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Extrapolating Trendinq Geoloqical Bodies 

Gregory B. Baecher and Jacques G. Gros 

ABSTRACT 

An attempt is made to structure the heuristic 

process of extrapolating trending geologic bodies in 

the analytic framework of Bayesian inference. The 

approach models spatial properties of trending bodies 

rather than geological processes, and includes components 

of uncertainty arising out of trend model selection. 

Inclusion of several components of uncertainty leads 

to rapid dispersion of the probability density of pre- 

dicted location away from the region of observations, 

in conformity with the intuitive notion of valid distances 

of prediction. The philosophical foundations of explora- 

tion and the role of probabilistic predictions in decision- 

making are briefly discussed. 

I. INTRODUCTION 

The process of geological exploration often encounters 

formations or bodies which might be described as "linearly 

trending." Here, the word trending is not used in the sense 

of so-called trend surface analysis, but rather as a descrip- 

tion of bodies whose planar shape can be approximated by 

lines or low-order curves. Examples are shoestring sands, 

buried reefs, some mineralizations, and high-permeability 

* 
This paper was presented at the Workshop on Energy 

Resources, IIASA, 20 - 21 May 1975. 



channels of subsurface flow (the last being of importance 

in civil construction)(Figure 1). The problem addressed 

in this paper is how the location of trending bodies in 

regions yet to be explored might be predicted on the basis 

of known locations in adjacent regions. In particular, an 

attempt is made to structure a rule-of-thumb approach on a 

rigorous foundation in the philosophy of exploration. 

During the past twenty years, contributions have been 

made to the literature of decision analysis, search theory, 

and operations research generally which allow us to allocate 

exploration effort in ways which maximize the information 

we can expect to obtain. However, these methods require 

quantitative predictions: they require that predictions 

be encoded in probabilistic terms so that questions of the 

sort, "How much more probable is it that an ore body lies 

at point A than B?" can be answered. Certainly, evaluation 

of such probabilities is the foundation of exploration and 

the only reason geologists are the ones who carry it out. 

The purpose of the present paper is to attempt a quantifi- 

cation of predictions associated with one type of formation. 

A Rule-of-Thumb Approach 

It's dangerous to characterize rule-of-thumb approaches 

too narrowly; geologists tend to be independent sorts and 

there are many procedures for handling any specific problem. 

Nonetheless, a typical one for linear extrapolation is to 



assume that for short distances a body centerline may be 

approximated by a line or low-order curve, and to extend 

this line into unobserved regions as the likely continua- 

tion of the body (Figure 2). Clearly, the faith one puts 

in this extrapolation diminishes the further it's extended. 

In a decision sense this line represents the locus of mcst 

probable locations of the body as one moves away from the 

observations, and is the line along which further explora- 

tion would initially take place. 

The line or curve fitted to observed locations depends 

on the geologist's experience and his understanding of 

fundamental geological processes. While this heuristic 

approach is not based directly on geological theory (i.e., 

it is not a random process model), knowledge of the theory 

leads one to intuitively suspect certain forms of spatial 

behavior over others, and thus the approach does represent 

informed geological opinion. 

The relationship between informed geological opinion, 

uncertainty, observations, and spatial modelling is largely 

neglected in the literature. So, before proceeding to 

quantification, the philosophical basis of exploration 

upon which the present work is predicated should be dis- 

cussed. 



11. EXPLORATION PHILOSOPHY 

Conclusions drawn from the results of exploration 

contain much more than the physical records themselves. 

Patterns recognized, maps drawn, similarities inferred, 

these all transcend the observations actually made. Hypoth- 

eses are the product of exploration. ~xploration uncertain- 

ties manifest themselves in the degree to which hypotheses 

either are or are not confirmed by exploration data. 

Therefore, geological mapping is not merely a faithful 

reporting of instrumental observations, but is an inter- 

pretive, inductive task reflecting currently held concepts 

of geological structure (see, e.g., Harrison, 1963). 

