brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk
provided by International Institute for Applied Systems Analysis (IIASA)

’ ﬁ International Institute for
- Applied Systems Analysis

[TASA wwwiiasa.ac.at

Subjective Sampling Approaches
to Resource Estimation

Baecher, G.B.

IIASA Research Memorandum
June 1975



https://core.ac.uk/display/33891959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Baecher, G.B. (1975) Subjective Sampling Approaches to Resource Estimation. IIASA Research Memorandum.
Copyright © June 1975 by the author(s). http://pure.iiasa.ac.at/487/ All rights reserved. Permission to make
digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and
the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists,
permission must be sought by contacting repository@iiasa.ac.at


mailto:repository@iiasa.ac.at

RM-75-29

Second Printing

SUBJECTIVE SAMPLING APPROACHES TO RESOURCE ESTIMATION
Gregory B. Baecher

June 1975

Research Memoranda are informal publications
relating to ongoing or projected areas of re-
search at IIASA. The views expressed are
those of the author, and do not necessarily
reflect those of IIASA.







Subjective Sampling Approaches to Resource Estimation

Gregory B. Baecher

Abstract

This paper suggests deficiencies in present
sampling approaches to regional resource estimation,
and ways in which these deficiencies might be remedied.
General approaches to resource estimation are dis-
cussed, as are requirements which well conceived
approaches should satisfy. Using presently available
theory, a comprehensive sampling approach to estimation
can be formulated. The results of such an analysis
are directly incorporable into decisions concerning
exploration strategy optimization. However, further
computational and experimental work are required

before this approach is operational.

I. Introduction

Resource estimation techniques can be broadly grouped
into two classes: macroanalytic approaches which model
empirical relationships in aggregated discovery or pro-
duction data, and microanalytic approaches which model
structural relationships in the exploration process.
Perhaps the most well known examples of each of these
are Hubbert [14] and Allais [1].

vThis paper addresses microanalytic approaches.

In particular, it sets about broadening present sampling

theory techniques to encompass more of what we know about




the exploration process, and to include prior geological
opinion. This broadening is seen as necessary if estimates
based on microanalytic methods are to be comprehensive and
valid.

The main purpose of the paper is not to mathematically
solve formulae associated with the broadening, but to
indicate directions toward which continuing work should be

moving.

IT. Macroanalytic versus Microanalytic Approaches

Macroanalytic models, which in essence are trend
extrapolation procedures, assume an unspecified "uniformity-
of-nature." They assume that exploration and production
operate within a fixed (or at most, gradually changing)
environment which leads to aggregate behavior according to
simple relationships among important variables. Taking
this to be true, empirically fitted relationships may be
extrapolated into the future, either in time or along
some other dimension (e.g., cumulative drilling length).
Macroanalytic approaches do not use structural relation-
ships among facets of exploration and production, and
lump together economic, geological, and exploratory
variables.

Arguments for and against macroanalytic approaches
appear in the geologic literature (Ryan [26], Hubbert [14],
Moore [18] ) as well as in the literature of other disciplines
where similar tools are used for estimation or forecasting

(e.g., economics). Specifically, two properties limit their




usefulness for resource estimation, First, they lead to
deterministic predictions, the uncertainty of which is
difficult to judge (e.g., changing from one family of
curves to another, or from one method of fitting to
another, drastically changes estimates--Cf., Hubbert [14],
Moore [18]). Second, they depend on a substantial
history of discovery and production. While this history
exists for areas like the United States, for sparsely
explored areas the analysis often begins by predicting
total resources some other way, and then calculates time
streams of production (Hubbert [14]).

