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An Adapt ive I d e n t i f i c a t i o n  and P r e d i c t i o n  

Algor i thm f o r  t h e  Real-Time 

Fo recas t i ng  of Hydro log ic  T i m e  S e r i e s *  

Abs t rac t  

I n  o r d e r  t o  ach ieve  t h e  e f f e c t i v e  c o n t r o l  of  water  
resou rces  systems, one must know t h e  f u t u r e  behaviour of 
t h e  i n p u t s  t o  t h a t  p a r t i c u l a r  system. Because of t h e  un- 
c e r t a i n t i e s  i n h e r e n t  i n  water  resou rces  p rocesses  t h e  
p r e d i c t i o n  a lgor i thm,  t o  be cons t ruc ted ,  should i nc lude  
s t o c h a s t i c  e lements ,  too .  Moreover, t h e  a lgo r i t hm should 
be r e c u r s i v e  t o  avo id  cumbersome computat ions and t o  be 
a b l e  f o r  rea l - t ime  f o r e c a s t i n g .  

I n  t h e  paper we  presen t  a  method which i s  a p p l i c a b l e  
f o r  bo th  l i n e a r  and non l inear  hydro log ic  systems having 
n o t  complete ly  t ime- invar ian t  p r o p e r t i e s .  The a lgor i thms 
a r e  based on t h e  s t a t e  space d e s c r i p t i o n  of t h e  p rocesses  
involved and u t i l i z e  t h e  Kalman s t o c h a s t i c  f i l t e r i n g  tech- 
n ique.  Due t o  t h e  unknown n a t u r e  of no i se  p rocesses ,  t h e  
b a s i c  a lgo r i t hms  w e r e  changed t o  be adap t i ve .  Using t h e  
a lgor i thms t h e  j o i n t  handl ing of water  q u a n t i t y  and qua l -  
i t y  d a t a  becomes f e a s i b l e .  

I n t r o d u c t i o n  

I n  o r d e r  t o  ach ieve  e f f e c t i v e  c o n t r o l  of water  resou rce  
systems, one must know t h e  f u t u r e  behaviour of t h e  i n p u t s  t o  
t h e  p a r t i c u l a r  systems. Th is  i s  t h e  a n c i e n t  cha l l eng ing  t a s k  
of t h e  human be ing,  because man's encounter  w i t h  t h e  p r e d i c t i o n  
problem is  a s  o l d  a s  c i v i l i z a t i o n  i t s e l f .  

The f i r s t  s u c c e s s f u l  s c i e n t i f i c  a t t a c k  d a t e s  back t o  t h e  
e a r l y  1940 's  when Wiener and Kolmogorov solved t h e  problem in -  
dependent ly  f o r  t h e  c a s e  of l i n e a r  dependent s t a t i o n a r y  pro- 
c e s s e s ,  which r e q u i r e s  s o l u t i o n  o f  t h e  Wiener-Hopf equa t ion .  
I n  1966, Eagleson e t  a l .  [4]  w e r e  t h e  f i r s t  t o  app ly  t h i s  tech-  
n ique f o r  runof f  p r e d i c t i o n .  The i r  paper i n i t i a t e d  t h e  ava- 
lanche of a r t i c l e s  d e a l i n g  w i th  t h e  v a r i o u s  t r i c k y  mod i f i ca t i ons  
of Wiener 's  procedure f o r  p r a c t i c a l  hydro log ic  f o r e c a s t i n g  

* 
Submitted t o  t h e  I n t e r n a t i o n a l  Symposium and Workshops on 
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Resources Systems, B r a t i s l a v a ,  September 1975. 

* *  
On l e a v e  from t h e  Research I n s t i t u t e  f o r  Water Resources 

Development, Budapest.  



problems (see e.g.  [ 6 ] ,  1221 and [24] ) . The c l a s s i c a l  Wiener- 
~ o p f  technique,  however, has  some s e r i o u s  drawbacks: it can 
be app l i ed  on l y  f o r  s t r i c t l y  l i n e a r  and t i m e  i n v a r i a n t  systems 
w i th  s t a t i o n a r y  inpu t /ou tpu t  processes.  Some e f f o r t s  had been 
made t o  extend t h e  theory  (see e.g.  [ 71 ) ;  due t o  t h e  computa- 
t i o n a l  burden, however, t hey  p r a c t i c a l l y  f a i l e d .  Add i t iona l  
d i f f i c u l t i e s  w e r e  r a i s e d  by t h e  use of s p e c t r a l  f a c t o r i z a t i o n ,  
and from a  p r a c t i c a l  p o i n t  of view, by t h e  n e c e s s i t y  of us ing 
a  r e l a t i v e l y  l a r g e  computer t o  s t o r e  a l l  t h e  da ta .  

