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Bayesian Inverse  Regression and Discr iminat ion:  

An Appl icat ion of C r e d i b i l i t y  Theory 

R. Avenhaus and W .  S. Jewel1 

Abst ract  

Many measurement problems can be formulated a s  fo l lows:  
a  c e r t a i n  l i n e a r  r e l a t i o n s h i p  between two v a r i a b l e s  i s  t o  be 
es t imated  by us ing p a i r s  of i npu t  and output  d a t a ;  t h e  va lue 
of an unknown inpu t  v a r i a b l e  is  then  es t ima ted ,  g iven an 
observa t ion  of t h e  corresponding ou tpu t  v a r i a b l e .  T h i s  
problem i s  o f t e n  r e f e r r e d  t o  a s  i nve rse  reg ress ion  o r  d i s -  
c r im ina t ion .  

I n  t h i s  paper ,  we formulate  a  genera l  Bayesian c a l i b r a -  
t i o n  and measurement model f o r  t h i s  problem, i n  which p r i o r  
in format ion is assumed t o  be a v a i l a b l e  on t h e  r e l a t i o n s h i p  
parameters ,  t h e  p o s s i b l e  va lues  of  t h e  unknown i n p u t ,  and 
t h e  ou tpu t  observa t ion  e r r o r .  S imp l i f ied  and e a s i l y  i n t e r -  
p re ted  formulae f o r  es t ima t ing  t h e  p o s t e r i o r  mean and 
var iance  of t h e  i n p u t  a r e  then developed us ing t h e  methods 
of c r e d i b i l i t y  t heo ry ,  a  l i n e a r i z e d  Bayesian a n a l y s i s  
developed o r i g i n a l l y  f o r  insurance es t ima t ion  problems. A 
numerical example of t h e  c a l i b r a t i o n  of a  ca lo r imeter  t o  
measure nuc lear  m a t e r i a l  i s  given.  

1. Problem Formulat ion 

In  t h i s  paper ,  we cons ider  problems of t h e  fo l lowing k ind:  

we wish t o  es t ima te  t h e  va lue  of a  c e r t a i n  s t a t e  v a r i a b l e  x  

which cannot be measured d i r e c t l y ,  o r  on ly  wi th  very l a r g e  e r r o r  

o r  e f f o r t .  We know, however, of another  s t a t e  v a r i a b l e  y ,  which 

i s  s t a t i s t i c a l l y  dependent on x ,  and which can be measured more 

e a s i l y  o r  accu ra te l y .  Thus, i n  p r i n c i p l e ,  we can e s t i m a t e  t h e  

r e l a t i o n s h i p  between x  and y ,  and t h e n ,  wi th  smal l  e f f o r t ,  ob- 

t a i n  x  by measuring y  and us ing t h e  i n v e r s e  r e l a t i o n s h i p .  

However, d i f f i c u l t y  a r i s e s  because we must use o t h e r  p a i r s ,  



(x i ,y i )  (i = 1 . 2 ,  ..., n ) ,  t o  e s t i m a t e  t h e  r e l a t i o n s h i p .  Of ten 

t h e s e  w i l l  have been determined f o r  o t h e r  o b j e c t i v e s  and under 

d i f f e r e n t  exper imenta l  cond i t i ons .  Thus, t h e  t r u e  va lues  of 

independent  and dependent  v a r i a b l e s  may n o t  be p r e c i s e l y  known, 

o r  t h e  r e l a t i o n s h i p  i t s e l f  may be s l i g h t l y  d i f f e r e n t  t han  it 

appears  from t h e  d a t a .  

F i n a l l y ,  a s  i n  most p h y s i c a l  problems,  w e  assume t h a t  a  

g r e a t  d e a l  of  c o l l a t e r a l  i n fo rmat ion  i s  a v a i l a b l e  which g i v e s  

u s  some p r i o r  i d e a  of  r e l a t i o n s h i p  between x  and y ,  and even 

of t h e  unknown va lue  x  w e  a r e  t r y i n g  t o  e s t i m a t e .  I n  o t h e r  

words, w e  wish t o  make a  Bayesian fo rmu la t ion  of t h e  problem. 

Three examples of t h i s  c l a s s  of problem a r e  g iven below. 

A. C a l i b r a t i o n  and I n d i r e c t  Measurement of Nuclear  

M a t e r i a l s  

Nuclear  m a t e r i a l s ,  e .g .  p lutonium, a r e  ex t remely  

d i f f i c u l t  t o  measure d i r e c t l y  by chemical  means. 

The re fo re ,  one u s e s  i n d i r e c t  methods, based upon t h e  

h e a t  p roduc t ion  o r  t h e  number of neu t rons  e m i t t e d ,  i n  

o r d e r  t o  e s t i m a t e  t h e  amount of m a t e r i a l  p r e s e n t .  From 

well-known p h y s i c a l  l aws ,  w e  have a  g e n e r a l  r e l a t i o n s h i p  

between t h e s e  v a r i a b l e s ,  b u t  any measurement ins t rument  

based on t h e s e  p r i n c i p l e s  needs f i r s t  t o  be c a l i b r a t e d .  