Microanalytic approaches also suffer drawbacks, which
again are generic to the approach and not limited to
resource estimation. First, they require detailed data
on a region by region basis of geologic and geometric
properties, numbers and sizes of discoveries, and amounts
and patterns of exploration allocations. Second, they
require orders of magnitude more computation effort than
macroanalytic approaches, as gross estimates are formed by
first making regional estimates and then aggregating.
These requirements make microanalytic approaches difficult
and laborious to apply. Third, although not necessarily a
shortcoming, microanalytic approaches do not account for
economic or production factors. They deal purely with
geological and statistical variables. Economic variables
must be considered separately using the geological/statistical

analysis as input (e.g., MacAvoy and Pindyck [17]).




On the other hand, microanalytic approaches have four
very favorable properties which recommend them from the
present perspective:

1) they allow inclusion of geological input on a

regional basis;

2) they may be applied to regions which have been

only sparsely explored;
3) they often allow quantification of uncertainty; and
4) their output can be readily incorporated in strategy

optimization for local or regional exploration.

ITI. Microanalytic Models

Microanalytic approaches proceed by making resource
estimates for small regions which are assumed geologically
homogeneous, then aggregating over all regions.

As the aggregation is straightforward, attention is drawn
to making estimates for each region. In a traditional,
judgmental way this has always been done by exploration
geologists. Based on experience, geologists subjectively
judge the similarity of the region to better known regions,
and in combination with geological theory make predictions
of resources (e.g., upper and lower bounds). This is a
very basic microanalytic approach, and is the approach
which Harris [11] attempts to quantify.

A second approach is to correlate geological variables
with resources either by regression or factor analysis
(Harris [12], DeGeoffroy and Wingall [4], DeGeoffroy and

wWu [5]). This is a straighttorward approach with which




there is experience in many applications. However, it
suffers well-known limitations in that it is a correlation
and not a causal model. Factors which are highly correlated
with mineralization or deposition in one context are not
necessarily those which would be correlated with it in
others. As these methods are normally applied to known
deposits rather than resources, regression and factor
analysis confound geological and non-geological variables.
This leads to the not too surprising result of Griffiths
and Singer [10] that "mineral potential” is most highly
correlated with degree of development.

A third approach treats estimation as a problem of
inference from sampling. The size distribution and
spatial dispersion of deposits are modeled by families of
probability functions, and parameters for these distri-
butions are estimated assuming known deposits to be a
probability sample of the total in situ population (Allais
[1]1, Uhler and Bradley [32], Kaufman [15], Slichter [30],
Griffiths [9]). Total resource estimates are made

by evaluating the random sum

in which a; is a random variable drawn from the distri-
bution of deposit sizes, and N is a r.v. representing the

number of deposits within the region (Uhler and Bradley [32]).




Criticism of the sampling approach has primarily been
based on the observation that known deposits are not a
simple random sample of in situ deposits, the necessity of
choosing families of distributions to model the size
distribution and spatial dispersion of deposits, and lack of
geological input in the model.

The observation that known deposits are not a simple
random sample of in situ deposits is not so much an argument
against a sampling approach as an argument against uncriti-
cal application of that approach. For example, Kaufman [15]
has presented a more rigorous analysis of the sampl-
ing approach in which in situ deposits are treated as a
finite random sample from some "super-population" (see also
Ericson [7]). Then, the parameters of that super-popula-
tion are estimated by assuming known deposits to be a sample
of the in situ population selected with probability propor-
tional to size and without replacement (Figure 1). Very
different estimates of super-population parameters are
obtained using this assumption from those using the simple random
assumption. A point we will return to in Section 3 is that
similar special considerations must be made 1in estimating
parameters of the spatial dispersion function, in particular,
that the probability of finding n deposits within a subregion
is nonlinearly related to the amount of exploration effort
allocated to that subregion and to the distribution of

deposit sizes.




The problem of selecting a family of distributions
to model the super-population and spatial dispersion of
deposits is common to all analyses (in that mathematically
simple functions must always be chosen somehow). In the
present context, however, there is considerable empirical
evidence to suggest that lognormal super-populations do
accurately model geometric properties of many geological
populations (Slichter [30]), and that the negative binomial
distribution may adequately model spatial dispersion, though
the latter point is not as clear as the former. We will return
to this spatial model in Section 3. Furthermore, one suspects
(see, e.g., Uhler and Bradley [32]) that the total resource
estimates are fairly robust to changes in the form of the super-
population, and even more so to the form of spatial dispersion.

