View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by International Institute for Applied Systems Analysis (IIASA)

’ g International Institute for
- Applied Systems Analysis

[TASA wwwiiasa.ac.at

Systems Analysis of Some Bio-
Medical Problems Related to
Medical Treatment Management

Petrovsky, A.M.

IIASA Research Memorandum
May 1975



https://core.ac.uk/display/33891965?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Petrovsky, A.M. (1975) Systems Analysis of Some Bio-Medical Problems Related to Medical Treatment
Management. IIASA Research Memorandum. Copyright © May 1975 by the author(s).
http://pure.iiasa.ac.at/493/ All rights reserved. Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other
purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting

repository@iiasa.ac.at


mailto:repository@iiasa.ac.at

RM-75-23

SYSTEMS ANALYSIS OF SOME BIO-MEDICAL PROBLEMS
RELATED TO MEDICAL TREATMENT MANAGEMENT

A.M. Petrovsky

May 1975

Research Memoranda are informal publications
relating to ongoing or projected areas of re-
search at IIASA. The views expressed are

those of the author, and do not necessarily
reflect those of IIASA.







Systems Analysis of Some Bio-Medical Problems

Related to Medical Treatment Management

A.M. Petrovsky

Abstract

A systems approach to the investigation of bio-
medical problems related to treatment of certain types
of diseases is discussed in this article. Problems of
determining admissible and optimal management with
criteria designed for both rapidly and slowly develop-
ing diseases are described here. Examples are given
of analyzing problems in the management of two typical
diseases.

A considerable number of current bio-medical problems are
both difficult and complicated. Special techniques outside
"traditional" medicine have been widely used for investigating
these problems. One approach combines medical, biological,
and physio-chemical methods of investigating living objects
with control theory apparatus. Two groups of problems of
special interest in applying control theory methods are
1) those in which a living object is considered as a large
number of interrelated physiological systems with uncertain
and changeable mutual links, and 2) those where the living
object is an element of a complex system. The first type of
problem would include individual medical examination and treat-
ment of the most widespread diseases such as cardiovascular
and oncological diseases. An example of the second type of
problem is the organization of health centers and mass treat-
ment, both in normal conditions and in emergencies such as
epidemics.

The conceptual framework of systems analysis [l] contains
an approach to studying actual bio-medical problems using the
entire arsenal of existing techniques aimed at investigating
living objects and of mathematical methods of control theory.
Problems of living sub-systems management, specifically with
the goals of medical treatment, have already been investigated
by many authors [2,4]. However, the problem oi managing the
state of the living object as a whole, or as a part of a more
complex system in the process of medical treatment, meets with
considerable difficulties because of the extreme complexity of
these objects.




A new stage of the research on this problem based on the
systems approach has now become a reality through the success-
ful application of control theory methods, mathematical model-
ling, and the use of computers in biology and medicine [5,7].
A complex living object is treated as a set of interacting
elements, or sub-systems; this approach permits deeper insight
into the structure, the functioning mechanisms, and mutual
links of the sub-systems of living objects. This is the anti-
thesis of the methods based on the idea of the so-called
"black box." Though the mathematical tools of systems analy-
sis have not as yet been completely shaped, the systems
approach to living objects will probably use the control theory
methods developed to work with incomplete data [8,9] and with
state space [10].

The system approach to bio-medical problems (hereafter
we shall refer to them as medical treatment problems) involves
several consecutive stages:

1) description of the living object as a "whole" by
estimating observability of pathological processes
in the object at different stages of the disease;

2) formulation of the management goals resulting in an
efficient application of control theory methods;

3) determination of feasible management classes which
also include optimal management and estimation of
its effectiveness. Such management will be referred
to as "tactics of treatment" and consist of systems
of rules a) for testing the state of the object (the
schedule of examinations and the degree of details),
and b) for applying specific treatments; and

4) classification and evaluation of the various stages
of diseases and the possibilities of influencing
the pathological processes at these stages, with
regard to their limited observability.