Usua l l y ,  t h i s  c a l i b r a t i o n  can be done w i t h  t h e  a i d  of 

s tanda rd  i n p u t s ,  con ta in i ng  known amounts o f  n u c l e a r  

m a t e r i a l s .  However, t h e s e  i n p u t s  (x i )  a r e  n o t  g e n e r a l l y  

under o u r  c o n t r o l ,  and i n  some c a s e s ,  may have r e s i d u a l  



imprec is ions  i n  t h e i r  va lues .  

Measurement ins t ruments  o f t e n  have longer- term 

d r i f t s ,  du r i ng  which t hey  t end  t o  l o o s e  t h e i r  o r i g i n a l  

c a l i b r a t i o n .  For t h i s  r eason ,  measurement of a  g iven  

product ion run o f t e n  c o n s i s t s  of two d i s t i n c t  phases:  

( r e l c a l i b r a t i o n  of t h e  i ns t rumen t ,  and a c t u a l  i n d i r e c t  

measurement. With a  f i x e d  amount of t i m e  a v a i l a b l e ,  it 

i s  of i n t e r e s t  t o  determine how much t i m e  should  be 

spen t  on t h e  two phases ,  assuming t h a t  a d d i t i o n a l  t i m e  

spen t  on each obse rva t i on  reduces o b s e r v a t i o n a l  e r r o r .  

B. Est imat ion  o f  Family Incomes by P o l l i n g  

W e  wish t o  e s t i m a t e ,  th rough a  p u b l i c  op in ion  p o l l ,  

t h e  d i s t r i b u t i o n  of fami l y  incomes i n  a  c e r t a i n  c i t y  

d i s t r i c t .  A s  t h e  major p a r t  of t h e  popu la t ion  w i l l  n o t  

be w i l l i n g  t o  d i v u l g e  t h e i r  incomes, o r  w i l l  g i v e  on l y  

a  ve ry  imprec ise  f i g u r e ,  w e  look f o r  a  dependent  v a r i -  

a b l e  which can be more e a s i l y  determined.  According t o  

t h e  l i t e r a t u r e  (see, e. g.  [lo] ) , hous ing expenses a r e  

s t r o n g l y  r e l a t e d  t o  fami l y  income, and,  fu r the rmore ,  

it may be assumed t h a t  t h e  popu la t ion  i s  less r e l u c t a n t  

t o  d i vu lge  t h i s  f i g u r e ,  even though they  may no t  be 

a b l e  t o  do s o  p r e c i s e l y .  C l e a r l y ,  t o  determine t h i s  

r e l a t i o n s h i p  e x a c t l y ,  w e  must have some f a m i l i e s  i n  

t h i s  d i s t r i c t  who a r e  w i l l i n g  t o  g i v e  bo th  t h e i r  t o t a l  

income and t h e i r  household expenses.  On t h e  o t h e r  hand, 

w e  have s t r o n g  p r i o r  i n fo rmat ion  on t h i s  r e l a t i o n s h i p  

from s i m i l a r  su rveys ,  and may have g e n e r a l  i n fo rmat ion  



on income d i s t r i b u t i o n  from census and o t h e r  sou rces .  

C. Miss ing V a r i a b l e s  i n  Bayesian Regress ion 

I n  a  paper  w i t h  t h i s  t i t l e  [ll] , P r e s s  and S c o t t  

cons ide r  a  s imp le  l i n e a r  r e g r e s s i o n  problem i n  which 

c e r t a i n  o f  t h e  independent  v a r i a b l e s ,  x i ,  a r e  assumed 

t o  be m iss ing  i n  a  nonsys temat i c  way from t h e  d a t a  p a i r s  

( x i , y i ) .  Then, under s p e c i a l  assumpt ions abou t  t h e  

e r r o r  and p r i o r  d i s t r i b u t i o n s ,  t hey  show t h a t  an op t ima l  

p rocedure  f o r  e s t i m a t i n g  t h e  l i n e a r  pa ramete rs  i s  t o  

f i r s t  e s t i m a t e  t h e  m iss ing  x  from an i n v e r s e  r e g r e s s i o n  
i 

based on ly  on t h e  complete d a t a  p a i r s .  

Problems of  t h i s  k i n d  are d e s c r i b e d  i n  tex tbooks  on t h e  

t heo ry  o f  measurements, and a r e  sometimes c a l l e d  d i s c r i m i n a t i o n  

problems (Brownlee [l] , M i l l e r  191 1 .  

I n  t h e  f o l l ow ing ,  w e  s h a l l  f o rmu la te  t h e s e  problems a s  

Bayes ian  c a l i b r a t i o n  and measurement problems,  i n  t h e  sense  of  

Dunsmore [3] [4] , Hoadley [5] , and L ind ley  [8] . Th is  f o rmu la t i on  

is  q u i t e  g e n e r a l ,  and a l though  t h e  language cor responds t o  t h a t  

of example A ,  t h e  t r a n s l a t i o n  t o  o t h e r  examples i s  e a s i l y  made. 

