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Simple Equations in Quadriform Variables

Wm. Orchard-Hays

Polynomials of First and SecondDegree

The general noncommutativityof quadriforms forces one to

changehis interpretationof roots of a polynomial. Both a

linear and a quadratic equationmake this clear. For example,

one must distinguish between

ax = b

and

xa = b

If lal 2
> 0, then the solutions to these are

-1x = a b

and

-1
x = ba

respectively.

Turning to a quadratic,

siderably more complicated.

tion to

2ax + bx + c = 0

the situation quickly becomescon-

The familiar formula for the solu-

dependsheavily on commutativity, in particular, that

Hence it does not carryover to general quadriforms.

let us get rid of the leading coefficient and confine

tention to the simplified form

2x + bx + c = 0

bx = xb.

First,

our at-

We expect, in general, two roots, say u and v. Then the equa-

tion may be written

(x-u) (x-v) = 0

Expanding this, we get
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2x - (ux + xv) + uv = 0

Thus it appearsthat one is a "left root" and the other a "right

root" which doesn'tmake much sensesince how would either one

satisfy the equation alone.

Supposewe interpret the linear term in simplified form as

i (bx + xb)

If we do this, then the usual quadratic formula is valid since

one can "complete the square". Note that

1 2 2 1 1 2
(x + '2) = x + '2 (bx + xb) + '4 b

Using this,

2 1
x + '2 (bx + xb) + c = 0

becomes

(x + i b) = ｾ b
2

- c

or

Substitutingthis back in the quadraticwill prove its validity.

Using the x derived:
2 1 2 2 - ＬＭｾＭＭＭＧＭ r'2----

x = q (b + b - LI c + (bIb - 4c + v'b - 4c b))

ｾ bx = ｾＨ｟｢Ｒ ± blb2 - 4c)

112 r2--
'2 xb = 4" (- b ± v'b· - 4c b)

Adding

211
x + 2(bx + xb) = 4(-4c) = -c

which verifies the formula for either choice of sign. Neither

need be consideredright or left. However, c is not their

product but i the sum of their products both ways.
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An example may clarify the situation. Let

b = ( 3 , 1 ,0, 1) = \-4 1]

G 2

I 12 1c 1
2Then b = 7, = 1 and

2b -4c =
9

2

1
5
0J

= (7,2,-4,6)

Let w = ＱｾＲ｟Ｔ｣Ｎ Then w; = ;(7+5) = 6, which is allowable.

(Note that Ib2-4c12 = 25). Then

1
Iwl

2 = 5w = =(6,1,-2,3)
16

In matrix form,

[i :]w =I: _1

= ｾｾｾＴ
-1 7

:])x ± 1.
-1 -2 16 1

Let x 1 be the value with + and x 2 the value with - Then

12--
16

1

2-1+-
16-

1

16
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2+_1 2-1--
/6 16

x 2x 1 =

1 +_1

16
and

1 + x 2x 1)'1(x1x 2 = c

For either value

2 ｾＨ｢Ｒ + 2 + (bw + wb»x = ...,

13 4"2
1 + wb)= + 4(bw

52 '1

1 ｾＨ｟｢Ｒ ± bw)2bx =

17 3
IT "2

± 1
= 3 5 4bw

2" -"4

1 ｾＨ｟｢Ｒ ± wb)2xb =

17 j'
if Ｍ ｾ

Ｍ ｾ ± 1= 3 Lfwb
-2

Hence

[2
:J

2 1 + xb)x + 2,(bx = = - c

-1

Therefore, at least for this example,



How shall we compute b?

mula for x,
1 .

w)x 1 = 2(-b +
1 - w)x 2 = 2{-b
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We developedthe outer members algebraicallyas well as arith-

metically. (In fact, we had already done so previously). How

does it happen that c is also a half-sum of transposedproducts?

One can see this from the quadratic formula. We have

1 w) 1 w)x 1 = 2"(-b + , x 2 = 2(-b -
so,

1 (b2 + bw - wb
2

x 1x 2 = - w )4"
l(b2 bw wb 2x 2x 1 = - + - w )4

1 + x 2x 1) l(b2 2
2(x1x 2 = - w )Ll

= .l(b2 - b2 + 4c) = c4

Now supposewe have two roots x 1 ' x 2 and wish to construct

the standardquadratic form. We already know that

1
c = 2(x1x 2 + x 2x 1)

Again referring to the quadratic for-

so

To verify,

2 1
x + 2(bx + xb) + c

Letting x = x 1 or x = x 2 clearly reducesthis to zero. There-

fore, b is computed just as with straight real or complex

numbers, since it is a sum, but is interpreteddifferently; c

is computeddifferently but reducesto a straight product if

x 1 and x 2 commute. Since, of course, it is still true that

2
(x - x 1) (x - x 2 ) = x - (x1x + xx 2) + x 1x 2 = 0 ,

this form is valid but there are two linear coefficients. The

following is also true:
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The standardform derived before is simply half the sum of these

two. Hence

It is clear that these half sums of products in oppositeorder

need a name; hence the following definition.

The Arithmetic Mean Product, or AMP, of two quadriform

numbers x and y is denotedby x § y and has the value

1
x § y = 2(xy + yx)

One may still ask whether the equation

x 2 + bx + C = 0

has roots. The only answer one can give is that it certainly

may but it is a very tedious job to find them. To clearly

distinguish cases,we will consider the standardform of quad-'

ratic to be

x 2 + b § x + C = 0

However, given the more general form with a coefficient of x 2,

further analysis is required. To begin with, if x 2 has a co-

efficient, say a, there is no more reasonfor a and x 2 to

commute than for band x. Hence, logically, the equation should

have the form

a § x 2 + b § x + C = 0

However, with this definition, there is no way to keep terms in

x segregatedinto right and left products, that is, x becomes

trapped. This is avoided with the definition

2a § x + a § (b § x) + a § c = 0

or, setting

f(x) = x 2 + b § x + C

then the above becomes

a § f (x) = 0

(1 )

Unfortunately, this seemsunnatural and is not the way coeffi-

cents usually arise. still, it is compatiblewith pure complex

or real numbers, for which the above form reducesto

2
ax + abx + ac = 0

or, setting b = ab, c = ac



-7-

2 - -ax + bx + C = 0

from which a can be factored out. Before declaring (1) the

standard,general form of a quadratic equation, we need to check

the expansionin terms of roots x 1 and x 2 " We can begin by

ignoring a and using AMP for the factors insteadof straight

multiplication. The following expansionsthen occur:

(x - x 1) § (x - x 2 ) 1 - x 1)(x- x ') (x - x 2 ) (x - x 1))= 2( (x +2

1 2 + x 1x 2 ) 2 x 2x + x 2x
1
)]= -[(x-xx - x x + (x - xX 1 -2 . 2 1

2 1 + x 2 )x + x(x1 + x 2)) 1 + x 2x 1)= x 2( (x 1 + 2(x1x 2

Now setting b = -(x1 + x 2), c = x 1 § x 2 ' the next to last line

above becomes

x 2 + ｾＨ｢ｸ + xb) + c = 0

Taking the AMP of this with a,

a § x 2 + ｾ｛ｩＨ｡Ｈ｢ｸ + xb) + (bx + xb)a)] + a § c = 0

It is clear that, if all numbers commute, this reducesto

ax2 + abx + ac = 0

Therefore, we take (1) to be the standardgeneral form and the

following to be the factor form:

(2)

Notice that (2) is entirely analogousto familiar factor forms

with AMP replacingmultiplication.

We may now also define an AMP form of linear equation, as

follows:

a § x = b

or

1
2(ax + xa) = b

Incredible as it seems, this is not solvable with any simple
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operations. In fact, one must solve a 4 x 4 systemof linear

equations. Since this operation is generally needed,we

proceedto define and describe it.

In [1], the products u v and v u were compared. Setting

u = a and v = x and taking half the sum, one gets; for compo-

nents of b:

aoxo + a 1x 1 - a2x 2 + a3x 3 = bo

a 1x O + aOx 1 = b 1

a2x
O + aOx 2 = b 2

a3xO + aOx 3 = b 3

Putting this in matrix-vector form (in real numbers):

{XC x 1 x 2

aO a 1 -a2

a1 aO

a2 aO

a3

=

The determinantis ｡ ｾ • lal 2 • Hence, for a solution, a must be

allowable, nonsingular, and here a nonzero leading component.

If theseconditions are met, we can multiply the last three rows

by a 1/aO' -a2/aO' a3/aO' respectively, and subtract them from

the top row. This gives:

{xc x 1
-
ｾ 0

ao
a1 aO

a2

a3

o o

=
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where

He can now read off the values of x:

aObO a*bx =

ｾ
=

ｾ0
(see below)

x, =

tve call this operation the extraction of b by a and denote it by

x = b/a

It is the analogueof division correspondingto M1P. We never

use this notation for multiplication by a reciprocal which is

either a-1b or ba-1 •

It should be noted that, if a § b = c, then c/a = b may be

possiblewhile c/b is not defined.

It is also useful to have a name for the quantity aobo
above. We call this the cross value and denote it by

Hence,

a * a = lal
2

.

In the complex subset, this is equivalent to multiplication of

a complex number by its conjugate. We may also write the linear

AMP equation in terms of its root, say x
1

• Then

a § (x - x 1) = 0

or

a § x = a § x
1

= b
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To illustrate the solution x = b/a to the equation a § x = b,

let

-4

Ja = (3,1,0,1) =

1

8

-:]b = (4,4,3,1) =

4

Then

lal 2 = 7 a * b = 7

Hence

a*b 1xo =
ｾ］

4-1 1x 1 = -3- =

3-0 1x
2

= -3- =

1-1 0x 3 = -3- =

or
2 -1

x = (1,1,1,0) =

1 0-
Then, to verify,

r: -41ax =
-1

-7

]xa =
4-

1
2(ax + xa) =

4
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Cubic Equations

Supposewe have a cubic equation in factor form with lead-

ing coefficient of unity. Taking a clue from quadratics,we

tentatively write this as

(x - x 1) § (x - x 2 ) § (x - x
3

) = 0

We first need to ascertainthe meaning of two ｾ Ｑ ｐ ｳ which are not

nested. Let a,b,c be any three quadriforms. Then, one inter-

pretation is:

1a § b § c = 2(ab + ba)§ c

1
= 4(abc + bac + cab + cba)

If we multiply the last pair first,

a § b § c = a § ｾＨ｢ｃ + cb)

1
= 4(abc + acb + bca + cba)

These are not the same since, of the six permutationsof a,b,c

only abc and cba appear in both. In other words AHPs are not

associative. On the other hand if we attempt to nest the AMPs,

then we must give some preferenceto the numbers. None of these

situations is satisfactory.

If we write the general equation in fully nested form, we get

3 2x + b § (x + C § (x + d)) = 0

or

x 3 + b § (x2 + c § x + C § d) = 0

which looks like x 3 followed by a full quadratic, that is,

factoring the quadratic for two roots, x 1 and x
2

'

x 3 + b § [(x - x 1) § (x - x 2 )] = 0

or

Then

or

, c § d = x 1 § x,.,
<..
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However, there are two troubles with this. First, we have

selectedtwo roots for special treatment; second, the x 3 term

seems unconnectedand, in any event, we would have to arbi-

trarily assign an order of multiplication of the roots.

If we use straight multiplication of the factors, we get

a form which satisfieseach root. Thus, after expandingand

collecting terms,

becomes

3 2 2
x -(x1x + xx2x + x x 3 ) + (x 1x 2x + x 1xx3 + XX 2X 3 ) - x 1x 2x

3
=0

It is readily seen that x 1 ' x 2 and x 3 all satisfy this equation.

But it is also obvious that the roots have received arbitrary

treatment. Hence we conclude that there is no practical and

viable form for general polynomials of degreehigher than the

second.

Cubic and Higher, and Fractional, Roots

Even though there seems no way to handle cubic and higher

order equations, it is desirableto have some method for finding

cube roots and roots of higher order, and also fractional roots.

In ｲ ｾ ｡ ｬ arithmetic, the use of logorithms is the most practical

way. In [1], it was shown that logorithms (i.e., the inverse

of a generalizationof exponentiation)are not additive in

general. The difficulty essentiallyreducesto the following

observation. Any generalizationof In z will involve, in some

manner, sinh-1x which is not periodic as is sin-1x. In fact,

powers of sinh x involve expressionsin binomial coefficients

as shown below. (Fractions are not reducedso the binomial co-

efficients stand out) •
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(sinh x)n =:

2 : 1 cosh 2x - 2
n =

ｾ 4"
3 : 1 sinh 3x - 3 sinh4" 4" x

4 : 1 cosh 4x 4 cosh 2x + 6
"8 - "8 16

5: 1 cosh 5x 5 sinh 3x + 10 sinhTb - 16 lb x

6 : 1 cosh 6x 6 cosh 4x + 15 cosh 2x 20
TI - TI TI - 64

7: 1 sinh 7x 7 sinh 5x Ｋ ｾ sinh 3x 35 sinhb4 - 64 -64 x64

8: 1 8x 8 cosh 6x + 28 cosh 56
128 cosh - ----r28 128 4x - 128

cosh 2x 70
+ 256

Clearly, this is intractable for a basic computationaltool.

