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Abstract 

Phenomena exhibiting discontinuous change, 

divergent processes, and hysteresis can be 

modelled w i t h  catastrophe theory, a recent 

development in differential topology. Ex- 

position of t h e  theory is illustrated by 

qualitative interpretations of the appear- 

ance of functions i n  central place systems, 

and of price cycles for urban housing. 



Catastrophe Theory and Urban Processes 

John Casti and Harry Swain* 

Introduction 

A mathematical theory of "catastrophes" has recently 

been developed by the French mathematician ~ 6 n 6  Thom I6, 7 1 

in an attempt to rationally account for the phenomenon of 

discontinuous change in behaviors (outputs) resulting from 

continuous change in parameters (inputs) in a given system. 

The power and scope of Thomls ideas have been exploited by 

others, notably Zeeman [lo, 111, to give a mathematical 

account of various observed discontinuous phenomena in physics, 

economics, biology, [ 4 1  and psychology. We particularly note 

the work of Arnson [11 on equilibrium models of cities, which 

is most closely associated with the work presented here. With 

the notable exception of Amson's work, little use has been made 

of the powerful tools of catastrophe theory in the study of urban 

problems. Perhaps this is not surprisirig since the the0r.y is 

only now becoming generally known in mathematical circles. How- 

ever, despite the formidable mathematical appearance of the 

basic theorems of the theory, the application of catastrophe 

theory to a given situation is often quite simple, requiring only 

a modest understanding of simple geometric notions. In this 

regard, catastrophe theory is much like linear programming in the 

sense that it is not necessary to understand t,he mechanism in 

order to make it work--a fairly typical requirement of the working 

scientist when faced with a new mathematical tool. 

Thus, our objective in this article is twofold: first, 
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t o  supp ly  a  b rse f  $.ntroducti,on t o  t h e  bas$c ph i losophy of 

c a t a s t r o p h e  theo ry  I n  a  form which w e  hope w i l l  be congen ia l  

t o  workers i n  t h e  urban f i e l d ,  and second, t o  i l l u s t r a t e  t h e  

a p p l i c a t i o n s  of t h e  theory  t o  some c l a s s i c a l  problems i n  

urban economic geography. S p e c i f i c a l l y ,  w e  cons ide r  an  

example from c e n t r a l  p l a c e  t heo ry  i n  which t h e  s imp les t  t ype  

of n o n t r i v i a l  c a t a s t r o p h e  p rov ides  a  s a t i s f a c t o r y  q l o b a l  

p i c t u r e  of t h e  observed developmental  p a t t e r n s  of f u n c t i o n s  

provided t o  t h e  popu la t ion .  A second example i l l u s t r a t e s  

a p p l i c a t i o n  of one of t h e  more complex e lementary c a t a s t r o p h e s  

t o  t h e  i s s u e  of equ i l i b r i um r e s i d e n t i a l  p rope r t y  p r i c e s  i n  

urban land  markets.  Although t h e s e  examples a r e  prov ided 

p r imar i l y  a s  q u a l i t a t i v e  i l l u s t r a t i o n s  o f  t h e  t heo ry ,  it i s  

hoped t h a t  t hey  may be of i n t e r e s t  i n  t h e i r  own r i g h t  a s  

p rov id ing  an  a l t e r n a t i v e  and poss ib l y  more comprehensive 

account  of t h e  dynamics of t h e s e  problems than  t h o s e  ob ta ined  

by o t h e r  methods. 

C a t a s t r o ~ h e  Theorv 

I n  t h i s  s e c t i o n ,  w e  p resen t  a  b r i e f  d i s c u s s i o n  of t h e  

b a s i c  assumpt ions and r e s u l t s  of c a t a s t r o p h e  theo ry  i n  a  form 

u s e f u l  f o r  a p p l i c a t i o n s .  For d e t a i l s  and p roo fs ,  w e  r e f e r  t o  

[8, 91. 

k  
L e t  f :  R x R" +R be a  smooth ( i n f i n i t e l y  d i f f e r e n t i a b l e )  

f unc t i on  r e p r e s e n t i n g  a  dynamical system Z i n  t h e  sense  t h a t  R 
k  

i s  t h e  space of i npu t  v a r i a b l e s  ( c o n t r o l s ,  parameters)  wh i le  R" 



represents the space of output variables (res~onses, behaviors). 