An interesting direction of future work would be to
quantitatively evaluate the sensitivity of resource estimates
to the form of these distributions. A refinement following
such analysis may be to form so-called composite Bayesian
distributions as suggested by Wood [34] and Box and Tiao [3],
in which distribution models are themselves random
variables.

The most important criticism of sampling approaches is
that they generally neglect prior geological information.
This is certainly true of the "frequentist" approaches to
inference, and even the Bayesian analyses have remained tied to
"unintormed priors." In making estimates of natural resources

we have considerably more information available than merely




the number and sizes of already discovered deposits. This
prior information comes from regional geology, experience
in similar regions, and basic concepts of geological pro-
cesses. Comprehensive estimates must account for this
information. It is only when the available data set is

so large that inferences become insensitive to prior in-
formation that the latter can be neglected. Given the
small amount of information which comes from finding or
not finding deposits (relative to the inferences about
regional geology and structure which are made), this is
seldom the case. Given human biases toward neglecting
prior information in the face of new, "hard" data (Tversky

'[31]) inclusion of geological information must be explicit.

IV. Requirements for a Comprehensive Sampling Approach

To this point we have discussed macro- and microanalytic
approaches to resource estimates, and indicated advantages
and disadvantages of each. From this discussion it seems
apparent that sampling approaches offer a methodological
framework within which a comprehensive and realistic model
of exploration and estimation might be developed. We now
turn toward necessary modifications of the sampling ap-
proach.

Two requirements which present sampling approaches do
not entirely satisfy, but which they must to be comprehen-
sive and realistic are that:

a) prior geological information and opinion be

accounted for;




b) thereal likelihood of deposits being discovered
be reflected.
Logically, these facets of inference are separable and

may be combined by Bayes' Theorem,

£'(0,2|data) « £°(8,0) L(datale,w) . (2)

Here, © and {! are taken to be geological parameters descri-
bing the size and spatial distribution of deposits;

fO(g,g) and f'(8,{/data) are the prior and posterior prob-
ability distribution of the parameters, respectively; and

L(data/e,) is the likelihood of observing the data were

6 and ! the true parametric value. Prior geological infor-
. . O . .
mation is contained in f (86,Q); characteristics of the

exploration process are contained in L(data/e,{).

4.1 Prior Information and Subjectivity

One enters nearly all inferential situations with some
prior information or suspicions. A region seems favorable
for exploration because it is similar to known areas of
deposition or because it has geological properties associ~-
ated with deposition. However, each individual has dif-
ferent experiences and concepts of geology and thus assesses
favorability differently. This is the traditional role of
the exploration geologist. Geological structures are highly

complex, and comparatively few observations are made in

exploration. Therefore, experience and judgment are im-

portant. This is why geologists are called upon to make




resource estimates rather than other people (see Robinson
[24], for an illustration of the importance of subjective
concepts in interpreting exploration data).

A geologist considers the results of exploration in
the context of his prior feelings. To the extent the two
are consistent he gives more or less credibility to his
feelings. However, this inferential process, and thus
exploration as a whole, is purely subjective. Thus
exploration cannot be adequately modeled without intro-
ducing the concept of subjective probability (Baecher [2]).
The useable results of exploration are hypotheses.

These hypotheses arise subjectively and are given credence
subjectively; "hard" data only enter in modifying the
degree-of-credibility given to hypotheses. Uncertainties
associated with exploration are those associated with
hypotheses, so uncertainties, too, are necessarily sub-
jective. Only when the amount of data becomes so large

that inferences cease to he affected hy prior teelings can
exploration be spoken of as "objective." This occurs for
only the most intensively explored regions.