Obviously, f o r  rea l - t ime opera t ion  of water resou rce  sys- 
tems, smal l  computers a r e  p re fe rab le .  Hence, our  p r e d i c t i o n  
a lgor i thms must be su iked f o r  t hese  smal l  computers. But how? 
The answer is simple: us ing  r e c u r s i v e  p r e d i c t i o n  a lgor i thms 
i n  which t h e r e  i s  no need t o  s t o r e  a l l  t h e  p a s t  measurements 
f o r  t h e  purpose of p r e d i c t i n g  t h e  f u t u r e  behaviour of t h e  t i m e  
series i n  ques t ion .  Moreover, t hese  a lgor i thms would o f f e r  
t h e  fo l lowing advantages: 

(1) The t rea tment  of t h e  informat ion of each measure- 
ment i n  a  s e q u e n t i a l  manner a l lows f o r  on- l ine  
implementat ion (e.g. by means of d a t a  a c q u i s i t i o n  
by automat ic measurement dev ices  connected i n  r e a l -  
t i m e  mode w i t h  a  c e n t r a l  p rocesso r ) ;  and 

(-2) Time v a r i a b l e  parameters and d i f f e r e n t  t ypes  of 
d i s tu rbances  can  e a s i l y  be t r e a t e d .  

Hence, a  s u i t a b l e  p r e d i c t i o n  scheme should p r e f e r a b l y  
s a t i s f y  t h e  fo l lowing requirements:  

(1) it should be mathemat ical ly  t r a c t a b l e ;  

(2) it should be e a s i l y  implemented f o r  r e l a t i v e l y  smal l  
computers ; 

( 3 )  it should be g e n e r a l l y  app l i cab le ;  

( 4 )  it should y i e l d  a n  'optimum' p red i c t i on ;  

(5) it should be adap tab le  t o  vary ing environmental 
cond i t ions ;  

(6)  it should y i e l d  an  acceptab le  convergence. 

The hydro log ic  p r e d i c t i o n  schemes used nowadays unfor tu-  
n a t e l y  g e n e r a l l y  f a i l  t o  m e e t  one o r  more of t h e s e  requi rements .  

I n  t h e  e a r l y  1960 's  R.E. Kalman [ l o ]  developed an  opt imal  
s e q u e n t i a l  es t ima t ion  technique,  u s u a l l y  r e f e r r e d  t o  a s  t h e  
Kalman f i l t e r ,  which h a s  proved extremely u s e f u l  i n  d e a l i n g  
w i th  t h e  d e s c r i p t i o n  of s t o c h a s t i c a l l y  exc i ted  dynamic systems.* 

* 
I n  t h i s  r e s p e c t ,  t h e  reader  i s  r e f e r r e d  t o  t h e  extremely 

r i c h  l i t e r a t u r e ,  e .g .  [ I ] ,  [161, [ I81 and [201. 



The Kalman f i l t e r i n g  technique i s  based on t h e  s t a t e  space,  
t ime domain formulat ion of t h e  p rocesses  invo lved,  and wi th 
s l i g h t  mod i f i ca t ions  o f f e r s  a procedure a s  a cand ida te  f o r  
s a t i s f y i n g  t h e  above requirements of a s u i t a b l e  hydro log ic  
p r e d i c t i o n  scheme. 

In  t h i s  paper we b r i e f l y  o u t l i n e  t h e  b a s i s  of t h e  Kalman 
f i l t e r i n g  technique and propose a s imple state-space-based model 
f o r  t h e  recu rs i ve  adapt ive  es t imat ion  of t h e  impulse response 
of a hydrologic system. D i s c r e t e  t ime models a r e  cons idered.  
The proposed a lgor i thms can be app l ied  t o  s l i g h t l y  non- l inear 
and t i m e  vary ing systems us ing  a proper moving d a t a  window. 
Having obta ined t h e  opt imal  t ime vary ing impulse r e s p o n s e ( s ) ,  
t h e  well-known techniques can be used f o r  p r e d i c t i n g  t h e  ou tpu t  
process ( e s )  . 