We assume that k ~ 5 ,  while n is unrestricted. The fundamental - 

assumption is that C attempts to locally mlnlmize f, We 

hasten to point out that in applications of catastrophe theory, 

it is not necessary to know the function f. In fact, in most 

cases f will be a very complicated function whose structure 

could never be determined. All we assume is that there exists 

such a function which C seeks to locally minimize. 

k Given any such function f , if w e  fix the point c E , 4  , 

we obtain a local potential function fc : Rn+ R and we may 

postulate a differential equation 

2 = - grad f, 
X 

af where x E Rn, gradx f = grad f = (.g , . . . ,- ) . 
aX1 a xn 

Thus, the phase trajectory of C will flow toward a 

minimum of f call it xc. The stable equilibria are given c i  

by the minima of fc, and, since there are usually several 

minima, x will be a multivalued function of c; that Is, 
C 

x : Rk + Rn is not one-to-one. The objective of catastrophe 
C 

theory is to analyze this multivaluedness by means of the 

theory of singularities of smooth mappings. 

We first state the fundamental result of catastrophe theory 

in relatively precise mathematical language. We then interpret 

each of the conclusions of the main theorem in everyday lan- 

guage to show their reasonableness and applicability for real- 

world problems. 

For completeness, and to round out the mathematical theory, we 



consider not only the minima but also the maxima and other 

stationary values of f . Define the manifold MfC R 
C 

k+n as 

and let X f  : Mf -+Rk be the map induced by the projection of 

R ~ + ~  + R ~ .  X is called the catastrophe map of f . Further, 

let J be the space of cm-functions of R k+n with the usual 

Whitney ~ ~ - t o ~ o l o ~ ~ .  Then the basic theorem of catastrophe 

theory (due to Thorn) is the following. 

Theorem: There exists a n  open dense set J o C  J, called 

generic functions, such that if f E J o  

(i) M is a k-manifold; f 
(ii) any singularity of x is equivalent to one of a finite 

f 
n.umber of elementary catastrophes; 

(iii) Xf is stable under small perturbations of f. 

Remarks : 

1. Here equivalence is understood in the following sense: 
- 

maps X :  M + N  and : M + G  are equivalent if there exist 

diffeomorphisms h, g such that the diagram 

R T  W 
- 

is commutative. If the maps X, X have singularities at 
- 

x EM, x E 3, respectively, then the singularities are 

equivalent if the above definition holds locally with 



2. S t a b l e  means that Xf is equivalent to x for  all g in 
9 

a neighborhood of f in J (in the Whitney topology). 

3. The number of elementary catastrophes depends only upon 

k and is given in the following table: 

. < number of elementary 2 8  ' co 

catastrophes 

A finite classification for k > , 6  maybe obtained under 

topological, rather than diffeomorphic,, equivalence but 

the' smooth classification is more important for applications. 

4 .  Roughly speaking, Jo being open and dense in J simply 

means that if the potential function ~ E J  were to be 

selected at random, then f E J with probability one. 
0 

Thus, a given system function f is almost always in J 
0 

and furthermore, if it is not, an arbitrarily small 

perturbation will make it so. 

5. The importance of Mf being a k-manifold is that Mf is 

the place where controlling influence is exerted: from 

the standpoint of the decision maker, Mf is the manifold 

which he may manipulate. Thus, the dimension of the 

behavior or output space does not enter into the classi- 

fication at all. Since n, the dimension of the behavior 

space, may be very large, this conclusion enables us to 



focus attention upon a much smaller set in investigating 

where and when catastrophic changes in behavior wrll occur, 

To summarize, M 2s where the action 2s. 
f 

6. Conclusion (iil shows that, mathematically speaking, only 

a very small number of distinctly different catastrophes 

can occur. Intuitively, catastrophes are equivalent if 

they differ only by a change of coordinate system. Since 

the coordinate system chosen to describe a phenomenon is 

not an intrinsic feature of the system, we may restrict our 

attention to the analysis of only a small handful of 

mathematical catastrophes, safe in the knowledge that 

more complex forms cannot possibly occur. In addition, 

as indicated below, the elementary catastrophes are all 

described by simple polynomials which make their analysis 

and properties particularly simple. 

