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On the Optimal Adaptive ParameterEstimation of

water ResourcesControl Systems

As water resourcesystemshave grown larger and more

complex, the importanceof optimum operationof these systems

has increased. Several IIASA papershave been published

attacking these problems which are in essence,the problems of

estimating/controllingthe state of WR systems. Casti (1974)

gave algorithms for the stochasticinflow-nonlinear objective

reservoir control problem; Szollosi-Nagy (1975) outlined the

closed-loopcontrol of linear stochasticwater quality systems

with quadraticperformancemeasure; and quite recently, Takeuchi

(1976) dealt with the problem of typhoon forecastingusing

stochasticfiltering techniques.

There is at least one aspectwhich is common to these

approaches,and that is the way they look at the dynamics of

the WR systems. In one way or another, they assumethat the

system dynamics is linear and given by

x(t + 1) = <P(t + 1,t)x(t) + ret + 1)u(t) + wet), (1)

where

x(t) is a vector of the systemstatesbelonging

nto a bounded set, of state space X C R ;

<P (t + 1,t)

u (t)

is the n x n state transition matrix;

is the vector of control variables belonging

to the compact set of admissiblecontrols
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w(t)
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is the n x p control transition matrix;

is a vector white gaussiannoise (WGN)

sequencescalled processdisturbanceswith

the statisticsw(t) ｾ N(O,R1 (t»;

is the discrete time variable,

T = {t : t = O,1,2,••• }

It is also assumedthat the collection of measurementequipments

which are attachedto the system, modelled by Eq. (1), to monitor

its behavior has an output (collection of measuredvariables)

which can be modelled by the relation

where

z(t) = H(t)x(t) + v(t) (2)

z(t) is the m vector of measurements(output

vector);

v(t) is a vector of WGN sequencescalled measure-

ment errors with the statistics

v(t) - N(O,R2 (t»;

H(t) is the m x n measurementmatrix.

Moreover, it is generally assumedthat the uncertaintiesare

independentof each other, i.e.

e{w(t)vT(t + T)} = 0, VT E T

Clearly, the measurementsequencez(t) generatesan increasing

a-algebra

Z t '= [ z (1), z (2) , . . . z (t) ]

with the obvious chain property of
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To get an optimal control sequenceu*(t) E U which minimizes

certain expectedloss C{J}, the famous sepa.rationprinciple

(Kalman and Koepcke, 1958) is utilized which statesthat the

optimal stochasticcontrol can be separatedinto two parts.

The first is the estimation/predictionof the state variables

and the second is the determinationof the closed-loopfeed-

back control u(o) basedupon the estimatedstatesx(o). It

is well known that the estimatedvalues are given by the Kalman

filter algorithms (provided that the statisticsof the initial

state x(O) is known and gaussian,x(O) - N(x(O),P(O)), while

the optimal control is obtained through a deterministicdynamic

programmingperformed on the estimatedstate variables. ·Due to

the separationprinciple here we cuncentrateourselveson the

estimationpart only, noting that the synthetizationof the

control strategiesis then really straightforward.

Due to the unknown parametersof the matrices in Eq. (1)

the separatedsystem dynamics and measurementbecomes

x(t + 1) = <l>(t + 1, t;8 )x(t) + w(t)

z(t) = H(t,8)x(t) + v(t),

( 3)

(4 )

where 8 is a q-vector of unknown parametersin ¢, H, R1 , R z , x(O)

belonging to a finite dimensionalparameterspace eq , e E eqo

It is assumedthat 8 is time invariant and has an a priori

pdf p(8). Again, when the parametersof the model are exactly

known, the solution is straightforward. In our case, however,

the parametersare uncertain and life becomesmuch more
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complicated. As Eykhoff (1974) showed, ｾ ｨ ･ joint eatimationof

the uncertain states/parametersbecomesnonlinear even in the

case of linear systemdynamics. Following Lainiotis (1971), the

optimal mean sqare estimatex(tlt) of the state x(t) is then

given by

where

x(t!t) = ｾ x(tlt,S)p(SlZt)d8

eq

(5 )

x(tlt,s) is called 8-conditional (or model conditional)

estimation and can be obtained from the Kalman

filter applied for a fixed parametervector

8 e: eq ;

is called weighting coefficients which assigns

different weights to the different parameter

vectors.