Hypotheses arise and are given initial credibility 

through a process which is entirely subjective. They are 

generated by a process of discovery (much discussed in the 

philosophy-of-science literature), and assigned - a priori 

degrees-of-confirmation based primarily on extra-evidential 

1 factors . In entirety this process is simply inductive 

reasoning. Although - a priori degrees-of-confirmation are 

subsequently modified as new data become available, their 

foundation is always and purely subjective. Thus, as 

- .  

'some of these are the simplicity or aesthetic appeal 
of a hypothesis, its conformity to larger sets of hypotheses, 
and lack of better hypotheses. A review of inductive 
philosophy is given by Salmon (1966). 



the uncertainties of exploration are predicated on the 

subjective process of inductive reasoning, they too 

are fundamentally subjective. One has experience and 

knowledge of geology which causes one to suspect conditions 

not directly manifested in exploration data, and the un- 

certainties one associates with these hypotheses cannot be 

objectively derived from the records of exploration. 

As data from exploration accrue, initial degrees-of- 

confirmation are modified by the extent to which the 

predictions following from each hypothesis are consistent 

with observation. A method for doing this analytically is 

Bayes' Theorem. Let there be some set of alternative 

hypotheses, H1, ..., Hn, with respect to subsurface condi- 

tions at a site; and assume that the a priori degree-of- - 
0 confirmation assigned to each is p (Hi) (i.e., the proba- 

bility of hypothesis Hi being correct). Given a set of 

observations - z ,  by Bayes' Theorem the - a posteriori degree- 

of-confirmation of each hypothesis is 

in which L(z/Hi) - is the likelihood of the observations, - z, 

conditioned on Hi (i.e., the probability of observing - z 

were hypothesis Hi correct), and the denominator is simply 



a normalizing constant. Clearly, as the number of times 

this process is iterated increases, the importance of 

0 p (Hi) in establishing p' (Hi ( 2 )  decreases. The degree- 

of-confirmation, given a hypothesis, comes to depend 

more and more on observations alone. 

Subjective Probability 

Structuring inductive tasks in terms of Bayes' Theorem 

indicates that we are approaching exploration problems from 

a degree-of-belief perspective on probability; our description 

of interpreting exploration data indicates that we are 

approaching them subjectively. The task here is not to 

repeat arguments for and against belief and frequency--these 

are voluminously argued in other places (e.g., Savage, et al., 

1962)--but there are operational arguments as well as 

philosophical ones for adopting a subjectivist approach, 

and these may provide justification to those more skeptical 

of "Bayesian" analysis. 



First, subjective approaches include the prior feelings 

and intuition of the exploration geologist directly in the 

analytical model. These feelings are important sources of 

information which other approaches do not consider analyt- 

ically. 

Second, subjective approaches allow the inclusion of 

components of uncertainty (e.g., model selection) which 

otherwise must be dealt with judgementally. They provide 

rigorous procedures for aggregating uncertainties from 

several sources in evaluating total uncertainty. 

Third, predictions which result from subjectivist 

models are expressed in terms of probabilities of hypotheses I 

or events and can be directly incorporated in decision- 

making. This allows use of sophisticated methodologies 

developed in decision analysis, search theory, and other 

branches of operations research. 

Fourth, geological structure is a highly complex phenom- 

enon of which we have random process models for only the 

2 simplest cases . A subjectivist approach allows us to 

employ heuristic models and assign levels of credibility 

to them within the analytical framework. Also, empirical 

evidence in other fields (e.g., see Murphy and Winkler, 

*what we have here called random process models are 
often called structural models. That is, they are models 
based on first principles of the physical system. We use 
the first name to avoid confusion with "structural" 
geology, however. 



1974) indicates that subjective forecasts may even be more 

accurate than the best random process models in treating 

certain types of predictions. 