We first note that there are some special numbers which

have very simple powers. For example, if

then

2 (1 , 2v1, 2v2 , 2v3 )v =
3 ( 1 , 3v1 , ＳｶＲｾ 3v3)v =

Examples are:

(1,3,5,4)
2 (1,6,10,8)

3 (1,9,15,12), ..•v = v = v =

(1,5,13,12) 2 (1,10,26,24) 3 (1,15,39,36),••.v = v = v =

In fact, more generally, if 2 2 2 o and vo t- 0, thenv 2 - v 1 - v =3
n n-1 nv3)v = vo (vo, nv1, nv2 ,

(Note that signs alternateby n if Vo < 0).

includes the caseof
n 2 2

w = v and w2 - w1
even. Then,

pure reals but not pure
2

w3 = 0, with wo t- 0 and

Curiously, this

complex. Suppose

positive if n is

2
- w3

Hence
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and

p = 1,2,3.v =p

wp
n-1

Vo n

Notice that only real n-th roots of Wo may be used for the

general case. Complex roots can be given a valid representation

if w is pure real, but otherwise non-commutativefactors occur.

For example, the three cube roots of -1 are:

(-1,0,0,0) 1 1 ,r.;"
('2,0, 2l'3, 0)

1 1;<-(2' 0 , -2 3, 0 )

The three cube roots of unity are formed by changing the sign

of the first componentof the above. These are all allowable

numbers: unallowable roots are in addition to these.

If w is pure real or pure complex, then real or complex

logs and exponentialscan be used and the results written in

quadriform format. Hence let us assumethat not both w1 and w3222are zero and that w2 - w1 - w3 ｾ 0 since the opposite situation

was covered above. Now if w has a squareroot and is not singu-

lar, i. e. ,

then one of its square

both. If v = {w, then

1
Vo = - Iw +

12 0

v p =
wp
2vO

roots has a squareroot but not necessarily

Iwi

p = 1,2,3

Hence,

and

> 0

Thus for the positive choice for vo' V o + Ivl > 0, but not

necessarilyfor the negativechoice. Hence w has at least two

fourth rootS. Then it also has at least two eighth roots, and
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so on.

We will now restrict our attention to cube roots. Suppose
3w as above and v = w. If one cubes a general v, the following

formulas are obtained:

2 3 2 2
vo(vo + 3v1 - 3v2 + 3v3 ) = Wo

2 2 2 2
v 1 (3vo + v 1 - v 2 + v

3
) = w1

2 2 2 2v 2 (3vO + v 1 - v 2 + v
3

) = w2

2 2 2 2
v 3 (3vo + v 1 - v + v 3 ) = w32

2 2 2 2
The following two lemmas are useful.Let D = 3v + v 1 - v 2 + v 3·0

Lemma 1: For ｡ ｾ least one root v,

v 1 = v 2 = v 3 = 0 ｾｷＱ = w2 = w3 = 0

Proof: If w1 = w2 = w3 = 0, w is real and, for at least one root,

3v = ＨｾＬ 0, 0, 0)

If v 1 = v 2 = v 3 = 0, clearly w1 = w2 = w3 = 0 from the above

formulas.

Lemma 2: D = 0 for any root ｾ w is real.

Proof: SupposeD = 0 for any root. Then w1 = w2 = w3 = O.

Therefore, if w is not real, D ｾ 0 and
w

vp = ri p = 1,2,3

In other words, the last three componentsof the root are

directly proportional to the correspondingcomponentsof w.

We also have

so Wo ｾ ｯｾｶｯ ｾ 0, Wo = 0 ｾ･ｩｴｨ･ｲ V o = 0 or

23D = 8vO

Let us take theseby cases. We assume Iwl2 > O.

W
o

= 0, V
o

= 0 Then D = -'Ivl 2 or -D = Iwi 2/3.

We can thus compute vp from wp .
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The above casegives only one root for Wo = O. The other two

correspondingroots are given by the next case.

Hence, since wo = 0 and vo ｾ 0,

2 31 12/ 3 > 0vo = "4 w

Then

and we can compute vp from wp for p ｾ O. Note that there are

two values for Vo but only one each for v p ' p ｾ O. This gives

the other two roots correspondingto the first case.

Wo ｾ 0 Then Vo ｾ 0 but

4v6 - 31w1
2
/

3
Vo - Wo = 0

Let a = ｟Ｎｾ Iw 1
2/ 3 , b = Ｍｾｷ O. Then we have the reducedcubic

equation

3
vo + avO + b = 0

The discriminant for this is

Thus we have the following three subcasesfor the third case:

(a) w; > Iw1 2 • There is only one real root for Vo and hence

only one root for w. It never occurs for a pure complex

number.

(b) w; = Iw1 2 • There are three real roots but at least two
222

are equal. Note that this is the case w2 - w
1

- w3 = O.

It never occurs for a pure complex (nonreal) number.

(c) w; < Iw1
2

• There are three unequal real roots.

The following example illustrates subcase (a).

w = (5,3,7,8)

\0,; = 25 > Iwl 2
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Let

a =

and we must solve

3 3
va - rrva

The discriminant is

1 5
b = -qWa = -rr

5
rr = a

25 1 3
64-64=a

The real root is A+B where

d= .61238

A
3 = 1.23738 B

3 = .01262

A = 1.0736 B = .23282

va = 1.3064

Now

D
2 1\'1/ 2

/ 3 6.827181988-1 5.827181988-- 4va = =

and

v 1 = 3 = .5148285215.8267

7 = 1.201266549v 2 = 5.8267

8 1.372876056v 3 = 5.8267 =

Subcase (b) is best handled by the method discussedpreviously,
2 2 2 example:basedon w2 - w - w3 = a. For1

5 -jw = ( 1 , ｬｾ , 5,3 ) =
8 -3

2
Iwl

2 1w
a = =
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a =
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[: -2J(1 , 4 5 1) 1
v = 3' 3' = 3"

-1

[35 -54] = w
v 3 1= 27

216 -81

Thus V is the value of one of the roots. It would seem there

should be two other equal roots, and, if they have to be found,

the method of subcase (a) should be applied. Note that these

two equal roots would correspondto complex values for which

the imaginary part vanishessince A = B. To try to find the

other root(s) here we can proceedas follows. Let

3 1
-'4' b = -1f

B ］ｾ = ｾ

Then A+B correspondsto the root already found. The other has

A+B
va = - -2-

Then

o = 4(v )2 -1 = 0o

Since this violates Lemma 2, it cannot correspondto roots of w.