S t a t e  Space Representat ion of Hydrologic Processes 

Consider a water  resource  system (F igure l), t h e  behaviour 
which, evolv ing on t h e  d isc re te - t ime s e t  T = {tk: k = 0, 1 , 2 , . . . 1 ,  
can be descr ibed  by 

where x ( t k )  - i s  t h e  n-vector of t h e  s t a t e s  of t h e  system a t  t h e  

d i s c r e t e  t ime tk C T;  - u ( t k )  i s  t h e  s-vector  of c o n t r o l  v a r i a b l e s  

o r  known system i n p u t s ;  w ( t  ) i s  t h e  r -vector  of unoer ta in  k 
d i s tu rbances  ' d r i v i ng '  t h e  system; - z (tk) i s  t h e  m-vector of 

measurements on t h e  system; v ( t k )  - i s  t h e  m-vector of unce r ta in  

d i s tu rbances  co r rup t i ng  t h e  observa t ions ;  a n d 2  and T a r e  
c e r t a i n  f u n c t i o n a l s  c h a r a c t e r i z i n g  t h e  p r o p e r t i e s  of t h a t  par- 
t i c u l a r  system. Eq. (1) i s  c a l l e d  t h e  s t a t e  equat ion ,  and Eq. 
( 2 )  t h e  measurement equat ion  ( a s  t h e  measurement no i se  v ( ) 
i s  sometimes r e f e r r e d  t o  a s  measurement u n c e r t a i n t y ,  whr le 
some components of w ( , o r  t h e  e n t i r e  w ( - 1  i t s e l f ,  might be 
r e f e r r e d  t o  a s  modei u n c e r t a i n t y ) .  cons ider ing  t h e  simple 
example of a r e s e r v o i r  system c o n s i s t i n g  of n r e s e r v o i r s ,  x ( t k )  - 

might be sought a s  a vec to r  composed of t h e  va lues  of t h e  amount 
of s to red  water  of each r e s e r v o i r  a t  t ime tk; u ( t k )  - a s  a vec to r  

of water r e l e a s e s  ( c o n t r o l  v a r i a b l e s ) ;  w ( t k )  - a s  t h e  vec to r  of 

n a t u r a l  (uncont ro l led  s t o c h a s t i c )  inf lows t o  t h e  r e s e r v o i r s ,  
and - z ( t k )  a s  t h e  vec to r  of measured out f lows from t h e  r e s e r v o i r s .  





I n  t h i s  c a s e ,  the sta te  v e c t o r  xC*l r e f e r s  t o  a c t u a l  phys i ca l  
s t a t e s ,  namely t o  t h e  amount of-stored water  i n  t h e  system; 
b u t ,  a s  w i l l  be  shown l a t e r ,  it i s  n o t  a t  a l l  necessa ry  t o  
a s s o c i a t e  t h e  s t a t e  v e c t o r  w i t h  ' p h y s i c a l '  s t a t e s .  I n  o t h e r  
words, one can  choose amongst d i f f e r e n t  t ypes  of s t a t e  v a r i a b l e s  
t o  d e s c r i b e  t h e  same process .  

Deal ing w i th  t h e  above t y p e  of models, one must determine 
t h e  s t r u c t u r e  of t h e  system, i n  o t h e r  words, t h e  f u n c t i o n a l s  
and T .  Th is  i s  t h e  problem of system i d e n t i f i c a t i o n  [18] .  
Having i d e n t i f i e d  t h e  system, t h e  nex t  s t e p  i s  t o  f i n d  t h e  
' b e s t '  p r e d i c t i o n  of t h e  state v e c t o r  (which may sometimes 
c o n t a i n  t h e  ou tpu t  p rocess  depending upon t h e  c h o i c e  of t h e  
s t a t e  v a r i a b l e s )  R > 0 t i m e  p e r i o d s  ahead,  based upon knowledge 
of t h e  measurement on t h e  system a t  tk 

where R is t h e  l ead  t i m e  of t h e  p r e d i c t i o n ,  R deno tes  t h e  pre-  
d i c t i o n  a lgo r i t hms ,  and t h e . c i r c u m f l e x  r e f e r s  t o  t h e  p red i c ted  
(es t ima ted )  va lue .  Obviously,  t h e  goodness of p r e d i c t i o n  must 
be eva lua ted  through a g i ven  l o s s  ( c o s t )  f unc t i on ,  L ( 0  ) . Now, 
t h e  p r e d i c t i o n  problem can be formulated a s  fo l lows :  g iven  
t h e  set of measurements Z k  = Iz( t i ) :  i = 1 , 2 , . . . , k ,  f i n d  and 

A 

e s t i m a t e  - x (tk+e 1 Z k )  of - x (tk+e), R > 0, s u b j e c t  t o  t h e  c o n d i t i o n  

t h a t  t h i s  e s t i m a t i o n  ( p r e d i c t i o n )  minimize t h e  chosen l o s s  
f unc t i on .  