Because o f  t h e  s t r o n g  d i s t r i b u t i o n a l  s p e c i f i c a t i o n  requ i re -  

ments of t h e  f u l l  Bayesian a n a l y s i s ,  w e  s h a l l  t hen  use  t h e  

approach of  c r e d i b i l i t y  t h e o r y  t o  f i n d  b e s t  l i n e a r  approxima- 

t i o n s  t o  moments of i n t e r e s t .  The r e s u l t i n g  formulae enab le  

us  t o  e a s i l y  d i s p l a y  t h e  r e l a t i v e  v a l u e  o f  p r i o r  i n f o rma t i on ,  

on t h e  one hand,  and in fo rmat ion  ob ta i ned  i n  t h e  c a l i b r a t i o n ,  

on t h e  o t h e r .  W e  w i l l  deve lop  f u r t h e r  t h e  op t im i za t i on  problem 



described in Example A above, and will consider a numerical 

example of calibration and indirect measurement of nuclear 

material. 

2. Bayesian Calibration and Measurement Model 

To develop the Bayesian model, we suppose that: 

(1) Calibration consists of n independent pairs of input 

and output observations ( y )  = x i  y ) , i = 1 , 2 . . . n )  . (xi 

is a relatively precise or standard input, and yi is the 

observed output on a measurement instrument, which specifies 

a statistical relationship between these pairs through a con- 

ditional measurement density, p(yilxi,O); the measurement 

density depends upon a fixed but unknown measurement parameter 
* 

8 ,  for which we have a prior density, p(8)); 

(2) Measurement consists of using the same instrument on 

a sample of unknown input, 2 = x, to obtain an output 9 = y, 

say; the problem is then to infer the value of x. Since this 

cannot be accomplished, we must, in general, settle for an 

estimate, 8 ,  which, in the remainder of the paper, we will 

assume to be &{2ly;x,y). Other Bayes estimators may be important 

in other physical situations. 

Following [8], we see that we must compute the posterior 

conditional density, 

* 
We use the convention that the arguments of any p(-) indicate 
the particular density in question, which may be with respect 
to Lebesgue or discrete measure. Where necessary, we indicate 
a random variable with a tilde; i.e., 2 is the random variable 
corresponding to x, etc.. 



from which t h e  mean, 8 { % l y ; x , y ) ,  w i l l  be ou r  e s t i m a t e  of t h e  

unknown i n p u t ,  and t h e  v a r i a n c e , Y { % ( y ; x , y ) ,  w i l l  be t h e  norm 

f o r  our  op t im i za t i on  problem, s i n c e  w e  wish t o  make t h e  e s t i m a t e  

a s  p r e c i s e  a s  p o s s i b l e  i n  t h e  l e a s t - s q u a r e s  sense .  

To proceed f u r t h e r ,  w e  must make a d d i t i o n a l  s t a t i s t i c a l  

assumptions a p p r o p r i a t e  t ,o our  problem: 

(1) Given 8 ,  w e  assume t h a t  t h e  measurements a r e  indepen- 

d e n t  : 

( 2 )  W e  assume t h a t  t h e  p r i o r  on t h e  measurement parameter  

i s  u n r e l a t e d  t o  any of t h e  i n p u t s :  

( 3 )  Any unknown i n p u t  i n  t h e  measurement p rocess ,  x ,  i s  

s e l e c t e d  independent ly  from t h e  s tanda rd  i n p u t s ,  - x  = [x1,x2,. . . ,xn] I ,  

and t h e  parameter  8: 

The t h i r d  assumption i s  t h e  s t r o n g e s t ,  and may n o t  ho ld ,  f o r  

example, when t h e  c a l i b r a t i o n  i n p u t s  and t h e  tes t  i n p u t  come 

from t h e  same produc t ion  p rocess .  However, i n  ou r  c a s e ,  w e  

assume t h a t  t h e  c a l i b r a t i o n  i n p u t s  a r e  independent  s tanda rds .  



By elementary manipulations, we obtain: 

where 
n 

Notice that the denominators of (2.2) and (2.3) are just 

normalizations, which may be computed directly at any time. 

In the above form, it is clear that the problem breaks 

apart mathematically into two problems: 

(1) The updating of p(8) to p(8)x,y) (calibration); 

(2 j The calculation of moments of interest for p (x ly ,8) , 

averaged over the appropriate density of 8 measure- 

men t . 
We tackle these problems in reverse order, since the only effect 

of calibration is to modify the prior information about the 

regression parameters and to improve the precision of this 

estimate. 

