metalinguistic variables not yet defined
in the above definitions describe their nature. First-order
approximation of the algorithm, implemented in the < parsing
phase > is as follows:

s8(0): = '9'; i: = 0; k: = 1;
while p(k) # '8' do
begin i: = j: = i + 1; s(i): = p(k); k: = X + 1;

while s(i) .> p(k) do
begin while s(j=-1) = s(j) do j:=
s(j): = leftpart (s(j),...,s(i
case rule no of
begin <translator description> end case;
end .>;
end of the parsing phase .

i-1:
), rule_no);

-317-

Here p(1},...,p(n) is the original sentence; k is the index

of the last symbol scanned; s(1),...,s(i) is stack; s(j},...,s(i)
is the reducible substring; ! @ is initializing and terminating
the process; to any symbol S € Vt U Vn the relations @ <. S §

S .> @ and p(n + 1) = '3' are true.

The function leftpart reduces the metaexpression s(j),...s(i)
to the corresponding metavariable and returns the serial number
(rule_no) of the syntactical rule

U ::: =5(3),.0.,s8(i) R

In fact, the processes of lexicographical analysis and
parsing are performed alternatively. The lexical procedure reads
a lexicographical unit and delivers a value for it in s(k). 1In
the case of identifiers, strings, and unsigned numbers, it stores
a code in stack named data, which is parallel to the stack s.

5. Conclusion

The system TGS-4000 is now being used in the design and
implementation of special purpose languages with context-free
grammars. The generator allows both interactive and batch pro-
cessing of language definitions defining both interactive and
batch-processing languages.

In the Appendix, we show, through a simple example, the
utility of TGS-4000 in producing an interpreter for a language
subset of ALGOL-60, and an on-line execution of the produced inter-
preter. The translator generator is used also to implement
FORMAL--an interactive lanquage designed by the author for doing
formal algebraic manipulations. This language has a syntax
similar to the syntax of BASIC [6], 52 basic symbols and 36 meta-
variables in its vocabulary, 90 syntax rules, and semantic defin-
itions containing about 100,000 characters. TGS-4000 generates
the corresponding translator in three minutes on an RC-4000

computer, running with 32 X core storage and software-implemented
virtual storage.

The using of TGS-4000 metalanguage permits an approach more
synthetic for the translator's writing, makes possible the crea-
tion of developing languages, tailor-made to the up-to-date or
future needs of the users.

References

[1] Alexandrov, D. List-Processing System for RC-4000 Computer.
Proc. of the 7th May Conference, Sofia, Vol. l, 1974,

[2] Colmerauer, A. "Total Precedence Relations." Journal ACM,
17, 14-30, 1970.

[3]

(4]

[5]

(61

{71

(8]

{91

-318-

Feldman, J., and D. Cries. "“Translator Writing Systems."
Comm. ACM, 11, No.2, 1968.

Hansen, H., ed. ALGOL-6 User's Manual. RCSL: 31-d322,
A/S Regnecentralen. Copenhagen, 1974,

Hansen, P. RC-4000 Reference Manual. RCSL: 51-D1,
A/S Regnecentralen. Copenhagen, 1969.

Kemeny, J. and T. Kurtz. BASIC Programming. New York,
Wiley, 1971.

Lauesen, S., ed. File Processor User's Manual. A/S
Regnecentralen. Copenhagen, 1969.

Learner, A., and A. Lim. '"A Note on Transforming Context-
Free Grammars to Wirth-Weber Precedence Form." Computer
Journal, 13, 142-144, 1970.

Naur, P., ed. Revised Report on the Algorithmic Language
ALGOL-60. Comm. ACM, _6_, 1-17, 1963.

-319-

Appendix
Contents of File "Simpledef”

Simple Precedence Structure Programing Language "Simple"

The meaning of the language is explained in terms of an
array of variables, called vs (value stack), which has to be
understood as being associated with the array s - stack, used in
the parsing algorithm. A second set of variables is called ns
(name stack). It serves to represent a second value of certain
symbols, which can be considered as a name.

Formal definition of the language "simple"
? syntax:

program = block '.' .
block = 'begin' body ‘'end' .
body = body1l .
body1 = declar ';' body1 ! statm list .
declar = 'real' 'identifier' .7
statm list = statement ! statm list ';' statement .
statement = variable ':=' expr !
block .
variable = 'identifier'
expr = expr '+' term ! 'permitted arithmetic expressions'
expr '-' term !
term = term '*' factor ! term '/' factor ! factor .
factor = variable ! '('expr')' ! ‘number' .