Since the 8-conditional estimatesare given by the Kalman filter

algorithms the mean squareestimation problem is reduced to

finding the weighting coefficient which is in fact a posteriori

pdf of the parametervector 8 given the measurementsequence Zt.

If it is found then the 8-conditional estimatesare weighted

with respectto the a posteriori pdf and integratedover the

q-dimensionalparameterspaceeq .

We are going to deal, here, with the discrete case, noting

that the continuous case basedupon BUCY'S representation

theorem is treated in Lainiotis (1974). The conditional proba-

bility function of the parametervector 8, when the measurement

sequence Zt is given, is defined by
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p(e, ｾ ｴ Ｍ Ｑ ,z(t)}
= -------

P ( ｾｴ - 1 ' z (t) )
I

or, according to the chain-rule of conditional probabilities,

as

ｰ Ｈ ･ ｬ ｾ Ｉ
p(z(t) Ie, c:tt_,)p(el ｾ ｴ Ｍ Ｑ Ｉ ｐ Ｈ ｾ ｴ Ｍ Ｇ Ｉ

(6 )=
p ( ｾｴ - 1 I z (t) ) p ( z (t) )

Since

P(t;C.t_1 Iz (t» = ｪｐＨＸＧｾｴ｟ｬｬｺＨｴｬＩ､Ｘ
q

e
and

ｰ Ｈ ･ Ｇ ｾ ｴ ｟ Ｑ ｉ ｺ Ｈ ｴ ﾻ
ｰ Ｈ ･ Ｇ ｾ ｴ Ｍ Ｑ ,z(t»

=
p(z(t»

we get for the marginal distribution

ｐ Ｈ ｾ ｴ Ｍ Ｑ Iz(t»= --,----
p(z(t»

jP(S,'l!t_l,z(tl ld8

e
q

Substituting this into the denominator of Eq. (6) and considering

that

we have

p(z(t) I ･ＧｾｴＭＱＩ
----------- ---------- p (e I ｾ t -, )j P (z (tll 8 Ｂｾ｜ＭＱ l P (8 I 'i. t-l ) d8

q
e

(7)
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which is in fact a recursiveBayesianalgorithm for the

calculation of the weighting coefficients with the initial

condition p (S I<;i 0) = p (S) .

For the case when the parameterspaceeq is discreteand

consistsof M elements, the a priori pdf is

p (S )

M

="LP(Si)o (8

i=1

- e.)
1

and the a posteriori pdf is given by

M

= ｌｐＨｓｩｬｾｴＩｏＨｓ
i=1

- e.)
1

A(tISj)p(8jIZt_1)

M

L
j=1

then the recursive algorithm becomes

A(tIS i )

where the likelihood function A(tIA i ) stands for p(z(t) ｬ ･ ｩ Ｇ ｾ ｴ Ｍ Ｑ Ｉ Ｎ

Now, let us consider the derivation of the likelihood

function p(z(t) IS,f}tt_1). It is known from the innovation

theory (Kailath, 1968) that if we are given a stochasticpro-

cess {z(t) : t E T} we can define its innovation representation

{v(t) : t E T} as a WGN processsuch that z(o) can be calculated

from v(o) by a causal (i.e. nonanticipative) and causally

invertible transformation. The point is that v(o) and z(o)

contain the same 'statistical information' since we can go back

and forth in real-time from one processto the other, but, of

course, v(o) will generally be a much simpler processthan z(o).
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Moreover, since the values of v(o) at different time instants

of time are statistically independentof each other, each

observationv(t) brings 'new information' only, unlike the

observationz(t) which is, in general, statistically related

to past values of z(o) 0 (This is the reason why v( 0) is called

'new information' or 'innovation' processof z(o) ) 0

Therefore, the a-conditional innovation is defined as

v( t, a) = z (t) - z(tjt - 1,8)