3. Estimation of Input Using Credibility Theory 

To find the moments of p(xly,8) = p(ylx,8) p (x)//p(ylx',8) 

p(x' ) dx' , we must in the general case make distributional as- 

sumptions about p (x) and p (y 1 x,8) . However, since only the 

moments of this density are of interest, it is desirable to 



have a  s imp le r ,  d i s t r i b u t i o n - f r e e  approach, such a s  t h a t  pro- 

v ided by c r e d i b i l i t y  t h e o r y  [6] [i'] . I n  t h i s  approach, Bayesian 

means cond i t i ona l  on given d a t a  w ,  say ,  a r e  approximated by 

l i n e a r  combinations of c e r t a i n  func t ions  of w ,  chosen from 

phys ica l  cons ide ra t i ons ;  t h e  c o e f f i c i e n t s  a r e  then chosen t o  

minimize t h e  mean-square approximation e r r o r  p r i o r  t o  w .  In  

c e r t a i n  c a s e s ,  t h e s e  approximation formulae a r e  a l s o  t h e  exac t  

Bayesian c o n d i t i o n a l  means [ 6 ] .  

The usua l  assumption about a  measurement process i s  t h a t ,  

g iven t h e  measurement parameter 8 ,  t h e r e  i s  a  l i n e a r  r e l a t i o n  

between t h e  t r u e  i npu t  and t h e  t r u e  o u t p u t ,  but  t h a t  t h e  ob- 

served process may con ta in  an a d d i t i o n a l  uncor re la ted  measure- 

ment observa t ion  e r r o r ,  w i th  zero  mean and known var iance .  

This may be convenient ly  expressed as :  

( I n  o t h e r  a p p l i c a t i o n s ,  t h e  observat ion e r r o r  may a l s o  depend 

upon 8 o r  t h e  l e v e l  of x . )  We c a l l  B 1 ( 8 ) ,  B 2 ( 8 )  t h e  i n s t r u m e n t  

p a r a m e t e r s .  

We know t h a t ,  f o r  genera l  p  (x ,y  1 0 )  , t h e  f a c t  t h a t  t h e  

reg ress ion  of y  upon x  (3 .1 )  i s  l i n e a r  does no t  n e c e s s a r i l y  -- 

mean t h a t  t h e  reg ress ion  of x  upon y  is  l i n e a r  i n  y. However, 

it i s  t r u e  i n  t h e  case of t h e  normal and some o t h e r  b i v a r i a t e  

d i s t r i b u t i o n s ,  and seems a  d e s i r a b l e  c h a r a c t e r i s t i c  of any 

measurement process.  Therefore,  we s h a l l  assume t h a t  our p r i o r  

es t ima te  of t h e  t r u e  i n p u t  x ,  g iven an observed ou tpu t  y ,  may 



be approximated by the linear function: 

where the "credibility coefficients" zO1 z1 are chosen so as 

to minimize the approximation error variance: 

For the remainder of this section, we shall treat the averaging 

over 8 as if it were with respect to the prior p(8), realizing 

that in the next section we shall change to p(8lx,y), to add the 

information provided by the calibration. 

One can easily show r6.71 [2, Appendix 31 that the optimal - 
credibility coefficients are given by: 

so that the optimal estimator is unbiased. 

&'{%I represents our prior estimate of the value of the 

input to be measured; the remaining moments must be calculated 

from our measurement assumptions (3.1) (3.2). From (3.1) : 

where 

are the mean prior estimates of the instrument parameters. 

By unconditioning (3.2) on x and 8, we find: 



2 { = o2 + r { B l  ( b2 + A z 2 )  + Al l  + 2A128{%l + 
M [&t?l] , 

where 

a r e  t h e  p r i o r  e s t i m a t e s  of t h e  ( c o ) v a r i a n c e s  i n  t h e  ins t rument  

parameters .  W e  see t h a t  t h e  t o t a l  pr ior- to-measurement var -  

i ance  i n  t h e  obse rva t i on  i s  composed of t h r e e  groups of t e r m s :  

(1) The obse rv2 t i on  e r r o r  va r i ance ;  

( 2 )  The p r i o r  v a r i a t i o n  i n  i n p u t ;  

( 3 )  (Co) va r i ances  i n  ins t rument  parameters .  

An i n c r e a s e  i n  any one of t h e s e  w i l l  reduce t h e  we igh t ,  z l ,  

a t t a c h e d  t o  t h e  observed o u t p u t ,  y ,  i n  ( 3 . 3 ) .  

There i s  only  one p r i o r  source  of covar iance  between i n p u t  

and o u t p u t :  

which means t h a t ,  a s  t h e  u n c e r t a i n t y  i n  t h e  i n p u t  i n c r e a s e s ,  

one must a t t a c h  more importance t o  t h e  observed o u t p u t  i n  ( 3 . 3 ) .  

For convenience,  w e  reproduce t h e  f i n a l  formula f o r  t h e  

e s t i m a t e  of t h e  t r u e  i n p u t :  

Thus, i n  t h e  c r e d i b i l i t y  approach,  on ly  seven p r i o r  moments must 



be specified: the mean and variance of the potential input, 

and the two means and three (co)variances of the instrument 

coefficients. 

It is of interest to examine several limiting cases of 

the estimator (3.12) (3.13) in more detail. First, as already 

2 
mentioned, if either the observation error variance aM or any 

of the instrument variances is very large (sometimes called a 

"diffuse" calibration prior), then, since z vanishes, the best 1 

estimate of 2 is its prior mean, & I ? ) ;  the measurement process 

gives little additional information. Similarly, the vanishing 

of <Y{?) makes &{k) very reliable. 