The difficulty arises from our evaluationof Iwl 2/3 which has

complex roots. However, they cannot be used in a meaningful

way and hence there is only one valid root of w if the discrim-

inant is nonnegative.

For subcase(c), the usual trigonometric solution for va

can be applied. Consider, for instance, the ｦ ｯ ｬ ｬ ｯ ｷ ｩ ｮ ｧ ｾ

w = (3,4,5,1)

Let

a = -i 3m
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Then

b2 3 9 17 1a
4+ 27- 64- 64= 8"

We must find </> so that

cos

Hence

</> = ｾｾＯ (_ a
3

) = ｾ 9 /1 7 = _3_ = •727606875
ｾ Ｎ 27 64 64 117

then

also,

</> = 43.313856680

</>1 = !</> cos </>1 = .9684182193

</>2 = </>1 + 1200 cos </>2 = -.700136446

</>3 = </>1 + 2400 cos </>3 = -.268281771

; - 6-
2 Ｍｾ = ¥1 7 = 1. 603521621

3

Then the three values of va are

vJ1) = r cos </>1 = 1.552879552

vJ2) = r cos </>2 = -1.122683929

vJ3) = r cos </>3 = -.430195621

The correspondingvalues of 0 = Ｔｶｾ - Iw1 2/ 3 are:

D(1) = 7.074458022

D(2) = 2.470395226

0(3) = 1.831008502

Hence we have the three roots:

v(1) = (1.552879552, .565414338, .706767923, .141353585)

v(2) = (-1.122683929, 1.619174113,2.023967642, .404793528)

v(3) = (-.430195621, -2.184588436, -2.730735543,-.546147109)
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Computer calculatedcubes, using single prec1s10nfloating point,

returnedw to five decimal places exactly for all three roots.

Hence, if one uses enough precision, almost any fractional

power can be computedusing products of repeatedsquareand

cube roots. Fortunately, commutativity holds among roots.

Although algebraicanalysis is intractable, this has been inves-

tigated empirically with computer routines. For example, if

u 2 = wand v 3 = w, then uv = wS/ 6 . A number of examplesare in

the appendix.

Straight Power Series

One can, of course, take the formal definitions of straight

power serieswithout parametersand apply them to quadriform

variables. For example, sin x, cos x, eX and other such series

can be evaluated. The algebrabecomesexceedinglyhard to follow.

The first five powers of a quadriform x can be derived from x 2

as follows.

x = x

x
2

= 2xOx - Ixl
2

to

2 2 2 2 2= 2xOx - x Ix I to = (4xo - Ix I )x - 2xo Ix I to

4 22 22 12 4x = (x) = 4xox - 4xO xl x + Ixl to

3 2 2 2 4= 8xOx - 4xolxl to - 4xolxl x + Ixl to

= ＨＸｘｾ - 4xolxl2)x - ＨＴｸｾｬｸｉＲ - Ix1
4

)

4 4 3 12 2 2= x x = 16xox - 8xolx to - 8xolxl x

- ＴｸｾｬｸｬＲｸ + Ixl
4
x

= (16x6 - ＱＲｸｾｬｸｬ + Ixl 4
)x - ＨＸｸｾｬｸｉＲ - 4xolx\4) to

The rule of formation for the coefficient of to is evident:

f n 't' th ff" t f ' n-1 l' I' d b I 12or x 1 1S e coe 1C1en 0 x 1n x mu t1P 1e y - x •

The coefficient of x is more complicated. The first term is
n-1 n-12 Xo . The others are related to the coefficient of to in
n-1x , where its first term is multiplied by n-2 and there is a

sign alteration.

The functions sin x, cos x, and eX have been programmed
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taking 6 terms for sin and cos and 10 for eX. Some typical

casesare shown in the Appendix. It is interestingto compare

eX by power serieswith the functions E(v) and R(v) in [1].

It is evident that if Ixl < 1, the seriesconverge fairly

quickly but are affected by the value of xO• The rules of

formation indicated above give a vivid picture of the infra-

structureof quadriform, and hence complex, functions with a

power seriesexpansion. The continuedweaving of coefficients

back and forth forms an extremely "hard cloth".

Binomial expansionsand most parameterizedseriesare not

tractabledue to noncommutativity. This does not affect straight

power seriessince all multiplications are of a number either

by itself or by a scalar.

The function In x has also been programmedfor quadriforms.

Results are shown in the Appendix. Three reductionsof the

argumentare used which amount to use of real parameters.

SimultaneousLinear Equations

It seemspossible to have two styles of simultaneouslinear

equations:one using straightmultiplication, the other with

AMPs. Let us consider two equationsin two unknowns in each

style, first with straight multiplication.

a11x 1 + a12x 2 = b1

a21x 1 + a22x 2 = b2

Then, performing obvious quadriform arithmetic:

-1 -1 2
x 1 + a 11a12x 2 = a 11b1 ( Ia 11 I > 0)

-1 -1
(a22 - a21a11a12)x2= b2 - a21a11b1

Now if the latter coefficient of x2 is nonsingular, we can solve

for x 2 ' and then for x 1 in the upper equation. It will be help-

ful to calculate the determinantof the quadriform matrix.