So, the sampling approach we would like to develop
must be based on subjective probability. This is not unique
to the exploration literature, although a thorough attempt

at a rigorous fundamentally subjective approach may be.l

lGrayson‘s [8] well-known application of statistical
decision theory to oil and gas drilling decisions is, of
course, a rigorous and early application of subjective
probability to geological exploration. However, for what-
ever reasons, subjectivism has never been adopted by
"geostatisticians" and thus the resource estimation liter-
ature remains non-subjectivst and (with the exception of
Kaufman) non-Bayesian.




Kaufman [15] bases his analysis on a Bayesian approach,
but does not use geological information to assess

priors (adopting "uninformed" priors instead). Harris [11]
and Harris, et al. [13] use subjective probability in a
one-step procedure for making resource estimates without
exploration data (i.e., using only geological maps).
However, this is a degenerate case of resource estimation,
and they seem to use subjective probability merely as a

pragmatic tool when other data are not available,

Assessing Subjective Probabilities

Applicability of subjectivist theory rests ultimately
on our ability to adequately assess probability distri-
butions. Adequacy here means the ability to quantify an
individual's true personal feelings in a probability measure.
There is not room here to review the literature on behavioral
decision theory and quantification of subjective probabili-
ties. However, this work is extensive and rather consistent.
Feelings can be reliably quantified if a careful, rigorously
based technique is employed. People do exhibit bias in
quantifying their feelings, (Tversky [31]) but these biases
may not be great. Individuals may exhibit consistent con-
servative biases in updating their prior feelings by sample
data (Edwards [6]), but in highly complicated, real
problems this conservatism seems to diminish or even dis-
appear (Winkler and Murphy [33]). In some meteorological
experiments, experts' measured, subjective probabilities

have been shown to be better forecasters of natural
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occurrences than structural models (Murphy and Winkler
[22]). 1In short, we can adequately assess subjective
probabilities, but these assessments should be carefully
made in the context of past research. As with any tech-

nology, haphazard application leads to unreliable results.

Coalescing Geoloagical Opinion

Adopting a subjectivist philosophy of course leads to
the problem of differing cxpert opinion, and speaking of
"good" and "bad" assessors ceases to make sense. Probabil-
ities reflect only individual feelings, which in turn may
not reflect reality. These differences are no surprise,
however, as the literature contains wildly differing
resource estimates already, and policy makers have always
had to deal with differing expert opinions.

The traditional way to coalesce differing subjective
probabilities has been the Delphi method, which is a
discussion and averaging process. This procedure has
received considerable criticism, but is widely used (Pill
[23]). Actually, it is more consensus seeking than a true
coalescence. Harris [1l] uses this approach in his mineral
potential estimates of Sonora.

A more rigorous method based entirely on Bayesian
philosophy has been recently proposed by Morris [19, 201,
and this approach could be adopted for coalescing geological
opinion. Assume that the ultimate policy analyst, can him-
self assign some prior subjective distribution to the extent

of deposition or mineralization. Let these estimates be
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expressed in terms of two sets of parameters which cor-
respond respectively to the size distribution of deposits
(8), and to spatial dispersion ({). These prior probabili-
ties could be taken as uniform. Opinion is taken individ-
ually from several geologists in the same terms, that is,
in the form of probability distributions on the parameters
©® and Q2. To the analyst or policy maker these probability

distributions (representing expert opinion) are information

and he may coalesce them by the normal Bayesian argument,

using his own feelings as a prior,

£' (8,9 |experts' opinion)

o fo(g,g) L(experts' opinion|6,Q) . (3)

This formulation offers a rigorous relationship for coalese-
ing expert opinion. The difficulties of evaluating |
"credibility" of experts are concentrated (some might say
transferred) to developing a likelihood function for their
opinion conditioned on what the actual parametric values 8
and §! might be. While this is straightforward, it becomes
untidy when the likelihoods of individual experts' opinions
are not independent.