7. The last conclusion, stability, means that should the 

potential f describing C be perturbed slightly, the new 

potential will also exhibit the same qualitative catastro- 

phic behavior as f. Since no physical system is known 

precisely, this fact enables us to feel confident about 

various predictions based upon useof any f €Joe 

Discontinuity, Divergence, and the Cusp Catastrophe 

Our critical assumption is that C , the system under study, 

seeks to minimize the function f: that is, Z is dissipative. 

Thus, the system behaves in a manner quite different from the 

Hamiltonian systems of classical physics, In this section we 



shall mention two striking features displayed by catastrophe 

theory which are not present in Hamiltonian systems but which 

are observed in many physical phenomena. 

The first basic feature is discontinuity. If B is the 
. . 

image in R~ of the set of 'singularities of Xf, then B is called 

the bifurcation set and consists of surfaces bounding regions 

of qualitatively different behavior similar to surfaces of 

phase transition. Slowly crossing such a boundary may result 

in a sudden change in the behavior of 2 ,  giving rise to the term 

"catastrophe". Since the dimension of the output space does not 

enter in the classification theorem, all information about where 

such catastrophic changes in output will occur is carried in the 

bifurcation set p which, by a corollary of conclusion (i) of the 

k 
Theorem, is a subset of the input space R . Hence, even though 2 

may have an output space of inconceivably high dimension, the 

"action" is on a manifold of low dimension which may be analyzed 

by ordinary geometric and analytical tools. 

The second basic feature exhibited by catastrophe theory 

is the phenomenon of divergence. In systems of classical physics 

a small change in the initial conditions results in only a small 

change in the future trajectory of the process, one of the 

classical concepts of stability. However, in catastrophe theory 

the notion of stability is relative to perturbations of the 

system itself (the function f), rather than just to perturbations 

of the initial conditions, and so the Hamiltonian result may not 

apply. For example, adjacent tissues in a homogeneous embryo 

will differentiate. 



Let us now illustrate the aboye ldeas by considering the 

cusp catastrophe. It will turn out that a minor modification 

of this catastrophe is also the appropriate catastrophe for one 

of the main examples of this paper, the problem of central place 

discontinuities. 

Let k = 2, n = 1, and let the control and behavior space 

have coordinates a, b, and x, respectively. 

2 
Let f : R x RI - R be given by 

The manifold Mf is given by the set of points (.a,b,xl C R 3 

where 

grad f (a,b,x) = 0, 
X 

that is, 

The map xf: Mf + R~ has singularities when two stationary 

values of f coalesce, that is, 

Thus, Equations (1) and (2) describe the singularity set S 

of x. It is not hard to see that S consists of two fold-curves 

given parametrically by 

(a,b,xl = (-3h2, 2h3, h ) , h t 0 , 

and one cusp singularity at the origin. The bifurcation set 

B is given by 

2 
which is the cusp 4a3 + 27b = 0. Since Mf and S are smooth 



Figure 1. The Cusp Catastrophe 



at the origin, the cusp occurs in L? and not in $, Figure 1 

graphically depicts the situation, 

It is clear from the figure that if the control point 

(a,b) is fixed outside the cusp, the function f has a unique 

minimum, while if (a,b) is inside the cusp, f has two minima 

separated by one maximum. Thus, over the inside of the cusp, 

M is triple-sheeted. f 

The phenomenon of smooth changes in (arb) resulting in 

discontinuous behavior in x is easily seen from Figure 1 by 

fixing the control parameter a at some negative value', then 

varying b. On entering the inside of the cusp nothing unusual 

is observed in x; but upon further change in b, resulting in 

an exit from the cusp, the system will make a catastrophic 

jump from the lower sheet of Mf to the upper, or vice versa, 

depending upon whether b is increasing or decreasing. The cause 

of the jump is the bifurcation of the differential equation 

8 = -gradx f, since the basic assumption is that 1 always moves 

so as to minimize f. As a result, no position on the middle 

sheet of maxima can be maintained and C must move from one 

sheet of minima to the other. 

A hysteresis effect is observed when moving b in the 

opposite direction from that which caused the original jump: 

the jump phenomenon will occur only when leaving the interior 

of the cusp from the opposite side to the point of entry. 

To see the previously mentioned divergence effect, consider 

two control points (a,b) with a > 0, b 30. Maintaining the 

b values fixed with decreasing a, the point with positive b 



follows a trajectory on the lower sheet of Mf, while the 

other point moves on the upper sheet. Thus, two points which 

may have been arbitrarily close to begin with end up at radi- 

cally different positions depending upon which side of the 

cusp point they pass. 