On the other hand, suppose that we have a "diffuse" prior 

on the level of input, that is, although &{k) is given, '~{k)+w. 

In this case the forecast can be rewritten: 

If A /b2 is small compared with unity, we obtain exactly the 22 2 

deterministic result corresponding to (3.11), y = bl+b2 x . 
In the optimization model of Section 6, we shall need the 

mean-square value of the error between the true value x and the 

predictor f(y), that is, the v a r i a n c e  o f  f o r e c a s t  e r r o r :  

But, by elementary manipulations, 



where Ho i s  t h e  i r r e d u c i b l e  f o r e c a s t  v a r i a n c e  u s i n g  t h e  B a y e s i a n  

c o n d i t i o n a l  mean: 

and HA i s  given by (3 .4)  . 
With t h e  opt imal  cho ice of c r e d i b i l i t y  c o e f f i c i e n t s ,  w e  ob ta in :  

H i n  (3.15) and (3.18) i s  t h e  var iance  of f o r e c a s t  e r r o r  f o r  

one i nve rse  measurement. I f  r such measurements a r e  performed, 

wi th  independent,  i d e n t i c a l l y  d i s t r i b u t e d  i n p u t s ,  then one can 

e a s i l y  show t h a t  t h e  var iance  of t h e  t o t a l  e r r o r  w i l l  be: 

(3.19) 

W e  see t h a t ,  i n  a d d i t i o n  t o  t h e  expected f i r s t  t e r m  which is 

r t i m e s  (3 .18 ) ,  t h e r e  i s  a component which i s  propor t i ona l  

2 t o  r . Th is  r e p r e s e n t s  a p o s s i b l e  p e r s i s t e n c e  of e r r o r  due 

t o  ins t rument  parameter covar iances ,  which may cause t h e  in -  

d i v i d u a l  f o r e c a s t  e r r o r s  t o  be p o s i t i v e l y  c o r r e l a t e d .  



4. Updating of Instrument Parameters Using Credibility Theory 

We turn now to the problem of incorporating the results 

of the calibration experiments into our prior-to-measurement 

density - on 0. Remember that the number, n, of such experiments, 

and the previously calibrated levels of the inputs, 

x.  (i=1,2, ..., n), are assumed to be fixed by external considerat- 
1 

ions. See also Section 6 below. 

Assuming that (3.1) and (3.2) apply also to calibration 

(i.e. the same instrument is used), we may write: 

where 

1 is a vector of n ones, -n In  is the unit matrix of order n, 

2 and oC is the observation variance for each output y.(i=1,2, ..., n). 
1 

We thus have a formulation as a Bayesian regression problem, in 

which we want to estimate various moments of p(E(0) lxty). In 

particular, from (3.8) (3.10) (3.13) (3.18) , we see that the first 

and second moments: 

B { B ( ~ )  I Z , ~ )  ; wp(B )  ;B(B) 15,yl 

will be needed. 

( * )  Vector covariance is defined as 

W { i ; z )  = BIG z' - BIG) LBI<)] ' 

for any two random vectors @ and c .  - 



Rather than make distributional assumptions, such as those 

followed in [13], we shall again make a credibility approximation, - 
this time to B[&(B) 1 5,~). The appropriate theory has been 

developed in C7], and we shall give only the necessary results 

here. 

First, we approximate the desired mean instrument parameter 

vector by a linear function of the data vector y: 

where g, go are two-vectors, Z is a 2 n matrix, and the cred- 

ibility coefficients are chosen so as to minimize the mean-square 

approximation of both components to those of the Bayesian condit- 

ional mean vector. After some algebra it is shown in [7] that 

the optimal credibility forecast can be written as: 

where b - = [blIb2I1 is the vector of prior-to-calibration means, 

z is a new 2 2 credibility matrix: - 

A 

(the terms in square brackets commute), and B(y) is the class- - - - 
ical regression estimator of & : 

A is the 2 2 matrix of prior-to calibration covariances 

defined in (3.10), and 



Thus, in our model, the "regression errors" are "homoscedastic", 

and we get the further simplifications: 

z = [AX'X] [of I2 + AX'X]-~ , - 

and 

where 

i.e. n times a matrix of deterministic moments ml, m describing 
2 

the predetermined calibration inputs. One may easily verify that: 

The results (4.4) (4.8) (4.9) are intuitively very satis- 

fying, for they show that our estimate of the instrument co- 

efficientsprior to calibration should be taken as a linear mixture 

of our prior hypothesis, b, and of the well-known classical esti- 
A 

inator, g(y). The credibility attached to the latter depends upon 

the so-called design matrix, XI the observation error variance, 

o 
2 
C'  

and the instrument covariances, A. (See Jewel1 [7] ) . 



Several limiting cases are of interest. First, as our 

observation error variance gets very large, 5 vanishes, and 

no credibility is attached to the calibration experiment -- 
it is better to stick with the prior estimates. 