W e  mention i n  advance t h a t  t h e  i d e n t i f i c a t i o n  and p red ic -  
t i o n  a lgo r i t hms  w i l l  be imbedded h e r e  i n t o  t h e  same g e n e r a l  
a d a p t i v e  a lgor i thms.  

I n  t h i s  paper we c o  s i d e r  l i n e a r  lumped parameter  water 
r esou rce  systems where 2 and T a r e  l i n e a r  f u n c t i o n a l s .  I n  
o t h e r  words, t h e  p rocesses  a r e  assumed t o  be rep resen ted  by t h e  
l i n e a r  v e c t o r  d i f f e r e n c e  equa t ion  

A where, beyond t h e  v a r i a b l e s  a l r e a d y  de f i ned ,  m k  = 2 (tk+l , tk) 

i s  t h e  n x n nons ingu la r  s t a t e  t r a n s i t i o n  ma t r i x  which, i n  t h e  
c a s e  of an unforced system, maps t h e  s t a t e  v e c t o r  from t i m e  tk 

t o  t h e  s t a t e  v e c t o r  a t  t i m e  tk+l; rk G r ( tk )  i s  t h e  n x r system 

n o i s e  c o e f f i c i e n t  ma t r i x ,  and hk G A ( t  ) i s  t h e  n x s c o n t r o l  k 
ma t r i x .  Note t h a t  i n  g e n e r a l  t h e s e  ma t r i ces  a r e  t i m e  vary ing .  



As for the stochastic model uncertainty w(tk), without loss of 

generality it is assumed to be a Gaussian white noise sequence 
with zero mean 

and covariance matrix 

where & I - )  denotes the expected value operator, T the matrix 
A transposition, 6 the Kronecker delta, and gk = 

k j Q (tk+l, tk) 
the r x r noise covariance matrix, i.e. y(tk) 2. N (2, Qk) . 
Also, it is assumed that the measurement equation (cf. Eq. (2)) 
is linear and has the form 

Here Hk - G g(tk) is the m x n measurement matrix, and the 

measurement uncertainty y(tk) is also assumed to be a Gaussian 

white sequence with zero mean 

and covariance matrix 

where the m x m noise covariance matrix Rk - & g(tk) is assumed 

to be positive-definite. That is, v(tk) - 2. N(g, Ek). Moreover, 

it is assumed that the noise processes are uncorrelated with 
one another, i.e. 



Fur the r ,  w e  w i l l  u t i l i z e  t h e  separa t i on  theorem ( s e e  e.g. 
Bryson and Iio, [2]1 which s t a t e s  t h a t ,  f o r  l i n e a r  systems w i th  
quadra t i c  c o s t  f unc t i ons  and s u b j e c t  t o  a d d i t i v e  wh i te  Gaussian 
no i se  i npu ts ,  t h e  optimum s t o c h a s t i c  c o n t r o l l e r  i s  r e a l i z e d  by 
cascading an opt imal  es t ima to r  (p red i c to r )  w i th  a d e t e r m i n i s t i c  
optimum c o n t r o l l e r  (Figure 2 ) .  According t o  t h i s  p r i n c i p l e ,  
t h e  opt imal  s t o c h a s t i c  c o n t r o l  of a water resource  system can 
be decoupled i n t o  two p a r t s .  Now, w e  concent ra te  on t h e  f i r s t  
problem, t h e  s t a t e  es t imat ion /p red ic t ion  problem. Therefore,  
t h e  t e r m s  i n  Eq. (1) and ( 4 )  c o n s i s t i n g  of t h e  c o n t r o l  f unc t i on  
y ( ) w i l l  be omit ted from now on. 