Since the coefficients are themselvesmatrices, we can write

the whole thing as a 4 x 4 matrix.
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+ a111

To simplify notation, we rewrite this temporarily as:

Now the determinantof each 2 x 2 is the squareof the absolute

value of a coefficient; for example,

2
c 11c 22 - c 12c 21 = l a11 1

Unfortunately, this has nothing to do with the determinantof

the entire matrix, as is evident from expansionby minors. On

the other hand, treating the quadriform system as a matrix product

is valid. Let A be the first matrix above and define X and B as

follows:

x01 + x 11 -x21 + x 31 b01 + b11 -b21 + b31

x 21 + x 31 x 01 - x 11 b21 + b 31 b01 - b11
X = B =

x 02 + x 12 -x22 + x 32 b02 + b 12 -b22 + b31

x 22 + x 32 x 02 - x 12 b22 + b32 b02 - b 12
>-
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Then the real matrix product

AX = B

is the same as the quadriform matrix product

since the latter can be regardedas a partitioning of the

former. Hence it must also be true that

provided A- 1 exists. Therefore a solution dependson the real

determinant,not the quadriform determinant. Hence by writing

A in the (c .. ) form, and similar forms for X and B, any n x n
1J

systemof quadriforms can be treatedas a (2n) x (2n) system

of reals. Only one precautionis neededin applying matrix

algebra: a quadriform row is not the matrix transposeof a

quadriform column. That is,

(X 1 , X2) ｾ Xl

Instead, the individual 2 x 2 blocks must be used intact, for

example:

The same principle applies, of course, to A.

Note that noncommutativity is not a considerationexcept

in the case of transpositiondiscussedabove. The reason is.

obviously, that matrix multiplication is noncommutativeanyway,

so it is just more of the same.

Now consider a systemwith AMPs.
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Expanding,

Clearly, this does not lead to a 4 x 4 system in reals. Instead,

one must proceedwith extraction operations, from the quadriform

system.

x, + (a'2 § x 2)/a" = b,/a"

x, + (a22 § x 2)/a2, = b2/a2 ,

In order to subtract the first from the second, we would now

have to develop a complete set of algebraicoperationswith

AMP and extraction. Obviously, this would get complicatedand

we will not pursue it. It seemsclear that quadriforms lend

themselvesmuch more to simultaneouslinear systemsthan to

polynomials. The N1P and extraction operationsarose from a

need to overcome noncommutativity. This is not necessarywith

a linear system and straight multiplication.

Further investigationsalong the lines of this paper appear

to have diminishing value for the effort. The next paper in

this serieswill turn attention to functions of a quadriform

variable to see if some analytic theory can be developed.
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APPENDIX

Numerical Examples

..
examplesof u*v cmd u (amp) v

input values in locations to 7
I 1.00000 2.00000 4. COOOO 2.00000
2 2.00000 I. 00000 3. 00000 3.00000
3 I .00000 I. 00000 I. 00000 I. 00000
4 4. 00000 3.00000 2.00000 1. roooo
5 1.00000 2. 00000 3. 00000 4.00000
6 4.00000 -3.00(00 2.00000 -1.00000
7 I. 00000 0.00000 I. 00000 O. 00000

n sq(ahs.val) abs.value modulus ｨ ｶ ｮ ･ ｲ ｭ ｯ ､ ｵ ｬ ｵ ｾ M;:lg"i ｴ ｕ ｲ Ｚ ｉ ｾ

I 4.00000 2.00000 4.12311 3.60555 5.47723
2 3. CCOOO 1.73205 3. Ｖ Ｐ ｾ Ｕ Ｕ 3.16228 .1.7958.1
3 ' 0.0(,000 0.00000 1.41421 1.41421 2. COO00
4 10.00000 3.16228 4.47214 3.1622R 5.47723
5 -10.00000 3.1622R 4.47214 5.47723
{- 10. 00000 3.16228 4.47214 3.16228 5.47723
7 2.00000 J .41421 1.41421 O. 00000 1.41421

star product of and 2 =
3. 00000

star product of 3 anr:f 3 =
0.00000

star product of 4 ann 5 =
0.00000,

star product of 4 and 6 =
30.00000

star product of 7 ann 7 =
2. 00000

amp = (uv+vu)/2 of land 2stored Ln II =
I. 00000 5.00(,00 II.OOCIOO 9. 00000

amp = (uv+vu)/2 of 3and 3stored in 12
2. 00000 2. 00000 2.00000 2'. 00000

amp = (uv+vu)/2 of 4and 5stored in 13 =
8.00000 11. onooo 14. 00000 17. 00000

amp = (uv+VlJ)/2 of 4end 6stored in 14 =
2.00000 O. on000 16.00000 O. 00000

amp = (uv+vu)/2 of 7and 7stored in 15 =
O. 00000 0.00000 2.00000 0.00000

n sq(ahs.val) ahs.vCllup. ｭ ｯ ､ ｵ ｬ ｵ ｾ hyoerModlllus magniturjp
11 16.00000 4. 00000 11.04536 10.29563 15.09967
12 O. 00000 0.00000 2.82843 2.82843 4. COO 00
13 -150.00000 16. 12452 20.24846 25.P843t'
14 2 t'O. 0(000 16.12452 16.12452 O. 00000 16.12452
15 4.00000 2. 00000 2. 00000 0.00000 2. COOOO

command
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run I

above ｰ ｲ ｯ ､ ｵ ｣ ｴ ｾ with ｮ ｾ ､ ｩ ｮ ｡ ｲ ｹ multiplication in both orders

product of I and 2 stored in 21 =
1.00000 2.00000 8.00000 7.00000

product of 2 and I storp.d in 22 =
1.00000 8. COOOO 14.00000 11.00000

product of 3 and 3 stored in 23 =
2.00000 2.00000 2.00000 2.00000

product of 4 and 5 stored in 24 =
8.0DOOO 6.00000 4;00000 12.00000

product of 5 and 4 stored in 25 =
8.00000 16.00000 24.00000 22.00000

product of 4 and 6 stored in 26 =
2.00000 4.00COO 16.00000 -12.00000

product of f: and 4 stored in 27 =
2.00000 -4. COOOO 16.00000 12.00000

n ｾｱ (abs.Vi'll> ahs.value modulus hynermodulus magnitude
21 ,j 12.00000 3.46410 8.06226 7.280I1 10.86278
22 12.00000 3.46410 14.03')67 13.60147 19.54482
23 0.00000 0.00000 2.82843 2.82843 4. COOOO
24 -100.00000 8.94427 13.41641 16.12452
25 -100.00000 25.29822 27.20294 37.14835
26 100.00000 10.00000 16.12452 12. l'49 II 20.49390
27 100.00000 10.00000 16.12452 12.N911 20.49390