Conversely, if all the prior instrument covariances, Aij, 

get very large, then p + 12, and "full credibility" is attached 

2 to the calibration data; the same result occurs as aC + 0. 

Note also that full credibility occurs as the length of the 

calibration run, n, increases, as long as the successive inputs 

are chosen in such a way as to keep ml and m2 about the same; 

in other words, the more calibration, the more weight is attached 

to the results. 

The above model may be easily generalized to the case where 

the standard inputs themselves are subject to errors. In this 

case, we suppose that the selection of a "target input" i specif- 

ies &{2i), rather than xi; the actual input differs from the 

mean by a known variance, YiYlii). The reader may easily verify 

that the above formulae again apply, with X = nn, &{%)] and with 

(4.7) replaced by a new d,iagonal matrix, with terms: 

In the general case, the formulae (4.5) (4.6) must now be used; 

however, if the precision of the standards is the same, the 

regression is again homeoscedastic, and (4.8) (4.9) may be used, 

but with a: replaced by (4.11) . 
w 

As far as the mean-square error in fitting ~ ( 8 )  by (4.4) 

is concerned, we can also show that the prior covariance matrix, 



with optimal choice of credibility coefficients, is: 

If this fit is good, then @ will be a good approximation to - - ij 

Q{ Si (0 ) ; 5 .  (0 ) > af ter the calibration, at least as we perceive 
l 

it to be before we actually obtain the outputs y. In other - 

words, @(X) is our preposterior estimate of the covariance 

between instrument parameters. 

It should be remembered that only the diagonal terms of 

(4.12) were individually optimized in the choice of credibility 

coefficients; one can easily show that the diagonal elements 

of @ (X) are less than those of A. 

5. Integration of the Calibration and Measurement Stages 

We may now complete our arguments about the relationship 

between Sections 3 and 4, in light of the knowledge available 

at each stage of the physical problem. 

First, with only a prior hypothesis about our instrument 

available, and no calibration contemplated, our best estimate - 
of B(0) is b,  with covariance A. If an inverse measurement 

were to be performed at this point, (3.12) (3.13) is the formula 

we would use to estimate the true input, and H in (3.18) is the 

estimate now of the variance in this estimate. 

Now, suppose we contemplate performing a calibration exper- 

iment (X,n), with a fixed number of standards and fixed input 

design, but the results of the calibration are not yet available. 



- 
We still have no basis for revising 6{g(8)), since the formula 

(4.4) .is, prior-to-calibration, unbiased. However, the know- 

ledge that there will be a calibration will reduce our instrument 

covariance terms from A to @(X). Therefore, prior to calibration, 

our estimate of the forecast error variance after measurement 

changes from (3.18) to: 

(This is the point at which optimization of the next section will 

be carried out,). Similar modification applies to (3.19). 

We now perform the calibration experiment, obtaining y and - 
the revised estimates, q(y), of B ( @ ( e )  ly,x} from (4.4). These 

revised estimates of the instrument coefficients are then used 

in (3.12) and (3.13), which become: 

This is the final estimator for any unknown input, after the 

calibration has been performed. 

We admit that it should, in principle, be possible to 

revise our estimate of the covariance of the instrument co- 

efficients, @, after the actual calibration outputs, y, are 



obtained; however, these terms are probably already small for 

any reasonable calibration run, and to construct an additional 

credibility approximation for the posterior-to-calibration 

variance would require additional moments and complex formulae. 

Similarly, it should be possible in principle to revise 

our estimate of H(X) after the measurement y is made, but this 

leads to the same additional complexity. If one wishes, post- 

erior to the calibration,one can replace b2 in (5.1) by g2(y). 

We mention again some of the limiting cases of (5.2) (5.3) , 

assuming that the revised instrument covariances are small. 

2 
First, if the observation error variance aM is very large, or 

the variance in input is small, then the credibility in (5.3) 

will be very small, and the best estimate of the input is the 

prior mean. Conversely, a diffuse inputty { E l  -+ m, will lead to 

zl(y,X) - (g2(y))-l, and a forecast: 

6. Optimization 

For the optimization, we assume that there is a total of 

T hours to be split among n calibration measurements, say a 

total of TC hours, and the remainder, TM = T - TC hours, to be 

spent upon r inverse inference measurements. We assume that 

one hour spent on a single measurement or calibration gives an 

observation error variance of u2; therefore the individual 

observation variances used previously are then: 



To minimize the prior-to-calibration estimation of the 

forecast variance of a typical measurement, we must minimize 

the denominator of the second term of H (X) in (5.1) : 

2 where $ is given by (4.12), with o: replaced by no /TC in ( 4 . 8 ) ,  

subject to TC + TM = T. In general, this optimization must be 

2 carried out numerically. However, if no /TC is much smaller 

than the diagonal terms of AM, then the calibration will have 

practically full credibility, and 

This shows the expected result, namely, that a good calibration 

run gives vanishing 4 as T increases. The effect of the number C 

of runs, n, is essentially cancelled out, as long as M is stable 

over different designs. 