One can argue about  t h e  bas i c  assumptions of t h e  no i se  
processes being Gaussian whi te sequences wi th  known covar iance 
mat r i ces .  I n  p a r t i c u l a r ,  it i s  hard t o  say t h a t  t h e  l a t t e r  
va lues  a r e  known i n  dea l i ng  wi th  hydrologic t ime series. To 
overcome t h i s  d i f f i c u l t y ,  an adapt ive  no ise  covar iance matr ix  
a lgor i thm w i l l  be in t roduced.  A s  f o r  handl ing ' co lo red '  no i ses ,  
i f  t h e  s t a t e  vec to r  might be proper ly  augmented w i th  t h e  de- 
pendent p a r t  of t h e  processes,  t h e  r e s u l t i n g  r e s i d u a l  is  a 
whi te  sequence ( f o r  d e t a i l s  see Porebski  [ 1 5 ] ) .  

I t  is a well-known f a c t  t h a t  t h e  au to reg ress i ve  (AR) 
models and moving-average (MA) models, o r  t h e i r  combinat ions, 
t h e  ARMA and ARIMA models, have found a f r u i t f u l  a p p l i c a t i o n  
a r e a  i n  desc r ib ing  t h e  behaviour of hydrologic t i m e  s e r i e s .  
There a r e  tremendous amounts of l i t e r a t u r e  t o  prove t h i s ;  
however, a lmost  each paper o f f e r s  a d i f f e r e n t  approach f o r  
handl ing t h e  models. I t  can be shown t h a t  a l l  those  t ime 
s e r i e s  models could be inc luded,  a s  s p e c i a l  c a s e s ,  under t h e  
umbrel la of t h e  genera l  s t a t e  space model. A s  an example, 
cons ider  t h e  mth dimensional  d isc re te - t ime au to reg ress i ve  model 
pth order ,  ARm (p) : 

where, beyond t h e  known no ta t i ons ,  t h e  mat r i ces  8 .  ( ) and 6 ( ) 
I - 

con ta in  t h e  AR parameters, and t h e  vec to r  

Y ( * )  = [ y l ( ' )  I y2 ( 0 )  . . . y ( ) I rep resen ts  m (poss ib ly  cor re -  - 
l a t e d )  water resource  processes such a s  runo f f ,  s o i l  mois ture 
con ten t ,  water  use,  BOD, DO, t o x i c  m a t e r i a l s  i n  t h e  water ,  e t c . ,  
depending upon t h e  o b j e c t i v e  of t h e  study.  For t h e  sake of 
n o t a t i o n a l  s i m p l i c i t y  i n i t i a l  cond i t ions  a r e  ignored and t h e  
p = 2 c a s e  is  considered here.  For t h e  s t a t e  space represen-  
t a t i o n  of t h e  AR (2)  process w e  de f ine  t h e  s t a t e  vec to r  a s  m 
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and, us ing  t h e  AR parameter  ma t r i ces ,  d e f i n e  t h e  fo l lowing 
ma t r i ces :  

Then t h e  s t a t e  space model 

is  complete ly  e q u i v a l e n t  t o  t h e  ARm(2) model. That  t h i s  i s  

r e a l l y  a  s p e c i a l  c a s e  is  seen when t h e  above s t a t e  space  model 
is  compared w i th  Eq. ( 4 )  and ( 5 ) .  A s i m i l a r  fo rmu la t ion  can 
be ob ta ined  f o r  MA,ARMA, processes .  I t  should be noted aga in ,  
however, t h a t  t h e  above s t a t e  space fo rmu la t ion  of an  AR process  
is no t  unique,  i n  t h e  sense  t h a t  i f  ano ther  form is  chosen f o r  
t h e  s t a t e  v e c t o r  t h e  m a t r i c e s  2,  I', H w i l l  change b u t  t h e  inpu t -  
o u t p u t  behav iour  of t h e  system w i i l  Got. I n  o t h e r  words, t h e  
cho i ce  of  a  p a r t i c u l a r  set (Q, - r ,  H) corresponds t o  t h e  cho i ce  
o f  a  c o o r d i n a t e  system [201.   ow ever, t h e  proper  cho i ce  of  t h e  
s t a t e  v e c t o r  has  g r e a t  s i g n i f i c a n c e  from t h e  p o i n t  of view o f  
p r a c t i c a l  computat ions on t h e  one hand, and of  system c o n t r o l -  
a b i l i t y  and o b s e r v a b i l i t y  on t h e  o t h e r  [211. 