While the cusp is only one of several elementary catas- 

trophes, it is perhaps the most important for applications. 

In Table I, we list several other types for k 5 4, but refer 

the reader to [6] for geometrical details and applications. 

Table I. The Elementary Catastrophes for k I 4. 

control behavior 
space space 

Name potential function f dimension dimension 

fold xJ + ux 1 

cusp x4 + ux2 + vx 2 

swallowtail x5 + ux3 + vx2 + wx 3 

butterfly x6 + ux4 + vx3 + wx2 + tx 4 

hyperbolic 3 
urnbilic x + y3 + uxy + vx + wy 

elliptic 
umbilic 

parabolic 
umbilic 

Central Place Catastrophes 

To illustrate the cusp catastrophe in an urban context, 

consider the supply of goods and services to an urban-centered 



market a rea  under a l l  t h e  n a m a l  p o s t u l a t e s  of c l a s s i c a l  

(geometr ic,  s t a t r c ,  d e t e r m i n i s t i c )  c e n t r a l  p lace theo ry ,  

Then t h e r e  e x i s t  s p a t i a l  monopoly p r o f i t s ,  T ,  i n  t h e  d i s t r l ~  

but ion of t h a t  v a s t  ma jo r i t y  of goods whose th resho ld  l i e s  

between t h e  s i z e  of t h e  e x i s t i n g  market and t h a t  of t h e  

market t h a t  would be requi red t o  induce a competing s u p p l i e r  

t o  l o c a t e  t h e r e .  The argument i s  s i m i l a r  f o r  t h e  number 

of es tab l ishments  handl ing t h a t  good, t h e  number of f unc t i ons  

i n  a  given c e n t r a l  p lace ,  and t h e  order  of t h a t  c e n t r a l  p lace  

( c f .  Dacey [3] f o r  d e f i n i t i o n  of t e rms) .  

But now l e t  t h e r e  be emigrat ion from t h a t  market a r e a ,  

o r  some o t h e r  process producing a slow leakage of aggregate 

l o c a l  purchasing power. Then a + O ,  t h e  minimum threshold ,  

a t  which po in t  t h e  good ceases t o  be d i s t r i b u t e d .  

The th resho ld  f o r  ( re- )appearance of t h e  good ( e s t a -  

bl ishment, f unc t i on )  i s ,  however, h igher  than T = 0 s i n c e  

an ent repreneur  would choose t h a t  combination of good and 

market a r e a  o f f e r i n g  maximal s p a t i a l  monopoly p r o f i t s  ( t h e  

upper t h r e s h o l d ) .  Thus we have t h e  c h a r a c t e r i s t i c  discon- 

t i n u i t y  and h y s t e r e s i s  e f f e c t s  of ca tas t rophe theory .  

The cusp ca tas t raphe  prov ides a reasonable g loba l  p i c t u r e  

f o r  t hese  c e n t r a l  p lace  phenomena. Let  t h e  independent o r  

c o n t r o l  v a r i a b l e s  be x ,  t h e  popula t ion of a  market a r e a ,  

and y ,  t h e  d isposab le  income pe r  c a p i t a .  The behavior o r  output  

v a r i a b l e  can then  be i n t e r p r e t e d  a s  t h e  o rde r  of t h e  c e n t r a l  

p lace ,  o r  number of func t ions  o r  goods provided t h e r e ;  a l l  t h r e e  



may be generally referred to as the functional level, m, of 

the central place or market area. (The implicit potential 

function, for this system is, in contradistinction to the prior 

discussion, maximized by the action of the central place pro- 

cess. Thus we operate with -f and apply the preceding theory.) 

The relevant picture is given in Fig. 2. Each point on the 

manifold M represents a functional level corresponding to 

given levels of aggregate local purchasing power. But though 

x and y determine the functional level, the fact that M is triple- 

sheeted within a region near the relevant thresholds means that 

m can take on two distinct stable equilibrium values; values, 

moreover, which depend on the trajectory (history or direction 

of change) in x and y. Thus in Fig. 2 it may be readily seen 

that, for a fixed level of disposable income per capita, smooth 

increases in population will have but small effects on the 

functional level of the central place until the locus of that 

trajectory crosses the right-hand cusp border into region I1 

(see - a). At this point the functional level jumps dramatically 

from the lower sheet of M to the upper (the middle sheet shown 

in Figure 2 corresponds to relative minima and is of no interest 

here). The vector - b shows the same qualitative result, and 

clearly various combinations of a and b will do the same pro- - - 
vided such combinations pass through the x, y projection of the 

multi-sheeted part of M. 