In most cases the difficulties of obtaining a sufficient
amount of information about the living objects make the prob-
lem of medical treatment stochastic, i.e. all previous stages
must be in terms of stochastic concepts. The following char-
acteristics of treatment given may be sufficient to provide
such information:

1) probability P of achieving goals related to the
treatment of one patient as well as of a contingent
of patients; and

2) average expenditures Z connected with treatment.



Depending on the disease, the goals of treatment can be
formulated on the basis of given characteristics following
conditional functionals:

max P subject to Z

I A

7% (1)
oxr

min 2 subject to P < P* (2)

Maximization or minimization of P or Z is carried out on a

set of feasible tactics of treatment. Sensitivity of function-
als (1) and (2) to the variations of tactics is important.
Their practical application to the concrete tasks requires
preliminary classification of diseases. This can be done
differently, however, using control theory methods favoring
classification based on the rate of disease progression.

Let us divide diseases into two classes: rapidly devel-
oping diseases (RDD) and slowly developing diseases (SDD).
The most characteristic feature of the RDD is late diagnosis,
i.e. diagnosis while the disease is in full progress and most
of the organs have pathological variations [4]. 1In the SDD,
in contrast, diagnosis is early.

If we conventionally limit ourselves with a one-step
scheme of making a diagnosis and selecting a tactic of treat-
ment, and assume that P = O when the diagnosis is wrong, then

p=pi(t) = r(t) gl(e) i=1,...,n, (3)

where r(t) is the probability of making a correct diagnosis

by the time t, and ql(t) is a conditional probability of curing
the patient with the right diagnosis using the i-treatment
tactic from the moment t; r(t) is almost always an increasing
function of time t which is counted from the very beginning of

a disease. The trivial relativity r(0) = O, ql(t) + O with

t > w, r(t) <1, g (t) < t leads to the conclusion that pt(t)
has a maximum with respect to t (see Fig. 1).

The index * refers to feasible values of respective vari-
ables.
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Figure 1. The probability of the correct

diagnosis ql(t), and the conditional
probability of successful patient
cure r(t) if the diagnosis 1is correct.
(Solid lines correspond to RDD's, the
dotted lines to SDD's. The dots on
the t axis roughly represent the
moments of making the diagnosis.)

The average expenditure Z has two components--the diagnos-

tic expenditures ZD(t) and the treatment expenditures le(t).

_ i
z—z(t)+zl(t) ,

where t is the moment of fixing a diagnosis. For the RDD,
ql(t) < 1 for all i because of the late diagnosis. For the

same reason Pl(t) < 1, and the problem of choosing the most
"economic" treatment. tactic after diagnosis practically van-

ishes. It is reasonable to assume that ZRDD = ZD(t) + C,

where C is a constant and ZD(t) is a decreasing function of

t (the later the diagnosis is made, the "easier" it can be
done). The criterion for estimating the performance of treat-
ment in cases of RDD can be given by (1), i.e. it can be rep-

resented as max Pl(t).

The chronic diseases which are usually recognized early
but continue over a long period of time (sometimes an entire
lifetime) are examples of SDD and represent a great interest
for systems analysis. Successful treatment of SDD means
making the patient as comfortable as possible [5]. In this



case we can assume that r(t) = 1, that there exist treatment
tactics in which ql(t) Z 1, and hence P (t) = 1. Where there
are several such tactics, the small differences in Pl(t) cannot
serve as the basis of choosing the concrete strategy, which

makes sufficiently accurate determination of Pl (t) rather dif-
ficult. Average expenses for SDD treatment are less dependent
~ i

) = 2.7 (t).

on the expense of making a diagnosis, i.e. 1

ZSDD(t
In this case criterion (2) seems appropriate:

min Z. (t)

1

1
Let us consider two illustrative examples.

l. Systems Analysis of Rapidly Developing Disease

The oncological disease (OD) is a complex dynamic process
involving most systems of the organism. Consideration of the
interactions of the systems during treatment should take into
account the probabilistic character of the processes within
those systems and their interrelationships. In the example
given, we shall assume that the reactions of the organism's
systems to the treatment are random and thus account for a
priori unknown individual differences among organisms. -
Specific treatments restricted to a one-time chemical therapy
using the drug, sarcolyzin, of carcinoma type K-755 tumour
implanted into animals will be considered. The diagnostics
(i.e. the type of the r(t) function) will not be detailed.
The differences among treatment tactics depend on the dosage

given at the moment t; max Pl(t) serves as the criterion.