But how can the likelihood function be estimated? As
Morris argues, no matter how one proceeds with a statistical
analysis, likelihood functions are always established sub-
jectively. For convenience, we may assign families of dis-

tributions to those as we do to other things (e.g., a normal




likelihood) but always this is judgmentally done. Just as
we assess subjective probability, so also we may assess
likelihood functions based on the policy-analysts' or de-
cision-maker's feelings relative to his experts' credibility.
This reflects the central argument in tavor ot all
quantitative decision analysis: quantitative analysis does
not make decisions for the decision maker, rather it allows
him to decompose a decision (or estimation), treat each
part in isolation, then reaggregate in a logically consis-
tent manner to draw deductive conclusions. Always, the
conclusion drawn rests on the judgment of the person who
draws it. To deny this is misleading.

A strength of this approach is that it allows the
analyst also to establish the expected value of expert
opinion (or the marginal expected value of an additional
opinion). This process is established exactly as the
"expected value of sample information" is evaluated in

any Bayesian Decision Theoretic application.

A Proposal for Including Geological Opinion in Resource

Estimates

Entering a new estimation task there are four types of
prior information to be included: individual experience,
documented experience, geological theory, and local
characteristics. Were there only documented experience
and local conditions, priors could be generated by regression
or related techniques. However, individual experience and

theory serve to modify direct correlations with the "hard"




data of previously explored areas by degrees to which the
region under consideration is or is not similar to previous
areas, and the ways in which it seems anomalous in terms of
basic geological processes. Ir combining these sources of
information the geologist functions somewhat as a subjective
information processor (Figure 2).

The approach proposed is that cach geologist be given
information in the form of geological properties and es-
timates of 8 and  for grossly similar regions in which more
extensive exploration has been conducted, and local character-
istics of the region in question. Then through a process of
careful questioning and gaming directly assess his feelings
about possible values of 8, and {,, the local parameters, in
terms of probability measures. This process might be ex-
tended by preconditioning data from other regions in terms
of local characteristics (i.e., regression or factor analyses
applied to the new region). 1In this way, each expert bases
his judgment primarily upon the same hard data set, and in-
corporates his past individual experience and concepts of
geological processes purely subjectively.

As Morris points out, it is not a simple task to as-
certain the independence of expert opinion. If the opinion
is independent, the likelihood function of equation (3) re-
duces to the simple multiplicative form of the marginal
likelihoods; but if it does not, interdependencies must be

modelled, and these may have complex and non-obvious forms.




In particular, if experts base their judgments partially upon
the same data, then their opinions are not independent. Pro-
ceeding as outlined above, however, mitigates this dependency
by forming opinions which are conditioned on the data set,

and thus may be conditionally independent which would allow

a simple multiplicative form.

Mitigating the problem of dependence caused by similar
geological theory 1is not so easily achieved, and indeed will
require further attention to the design of assessment schemes.

The second step of the process is coalescing opinion.
How can likelihoods of geologists' opinion be generated?
Currently this problem is difficult to treat except in
simplistic ways, but the theoretical base of this approach
is only now expanding (e.g., Morris [20]). As a first
approximation one can assume that the likelihood of a
prediction is related only to the absolute value of the
discrepancy from the true parametric value. That is, that
experts' opinions are unbiased and that error is symmetric
about true values. 1If one assumes a simple analytical
function, e.g., a normal distribution, to represent this
error, then the variance of that distribution is a suf-
ficient description of expert credibility. It would fall
to the analyst or policy maker to subjectively decide upon
values of this variance (i.e., "credibility") for each expert
he consults--but this is always the task of the analyst

whether he achieves it quantitatively or qualitatively.