The hysteresis effect can be demonstrated by examining m 

for, say, fixed income and changing population. Let population 

increase along - a as before; thus the cusp region is entered from 

I with no discontinuous output; the point then leaves I and enters 

region I1 with a positive jump in functional level. But then let 



Figure 2. A Manifold for Central Place Catastrophes 



population smoothly decrease (-a): - the cusp is entered from 

I1 at the same point as before, and the point exits into I as 

before. The only difference is that this time the catastrophic 

jump downwards in functional level takes place when entering 

I and not 11. Only an exit from the cusp region across a 

different boundary than the entry branch gives rise to cata- 

strophic change. Thus the cusp catastrophe illustrates the 

theoretical prediction, and observed fact, that the threshold 

for (re-)appearance of a function is higher than for its dis- 

appearance. Note that this qualitatively nice behavior is 

obtained even with the highly restrictive and unrealistic 

postulates of classical central place theory. More realistic 

models incorporating entrepreneurial inertia (lagged feedback 

plus conservative behavior in the face of uncertainty), non- 

zero entry costs, and substantial indivisibilities would only 

serve to accentuate the hysteresis effect. 

The third basic feature, divergence, can be appreciated by 

examining the change in functional level from nearby initial 

points p and q as disposable income falls for a fixed population. 

The trajectory in M from p passes to the left of the cusp point 

C, and consequently m drops smoothly to levels on the lower sheet 

of M. On the other hand, the point q, which began with a popula- 

tion close to p, has a trajectory which takes it to the right of 

C; m is thus maintained, for a while at least, at "artificially" 

or "anomalously" high levels. The critical factor is that slow 

change of the same sort in real regional systems with similar 

initial conditions may lead to fundamentally different futures, 

depending on the location and orientation of cusp points. More- 

over, one would expect these m-anomalies to be most glaring at 

low levels of population and income. 



Property Prices and the ~ u t t e r f l ~  Catastrophe 

The cusp catastrophe is probably useful in many other 

urban settings. Casual observation suggests that many of the 

lifestyle definition processes of our proliferating subcultures-- 

processes noted for teenage gangs long before becoming part of the 

conventional wisdom about the post-industrial middle classes [2] -- 

may exhibit the characteristic non-Hamiltonian divergence of 

catastrophe theory, and may under special conditions display 

discontinuities and even hysteresis [ 5 ]  . We discuss a more 

prosaic example, the purchase price of urban dwellings, not so 

much to exploit the cusp further but to use it as a vehicle to 

introduce a generalization which is perhaps the second-most- 

important elementary catastrophe for applied work, the so-called 

butterfly catastrophe. 

Let r repressnt the real rate of change of housing prices 

in a particular urban market. In the first approximation, we 

assume that there are two types of buyers who are interested in 

this sort of property, and that the d i n e d  level of their activities in 

the property market dictates r. Call.these buyers consumers and 

speculators. The former are interested in a wide range of 

attributes of the housing bundle and their demand is strongly 

price-elastic, especially in volatile or cyclical markets. 

Speculators, on the other hand, are overwhelmingly concerned with 

short-term (and often highly leveraged) capital gains. Since 

the two groups have fundamentally different objectives, time 

horizons, and price elasticities, they may reasonably be thought 

of as disjoint sets of investors. If Dc represents the demand 



F i g u r e  3 .  C a t a s t r o p h e  M a n i f o l d  f o r  Urban P r o p q r t y  P r i c e s  



f o r  proper ty  by consumers and Ds t h e  demand by s p e c u l a t o r s ,  

then t h e  g loba l  behavior  of proper ty  p r i c e s  may i n  t h i s  

simple c a s e  be a s  dep ic ted  i n  F igure 3 ,  

Inc reas ing  e i t h e r  D o r  Ds tends  t o  i nc rease  r ,  but t h e  
C 

key t o  c a t a s t r o p h i c  rises and f a l l s  l i e s  w i th  t h e  s p e c u l a t o r s ;  

changes i n  Dc f o r  cons tan t  Ds cause only smooth changes i n  r. 