This example mainly illustrates the existence of optimal treat-
ment tactics depending on t. The model used in this example
was designed by a joint group of scientists from the Institute
of Control Science (A.M. Petrovsky, E.L. Orkina, M.P. Sakharov)
and from the Institute of Experimental and Clinical Ontology
(Z,P. Sofjina, M.F. Merkulov); calculations were done by com-
puters.

At present, there exist numerous mathematical models sim-
ulating processes of malignant tumour growth. Those related
to the cells' population level are of great interest and show
that, in spite of the differences among the OD forms, the
development of the respective processes of malignant growth
over time may be described in the same way [4].

The model used in the example implies the following
assumptions. First, the development of the cancer can be rep-
resented by a well-known Skipper's model [11l]; the state of the
organism as a whole, as well as the normally developing tissue,




can be conventionally represented by the amount of leukocytes.
This value alone will define the limiting doses of medicines.
The organism is supposed to have a specific anit-cancer immunity
which prevents malignant growth and which changes depending

upon the state of the organism itself and the size of the
tumour.

The model also implies that the tumour's cells may belong
to three different kinds of populations: A) the population
which includes growth and division, B) the population which
includes those cells still capable of further division, but
whose growth has "slowed down," and C) the population of dead
cells.

The sizes of those populations are represented in the

model by the variables Yl’ Y2, and Y3, respectively, connected
by the following equations:
. 1
Yy = ¥y TG(2K, - 1) + Y Ko, - YK, - Ixil/Yl . (4)
Y. =Y ;—Z(l—K)—YK - Y. K. - IK,. VY (5)
2 1T A 2" BA 2°C i2" 72 !
Y, = (Y, + Y.) K, - Y, (6)
3 1 2 C 3TC *

A number of cells of population A, which are divided over
the unit of time, are proportional to the magnitude of the
population and inversely proportional to the time of genera-
tion TG (the cycle of time of nucleic division).

The cells formed after division can either re-enter pop-
ulation A or be transferred to population B. The probability
of getting the cell into population A is the most important
characteristic of the tumour's growth rate. In the model it
is represented by the coefficient KA' The probability of the

cell re-entering population B is I - K respectively.

Al
The cells of population B can transfer into population

A at the rate KBA' For a young tumour of small size, KBA is

initially rather high, but decreases with the growth of pop-
ulations A and B. When population A decreases--for example,
through surgery or chemotherapy-——KBA increases drastically.

The parameters included in Ka and KBA are given as the

initial data and characterize the rate of growth of a concrete
tumour. They are chosen so as to provide an accurate match
between the simulated growth curve and the experimental curve,



as well between simulated and experimental proliferative
pools (the relative part of the tumour cells being divided).

The rate of cell transfer from populations A and B into
population C is represented by the same coefficient K,. The
dead cells of the organism gradually disseminate with " the time

constant TC'

The variable I in equations (4) and (5) characterizes
the value of anti-cancer immunity of the organism, and the
coefficients Kil and Ki2 represent the degree of its influence

on the cells of populations A and B.
The state of the organism as a whole as well as its normal

tissue are conventionally defined by the amount of leukocytes,
Y6’ and the mass of blood~creating tissue, Y The latter

5
variables are related as
Yo = Y. & (20 - 1) - Y.K (7)
5 5T 1o '
N
- l l
Y, =Y. =— 2B -Y, — . (8)
6 5 TN 6 TM

The leukocyte generating mechanism used in this model is the
same as in any cell's regenerating population [12]. After
division, the blood-creating cell can either join the popula-
tion of blood-creating cells with the probability «, or dif-
ferentiate and become a leukocyte again with the probability
B =1 - ., The number of cells divided over the unit of time
is directly proportional to the mass of blood-creating tissue,

and inversely proportional to the time generation TN for the

cells of a given type. The model implies that the coefficient
8 depends on the mass of blood-creating tissue. If part of
the blood-creating tissue is destroyed, the probability of
converting the cell into a leukocyte decreases, and a dgreat
number of cells, upon division, repeat the same process; the
result is blood regeneration. The second term of the equation
(8) represents the dying-off process of the leukocytes; Ty is
a time constant of the process.