With this approximation, (6.2) can be written: 

where 

In this form, the optimization is obvious--the total time T 

should be split: 



giving a minimal value for D of: 

An increase in the number of production runs, r, deczeases the 

time used for calibration in an interesting way (6.6). 

It is also interesting to note, in this approximation, 

that the ratio of effort depends, in addition to r, only on the 

first and second moments of the calibration design inputs, and 

on the measurement input. If the design X is considered to be 

variable, we see that we can further minimize (6.4) by decreas- 

ing y, i.e. we choose inputs x - so that: 

- 2 
ml e. &:XI ; (m2 - ml) is as large as possible; (6.8) 

which is very intuitive from a physical point of view. 

This design choice would make y close to unity, and then 
* * -f TC/TM = r . Of course, there may be many other physical 

reasons why the calibration input must be chosen in a dif- 

f erent manner. 

Even if the approximation (6.3) does not hold, (6.6) is suggested 

as an initial trial solution. 



7.  Numerical Example: Ca lo r imet r i c  Measurement of Nuclear 

Mater ia l  

In  o rde r  t o  i l l u s t r a t e  t h e  models developed i n  prev ious 

s e c t i o n s  w e  use t h r e e  k inds of in format ion:  

(1) a - p r i o r i  in format ion on t h e  r e l a t i o n s h i p  between 

dependent and independent v a r i a b l e ;  

( 2 )  r e s u l t s  of c a l i b r a t i o n ;  

( 3 )  r e s u l t s  of measurement of t h e  dependent v a r i a b l e .  

The fo l lowing r e a l i s t i c  example w i l l  i l l u s t r a t e  circum- 

s tances  under which c e r t a i n  in format ion i s  more impor tan t ,  and 

t h e  improvement i s  achieved by using c r e d i b i l i t y  procedures.  

L e t  us cons ider  t h e  q u a n t i t a t i v e  measurement of plutonium 

wi th t h e  he lp  of a  c a Z o r i m e t , e r .  The problem i s  t o  measure 

a vo l tage  induced by t h e  heat  produced by t h e  plutonium. For 

t h i s  purpose,  one has t o  know t h e  i s o t o p i c  composit ion of t h e  

plutonium t o  be measured a s  w e l l  a s  the- s p e c i f i c  h e a t  product ion 

of t h e  d i f f e r e n t  i so topes .  Typical  d a t a  a r e  given i n  Table 1. 

Let t h e  amount of plutonium of one batch t o  be measured, 

and l e t  w be t h e  s p e c i f i c  hea t  product ion of t h e  plutonium 

under cons idera t ion .  Then t h e  hea t  x produced by t h e  amount 

P of plutonium i s  given by 

The vo l tage  Eiyl induced i n  t h e  measurement chamber of t h e  

ca lo r imeter  i s  propor t i ona l  t o  t h i s  hea t :  



I n  a  second,  i d e n t i c a l  chamber, a  r e f e r e n c e  h e a t  xo i s  gener-  

a t e d  which induces a  v o l t a g e  Eo. Because of t h e  assumed sym- 

metry of t h e  chambers, w e  have 

Eo = a - x  0  (7 .3 )  

The va lue  of xo i s  k e p t  cons tan t  th roughout  t h e  o p e r a t i o n  of 

t h e  ins t rument .  The q u a n t i t y  a c t u a l l y  measured i s  t h e  d i f f e r -  

e n t i a l  v o l t a g e  y ,  

y  = Eo - E M  = a - x  - a -  (wP)  ; 
0 (7 .4 )  

o r ,  i n  o t h e r  words , 

where 

The va lue  o f  xo may be  assumed t o  be known p r e c i s e l y .  I n  

a d d i t i o n ,  w e  assume t h e r e  e x i s t s  exper ience  from p a s t  measure- 

ments,  expressed  a s  e x p e c t a t i o n  and va r i ance  o f  2, now cons idered 

a s  a  random v a r i a b l e .  Th is  means w e  know 

The c a l i b r a t i o n  i s  performed by p u t t i n g  an e l e c t r i c  h e a t e r  i n t o  



t h e  measurement chamber and gene ra t i ng  d i f f e r e n t  va lues  xi2 

of h e a t  which g e n e r a t e s  cor responding d i f f e r e n t i a l  v o l t a g e s  yi: 

Typ ica l  d a t a  f o r  such a  measurement problem a r e  g iven i n  

Table 2 .  According t o  t h i s  t a b l e ,  w e  have 

and fu r thermore ,  

I n  a d d i t i o n ,  w e  have 

There fo re ,  w e  g e t  f o r  A i j ,  a s  de f i ned  by (3 .10)  and g iven by 