@ environment:
begin array vs(1:100);
integer array ns(1:100);
write(out,<:'simple' ready <10>: :> ;
setposition(out,0,0);
a translator:

’ !

11: go to exit; 12: ; 13: ; 14; ;

15: ;
16: begin ns(j): = data(i); vs(j): = 0 end declaration;
17: ; 18: ;
19: begin ji: = vs(j); vs(j1): = vs(i);
write (out, string dictionary(ns(j1)),<: = :>,vs(i),

<:<10>::>);
setpostion (out,0,0);
end assignment statement;
110: ;

-320-

111: begin for i 1: = j - 1 step -1 until 1 do
if ns(il) = data(j) then go_to founded;
error (<:undeclared variable:>, exit);
founded: wvs(j): = i1;
end variable;

112: expr: vs(j): = vs(j) + vs(i); vs(j): = vs(j) - vs(i);
vs(j): = -vs(i);
116: term: vs(j): = vs(j)*vs(i); vs(j): = vs{(j)/vs(i);
119: factor: wvs(j): = vs(vs(j)): vs(j): = vs(j+1);
vs(j): = number;

? interpreter:

exit: printtime (<:end of run .:>);
end ;

comment end of file simpledef:

Generating and Execution of Translator

for the Language "Simple"

* comment lines are prefixed by the character * .

* Generate an interpreter for the language "simple"!

* TIts definition is in file "simpledef”. No listing!
simple = tgs#000 simpledef list.no

tgs#4000 begin.
Number of basic symbols 15
Number of meta .symbols 11 + 2
Syntax-tables for the language *simple* are saved
in file *1ltables*.
OK, translator for *simple* language is ready.
tgs4000 end.

* Call the translator for the language "simple"

* User's lines are prefixed by a colon.
simple ;
"simple" ready

t begin real a; real b; a:=5;
a = 5.000

. a:=b;

a = 0.000

: a:=1/a+ 0.001;

a = 0.201

: begin real a; b:=a+314'-2 - a*a
b = 3.140

: end ; a:=5%¥10 + a + b

a = 53.311

: end .

end of run . CPU-time used: 0.12 sec.

-321-

Industrial Manipulators and Robots

Nicolay D. Naplatanoff

1. Introduction

The increasing want of highly gqualified workers and the
tendency toward a sharp rise in the productivity of labor of the
separate worker, intensifies the interest for the use of indus-
trial manipulators and robots. These objects of investigation
are gquite suitable for the application of the guestion-answering
systems (QASs).

It is our opinion that high-quality dialogue systems of the
type in question can be created, but there are also a number of
problems concerning their efficient use that need to be clarified.

In this connection, it is necessary to remember that it is
not possible to apply the modern means of automation to every
"0ld" technology. That is why the development of "objects," which
will require in the process of their development a highly organ-
ized control system with artificial intelligence, is guite an
urgent and expedient problem.

In this paper we briefly consider problems connected with
the creation of industrial manipulators with a simplified mechani-
cal control system on the basis of fluids.

At the Institute of Engineering Cybernetics (IEC) at the
Bulgarian Academy of Sciences, the first steps in the
synthesis and realization of two cycle manipulators have been
undertaken.

2. Manipulators of the Type "Faloma-IEC-01"

The manipulator carries out a cycle of the following motions:
vertical upwards, horizontal forwards, supply of one detail,
rotation to 90°’ horizontal backwards, vertical downwards, releas-
ing of the detail, return to the initial position.

The logical block-scheme provides the following regimes:

a) complete automatic cycle with the capabilities to change
the duration of the separate motion,

b) manual control.

-322-

The control is realized as a combinational lcgic network
with a program device. The program is recorded on a data tape
and is read by a pneumatic reading device. The current impulse
is fed by a pneumatic current generator with frequency 2Hz.

The logic block is realized by pneumatic membrane elements of
the type "Dreloba" (GDR).

The manipulator scheme investigates the turn to fluidic

elements of the type "Faloma," designed by the Institute of
Engineering Cybernetics.

3. Manipulators of the Type "Faloma-IES-05"

The manipulator has five grippers which act simultaneously.
The cycle consists of the following motions: horizontal for- o
wards, catching of five details simultaneously, rotation to 457,
horizontal to the right, slackening of the details, horizontal
backwards, horizontal to the left.

The working regimes are three:

a) single automatic cycle,

b) continuous automatic cycle return, and

c) manual control.

The following block systems are stipulated:

a) stop--stopping at closed position

b) zero--automatic return to the initial position.

The control system is a synchronous automaton with a period
frequency 0,5Hz and consists of the following main blocks:

a) supplying,

b) a generzating device for time impulses,

c) memory block,

d) amplifier, and

e) servomechanism.