Lastly, in subjective theory probability is defined 

with respect to the individual. Recent work  orris, 1974) 

allows us to coalesce the feelings of more than one geologist 

into - a priori probabilities, and thus both allocate initial 

effort and make predictions on a broad expert base which 

has been rigorously aggregated. 

Accepting the subjective approach for quantitative 

analyses of exploration requires placing numbers on - a priori 

feelings: quantifying - a priori subjective probabilities. 

This quantification does not imply objectivity; it is merely 

a process of scaling subjective feelings on a rigorously 

based metric so that feelings may be analytically combined 

with other parts of exploration. 

The theory of subjective probability and techniques 

for assessment are topics which cannot be adequately presented 

here. The literature of statistical decision analysis and 

behavioral decision theory, however, contains extensive work 

on these topics, and Grayson (1960) has presented a well- 

known discussion of subjective probability within the context 

of oil and gas drilling. 



Models and Model Selection 

The selection of models with which to analyze geological 

data and make predictions is, like exploration itself, a 

subjective task. The geologist reviews his experience with 

geologically similar formations and assigns (explicitly or 

implicitly) degrees of appropriateness to each of several 

models he might employ. He applies the models deemed most 

appropriate to the existing data, and then reassesses the 

weight attached to each by how well it "fits" the data. 

The process is the same as for evaluating alternative hypoth- 

eses. In making subsequent predictions one evaluates uncer- 

tainty by compounding uncertainties in the validity of the 

model with uncertainties in its predictions. In other words, 

the probability of an event,g , becomes 

in which P ~ [ ~ I M ~ ]  is the probability of the event as predicted 

by the ith model and Pr [Mil is the probability of the i th 

model being correct (assuming the Pr [Mil independent) . 
Models applied to predicting spatial properties may be 

based either on an understanding of fundamental geological 

processes (e.g., the physics of sedimentation) or on heuris- 

tic rules inferred from experience. When quantified as 

stochastic relationships the former are referred to as random 

process models, while the latter will be referred to here 



simply as heuristic models. Random process models stem 

from theories of geological processes which lead deductively 

to spatial properties; heuristic models stem from no iden- 

tifiable geological theory and are justified only in that 

they adequately fit (and predict) observations. This should 

not be taken to mean that random process models are univer- 

sally preferred, because operationally heuristic models may 

be more useful. 

Random process models require that geological processes 

be well understood, and that the set of controlling variables 

be both identifiable and small. In practice, these conditions 

are not often met, and geologists themselves are generally 

unable to formulate conceptual models in terms of first 

principles (Krumbein, 1970). Practical limitations of 

randoq process models are that the mathematics of the models 

rapidly become intractable, and controlling variables are 

often unmeasurable. In matters of scientific inquiry, models 

based on first principles are clearly preferable to heuristic 

ones, but in exploration this is not necessarily the case: 

models which work (i.e., which yield valid predictions for 

whatever reason), and are simple enough to apply, are favored. 

The degree-of-belief one has in the validity of partic- 

ular models, just as the degree-of-confirmation he assigns 

to hypotheses, is a complex function of evidential and extra- 

evidential factors. On the one hand, the better the perfor- 

mance of a given model with past data, the more falth one 



places in it; while on the other hand, the more compatible 

a model is with larger sets of geological theories, the 

more faith one places in it. These tendencies sometimes 

pull in opposing directions. The stability of one's 

belief in a model clearly relates to its foundation in 

theory. Heuristic models are quickly discarded when they 

do not fit data in new situations; for random process 

models this is not the case. 

The tendency in fitting heuristic models, particularly 

for trend extrapolation, is to make them as simple as 

possible; this means as low-order as possible. Linear or 

quadratic trends are usually preferred to 10- or 12-degree 

trends. Simplicity is not merely a prejudice of geologists, 

but reflects experience (i.e., it is evidential). High- 

order curves and surfaces have sufficient flexibility that 

the probability distributions of their predictions decay 

more rapidly than experience suggests they should: we 

appear to be able to make more confident and further-extended 

predictions than high-order trends imply. Thus one generally 

avoids high-order trends as having little a priori validity - -- 
or usefulness in practical problems. 