An assumption adopted in the model holds that as the
tumour grows, the mass of blood-creating tissue in the orga-

nism decreases. The coefficient KO is initially given and

represents the degree of tumour influence on the mass of the
blood-creating tissue. The probability of organism destruc-
tion caused by the effect on the blood-creating system is
continuously calculated in the model. This probability takes
into account the decrement of the leukocyte level, as well as

the time of this level.




It is known that the organism immunity level depends on
the amount of cell production in the lymphatic glands, in the
thyroid gland, and in the blood-creating tissues. As the num-
ber of leukocytes decreases, the non-specific immunity of the
organism (i.e. immunity towards different diseases) is reduced,
further increasing the probability of organism destruction.

The equation describing the state of a specific anti-cancer
immunity is represented as

I = R{Dy [1 - Y7KM] , (9)
where:

DN = the ratio of the blood-creating tissue mass (at the
given moment) to its normal value;

RI = the immunity index;

RI = the initial value of the index; and

O
Y, = an auxiliary variable representing the leukocyte

level of the organism.

Equation (9) thus describes the gradual slowing down
process of immunological activity resulting from a low leuko-
cyte level over a long period of time. The coefficient KM

as well as the coefficients Ki and Ki in equations (4) and

1 2
(5) are given as the initial data; the coefficient KD in
equation (10) is given in the same way.

Let us assume that the immunity level rises in proportion
to the amount of the destroyed cancer cells DR’ after the

anti-tumour drug is injected into the organism:
R_ =R + D_K . (10)

This drug simultaneously affects the blood-creating system,
and consequently the immunity drops significantly.

Let us consider the influence of the cytoxitic drug on
both the tumour cells and the blood-creating system. Some
authors [13] suggest that most of the cytoxitic substances,
particularly of the sarcolyzin type, disseminate rapidly in
the organism--within several minutes. Since this dissemina-
tion time is of a lesser magnitude than the time constants
in equations (4-10), the model implies instantaneous action
of the drug on the tumour cells and tissues. The malignant



cells destroyed by the sarcolyzin lose their ability to divide
and dissociate. The relative amount of the surviving cells of
the populations A, B, and the blood-creating tissue exponen-

tially depends on the dose of sarcolyzin DS multiplied by the

sensitivity coefficient of the respective population to the
given medicine.

The result of treatment depends 1) on the tumour sensi-
tivity to the drug, 2) on the ¢ :te of the blood-creating and
immunity systems at the time of administration, and 3) on the
character of development of subsequent processes.

Large doses of sarcolyzin can kill almost all the malig-~

nant cells. However, they may also destroy the blood-creating
system to such an extent that the organism may not have enough
protection for supressing the surviving cells. By destroying

the appropriate number of malignant cells, a smaller dosage
causes less damage to the organism, whose protection mechanisms
can efficiently affect the surviving cells.

Such considerations lead to the hopeful conclusion that
optimal doses of the drug do exist. To our knowledge, the
problem of finding the optimal treatment tactic (dosage of
the drug) has not yet been set forth. By assuming a specific
distribution of sensitivity to the drug in a stochastic formu-
lation, one may obtain the probability of successful OD cure
(full dissociation of the tumour) as a function of t under

the optimal ql(t)——see Fig. 2*., The curves in Figure 2 testify
to the existence of optimal treatment tactics and accord with
the well-known fact of the decrease of treatment effectiveness
due to the lack of prompt diagnosis.

2. Systems Analysis of Slowly Developing Disease

The treatment of the slowly developing, or chronic, disease
is a long-lasting process of interactions between patient (or
a contingent of patients) and a doctor (or a medical institu-
tion). This process involves several interchanging stages of
clinical and dispensary treatment [5].