The system is organized by fluidic logic modules of the
type "Faloma" designed at the IEC. The total number of elements
is 149. Forty-nine of them are pneumatic, fluidic, logic

elements, while the other 100 are interfaces and connective ele-
ments.

-323-

4, Development Tendencies

The electronics give great possibilities for the realization
of all main blocks with the exception of servo-organs.

However, the using of the pneumatic and hydraulic servo-
mechanisms makes imperative the introducing of a second kind of
energy in the manipulator system and requires the necessary elec-
trofluidic transformers and amplifiers.

This complication is the reason for designing entirely
fluidic systems using fluidic logic modules and interfaces.

A comparative evaluation is represented in the table given
below.

Table 1.
Number Type of the Manipulator (Robot) Character--"nature"
of the blocks
1. Manipulator with a cycle of All blocks are
action (nonintelligent robot pneumatic

or industrial robot)

2. Manipulators with cyclic action Input block-computer
and possibilities for readjust- Transforming block-
ment at the time of their electro-pneumatic
action (intelligent robot) Servoblock-pneumatic

3. Robots with analogous action

with an adaptive behavior;
recognizing, searching, with
space action (superintelligent
robot)

These tendencies determine for us an interesting and neces-
sary scientific trend, namely: synthesis of "intelligent"”
systems of manipulator and robot control, including also dialogue
systems of the type "questions-answers"™ in other modifiable
"question-answering” systems.

In this direction, we look forward to coworking with IIASA
on the examined problems.

-324-

APPENDIX 1

Some Comments on AI Research Coinformation

D. Dubrovsky

1. Introduction

The participants of the workshop would like to point out
that QAS development is only one part of AI research being con-
ducted in the different countries.

There are important and interesting results also in AI
research areas connected with psychology, linguistics, neurocy-
bernetics, automatic programing, robotics, symbol manipulation,
pedagogics, etc. (For example, see the following section.) It
is very desirable that the different forms of AI research being
conducted by IIASA member countries should be coinformed to some
extent by IIASA research policy.

Coinformation in the AI field could become a framework for
the system analysis of AI research as a complex "R & D system."
In that case, IISA could be a point of linkage between national
research groups cooperating on different topics of an AI field,
while the work could be done by scientists of national organ-
izations who were interested in it.

Now, the workshop initiates that work and the participants

hope that there will be fruitful results in that direction in the
near future.

2. Appendix to AI Research Coinformation

2.1 On Social Prelevant Applications of AI

QAS's are an application of AI with clear general relevance
for social systems as far as storage and retrieval operations in
large data bases are concerned.

There is a great tendency to consider that QAS and robotics
are the only two socially relevant applications of AI. It is
important to refute this opinion.

One of the source fields of semantic information processing
was the Computer Aided Instruction (CAI) Project from ARPA at
Bolt, Beranek and Newman (BBN) in Cambridge, Massachusetts. A

-325-

second pedagogical application of AI was the research work of
Professor Seymour Pappert, AI-Laboratory, MIT, Cambridge, on
"Teaching Children to be Mathematicians and not Teaching Them
about Mathematics." A third application on pedagogics was
suggested by Professor Quillian (at both BBN and AI-Lab, MIT) in
his paper, "The Computerized Piaget cr Psychology from the Point
of View of a Radical Computerist." In this paper, the natural
mathematical ability and performance of little children (pattern
recognition, generative grammar) is studied in order to teach
children at school another kind of mathematics even before they
begin to learn to read. The work of Messrs. Chomsky, Linguistics
Department, MIT, Cambridge, on formal models of language acguisi-
tion by children is also related to this field.

A further application in this sense is to simulate the
cognitive development stages of children's brains in order to
provide children from underdeveloped countries or from underpriv-
ileged strata with an early compensatory training in mathematics
and linguistics, and thereby reduce the cognitive deprivation
effects on large parts of humanity.

A project in this area would allow IIASA to obtain financial
support from UNESCO in Paris and other UN agencies involved in a
world-wide effort to combat illiteracy and cognitive deprivation
among more than half of the world population. A theoretical pro-
ject at the Paedagogische Hochschule in West Berlin is actually
engaged in this subject, (conducted by Prof. Alex Baumgartner
and myself) with special regard to a mathematical curriculum for
preelementary schools. 1In this project, the simulation of affec-
tive development stages of children (as described by Rene Spitz)
is linked interactively with the simulation of cognitive develop-
ment stages (as described by Piaget and others).

An experimental project is being conducted at an elementary
special school for children of Spanish immigrant workers at
Frankfurt-Main, FRG, together with psychologist Professor Leber,
Department of Special Paedagogics (for deviate behavior) at
Frankfurt University. The results of this project could be util-
ized for a project proposal to be sent to the involved UN agencies.