A l l  of t h e  f e a t u r e s  observed i n  t h e  prev ious example--divergence, 

d i s c o n t i n u i t y ,  and hys te res i s - -a re .a l , so  p resen t  here'. Moreover, 

i n  empi r i ca l  a p p l i c a t i o n s  t h e r e  i s  f rkquent ly  a  r e l a t i o n  between 

t h e  l o c a t i o n  of t h e  cusp p o i n t  and t h e  time c o n s t a n t s  of t h e  

system, wi th  l o c i  avo id ing t h e  mul t i -sheeted p a r t s  of M tend ing 

t o  be slower. I n  t h i s  example, suppose t h e  process s t a r t s  a t  

0' i n  t h e  Dc-Ds space. There a r e  then two p o s s i b i l i t i e s  f o r  

passage through t h e  cusp reg ion and back t o  O ' ,  t h e  pa ths  

OPQRO and OPQSO. The f i r s t  corresponds t o  a  s p u r t  of s p e c u l a t i v e  

demand caus ing,  a f t e r  a  s h o r t  l a g ,  a  jump i n  p r i c e s  from P t o  Q ,  

fol lowed by a p r o f i t - t a k i n g  s e l l - o f f  by specu la to rs  w i th  on ly  

moderate i nc rease  i n  consumer demand, t r i g g e r i n g  a c o l l a p s e  of 

p r i c e s  a t  R.  This  s o r t  of process is  c h a r a c t e r i s t i c  of t h e  high- 

frequency components of r and i s  q u i t e  t y p i c a l  i n  specu la t i ve  

markets. The demand by consumers f o r  market i n te rven t i on  i s  r e l a t e d  

t o  both t h e  magnitude of r and t h e  ampl i tude of t h e s e  r e l a t i v e l y  

short- term "boom-and-bust" cyc les .  Slowing t h e  frequency of t h e  

OPQRO cyc le  may be an app rop r ia te  response under such cond i t i ons ,  

i f  it al lows Dc t o  bu i l d  up s u f f i c i e n t l y  a t  Q t o  d r i v e  t h e  r e t u r n  

pa th  around t h e  cusp through S. Rapid and d i s t r e s s i n g ,  f a l l s  i n  

p r i c e  a r e  thus  avoided. Th is  observat ion i l l u s t r a t e s ,  i f  c rude ly ,  



t h e  f a s t  t ime,  - slow t i m e  ( . " s i l l y  pu t t y t t  ) behav ior  d i ve rgence  

which i s  c h a r a c t e r i s t i c  of dynamic c a t a s t r o p h e  models.  

Governments i n t e r e s t e d  i n  o r d e r l i n e s s  and s t a b i l i t y  

i n  housing markets--low and v i scous  r - -usua l l y  r e q u l a t e  

Dc and Ds by t i g h t e n i n g  o r  loosen ing t h e  supp ly  of money, 

t h a t  is,  by r a i s i n g  o r  lower ing i n t e r e s t  r a t e s .  W e  now show how 

t h e  b u t t e r f l y  c a t a s t r o p h e ,  a g e n e r a l i z a t i o n  of t h e  cusp ,  enab les  

us  t o  upgrade t h e  urban p rope r t y  p r i c e  example by i n c l u d i n q  t i m e  

dependence a s  w e l l  a s  i n t e r e s t  r a t e  changes i n  t h e  c a t a s t r o p h e  

mani fo ld .  I t  w i l l  be  seen  t h a t  i n c l u s i o n  of  t h e s e  impor tan t  

f a c t o r s  g e n e r a t e s  t h e  p o s s i b i l i t y  f o r  a t h i r d  mode of s t a b l e  

behav ior  f o r  r ,  a t y p e  of "compromise" r a t e  of change of p r i c e s .  

For t h e  b u t t e r f l y  k  = 4 ,  n = 1 , t h e  canon i ca l  form 

f o r  t h e  p o t e n t i a l  i s  g i ven  by 

X 1 1 1 + - C X  f  ( c , x )  = - 6 + 5 c2x3 + 7 c 3  x2 + c 4 x  , 4 1- 

where c E R ~ ,  x E: R. The a s s o c i a t e d  c a t a s t r o p h e  s u r f a c e  M i s  t h e  

four -d imens iona l  s u r f a c e  g iven  by 

5 The s u r f a c e  M C R and t h e  b i f u r c a t i o n  set B C R ~ .  W e  draw two- 

d imens iona l  s e c t i o n s  of @ . t o  show how it g e n e r a l i z e s  t h e  cusp. 