Summary 

We have tried to present a short discussio,n of the 

logic of inference in exploration. In parkicular, we have 

tried to emphasize the following points: 



1. Exploration is an inductive rather than deductive 

undertaking whose results transcend the physical 

record of explorations. 

2. Uncertainties in the conclusions drawn from 

exploration are of subjective origin, and should 

be treated by subjectivist probability theory. 

3. There is a fundamental difference between models 

which predict spatial properties based on heuristic 

reasoning and those which do so by modelling 

geological processes. 

I I I. QUANTITATIVE ANALYSIS 

The present approach to predicting the location of trend- 

lng bodles 1s an analytical formulation of the heuristic 

centerline extrapolation technique; it is not a random 

process model of the spatial properties of geological 

bodies based on genetic concepts of sedimentation, 

implacement, etc. Therefore, it is not so much a model 

of geology as it is a model of spatial relationship based 

on empirical experience with other similar formations. 

However, the model does provide an accounting of uncer- 

tainties from various sources and thus provides insight 

into the dlsperslon of certainty with which predictions 

can be made away trom observations. 

We assume that on the basis of previous drilling and 

exploration some region within which the trending body lies 



has been explored, and that from this exploration two types 

of information are available. First, we know that the 

body exists at several discrete points in the horizontal 

plane (Figure 3); second, we have information on which 

some subjective feeling for the orientation of the body, 

exclusive of boring locations, can be based. (For example, 

we may have relevant geomorphological information, cross- 

bedding orientations in core samples, grain-size changes 

at progressive locations, etc.) 

Based on information of the latter type, - a priori 

feelings about the trend and width of a body may be 

evaluated using techniques of subjective probability 

theory. Then, using known locations of the body as data, 

the probabilities both of the centerline trend and of the 

width are updated to give - a posteriori probabilities from 

which predictions can be made. 

Given that probability distributions on centerline 

trend and width have been updated, probabilities that the 

body exists at unobserved locations can be evaluated by 

a procedure shown schematically in Figure 4. Let the 

probability density function of the intersection of the 

centerline with the line x = xo be f (y ' 1 xo) . The condi- 

tional probability that the body exists at some point (xolyo) 

is simply the probability that the distance between (xolyo) 

and the centerline is less than half the body width, 



But as the centerline location is itself uncertain, the 

probability must be weighted and integrated over possible 

centerline locations, or 

< W] f(y' Ix = xo) dy' . P ~ [ X ~ , Y ~ I  = I pr[lYo - Y'I - * 
Y' ( 4  ) 

So, once the probability functions of width and centerline 

location are determined, probabilistic predictions of body 

location on the basis of any particular trend model can be 

generated by equation 4. 

Probability density functions (pdf's) of centerline 

location and body width can be evaluated for a particular 

trend model by performing a (Bayesian) regression on known 

locations. Once this is done, model uncertainty can be 

accounted for by evaluating the posterior probability of 

each model and forming a so-called composite Bayesian model. 

Centerline Distribution: Bayesian Regression 

Let the known locations of the body be represented by 

the set of data points (x,y), and the trend model be 

Here, y is the vector of y-components of the data set, 

X is a matrix of functions of the x-components, B is the - 
vector of regression coefficients, and - e is an error term 



2 
with zero-mean and variance a . For example, for the 

mode 1, 

By the Bayesian argument, prior probabilities on & I 
a.nd a are updated to yield posterior probabilities on the 

basis of the likelihood of observations conditioned on I 
@ and a. That is, probabilities are updated on the basis I 
of conformity between observations and predictions. If 

we let f0 (f3,u) be the prior joint pdf of the regression 

parameters, then the posterior joint pdf of @ and u by 

Bayes' Theorem is 

1f for the prior distribution fO(~.o) we use the I 
3 so-called "uninformed" prior , 

3 ~ e  have chosen here to use "uninformed" or flat priors 
simply for convenience of presentation. In reality, the 
geologist's opinion of local geological structure would 
enter the analysis through fO(&,a) . Informed priors are 
discussed in Appendix C. 