An important aspect of social behavior between nations and
other human collectives is the problem of peace and conflict.
Various important institutes in the world are engaged in empirical
data collecting and the interpretation of such problems as the
arms race, racial or national hatred, social struggle, counter-
insurgency, military-industrial complexes, raw material embargoes,
etc.

The Max-Planck-Institute at Starnberg, FRG, the Nobel
Institute of Peace Research at Stockholm, the Governmental US
Peace Research Agency, the Institute of Strategic Studies in the
UK are among others involved in these problems.

Professor Hiel de Soola Pool and Professor Nazli Chouckri
both from MIT, Cambridge, and Professor Carl W. Deutsch, Harvard

-326-

University, Cambridge, were engaged for some years in formalizing
nongaming approaches for a computer simulation of international
conflicts. Artificial intelligence approaches for the represen-
tation of the subjective attutdes of politicians and governmental
and nongovernmental organizations in international relations

were developed among others by Professor Matthew Bonham, American
University, Washington; Professor Howard Alker, MIT, Cambridge;
and myself, at the Frankfurt University. I have made an arrange-
ment with Professor Bonham to link our simulation algorithms to

a complex system in order to simulate historical processes as
sequences of discrete political events synchronized with socio-
economic semicontinuous processes.

Dr. Raul Espejo, IIASA Project on Large Organizations,
worked together with Stafford Beer (see his book: Designing
Freedom), on the theory of Maturana (Urbana) and Varela (Stanford)
on self-repairing (autopoietic) automatons, applicable to the
behavior of social systems.

This could be improved as the beginning of an IIASA project
on Peace and Conflict Simulation Modeling with the financial
support of some important international or national agencies and
foundations. It is presumable that such a project could provide
for ITIASA an international resonance as the project "Limits to
Growth" provided fcr the Club of Rome, and have a broad public
relations effect for the Laxenburg organization.

-327-

APPENDIX 2

A Word of Caution

S.D. Isard

Abstract

In planning a natural language information retrieval system,
it is tempting to think in terms of two relatively independent
components: one which knows about language and is able to trans-
late sentences, regardless of their content, into some internal
semantic representation, and another which can manipulate semantic
representations in order to produce answers to guestions. How-
ever, I feel that one must give serious consideration to the fact
that in successful artificial intelligence projects of the past
few years, not only have language and reasoning components been
blended together, but the design of the whole system has been
heavily influenced by the particular subject matter with which it
is intended to deal. The main reason for this would appear to
be that knowledge of language and reasoning alone are not suffi-
cient to determine either (a) what constitutes a useful answer to
a given question, or (b) how to look for it in a sensible way.

Another important point is that neither the first order,
predicate calculus nor the other forms of semantic representation
so far proposed offer truly satisfactory ways of representing the
information conveyed in natural lanquage by tense, aspect, sub-
junctive mood, modal verbs, intentional adjectives, and a variety
of other sorts of words and constructions. Each artificial
intelligence system tends to cope with such phenomena in a fashion
appropriate to the particular questions with which it is designed
to deal, or to otherwise ignore them whenever possible.

"Why" and "how" questions constitute an especially tricky
area where neither predicate calculus nor semantic nets offer
any straightforward hints on how to proceed, and where the problem
of what will serve as an answer is dependent both on the subject
matter under discussion and the state of knowledge of the ques-
tioner. It is interesting to compare the ways in which the pro-
grams of Winograd, Stansfield, and Scragg adopt different tactics
appropriate to their different settings in trying to answer such
questions.

The moral, I think, is that one will inevitably fail to
capture the full subtlety of natural language, and that practical
success depends largely on making the right compromises. 1In

-328-

particular, the nature of these compromises should be determined
primarily by the sort of information to be stored and the kinds of
questions you want to ask and answers you want to receive. 1If,
for instance, you are dealing with a static body of facts, such

as a table of atomic weights, you may be able to largely ignore
the semantics of tenses, aspects, and modal verbs; but if you want
to discuss the effects of various processes on a situation which
change over time, such as the world economv, then you cannot.

It is these considerations which should determine the choice of
semantic representation and the way in which natural language
sentences are translated into it.