The Adapt ive Sequen t i a l  P r e d i c t i o n  Algor i thms 

Assume t h a t  a  p r i o r  e s t i m a t e  s ( t  - k  1 tk-l  1 of  t h e  system s t a t e  

x ( t k )  is  g iven  a t  t i m e  tk which i s  based on p rev ious  measure- 
- - 

ments up t o  tk-l. Then w e  seek an updated e s t i m a t e  g ( t k l  tk) 



which takes into account the new measurement z Ct 1 at time t k k' 
(For the notations and t2ming see Eigure 3.1 Consider the 
updated estimation as being the linear combination of the pre- 
vious state and the new (noisy) measurement 

-., - 
n where Kk - = K(tk) - and Kk - 2 K(tk) - are time varying weighting 

matrices as yet unspecified. As a matter of fact, we wish to 
minimize, in a certain sense, the prediction error 

Substituting Eq. (5) into Eq. (6) and utilizing the properties 
of the noise process, it can readily be seen that Eq. (6) will 
be an unbiased estimation only if R - = - I - K H -k -k' Hence, the 

state estimation 6 (tk/ tk) , using the new measurement g(tk), is 

where $ is still unspecified, and the initial condition at 

t = t for the state estimation is given by 
0 

As a measure of the goodness of the estimation, we use 
the n x n covariance matrix P(*) - of the prediction error 
defined as 

which is obviously spe t r i c ,  and its trace is the mean square 
length of the vector x(*). Its initial condition is given by 

I 
T - P (to to) = N (5 (to) - g (to) (X (to) - g (to) 1 

= var tx(to) 1 = p (to) . 





It can also easily be seen that the covariance matrix of 
2 (tk(tkl can be projected from that of i - Ctk 1 tkWll as 

Now, we define the loss function as the following quadratic 
form: 

where S is any positive semi-definite matrix; for the sake of 
simplicity let S = I, the identity matrix. Having defined the 
loss function we sezk that estimate % - (tk 1 tk) of 5 (tk) --in other 

words, that form of the yet,unspecified gk--which minimizes 

the expected loss (or Bayesian risk) 

Since Bk is the trace of the error covariance matrix (cf. Eq. 

(9) ) the problem is to minimize the Euclidean norm I I - P (tk 1 tk) 1 I 
of ~ ( t ~ l t ~ ) ,  i.e. the length of the estimation error vector. 

Using the properties of matrix derivatives, it can be seen that 
the weighting matrix Kk - can be obtained from 

which is referred to as the Kalman gain matrix. Now, the next 
step is the extrapolation of the state variable. Consider the 
one-step-ahead case, when R = 1. In the process model, Eq. (4), 
w(-) is a white noise sequence, so no more information on it is 
contained in - z ( *  1 ; thus the best prediction of w - ( * )  that can be 



made from z(:l is its mean value, i.e. 0. Consequently, the 
one-step-aKead prediction of the state vector, given observa- 
tions up to tk, is 

The propagation of prediction errors, i.e. 
P(t t 1 + P(tk+Iltk), can be determined by computing the pre- - kl k 
dicted error covariance matrix as 

Using Eq. (12) and (41 and utilizing the fact that the predic- 
tion error and model error are independent of each other, we 
obtain 

Using the formulas in the order of Eq. (12) , (13) , then 
with k: = k + 1 in (11) , (8) and (10) the celebrated Kalman 
filter is obtained. The algorithms should be used sequentially, 
k = 1,2, ..., starting with the given initial conditions at time 

to .* The complete algorithms, together with the initial condi- 

tions, are summarized in Table 1. Kalman has shown that the 
algorithms are convergent and stable [ll]. 

Up to this point, we assumed that the noise covariance 
matrices Qk, Rk at time tk are known in the estimation algo- 

rithms. But in dealing with water resource time series, this is 
far from being true; it is necessary to predict Qk and Ek based 

upon measurements at the previous stage. Hence, to take into 
account the changing structure of uncertainties, an adaptive 
algorithm should be constructed for estimating the noise 
covariances, starting with arbitrary initial guesses. Since 
the noise covariance matrix R(t ) is assumed to be independent k 
of time, the one-step-ahead prediction of it is 

* 
It might be mentioned that the same algorithms are obtain- 

ed by maximizing the a posteriori probability P(X Z ) where 
-k 1 -k - Xk - {g(ti) : i = 1,2,...,k1 and Z is as before.  o or a detail- --k 

ed discussion, consult Sage [16]. 