= z(t) - e{H(t,e)X(t) + v(t)1 tX t-"}

= z(t) H(t,e)x(tlt 1 , a) ( 8)

since it is part of the measuredoutput which contains some

information which was not previously available. So, we can

replace z(o) by v(o) and according to the theory of derived

distributions, we have

where due to the linearity, the Jacobianis equal to

J =Ia(z (t) - H( t,O H{( tit - ＢｾｾＩ '" = I
dZ (t)

the identity matrixo Since the innovation processis WGN and

is independentof the previous measurementsｾ ｴ Ｍ Ｑ Ｇ we have

on the one hand

p(S,z(t) ｬ ｾ ｴ Ｍ Ｑ Ｉ = p(slCi.t _1)p(v(t,a))

and on the other
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p(e,z(t)1 ｾ ｴ Ｍ Ｑ Ｉ = p(z(t), ･ ｬ ｾ ｴ Ｍ Ｑ Ｉ

= ｰＨｺＨｴＩｬ･ＧｾｴＭＱＩｐＨＸＱｾｴ｟ＱＩ

Combining the above two expressions,we get for the likelihood

function

p (z (t) Ie, ｾ t _ 1) = p (v (t,8 » = Pv (z (t) - H( t ,8 ) ｾ (tit - 1,8» .

It is easy to see that the innovations form a zero mean WGN

processwith covariancePv (t,8), v(t,e) - N(O,pv(t,e». The

covariancematrix can readily be determinedfrom an equivalent

representationof

v(t,e) = - H(t,O)x(tlt - 1,0) + v(t)

where

ｾ Ｈ ｴ ｬ ｴ - 1,8) = x(t) - ｾＨｴｬｴ - 1,8)

is the one-step-aheadprediction error, as

Pv (t , 8) = cov[v (t , 8) , v (t, fl) 1 = e{v (t , 0 ) vT (t , 8 ) }

= e{ [- H(t,8)x(tlt - 1,8) + v(t)] ColT}

= e{H(t,e)x(tlt - 1,8)xT (tlt - 1,S)HT (t,8)}

+ S{V(t)VT(t)}

T= H(t , e)P (tit - 1,e)H (t , e) + R2 (t,e) (9 )

where

p(tlt - 1,8) = e{x(tlt - 1,8)3?(tlt - 1,8)}

is the 8-co nditional error covariancematrix.
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Summing up, we have the following recursive scheme for

calculating the weighting coefficients

(10)

where

v(t,B) = z(t) - ｈＨｴＬｂＩｾＨｴｬｴ - 1,B)

and the initial conditions are

A(o!e) = 1

The conditional error covariancematrix p(tlt), which is

useful for the on-line evaluationof the estimatorperformance,

is given by Lainiotis (1974) as

p(tlt) - f {P(tlt,8) + [x(tlt,8) - ,,(tit») ｛ ｾ Ｈ ｴ ｬ ｴ Ｌ Ｘ Ｉ -

e
q

-X(tlt)]T} .p(BI"tt)dB

The complete Bayesianrecursive algorithm is shown in

Table I and the related block diagram is depicted in Figure 1.

It should be mentioned that the notion of structureadaption can
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also be imbedded into the above algorithms. We should only

. guessan upper bound n to the systemdimensionality and to

augment the parametervector e u? to n. Then the adaptive

algorithms automaticallygive us an estimaten for the system

order. Surely, n ｾ n. In other words, it gives zero elements

for the 'superfluous'parametervalues.

Since the speedof the evaluationof Eq. (10) highly depends

upon the dimension of the parameterspace, some tricky numerical

integration technique, like the one basedupon Monte Carlo

simulation, should be used.

Having the estimatedvalues, it is easy to synthetizethe

optimal contral policies. For details, see Aoki (1967).



Table I The ｾ ､ ｡ ｰ ｴ ｩ ｶ ･ SequentialPrediction ｾ ｬ Ｙ Ｐ ｲ ｩ ｴ ｨ ｭ

SystemModel x(t + 1) = ｾＨｴ + 1,t:6)x(t) + w(t), w(t) - N(O,Rdt,6»

MeasurementModel z(t) = H(t,6)x(t) +v(t) , vet) - N(0, Rdt,6l)

Initial State x(O) - N(x(010,6) ,p(OI0,6»