Symbolically, this analysis is of the form

O . a
f [QO:QOHfi(Q,Q) 11 < £ [QO’QO]
(4)

z
- {e fQ f1(0.8) £,(8,2[8,,2,, 1) de,dg,

Where fo(-) is the probability distribution used as a prior
in subsequent resource estimates, fa(-) is the analysts
prediction of the parameters (which might be uniform),
fi(-) is the ith geologist's prediction, and fn(-]go,go,é)
is the normal distribution (in this case the likelihood)
with mean QO,QO (i.e., the assumed true values) and variance
matrix :L:. As a first approximation, it seems reasonable
to assume that errors in the estimate of 6, the parameters

of the size distribution, and @, the parameters of spatial

dispersion are independent. So,
o
zl = 0 ’ (5)

in which Tig is the credibility assigned to geologist i's

estimate of €, and gy is the credibility assigned to his

Q
estimate of Q.

The approach just described, clearly, is very rough.
Considerable effort, and in particular attempts to apply
such methodologies, would need to be invested before a
workable and practical procedure could be developed. Never-

theless, an approach somewhat of the type outlined is needed

to analytically include geological opinion within the context
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of regional resource estimation. Ignoring this prior
information leads to estimates which are not comprehensive,

overly diffuse, and possible erroneous.

4,2 Likelihood Function

In the Bayesian scheme, equation (2), characteristics of the
sampling plan are entirely contained within the likelihood
function. This is the probability of obtaining the sample
actually observed--that is, the deposits actually discovered
--conditioned on values of the paramecters 8 and Q. This
probability may or may not depend on the order of discovery.

For simple random sampling each observation is assumed
independent, and their ordering unimportant. If deposits

of size X, are discovered in this way, their likelihood is

L(ale) = pta laj,...,a _;/©) pla,_ lajreeera,_5/9)

...playla; /@) plagle) (6)

t(alg) ,
1

a3

i
where f(a|8) is the distribution of deposit sizes from which
discoveries are made.

As Kaufman [15] points out, however, discoveries of
mineral deposits do not follow a simple-random process.
First, the total population of in situ deposits is finite;
and second, larger deposits have a greater probability of
being found than smaller ones. Once a deposit is found it

is "removed" from those which might still be found, and




thus sampling is "without replacement." This means that the
order of discovery is important.

Kaufman assumes that deposits appear in the sample with
probability proportional to the ratio of their size to the
cumulative size of still undiscovered deposits. This is the
probability relative to other deposits appearing, or the
probability conditioned on a discovery. He also postulates
that in situ deposits be considered a simple-random sample
from some infinite super-population, fs(x]Q), then inters
values of the parameters of that distribution. Considering
equation (1) once again, this approach allows inferences on the
distribution of the random variables X in the resource
estimate, and also inferences about the sum of undiscovered
sizes. It does not allow direct inferences of the in situ

number, N.

While this procedure offers an approach to estimating total
resources, it does not make use of all available information,
and does not yield spatial characteristics which might be
used in optimizing future exploration strategies. However,
it may be expanded to include the likelihood of numbers of
deposits being discovered and the non-uniform geographic
distribution of exploration, and thus to overcome these

objections.




Spatial Dispersion Function

The spatial dispersion of mineral deposits is most
often treated as a point process in two dimensions.
Parameters of the spatial dispersion model are then esti-
mated by dividing the geographic region into guadrats and
fitting curves to the distrilation of numbers of deposits
per quadrat.

Empirical data displays more clustering than the
Poisson model would predict, thus other models have been
considered and at present there seems widespread satis-
faction with the negative binomial model (DeGeoffroy and
Wu [5], Griffiths [9], Uhler and Bradley [32]--other
models are discussed in Rogers [25]). Among the few
criticisms of the negative binomial is that it tends to
underestimate the frequency of quadrats with high numbers
of deposits (Kaufman and Bradley [16]) (Figure 3).