When t h e  butterf Zy factor cl > 0, t h e  x4  t e r m  swamps t h e  x6 t e r m  

and w e  o b t a i n  t h e  cusp.  The e f f e c t  of t h e  bias f a c t o r  c 2  i s  

merely t o  b i a s  t h e  p o s i t i o n  of t h e  cusp.  



When t h e  b u t t e r f  l y  f a c t o r  c l  < 9, then t h e  x4 term con£ l i c t s  

wi th  t h e  x6 t e r m  and causes t h e  cusp t o  b i f u r c a t e  i n t o  t h r e e  

cusps enc los ing a pocket.  Th is  pocket r e p r e s e n t s  t h e  e m e r -  

gence of a compromise behavior  midway between t h e  two extremes 

represented  by t h e  upper and lower s u r f a c e s  of t h e  cusp. 

c3 =s c3 
C, > 0 c1 >O 
c2= 0 c1 >O 

c4 c4 

To employ t h e  b u t t e r f l y  ca tas t rophe  i n  t h e  urban proper ty  

p r i c e  s e t t i n g ,  w e  l e t  t h e  b i a s  f a c t o r  rep resen t  t h e  i n t e r e s t  

r a t e  it whi le  t h e  b u t t e r f l y  f a c t o r  is t h e  negat ive  of t i m e ,  

-t. Thus normal iz ing t h e  nominal i n t e r e s t  r a t e  a t  i = 0, w e  

have t h e  p i c t u r e  of F igure  5. 

=3 3 C3 

(4d) ( 4 e )  (4f 

F igure  4:  Two-Dimensional Sec t ions  of t h e  B u t t e r f l y  Catast rophe 



Space R4 (i= 0, &>o\  

Figure 5. The Butterfly Catastrophe 



Figure 5 shows t h a t  an i nc rease  of specu la t i ve  demand 

coupled wi th  a  s u f f i c i e n t l y  h igh consumer demand w i l l  l ead  t o  a  

c o n t r o l  space t r a j e c t o r y  i n t e r s e c t i n g  t h e  i n t e r i o r  pocket  of 

in te rmed ia te  r ,  r a t h e r  than r e s u l t i n g  i n  a  dramat ic  jump t o  t h e  

2 upper o r  lower su r faces  of M , A s  t h e  prev ious diagrams showed, 

manipulat ion of t h e  i n t e r e s t  r a t e  i i n f l uences  both t h e  s i z e  and 

p o s i t i o n  of t h i s  pocket of in te rmed ia te  behavior ,  thereby  i n  

theo ry  prevent ing c a t a s t r o p h i c  jumps 'o r  drops i n  p roper ty  p r i c e  

ra tes- -bu t  a t  a  p r i c e  i n  s e c u l a r  in f la t i ' on .  

Conclusions 
y,,. 

I n  t h i s  note we have presented some specu la t i on  on r o l e s  

f o r  ca tas t rophe  theory  i n  urban s t u d i e s .  While t h e  simple 

examples provided i n d i c a t e  t h a t  t h e  mathematical theory  may 

have something r e l e v a n t  t o  say about urban processes ,  it i s  

c l e a r  t h a t  much work remains be fo re  t h e s e  no t ions  can be made 

i n t o  ope ra t i ona l  t o o l s  f o r  p r e d i c t i v e  and p r e s c r i p t i v e  a c t i o n .  

I n  p a r t i c u l a r ,  t o  make t h e s e  i deas  u s e f u l  i n  a c t u a l  dec is ion-  

making con tex ts ,  t h e  q u a l i t a t i v e  a n a l y s i s  g iven here  must be made 

q u a n t i t a t i v e .  This means t h e  i s o l a t i o n  of t h e  p a r t i c u l a r  s u r f a c e ,  

o r  fami ly  of equ iva len t  sur faces ,  p e r t i n e n t  t o  t h e  process 

under s tudy.  To accomplish t h i s  t a s k ,  it w i l l  be necessary  t o  use 

exper imental  d a t a  t o  i s o l a t e  t h e  appropr ia te  range of parameters 

which appear i n  t h e  canonica l  p o t e n t i a l  func t ions .  We hope t o  

examine t h i s  c i r c l e  of i d e a s i n  f u t u r e  work. 
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