( i . e . ,  g and I n  a uni formly  d i s t r i b u t e d ) ,  and i f  f o r  t h e  

e r r o r  t e r m ,  e l  w e  assume a  zero-mean normal ly  d i s t r i b u t e d  

random v a r i a b l e ,  t h e n  one can show ( Z e l l n e r ,  1971) t h a t  

t h e  p o s t e r i o r  d i s t r i b u t i o n s  of  g and a and s imp le  f u n c t i o n s  

of  g and a belong t o  well-known f a m i l i e s  o f  d i s t r i b u t i o n s  

(Appendix A ) .  I n  p a r t i c u l a r ,  t h e  d i s t r i b u t i o n  o f  i n t e r e s t  

i n  e x t r a p o l a t i o n  i s  t h e  c e n t e r l i n e  pdf .  From equa t i on  5 ,  

c e n t e r l i n e  l o c a t i o n  cond i t i oned  on x  i s  s imply a  weighted 

sum of  t h e  random v a r i a b l e s  f i t  and can be shown t o  be 

d i s t r i b u t e d  a s  a  u n i v a r i a t e  S tuden t  t ( Z e l l n e r ,  1971) :  

i n  which v i s  degrees-of- f reedom, S* i s  a  squared e r r o r  t e r m  

from t h e  d a t a  set ,  and c  i s  a  c o n s t a n t  depending on v a l u e s  

o f  t h e  d a t a  set  and xo. The t e r m  G i s  t h e  expec ted  l o c a t i o n  

o f  t h e  c e n t e r l i n e .  

Model Unce r ta i n t y  

Beyond u n c e r t a i n t i e s  i n h e r e n t  i n  e s t i m a t i n g  model 

paramete rs  t h e r e  a r e  a l s o  u n c e r t a i n t i e s  i n  which model o f  

c e n t e r l i n e  t r e n d  t o  f i t .  For  example, shou ld  a  l i n e a r  

t r e n d  be used,  o r  i s  some low-order cu rve  a  b e t t e r  r e p r e -  

s e n t a t i o n ?  The impor tance o f  i n c l u d i n g  model u n c e r t a i n t y  



in prediction is that it is a substantial component of 

total uncertainty, and that this increased uncertainty 

leads to an increased rate of decay in the probability 

density of predicted location (i.e., a more rapid 

"broadening" of the pdf), and thus shortens the length 

to which extrapolations can be made. 

The approach to model uncertainty used here is that 

suggested by  enj jam in and Cornell (1970) and by Wood (19741, 

in which a weighted sum of the prediction of each model is 

formed using posterior model probabilities as weights. 

Adopting the "linearf' model of equation 6 to predict 

centerline trend, the shape of the extrapolation is 

described by k t  the order of polynomial. Allowing the 

0 prior belief in the validity of ki to be p (ki), posterior 

probabilities are updated in the normal way: 

Then 

where 



Width Distribution 

For convenience, we assume that the probability 

density of body half-width is distributed as the Plaxwell 

distribution, 

2 
£(WIG) = KT exp (-w 2 / 2 0  2 ) , for w 2 o 

a3 J;; 
(12) 

with parameter a. 

If we assume that the known locations of the body are 

randomly (i.e., uniformly) distributed across the width of 

the body, then the pdf of the "error" term away from the 

body centerline (Figure 5a) is 

The marginal distribution of e is (Appendix A )  

which can be seen to decay as a one-sided normal distri- 

2 bution with variance a  . This is, of course, our justifi- 

cation for using the Maxwell distribution to begin with. 