ｾ 6-conditional Estimate
Ul
e:
.c State Prediction x(t + 1It,6) = ｾＨｴ + 1,t:S)x(t/t,e)........
H
0 Predi.ctederror Pit + lit,S) • ｾＨｴ + ＱＬｴＺＶＩｐｬｴｬｴＬ･Ｉｾｔｬｴ + 1,t:6) + Rill:,OIL'" covariancematrix....
" Predictor gain K(t + 1,6) = Pit + 1It,6)HT (t,6) [H(t,6)P(t + 1/t,6)HTlt,6) -1
H .... + Rz It,O)]
1) ro
.... Q)

x(t + lit + 1,6) = xlt + 1It,6) + K(t + 1,6) [z(t + 1,6)-1I(t + ＱＬｏＩｾＨｴ + 1It,O) 1...... c State Estimation-01 ..............
c Error covariance pet + lit + 1,6) = (I - K(t + 1,a)H(t + 1,S»Plt + llt,e)(I - Kit + 1,6)HI1l updating
ｾ

......
• Hit + 1,6»T + Kit + 1,e)R2(t + 1,A)KTlt + 1,6)I1l

:.::

ｾ Adaptive Estimate

-----

xltlt) '" f ｸＨｴｬｴＬ｡ＩｐｉＶＱｾｴＩ､Ｖ

- 0
q

H
III
ｾＬ _.. - - - - _.. Il:

I
....

A(tle)..... Weighting p(elt::l t ) = p(OI'lt_1)a coefficient

ｾ ｨ Ｈ ｴ ｬ ･ Ｉ ｰ ｉ ｏ ｉ ｾ ｴ ｟ ｬ Ｉ ､ ･
0
a

til...
09til

;>,...
III
r-

A(tla>. .. IPv (t,6) ,-Itexp Ｍ ｾ ｉ ｉ Ｌ Ｌ Ｈ ｴ Ｌ ｡ Ｉ Ｑ Ｑ Ｒ ｰ ｾ Ｑ It,a)
.d; Likelihood.... function
H
0.... Innovation v(t,6) = zIt) - H(t,6)x(tlt - 1,0)H
(lj sequence....
til
0 Innovation Pv.( t, 6) = H(t, a) P (tit - 1, 6) HT (t , 6) + Rz (t, a)A.

< covariance

Initial Conditions pIe ｉ ｾ 0) • p(6)

A(016) • 1

I
...........
I
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Figure 1: The block diagram of the nonlinear adaptive sequentialestimation algorithm

(when the range of 8 is discrete)



-13-

REFERENCES

[1] Aoki, M. Optimization of StochasticSystems, Academic
Press, NYC, 1967.

[2] Casti, J. "Algorithms for the StochasticInflow-Nonlinear
Objective Water Reservoir Control Problem", IIASA
WP-74-70, 1974.

[3] Eykhoff, P. System Identificati.on, John Wiley, London,
1974.

[4] Kailath, T. "An Innovations Approach to Least-Square
Estimation, Part I: Linear Filtering in Additive
White Noise", IEEE Trans. on Automatic Control,
ｖ ｯ ｬ Ｎ ａ ｃ ｾ Ｑ Ｓ Ｌ No.6, pp.646-655, 1968.

[5] Kalman R.E. and Koepcke, R.W. "Optimal Synthesisof
Linear Sampling Control SystemsUsing Generalized
PerformanceIndexes", Trans. ASME, Vol.80, p.1820,
1958.

[6] Lainiotis, D.G. "Optimal Adaptive Estimation, Structure
and Parameterａ ､ ｡ ｰ ｴ ｡ ｴ ｩ ｯ ｮ Ｇ ｾ Ｌ IEEE Trans. on Automatic
Control, Vol.AC-16, No.2, pp.160-170, 1971.

[7] Lainiotis, D.G. Estimation ｔ ｨ ･ ｯ ｲ ｾ Ｌ Ｈ ｅ ､ Ｎ Ｉ Ｌ American Elsevier,
NYC, 1974.

[8] Szollosi-Nagy, A. "On the Optimal StochasticControl of
Water ResourceSystems", IIASA, WP-75-111, 1975.

[9] Takeuchi, K. Ｂ ａ ｰ ｾ ｬ ｩ ｣ ｡ ｴ ｩ ｯ ｮ of the Kalman Filter fo Cyclone
Forecasting", IIASA, RM-76-9, 1976.