(7 .6 )  , 

L e t  us cons ide r  f i r s t  t h e  case  t h a t  w e  do n o t  perform any 

c a l i b r a t i o n ,  bu t  use on ly  t h e  p r i o r  in fo rmat ion  g iven  by 

equa t i ons  (7 .8 )  and ( 7 . 9 ) .  According t o  (3.12)  t h e  e s t i m a t e  

of t h e  h e a t  product ion i s  given by 



f ( y )  = 81%) + z1 ( Y  - g { v }  ) 

which i s  t o  a good approximation 

W e  can e a s i l y  determine t h e  p r e p o s t e r i o r  improvement i n  pre- 

c i s i o n  i f  w e  use (7.11) i n s t e a d  of simply us ing 8 { 2 } ;  i f  w e  

t ake  &{%I, then t h e  var iance  of t h i s  e s t i m a t e  i s  

Now, according t o  (3.18) w e  g e t  f o r  t h e  va r iance  of t h e  fo re -  

c a s t  e r r o r  of a s i n g l e  measurement 

and according t o  (3.19), f o r  t h e  va r iance  of t h e  f o r e c a s t  e r r o r  

of t h e  sum of r measurements 

which shows t h a t  t h i s  var iance  i s  mainly determined by th-e 

unce r ta in t y  of t h e  ins t rument  parameters,  which i s  common t o  



all measurements. 

Let us now use the calibration given in Table 2. With 

we have 

We can use the approximate formula (6.6) for the optimal dis- 

tribution of calibration and measurement effort, if n o L / ~ C  

is much smaller than the diagonal terms of A M. We check this 

assumption by first using equatioii (6.6) and then seeing whether 

or not the result fulfills the assumption. 

According to equation (6.6) and Table 2 the optimal 

distribution of the time T available is given by 

or, in other words, 

Therefore, we have 

n -a  
2 

a2 = - - 
C 

Tc - 1.154 < <  r(")")= 1 (AM)22 1 , 



which means t h a t  ou r  assumpt ions a r e  f u l f i l l e d .  

F i n a l l y ,  w e  want t o  determine t h e  improvement i n  

p r e c i s i o n  by us ing  t h e  c a l i b r a t i o n .  According t o  equa t i on  

( 4 . 1 2 )  w e  have 

where - z is  g iven by (4 .8)  . With (7.10) , (7.13) , and (7.15) 

w e  o b t a i n  

which g i v e s  f o r  ( 4 . 1 2  ) 

Even though t h e  f o r e c a s t  e r r o r  va r i ance  a f t e r  c a l i b r a t i o n  and 

measurement accord ing t o  (5.1)  can be determined on ly  i f  t h e  

c a l i b r a t i o n  d a t a  ( x i , y i ) ,  i = 1, ..., n. a r e  a v a i l a b l e ,  a  com- 

pa r i son  o f  (7 .16)  and (7.10) shows t h a t  t h e  use  o f  t h e  c a l i -  

b r a t i o n  r e p r e s e n t s  a  cons ide rab le  improvement i n  p r e c i s i o n .  



T a b l e  1: T y p i c a l  P l u t o n i u m  M i x t u r e  

( S o u r c e :  S c h n e i d e r  e t  a l .  [12] ) 

Mean spec i f i c  h e a t  f l u x  w:  2 . 6 6 8  [ m ~ / s  PU] 

Mean 

concent ra t ion  

[%I 

S p e c i f i c  

h e a t  f l u x  

[mw/s] 

C o n t r i b u t i o n  

t o  w 

[mw/sl  

P u 2 3 8  

0 . 0 4 1  

5 6 9 . 0  

0 . 2 3 3 3  

P u 2 4 2  

0 . 0 6 4  

0 . 1 2  

7 . 6 9 * 1 0 - ~  

P u 2 3 9  

9 0 . 5 1  

1 . 9 2 3  

1 . 7 4 0 5  

Am241 

0 . 0 5  

1 0 8 . 4  

0 . 0 6 1 2  

P u 2 4 0  

8 . 2 6 5  

7 . 0 3  

0 . 5 8 1  

P u 2 4 1  

1 . 1 1 3  

4 . 6 2  

0 . 0 5 2  



Table 2: Typ ica l  Measurement Problem 

(Source: Schneider  e t  a l .  [12] ) 

No. o f  ba t ches  r 60 

Mean Pu c o n t e n t  P [hg] o f  one ba tch  1 

Mean h e a t  p roduc t ion  x = w P [w] of one ba tch  2.668 

Batch-to-batch v a r i a t i o n  10% 

Var iance of a  s i n g l e  measurement a L ( t )  [ ( m ~ ) ~ 1  a s  a  

f u n c t i o n  of t i m e  t [h ]  f o r  t > 6  

T o t a l  t i m e  ~ [ h ]  a v a i l a b l e  720 

N a  of c a l i b r a t i o n s  n  8  

Range R of c a l i b r a t i o n s  [watt] 0 .8  - < R - < 3.0  

Values xi2 of c a l i b r a t i o n  procedure 0 . 8 ,  1.1 ,..., 2.9 

A p r i o r i  i n fo rmat ion  8B1[mV] on i n t e r c e p t  B1 6  00 

A p r i o r i  i n fo rmat ion  &B2 [mV/watj on t h e  s l o p e  of 

t h e  c a l i b r a t i o n  l i n e  

A p r i o r i  i n fo rmat ion  on t h e  va r i ance  of B 

( p a r a m e t r i c a l l y )  
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