With this distribution on width, "error" about the center- 

line is normally distributed and the results of Normal 

Bayesian regression can be directly employed. 



Body Length 

The model proposed thus far does not account for the 

finite length of geological bodies; it assumes them to be 

infinite. Therefore, probabilities which result from 

this model must be modified. 

From past experience one has some idea of the distri- 

bution of lengths of similar bodies, and this information 

can be modeled by a probability density function, f(R). 

Here, we will assume f(R) to be lognormal, as this distri- 

bution family adequately fits many geometric properties 

of geological formations. Since we know that the body 

whose location is being predicted is at least of length lo 

(Figure Sb), by Bayes' rule the conditional probability 

density of it being of length a' is 

for 2 Ro 

\ 0 otherwise . 

Assuming that the planar shape of the body 1s 

independent of its length (an assumption which may be 

questionable), the probability of its being located 

at any point is simply the product of the model prediction 

and the probability of its extending to or beyond the 

point in question, 



I IV. EXAMPLE PREDICTIONS 

The present procedure for extrapolation was applied 

to the data shown in Figure 6 (a second data set and 

prediction is shown in Appendix B). Three simple trend 

models were fitted (linear, quad.ratic, cubic), assuming equal 

a priori model probabilities and  axw well-distributed width. - 

Figure 7 shows the marginal posterior distribution 

of the regression coefficients - f3 for the linear model 

(those for the quadratic and cubic models being harder 

to plot here), and Figure 8 shows the marginal posterior 

distributions of width for each of the models. Extrapo- 

lation predictions for each model are shown in Figure 9a, 

b, c, respectively; and the composite prediction, In Figure 10. 

Figure 11 shows the composite prediction modified by consid- 

eration of finite length. 

The most striking feature of these extrapolations is 

how rapidly the certainty of location prediction decays 

away from the data set, an observation which is not so 

clearly demonstrated when non-quantified approaches are 

used. 



V. LIMITATIONS AND ERRORS 

This model is an attempt to quantify the sorts of 

spatial predictions which exploration geologists routinely 

make on the basis of observations. The model is not 

refined, and it clearly suffers the limitations of the 

heuristic technique on which it is based. On the other 

hand, the model has analytical shortcomings as well as 

geological ones, and these are what we turn attention 

to here. 

To begin with, the model assumes that the x-components 

of known locations are independent, but in reality 

this is not so. Just as one considers present information 

when locating the next well or observation, so one con- 

sidered it in the past. Thus, observations are biased 

toward lying on a straight line or low-order curve; that 

is precisely the way they were sequentially placed. by 

whoever was making the decisions. 

Second, the analysis neglects part of the location 

information we have. While reconnaissance information 

(e.g., geophysical data, etc.) can be included in 

establishing prior probabilities, "dry wells" or locations 

where the body is known - not to exist are neglected. This 

causes the model to generate predictions which are too 

diffuse. 



Third, the distribution model for width is inadequate 

because it also neglects information and because account 

should be taken of width-model uncertainty as well as 

centerline-model uncertainty. Box and Tiao (1973) suggest 

a way of doing this. Since, as before, we have information 

on where the body isn't, the width distribution should have 

an upper bound--which the Maxwell distribution does not. 

Next, there is no reason to believe that the body 

has constant width. The assumption makes regression easier, 

and this is the reason it is made, but real formations 

have varying widths. As long as there is no trend of 

width with length, however, the assumption of uniformity 

is probably not too bad. If there is a trend--and,finite 

length means that at some point there must be--the predictions 

may be substantially in error. 

Finally, the procedure for updating model probabil- 

ities still requires thought. Here, likelihoods were 

calculated on the basis of "fit" of a centerline trend to 

observations. For a large number of observations (i.e., 

relative to the trend order, k), hlgher-order curves will 

always fit better than lower-order ones. Yet, as we said 

earlier, empirically we know that high-order curves are 

too flexible and their predictions overly diffuse. When 

the number of data points, n, is small, this problem 

doesn't necessarily occur because the degrees-of-freedom 



( v  = n - k )  is substantially affected by changes in I< 

(e.g., Appendix C) . 