Ｇ ･ ｸ ｾ ｭ ｰ ｬ ･ of non-cnmmutativeextraction

magnitude
1.42127
I. "803
1.53379

0.10000
O. COOOO
0.00000

hyoermodulus
0.14142
0.50000.
0.50000

3 =
0.00000

1.00000
-1.00000
-1.00000
modulus
1.41421
1.00000
1.45000

4 =

n
I
2
3

division of
-D. 00000

vector
command I

input in locations I and 2
amp = (uv+vu)/2 of . land 2stored in

1.05000 0.50000 -I • .(JOOOO
I I • 00000 ｾ O. I 0000
2 0.00000 0.50000
3 1.05000 0.50000

sq(abs.val) abs.value
1.98000 1.40712
0.75000 0.86603
1.85250 1.36107

3 by I stored in
0.50000 -1.00000 0.00000

2 is unallowable for diVision

set I
<
quad

, \ .
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examplesof ｧ ･ ｮ ･ ｲ ｾ ｬ ｑ ｵ ｡ ､ ｲ ｡ ｴ ｩ ｣ ｾ

p(x):a$(x**2
a =
b :
c =

xl=
0.41421

+ ｢ｾｸ + c) = a
1.00000
2. 00000

-I. 00000

0.00000

0.00000
0.00000
o.00000

o. 00000

O. 00000
o. CCOOo
0.00000

o. COOOO

O. 00COO
o. 00000
O. 00000

0.70711 0.00000
O. 00000 0.00000
O. 00000 0.00000

a•aGOOO a •00000
0.00000 0.00000
0.00000 0.00000

x2:
-2.41421

p(xl) =
p(x2) =

p!x)=a$(x**2
a :
b :
c =

xl=
-I. 00000

x2=
. ·-1. 00000

p (x I) :
p(x2) =

p(x)=a$(x**2
a =
b :
c :

xl=
-0.29289

x2=
-1.70711

p(x J) =
p(x2) :

0.00000
ｾ Ｎ 00000
o. 00000

+ bSx + c) = a
I. 00000
2. 00000
I. 00000

0.00000

0.00000
o.oooon
o.00000

+ bSx + c) = a
J. 00000
2. 00000
1.00000

0.00000

O. 00000
0.00000
o.00000

O. 00000
o.00000
o. 00000

O. 00000

o.00000
o.00000
O. 00000

O. 00000
O. 00000
o. 00000

-0.70711

O.acooo
O.OCOOO
0.00000

0.00000

o. 00000
0.00000
O.00000

O. 00000
0.00000
1. 00000

O. 00000

o. roooo
O. COOOO

0.00000
o. rocoo
o.ooe'oo

O. coooo
o.oeooo

0.00000
O.OOCOO
0.00000

O. 00000
O. COoOo

0.00000
0.00000

0.10000
0.00000
0.00000.

I. 00000
O. 00000
I. acooo

0.15461

1.54636 -0 .05360
o.00000 o. 00000_.
O. 00000 0.00000

-0.536260.15461

-0.05360
0.00000
0.00000

p(x)=a$(x**2 + bSx + c) = o·
a = 1.00000 0.10000
b = 2.00000 0.00000
c : I. 00000 O. a0000

x-I =
-0.26494

x2=
-0.74516

p(xl) =
p(x2) =

equation

o. I
0.0

-0.5

quadratic
=a

1.0
-1.0

1'.0

there is no solution of
p(x)=a$(x**2 + bSx + c)

a= 1.0 0.1
b = 0.0 0.5
c : 0.0 0.0
determinantis ｮ ･ ｧ ｾ ｴ ｩ ｶ ･

+ bS:< + c) : a
1.00000
O. 00000
0.00000

-0.34977

-0.20'::2t
·0.00000
0.00000

I .66267 -I .02837
0.00000 0.00000
0.00000 ｾ Ｎ ｏ ｏ ｏ ｏ ｏ

p(x)=a$(x*''t2
a =
b =
c =

xl:
0.55934

x2=
-0.02904

p(xl) =
p(x2) =

command I
int I 3
integer
command I

set I
<
roots

1= .3

0.10000
0.50000
o.00000

-1.19297

I. (-0000
-1.00000
2.00900

0.97534

0.10000
o.00000

-0.50000

0.00000
0.. 00000
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examplp.sof cube roots
in each Ci'lse thp. arnument is in location I •

thp. 3 cube roots are in locs. 2, 3, 4.
(i f 3, 4 are zero, only one allowahle root exists)

the results of cubing the roots are in lacs 5, 6, 7.
cube roots of minus unity

I -1.00000 0.00000 O. 00000 0.00000
2 -I. (\COOO 0.00000 0.00000 0.00000
3 a.liOOOO 0.00000 0.86603 0.·00000
4, 0.50000 o. 00000 -0.86603 0.00000
5 -1. CCOOO 0.00000 0.00000 0.00000
6 -I. noooo 0 ..00000 -0.00000 0.00000
7 -1.00000 0.00000 0.00000 o.00000

n. sq(ahs.val> abs.value modulus hypermodulus magnitude
1 I.OOCOO 1. COOOO 1.00000 0.00000 1•00000
2 I. 00000 1.00000 1.00000 O. COOOO I.ooa3 1.00000 1.00000 J • 00000 0.00000 1• CO
4 I. CCOOO 1.00000 1.00000 0.00000 1.000

cube roots of complp.x unit L
.I

1 o. OCOOO 0.00000 \.00000 0.00000
2 0.00000 0.00000 -I. 00000 0.00000
3 0.R6603 0.00000 0.50000 0.00000
4 -0. ｾ Ｈ Ｖ Ｐ Ｓ 0.00000 0.50000 0.00000
5 O. 00000 0.00000 1.00000 O. 00000
6 o. 00000 0.00000 I. 00000 O. 00000
7 0.00000 O.OOCOO 1.00000 0.00000

- \

n !'q(abs.val) abs.value modulus hypermodulus magnitude
1 1.00000 1. 00000 1.00000 0.00000 1. COOOO
2 I. COOOO 1. 00000 1.00000 0.00000 1.00000
3 ·1.0COOO 1. OOCOO 1.00000 0.00000 1.00000
4 1.00000 I. 00COO 1. COOOO O. COOOO 1.00000