Previous work typically assumes the number of known
deposits per quadrat to be mutually independent samples

from the spatial dispersion process; thus,

2) (7)

where g is the number of quadrats, n; the number of known

deposits in quadrat i, and Q@ the parameters of the spatial

2Kaufman and Bradley's [16] random-walk simulation
is one of the few exceptions.




dispersion process (whose values are to be inferred). This

procedure leads to results which are ditficult to interpret

for the following reasons:

1)

2)

3)

Known numbers of deposits are not samples from

the spatial process p(N|Q) but are lower bounds

on the actual numbe.s in a quadrat.

1f the analysis is restricted to intensively
explored quadrats, which would yield truer samples
of p(N|f), the sample of quadrats is biased toward
greater density (i.e., the most intensively
explored gquadrats are also the ones with the most
extensive mineralization or deposition).

If very sparsely explored quadrats are included,
the sample is biased toward low numbers per
quadrat; the probability of discovering in situ

deposits in these quadrats is small.

This approach clearly leads to incorrect estimates.

Search Effort

The number of deposits found in exploration obviously

depends on the amount and spatial allocation of search

effort.

If this effort is non-uniformly distributed

geographically, then the probability of discovery is non-

uniform also. Although this principle is intuitively clear,

it may explain certain anomalies in resource modelling,

and may lead to mitigation of the three objections just

mentioned.




Assume temporarily that deposits were actually dispersed
according to a negative binomial process. Then let one
deposit be found in some quadrat, ¢, as shown in Figure 4.

As deposit locations are positively correlated, this
increases the favorability of quadrat c¢ for containing
additional deposits. That is, the probability of c con-
taining at least one more deposit is increased from

0.19 to 0.52 (using DeGeoffroy and Wu's parameters).
Therefore, an optimal exploration strategy would be to
allocate more effort to exploring quadrat c than other
quadrats. Since this process feeds back upon itself as
more discoveries are made, high n quadrats appear in
observations with probability disproportionately higher
than their frequency in situ. Thus the objection of
Kaufman and Bradley may only reflect non-uniform exploration.

Returning to equation (7), one sees that the likelihood
is not merely the spatial dispersion model, bhut must be
modified by the probability of finding in situ deposits.

We will call this latter relation the detection function.

The detection function has the property that when there is
no exploration effort (Y = 0) the probability of a discovery
is zero (p(n = 0) = 1.0), and as y > »©, p(n = N) > 1.0.

Here n and N are the number of discovered deposits and the
total number of in situ deposits, respectively. So, as is
intuitively clear, the probability of discovering deposits
within a quadrat depends on the number of deposits present

and the effort exerted to find them.




Form of the Detection Function

While the detection function begins at zero and reaches
an asymptote of 1.0, its exact form depends on the strategy
of allocating search effort and the distribution of deposit
sizes.

Consider a quadrat of ar:a A which contains a single
deposit of area a. If Y units ot search eftort are randomly
allocated to points within the quadrat, the probability of
finding the deposit is (Figure 5),

Pr (find| y) 1 - (1-a/mVY

] - eTvia/n) a/A < 0.1 . (8)
1f a systematic allocation is used (i.e., a grid), then

p(find) depends both on the target and grid geometries, as
illustrated in Figures ba to 6d. Similar curves can be
generated for other systematic allocations (e.g., geophysical
methods) or for "optimal search" when prior locations
probabilities can be specified (Morse [21]).

Without detailed information on the way exploration
has been conducted, there is no way to precisely reconstruct
the detection function. Therefore, in making resource
estimates we must make assumptions on its shape. On one
hand, exploration may be viewed as the uncoordinated effort
of many separate decision makers. If this is so, then a

random model seems appropriate. On the other hand,
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exploration may be carried out by one decision maker as in
the case of a government ministry or large corporation.
Were this the case, then a purely systematic model might be
appropriate. Both are crude approximations, but perhaps
satisfactory first attempts.