We shall consider a dispensary stage only where the prob-
lem of stabilization of the "comfort"™ state of the patient
is being solved. The interaction between a doctor and a patient
in this case has been reduced to a series of patient examina-
tions for testing the patient's state and for correcting the
treatment tactics if necessary (including more careful examina-
tion and treatment in clinics). Interactions between a dcctor
and a patient are characterized by the frequency F of the
patient's visits to a dispensary. The date T of the succeed-

ing visit is a random number which is determined a) by the
doctor at the moment Ts—l’ corresponding to the previous exami-

* C s . . . . . .
The sensitivity distribution shown in Fig. 2 is random
as no sufficient experimental data are yet available.
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Figure 2. Recovery of a group of mice after

one injection of sarcolyzin (re-
covery represented as a function
of tumour weight).

nation of the patient, and b) by subjective reasons (e.g. a
change in the patient's feelings). We write

Ty = gy, g0 (11)

where ns_l(S) is a prognosis of the patient's state by the

Tsth moment, defined at the moment TS ES is a random number

_l;

which represents the patient's state (for example, ES = 0,

when the patient is in a "normal" state); and & = I, when the
) . S

change for the worse 1is noticeable.

We may require that

§ =T - T < A , (12)

where As—l is the maximal admissible interval between two
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successive visits to dispensary as given, for example, by the
rules for preventive examinations.

We shall consider ns_l(s) as a functional of the preceding

observations Xs—l""’xs—k of the patient's state at the moments
Ts—l""’Ts—k:
ng_q(s) = ¢ &X__y, ’Xs—k) ' (13)

where k is a memory time of the prognosis.

The practical use of the relations (13) and (14) should
be based on the mathematical models of the SDD or on subjective
medical estimates. Thus, slowly developing diseases can be
divided into two classes: 1) those for which mathematical
prognostic models can.be built (e.g. slowly developing hyper-
tension diseases), and 2) those which cannot be described by
a prognostic model (e.g. forms of hypertension diseases with
crisis phenomena). Improving the prognostic methods of the
SDD may maximize the sequences of Ng for the patients with

SDD's of the first type. This allows the doctor to pay more
attention to patients with the SDD for which mathematical
prognostic models cannot be elaborated.

Consider the hypertension disease (HD) of the second
stage, with a slow development. We shall restrict ourselves
to the problem of predicting the patient's state by two char-
acteristics of the arterial pressure (AP): systolic pressure
(SAP) and diastolic pressure (DAP). Difficulty in describing
the development of the HD with consideration for each patient's
peculiarities led us to assume that AP depends on time as a
polynomial function

+C £+ e+ oe

0’s-1 1’s-1 t 7

-1/ and Cr,s—l

are the coefficients of the polynomial approximation. The AP

are the functionals similar to one given by (13); € is a ran-

dom component representing non-observable factors.

where t is being counted from the moment T

A doctor should determine the possibility for using the
mathematical prognosis on an individual bas.:; when this prob-
lem is solved positively, T is computed by using (11-13).

The experience with practical testing of the algorithms given
by (14) with patients having the HD of the second stage proved
to be sufficient in many cases.
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A retrospective test (l4) based on the 10-year history
of the DAP and the CAP of a typical patient with the HD of
the second stage (100 doctor's visits) may serve as an example.
The calculations of CO’s—l and Cl’s-l and the variances DO’s—l

and D were made by the standard methods. At the moments
T

1’s-1

a=1" the confidence intervals were defined where an actual

sample of the AP should presumably have been found with a high
probability. The intersection of limits of these intervals
with the levels of the maximal permissible deviations of the
AP (+ 15 mm of mercury in the given example) define T_. To

assess feasibility of a given method for selection of Ts’ a

frequency of an actual sample of the AP which is outside the
borders of admissible deviations may be used as a criterion.
The results of the retrospective analysis for the given sample
are as follows:

The number of calculated CAP points is 22; the number of
DAP points is 24, i.e. approximately 4 times less than the
number of visits. The frequency of the prognostic intervals
where AP deviations stay in the admissible range of # 15 mm
of mercury, is equal to 0.89 for the DAP and to 0.84 for the
CAP. Note that the maximal memory time of the prognosis did
not exceed 180 days, the limit value having been closely ob-
served in approximately 50% of the cases.
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