·cube roots of ( 1 +1>

1 1. 00000 O. 00000 1.00000 O. 00000
2 1.08422 0.00000 0.29051 0.00000
3 -0.79370 0.00000 0.79370 0.00000
4 -0.29051 0.00000 -1.08422 0.00000
5 1.00000 O.OOCOO 1.00000 0.00000
6 1.00000 0.00000 i . 00000 0.00000
7 1. COOOO 0.00000 1.00000 0.00000

n sq(ahs.val) abs.value modulus hypermodulus magnitude
1 2.00000 1.41421 1.41421 0.00000 1.41421
2 1.25992 1.12246 1.12246 0.00000 1• 12246
3 1.25992 1• 12246 1.12246 O. COOOO 1• 12246
4 . 1.25992 1.12246 1.12246 0.00000 1.12246

command I
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..
"\..In 1

general quadriforms with only one allowable root

1 1.00000 0.90000 I. 00000 -0.90000
'. 2 0.90521 0.35248 0.39164 -0.35248

3·'- 0.00000 0.00000 0.00000 O. 00000
Ｔ ｲ ｾ .. _ ().OOOOO 0.00000 0.00000 0.00000
5 I.OCOOO 0.90000 1.00000 -0.90000
6 O. 00000 0.00000 0.00000 O. COOOO
7 O. 00000 O. 00000 0.00000 0.00000

n ｳｱＨ｡ｨｳＮｶｾｬＩ abs.value modulus hypermodulus magnitude
1 0.38000 0.61644 1.41421 1.27279 1.90263
2 0.72432 0.85107 0.98631 0.49848 1.10512
3 o. 00000 0.00000 0.00000 o. COOOO 0.00000
4 0.00000 O. 00000 0.00000 0.00000 O. mooo

I 27.00000 8.00000 8.00000 -8.00000
2 2.96973 0.30133 0.30133 -0.30133
3 O. COOOO 0.00000 0.00000 0.00000
4 0.00000 0.00000 0.00000 o. COOOO
5 27. 00000 8.00000 8.00000 -8. 00000
6 0.00000 .0. 00000 O. 00000 o. 00000
7 0.00000 0.00000 0.00000 O. COOOO

n 5q( abs.val) abs.value modulus hypermodulus magnitude
I 665.00000 25.78759 28.1602t 11.31371 30.34798
2 8.72852 2.95441 2.98498 0.42615 3.01525
3 0.00000 0.00000 0.00000 O. 00000- O. 00000
4 O. 00000 O.OOCOO 0.00000 O. (10000' 0.00000

general quadriform cube roots

I 27.00000 8.00000 9.00000 -3.00000
2 3.003(4 0.29570 0.33266 -0. 11089
3 -1.59236 7.20955 8.11074 -2.70358
4 -1.41128 -7.50525 -8.44341 2.81447
5 27.0COOO 8.00000 9.00000 -3.00000
6 27.00004 7.99995 8.99994 -2.99998
7 27.00004 8.00005 9.00007 -3.00004,

n sq(abs.val) abs.value modulus hypermodulus magnitude
1 737.00000 27.14775 28.46050 8.54400 29.71532
2 9.03280 3.00546 3.02201 0.315AO 3.03846
3 9.03281 3.'00546 8.26558 7. t9980 11.29631
4 9.03282 3.00546 8.56054 8.01561 11.72744

I 0.00000 0.90000 2.00000 -0.90000
2 O.OCOOO -0.67409 -1.49797 O. t7409
3 1.0006A 0.33704 0.74899 -0.33704
4 -1.000t8 I 0.33704 0.74899 -0.33704
5 0.00000 0.90000 2. 00000 -0.90000
6 -0.00000 0.90000 2.00000 -0.90000
7 0.00000 0.90000 2.,00000 -0,90000

n sq(abs.val) abs.value modulus hypermodulus magnitude
1 2.38000 1.54272 2.00000 1.27279 2.37065
2 1.33514 1.15548 1.49797 0.95331 1.77559
3 1.33514 1.15548 1.24993 0.47665 1.33773
4 \ \ . 1.33514 1.15548 1.24993 0.47665 1.33773

command I

\ ...
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examplesof commutativity of roots

u and 3 cube
I
2
3
4

n
1
2
3
4

roots of u
I. (\0000
1.15819

-0.92478
-0.23341

sq(ahs.Vi'll)
3.38000
1.50074
1.50074
Ｑ Ｎ ｾ Ｐ Ｐ Ｗ Ｔ

0.90000
0.23287
0.46871

-0.70158
｡ ｢ ｳ Ｎ Ｂ ｡ ｬ ｷ ｾ

1•83848
1• 22505
1• 22505
1• 22505

2.00000
0.5174R
1.04159

-1.55907
modulus
2.23607
1.2t854
, .39288
1.57644

-0.90000
-0.23287
-0.46871
0.70158

hvpermodulus
,- 1.27279

0.32932
0.(6286
0.99218

maqnitude
2:57294
1.31059
1.54257
1.86269

posit1ve square
5
6

n
5
6

root and fourth
1.19122
1.12854

sq(ahs.val)
1•8384f3
1.35590

root of u
0.37773
0.16735

abs.value
1.35590
1.16443

0.83941
0.37190
moduluc;
1.45734
1.18«24

-0.37773
-0.16735

hvnermodulus
- 0.53419

0.23667

magnitude
1.55216
1.21158

fi rst cube root
7
8

n
7
8

time!' fourth
1.19256
1.19256

ｾ ｱ Ｈ ｡ ｨ ｳ Ｎ ｶ ｡ ｬ Ｉ

2.0348(,
2.03486

root ann Vice
0.45663
0.45663

abs.value
1.42t49
1.42649

versa, = 7/12
1.01473
1.01473
modulus
1.56585
J .56585

root
-0.45663
-0.45663

hypermodulus
O. t4577
0.64577

magnitude
1.69378
1• ｾＹＳＷＸ

reciprocals
9

10

"12
n
9

10

"12

of c"be and fourth
0.77175
0.83232
0.58607
0.58607

sq(abs.vAl)
0.66634
0.73751
0.49143
0.49143

roots, products
-0.1551'7
-0.12343
-0.22440
-0.22440
abs.ｶ ｡ ｬ ｷ ｾ
0.81630
0.85879

-0.70102
0.70102

both ways,
-0.34482
-0.27428
Ｍ Ｐ ｾ Ｔ Ｙ Ｘ Ｖ Ｗ

-0.49867
modulus
0.84528
0.87635
0.76951
0.7t951

= -7/12 root
0.15517
0.12343
0.22440
0.22440

hypermodulus
0.21944
0.17455
0.31735
0.31735

magnitude
0.87330
0.89356
0.83238
0 .. ＸＳＲｾＸ

7/12 root times -7/12 root
13 1.00000

command I

6.00000 O. 00000 0.00000
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･ ｸ ｡ ｭ ｰ ｝ ｾ ｳ of sin v anrl cos v

v. sin v. cos v. (sin v> **2. (cos v>**2. sum of squares

I I.OCOOO 0.50000 0.40000 0.30000
2 0.76687 0.26212 0.20970 0.15727
3 0.49240 -0.40823 -0.32658 -0.24494

'4 0.('\3756 0.40202 0032162 0.24121
5 0.36241) -0.40202 -0.32162 -0.24121
6 I. COOOO 0.00000 -0.00000 -0.00000-. n ｾｱＨ｡ｨｳＮｶ｡ｬＩ ｡｢ｳＮｶ｡ｬｕｬｾ modulus hynermodulus magnitude