Both random and grid search can be approximated by

an exponential detection function of the form3

p(find|y,a) = 1 - e ¥V&/2 (9)

in which k is a constant. This can be modified for uncer-

tainty in deposit size in the normal way,

p(find|y,0) = J p(find|y,a) £(a|0) da . (10)
a

3Ryan's {26, 27] deterministic model of discovery

within a play is of this form, though he does not directly
treat it as a detection function. In his model cumulative-
newfield-wildcats is used as a measure of {, and he intro-
duces a constant multiplied by ¢y to account for "geological
knowledge." To find the regional resource he equates rate
of new discoveries to the product of resource and detection
function.

R = Uw[l - e'Bkw] ,

where

R = rate of discovery,

Uo0 = total resource,
B,k = constants,
w = cumulative new wildcats.

This deterministic model closely fits empirical rates of
discovery within individual plays, and thus adds credibility
to the random exploration model. However, his equation has
three adjustable parameters and thus is flexible.
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To form the likelihood function for inferring values
of the spatial parameters, I, the number of discoveries
must be related to the number of in situ deposits by an

equation of the form

p(n|y,2) = § p(n|N,p) p(N|y) . (11)
N

Here, p(n|N,¥) is a modification of the detection function
to account for multiple deposits, and p(NlQ) is the spatial
dispersion process. Unfortunately, p(n|N,w) is not a simple
relationship.
Let n deposits be found in a particular quadrat

in the order

A1y Ayr ee- 4 Ay '
with

Vs Vor oo 0 ¥y
increments of exploration effort, respectively. Given that
the first j-1 of these have been found, the probability of

finding the jth with one additional quantum of effort is

: i
p(flnd|a1,...,aj_l,w=l) =Py = 31 ;

(12)

and the probability of having discovered the jth deposit

with the increment of effort, wj, is
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p(aj|al,...,aj_l,9,N) = Pr(find on jth guantum)
x Pr(ay find) x f(ajlg) ,
ay N

ACTRICRS S

= eXP{—kwjpj}pj

a.
1

n (13)

| o~

n
Lag+

i
As N is a random variable with parameters {, this becomes

p(aj|all---laj_llglﬁ)

= -k J N
= % exp{ kpjpj}pj = N f(aj|9) p(N|Q) P
.Z.al + X ai
i=j i=n
(14)
N
in which the term S= f aj, the sum of undiscovered deposits,
i=n
is an uncertain quantity depending both on © and Q. The
likelihood of discoveries then is
L(al,...,ale_,Q_)
n .
7 expl-ky,p.) E
= 2: & exp wjpj pj —ﬁ‘——_“—'f(ajlg)
Jj=1J8 X ai + S
i=j
xp(N|Q) £(s]0,2) PN as . (15)

n
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Clearly, this equation is difficult to deal with,
although as Kaufman has done, this might be approached by
Monte Carlo simulation. It does account for exploration
effort, however, and conceptually at least allows inferences
to be drawn about the spatial dispersion of deposits.

The point of this short discussion is that inferences
about the number of deposits in a quadrat or region (and
thus about their spatial dispersion and the total amount
of resources) must account for how and how hard they were
looked for. Further, inferences about spatial dispersion
are not independent of inferences about size distribution; the
simple-random sampling model is not satisfactory for this

purpose.

V. Conclusions

This paper has discussed the place of sampling approaches
to resource estimation in a broad context, and it has attempted
to indicate that sampling approaches could lead to a more com-
prehensive analysis than is currently employed. Specifically,
discussion has concentrated on three points about exploration
and inferences drawn from it:

a) Geological exploration is fundamentally and
necessarily a subjective undertaking; prior
judgment of geologists based on tindings in
other regions and on concepts of geological

processes must be included.




b)

c)

The analytical methods for including geological
opinion from multiple experts must be theoret-
ically rigorous and reflect current knowledge
of probability assessment, judgmental biases,
and subjective information processing.

The procedure used for modifying prior opinion
by the local results of exploration should
include consideration of exploration effort and

its allocation through some detection function.
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