For the sequential estimation of $ ( e )  Sage and Husa [17] 
developed a suboptimal adaptive estimation algorithm: 

where 

is known as 'innovation sequencet (Kailath [91) for the sub- 
optimal estimator. The innovation process v(=) is a white 
noise sequence, i.e. heuristically there is-no information left 
in v(*) if % ( a )  is an optimal estimation (Mehra [12]). A 
similar expFession can be obtained for the adaptive estimator 
of the model noise covariance. Sage and Husa have also shown 
in their paper cited that the suboptimal estimation rapidly 
converges to the optimal one when tk is increasing. It should 

be mentioned that there are numerous adaptive algorithms (118, 
121) on the market, but for our purpose the above seems to be 
the most effective, at least from a computational point of 
view. 

Adaptive prediction of Linear Hydrologic Systems 

It is well known (see e.g. Dooge [31) that a fairly large 
class of hydrologic systems Ce.g. rainfall excess/surface run- 
off, runoff/runoff transformations of flood routing, etc.) can 
be described by a convolution type of model 

where u(t1 is the input of the system (either controllable or 
not), h(tj is the impulse response of the system and y (t) is 
the output process; the asterisk denotes the convolution. In 
practice, however, we have only noise corrupted measurements 



where vCt) is an unknown noise process (Figure 41. Hence for 
linear time invariant lumped systems 

z(t) = h C ~ 1  u(t - - r )  d-r + v(t) , I 
-00 

where in case of physically realizable systems the upper bound 
of the integration is t. Note that although the system was 
assumed linear, in case of slight non-linearities, the noise 
process v(*) might be sought as a term including those 'small' 
non-linear disturbances. 

Considering discrete-time systems with finite memory q, 
Eq. (-17) can be written as 

and by defining the vectors. 

Eq. (18) becomes 

This equation can be looked upon as a measurement equation for 
the above-defined state vector 5 ( -  ) ; cf . Eq. (5) . The missing 
state equation can also be introduced without much difficulty. 
It was assumed that the system is time invariant, i.e. its im- 
pulse response h(*) does not change with time. Using the state 
vector defined above, this statement can be formulated as 

which plays the role of the state equation. 

Although it was assumed that the system is truly time 
variant, it should be stressed that the above formulation can 
be used for describing slightly time variant systems which, 





due t o  seasona l  changes, a r e  most common i n  hydrology. Th is  
concept is  i l l u s t r a t e d  i n  F igure 5 where t h e  system behaviour 
i s  cons idered t o  be t2me i n v a r i a n t  w i th in  a w e l l  def ined  ' d a t a  
window.' TWs d a t a  window, of course,  is  of a moving type.  
A s  t o  t h e  l e n g t h  of t h e  moving d a t a  window, it i s  e s s e n t i a l l y  
equa l  t o  the memory of t h e  system and might be es t imated  from 
c ross -co r re la t i on  a n a l y s i s  of t h e  input /output  processes.  The 
moving d a t a  window c r e a t e s  t h e  b a s i s  of t h e  s e q u e n t i a l  pred ic-  
t i o n .  

I f  we assume t h a t  t h e  no ise  sequence v ( t  i s  Gaussian 
k 

whi te  w i th  v ( t k l  Q, N ( O , R k ) ,  then it is  s t i l l  an open ques t ion  

how t o  determine i t s  var iance .  Th is  can be done by t h e  adapt ive  
a lgor i thm of Saga and Husa prev ious ly  d iscussed,  o r  even more 
e a s i l y  because of t h e  s p e c i a l  s t r u c t u r e  of t h e  s t a t e  space model. 
The s p e c i a l i t i e s  a r e  t k - =  - I, -k I. = 0, - and hence t h e  s t a t e  pred ic-  
t i o n  i s  

and t h e  p red i c ted  e r r o r  covar iance mat r i x  is  i n  t h e  form of 

Since v ( 0 )  is  a zero  mean whi te  no ise  sequence, t h e  opt imal  
one-step-ahead Bayes (minimum var iance)  p r e d i c t i o n  of t h e  out -  
p u t  p rocess ,  based upon observa t ions  up t o  t i s  k' 