-329-

Conference on Artificial Intelligence:

Question-Answering Systems

AGENDA

June 23-25, 1975

Wodak Conference Room
Schloss Laxenburg

Chairman: Professor F. Klix

Monday, June 23

9:30 QAS Purposes and General Structure

Introduction to the Conference

DILOS - Dialog System for Informa-
tion Retrieval, Computation and
Logical Inference

10:45 Some Comments on Efficient Question-
Answering Systems

Language Analysis and Language
Representation for QAS

Partitioned Semantic Networks for
Question-Answering Systems

14:00 The Choice of Semantic Representa-
tion in a QAS

Analysis of Japanese Sentences

by Using Semantic and Contextual
Information

Tuesday, June 24

9:00 Parsing in QAS

Input Processing in a German
Language Question-Answering
System

F.

D.

Klix

Posvelov

Nishino

Hendrix

Simon

Nagao

Paxton

Lehmann

10:45

13:30

15:45

Wednesday,

-330-

Representing and Deducing Information

A Formal Framework for a Unitary
Approach to the Theory of Problem
Solving

Logic and Interpreters

Learning Procedures and Simulation
Aspects

Artificial Learning Systems and
QAS

A Computer Interview Procedure
Which Reconstructs Generative
Semantic Structures of Human
Beings Using Modal Sets

Information Retrieval

Cognitive Information Retrieval
by Goal-Oriented Languages

Statistical and Information

Theoretical Approach to the
Retrieval Systems

June 25

9:00

10:45

13:00

Implementation of QAS and Programming

Languages

An Experimental Environment for
the Implementation of Question-
Answering Systems

PLATON - A New Programming Language
for Natural Language Analysis

The TGS-4000 Translator - Generator
System

Special Application Aspects

Some Problems of Industrial
Manipulators

Somalvico

Pagello

Andrew

Klaczko-
Ryndziun

Gini

Benczur

Nees

Nagao

Alexandrov

Naplatanoff

-331-

LIST OF PARTICIPANTS

Chairman

Prof. Dr.

F. Klix

Academy of Sciences of the GDR
Zentralinstitut filir Kybernetik und Informationsprozesse
Rudower Chaussee 5
1199 Berlin

Austria

W. Rhomberg

Technische Hochschule Wien
Siebenbrunnenplatz 6/9
1050 Wien

E. Stohr

Hochschule fiir Bildungswissen-
schaften

Worthersee Siduferstrasse

Klagenfurt

Bulgaria

Nicolay D. Naplatanoff

Institute of Engineering
Cybernetics at the Bulgarian
Academy of Sciences

"Geo Milev" Block IV

Ssofia 13

Federal Republic of Germany

Dr. Georg Nees
Siemens A.G.

E-549
Freyeslebenstrasse
852 Erlangen

Salomon Klaczko-Ryndziun

Seminar fiir Kybernetick

Swiss Federal Institute of
Technology - ETH

CH-8006 Zurich, Switzerland

France

Prof. J.C. Simon
Universite de Paris
Institut de Programmation
Place Jussieu

75005 Paris

German Democratic Republic

Prof. Dr. F. Klix (Chairman)

lungary

Dr. Jozsef Pergel

Computer and Automation
Institute

Hungarian Academy of Sciences

XI Kende utca. 13-17

1502 Budapest

Andras Benczur
(address as above)

L. Kiraly
(address as above)

Italy

Prof. Marco Somalvico

Milan Polytechnic

Artificial Intelligence
Project

MP-AI Project

Politecnico di Milano

Piazza Leonardo da Vinci 32

20133 Milano

-332-

Dr. Giuseppina Gini

Milan Polytechnic

Artificial Intelligence
Project

MP-AI Project

Politecnico di Milano

Piazza Leonardo da Vinci 32

20133 Milano

Dr. Maria Gini
(address as above)

Japan

Prof. Makoto Nagao

Kyoto University

Department of Electrical
Engineering

Kyoto

Dr. Hiroji Nishino
Electrotechnical Laboratory
2-6-1, Nagato-cho
Chiyoda-ku

Tokyo

Poland

Dr. Jozef Maronski

Institute for Organization
Management and Control Science

K.R.N. 55

00-818 Warsaw

United Kingdom

Dr. A.M. Andrew

University of Reading

Department of Engineering
and Cybernetics

Whiteknights

Reading

Stephen D. Isard

The University of Sussex

Laboratory of Experimental
Psychology

Brighton

Gary G. Hendrix

Stanford Research Institute
Artificial Intelligence Center
333 Ravenswood

Menlo Prk, California 94025
William H. Paxton

(address as above)

U.S5.5.R.

V.M. Briabrin

Computing Center of the
Academy of Sciences

C/-State Committee for
Science and Technology

11 Gorky Street

Hoscow

D.A. Pospelov
(address as above)

Dr. G. Fomin
(address as above)

Dr. Kuzin
(address as above)

Dr. D. Dubrovsky
(address as above)