I 0.82000 0.90554 1.07703 0.58310 I .22474
2 0.53862 0.73391 0.79502 0.30568 b.85176
3 0.12247 0.34996 0.59086 0.47607 0.75879
4 0.29011 0.538(2 0.71408 0.46883 0.85424"
5 0.01500 0.12247 0.48457 0.46883 0.67425
6 1.00000 1.00000 1.00000 0.00000 1.00000

same as above with sinClular v
I 0'.70710 0.70710 0.70710. 0.70710
2 0.493f8 0.49388 0.49388 0.49388
3 0.1i7798 -0.42202 -0.42202 -0.42202
4 0.48784 0.48784 0.48784 0.48784
5 0.1i121f -0.48784 -0.48784 -0.48784
6 1.00000 -0.00000 Ｍ ｯ ｾ ｏ ｏ ｯ ｏ ｏ -0.00000

n sq(ahs.val) abs.valup- modulus hyoermodulus magnitude
I 0.00000 O.OOCOO 0.99999 O. S:9999 1.41420
2 0.00000 0.00000 0.69R45 0.69845 0.98776
3 0.15596 0.39491 Ｐ Ｎ Ｗ Ｑ ｾ Ｖ Ｑ Ｉ 0.59683 0.93186
4 0.0COOO 0.00000 0.68991 0.68991 0.97568'
5 0.02432 0.1559t 0.70732 0.68991 0.98806
6 1.00000 1.00000 J.00000 o. COOOO I. 00000

complex ｰ ｲ ｯ ｪ ･ ｣ ｴ ｩ ｾ ｮ of v is on lower dil"lgt)nal ,
I 0."10000 0.30('00 -0.50000 0.30000 "

2 0.4963fJ 0.26636 -0.44393 0.26636
3 0.90848 -0.14551 0.24252 -0.14551
4 0.19114 0.26439 -0.44065 0.26439
5 0.PORE6 -0.26439 0.44065 -0.26439
6 1.00000 -o.ooeoo O. (10000 -0.00000

n sq(a,",s.val) ahs.value moculus hypermodulus magnitude
I 0.32000 0.56569 0.70711 0.42426 0.82462
2 0.30150 0.54909 0.66588 0.37669 0.76504
3 0.84180 0.91750 0.94029 0.20578 0.96255
4 0.09090 0.30150 0.48032 0.37390 0.(0869
5 0.7080 0.84180 0.92110 0.37390 0.99410
6 1.00000 1. cacao 1.00000 0.00000 I. (10000

command I
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examplesof e**v and In v

u, v, e**lJ, e**v
I 0.50000 0.40000 0.30000 O. 2ooCJl)'
2 0.40000 0.10000 0.60000 0.30000
3 1.74024 0.67165 0.5'0373 0.33582
4 1.30205 0.14280 0.85681 0.42840

u+v, e**CII+v) , e**u * e**v, e**v * e**u
5 0.90000 . 0.50000 0.90000 0.50000
6 2.08811 1.16724 2. 10103 1.16724
7 2.0740t 1.19496 1.90716 0.t7925
8 2.07406 1.05109 2.38672 I. t-8632

Ce**u * e**v)**1/2, Ce**v * e**u)**1/2
9 1.50560 0.39684 0.63335 0.22557

10 I ＮｾＰＵｴﾷＰ 0.34906 0.79261 0.56002

n sqCabs.val> abs.value modulus h'lpermodulus magnitude
I 0.14000 0.3741T 0.58310 0.44721 0.73485
2 0.42000 0.64807 0.72111 0.31623 0.78740
3 2.7182A 1.64872 1.8116A 0.75092 1.96114
4 2.22554 1.49182 1.55867 Ｐ Ｎ Ｔ Ｕ Ｑ ｾ Ｘ 1.62277
5 1.12000 1.05830 1.27279 0.70711 1.45602
6 6.049t5 2. 459{>0 2.96219 1.65073 3.39108
7 . 6.04965 2.45960 2.81762 I .37452 3.13501
8 6.04965- 2.45960 3.16198 1.98708 3.73451
9 2.45960 1.56831 1.63339 0.45647 1.69598

10 2.459t:O 1.56831 1.70149 O. t-5990 .1.82497

(e**lJ * e**v)**1/2 * (e**v * e**u)**1/2
II 2.0290 0.94713 2.00344 1.08932

10q e**u = 11, loq e**v = v, log e**Cu+v) = u+v
12 0.50000 0.40000 0.30000 0.20000
13 0.40000 0.10000 0.60000 0.30000
14 0.90000 0.50000 0.90000 0.50000

log (e**u * P.**v) , 100 Ce**v * e**lJ)
15 0.90000 0.51293 0.81863 0.29156
16 0.90000 0.45117 1.02448 0.72384

loq ((e**u * e**v) **1/2), loq (Ce**v * e**u)*1/2)
17 0.45000 0.25t46 0.40932 0.14578
18 0.45000 0.22559 0.51224 0.36192

10q(Ce**u * e**v)**I/2 * Ce**v * e**u)**1/2)
19 0.90000 0.40921 0.86559 0.47064

n sq(abs.va1> abs.value modulus hypermodulus magnitude
I I 6.04965 2.45960 2.85190 1.44350 3.19641.
12 0.14000 0.37417 0.58310 0.44721 0.73485
13 0.42000 0.64807 0.72111 9.·31623 0.78740
I·t 1.12000 1.05830 1.27279 '0.70711 1.45602
15 1.13206 1.06398 1.21·662 . 0.59000 •• 35213
16 1.13206 1.06398 I .36366 0.85294 1.60843
17 ｾ Ｎ 0.28301 0.53199 0.60831 0.29500 0.67607
18 0.28301 0.53199 0.(,8183 0.42647 0.80422
19 1.17028 1.08180 1.24A69 0.62366 1.39578

command I
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