The complete s e q u e n t i a l  p r e d i c t i o n  a lgor i thms a r e  summarized 
i n  Table 2.  Note t h a t  t o  use  t h e  r e c u r s i v e  a lgor i thms,  t h e  
i n i t i a l  cond i t i ons  (to) , v a r  { x  - (to) 1 and Ro must be s p e c i f i e d  

(o r  r a t h e r  assumed) . 
I n  o rde r  t o  i l l u s t r a t e  t h e  u t i l i t y  of t h e  proposed algo- 

r i thms,  a s imu la t ion  e x e r c i s e  was e labora ted .  A given impulse 
response was assumed, and us ing  t h a t  and an a r b i t r a r y  i n p u t  
sequence, t h e  ou tpu t  process was c a l c u l a t e d  through t h e  s imple 
d i s c r e t e  convolu t ion.  Then a Gaussian wh i te  no i se  sequence 
was generated w i th  zero  mean and va r iance  0-1. Th is  sequence 
was then  added t o  the ou tpu t  process;  t h e  r e s u l t i n g  no i se  cor-  
rupted sequence and t h e  o r i g i n a l  i npu t  sequence w e r e  f u r t h e r  
analyzed t o  s e e  whether t h e  a lgor i thm does o r  does no t  g i v e  







'back' the impulse response assumed. As an example Figure 6 
shows the situation concerning a particular ordinate of the 
impulse response. The constant line (a] meansthe 'true' third 
ordinate of the impulse response, h3, while curve (b) shows 

its estimated values using the prior knowledge (if it is avail- 
able) of the variance; curve (c) shows how its estimated values 
evolve when there is no prior knowledge, i.e. an initial guess 
for the variance had been considered and the adaptive noise 
variance estimation technique was used. It is clear from the 
figure that whatever the initial guess is, the estimation 
procedure is convergent as the number of measurement data in- 
creases. The history of the adaptive sequential noise variance 
estimation is depicted in Figure 7. In fact, the same conclu- 
sion might be drawn. 

Summary and Conclusions 

The paper outlined the state space formulation of hydro- 
logic/water resource systems. Prediction algorithms have been 
proposed which satisfy the requirements of the suitable predic- 
tion scheme laid down in the introduction since: 

(1) Using time domain formulation, the usual frequency- 
domain-based computations can be avoided on the one 
hand and the problem becomes mathematically tractable 
on the other; 

( 21  Due to the recursiveness of the algorithms the scheme 
can easily be implemented even for small computers 
and are applicable for real-time on-line forecasting, 
always taking into consideration the newest informa- 
tion gathered; 

(3) Due to the state space formulation, it is generally 
applicable to most general hydrologic time series 
(water quantity and/or quality); thus the joint 
handling/prediction of multidimensional time series 
(which might include some economic data) becomes 
feasible even in the presence of different kinds of 
uncertainties; 

( 4 )  The algorithms give optimal prediction in Bayes' 
sense (Bayesian minimum variance estimators); 

(5) The requirement of adaptivity to changing environ- 
mental conditions are fulfilled, as through a moving 
data window slight modifications in the model param- 
eters are allowed; 

(6) The algorithms are convergent and stable under very 
general conditions. 



F IGURE 6.  SEQUENTIAL ESTIMATION OF THE grd IMPULSE 

RESPONSE ORDINATE, h 3  

FIGURE 7. ADAPTIVE SUBOPTIMAL SEQUENTIAL ESTIMATION OF THE 

NOISE VARIANCE 



To i l l u s t r a t e  t h e  above p r o p e r t i e s ,  an example was 
p resented  us ing  s imula ted da ta .  The r e s u l t s  ob ta ined  i n d i c a t e  
t h e  p r a c t i c a l  a p p l i c a b i l i t y  of t h e  proposed procedure.  

A s  a f i n a l  remark, it might be mentioned t h a t  t h e  proce- 
du re  can be extended t o  inc lude  t h e  identification/prediction 
of s t o c h a s t i c  non- l inear  hydro log ic  system. Th is  cou ld  be 
done, f o r  example, by augmenting t h e  s t a t e  v e c t o r  w i th  t h e  o r -  
d i n a t e s  of t h e  h igher-order  impulse responses and then tak ing  
advantage of t h e  non- l inear f i l t e r i n g  techniques.  But a l o t  
of e f f o r t  s t i l l  remains t o  be made i n  t h e  f u t u r e  towards t h e  
s o l u t i o n  of t h e s e  problems. 
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