VI. LOCATION PREDICTIONS AND DECISION-IIAKING 

In this last section, as an addendum, we will briefly 

discuss the place of quantified predictions in decision- 

making for geological exploration. In general, there are 

two types of decisions which might be made with spatial 

predictions. One is the exploitation decision: where 

should a new producing well be placed, or where should 

a well point be located to drain a pervious stratum? 

The second is the allocation of exploration effort: where 

should observations be made, or how closely spaced should 

geophysical traverses be placed? These decisions have 

different objectives and do not necessarily lead to 

similar optimizations. For example, the optimal location 

of an exploitation well might not be the same as the 

optimal location for gathering information on structure. 

Here we will describe the exploitation decision as it is 

analytically simpler, yet highlights the role of quantified 

predictions. 

Assume that the decision to be made is where to place 

a well for production of some resource or for dewatering 

a construction site; and assume that this is a one-stage 

decision (i.e., information gathering has already been 

finished). A decision tree for this decision is shown in 



Figure 1 2 .  Let t h e  c o s t  of d r i l l i n g ,  c ,  be independent of 

l o c a t i o n ,  and l e t  t h e  va lue of h i t t i n g  o i l ,  wa ter ,  o r  what- 

eve r ,  be a func t i on ,  g ( d ) ,  of t n e  d i s t a n c e  from t h e  c l o s e s t  

"producing" we l l .  ( I n  o t h e r  words, assume t h a t  two w e l l s  

i n  proximity draw on t h e  same volume of  resource  and t h u s  

have lower i n d i v i d u a l  y i e l d s  than  two more d i s t a n t  w e l l s ;  

s e e  F igure 13. ) 

Taking t h e  p r e d i c t i o n s  of  s e c t i o n  I V ,  l e t  t h e  l ocus  

of p o i n t s  of  maximum p r o b a b i l i t y  of t h e  body's l o c a t i o n  

away from t h e  d a t a  set be represented  by l i n e  J (F igure  1 4 ) -  

The decay i n  p r o b a b i l i t y  a long t h i s  l i n e  i s  shown i n  

F igure  15. Using expected va lue  a s  t h e  c r i t e r i o n  of  

4 
d e c i s i o n  , w e  can graph t h e  o b j e c t i v e  func t i on  over  d i s t a n c e  

along J a s  

ELvalueI = ( -c )  + g ( d )  x E[va lue  of  resource ]  

x P r  [ h i t t i n g  body w i th  resource ]  . 

Combining y i e l d s  a maximum a t  d,, which i f  g r e a t e r  than  

zero would be t h e  op t ima l  l o c a t i o n  f o r  d r i l l i n g  based on 

model p r e d i c t i o n s .  

4 ~ h i s  of course  assumes a l i n e a r  o b j e c t i v e  func t i on  which 
i s  expected monetary va lue .  C l e a r l y  t h i s  may n o t  always 
be t h e  case .  But t h e  problem may be overcome by i n t r o -  
ducing u t i l i t y  f u n c t i o n s ,  which Grayson (1960) has 
d i scussed  i n  a  g e o l o g i c a l  con tex t .  



VII . CONCLUSIONS 

We have presented an analytical model for quantifying 

location predictions of linearly trending geological bodies, 

so that these predictions might be included in larger 

decision models for exploration. The model requires 

further refinement, but illustrates how the geologist's 

subjective judgement may be included in quantified ap- 

proaches to optimizing exploration strategies. The model 

also sheds light on traditional questions in exploration, 

such as how far trends may be extrapolated away from 

observations. Our hope in presenting this work is that it 

will contribute to the larger task of the development of 

a general theory of rational exploration based on the 

subjective judgements of geologists. 
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APPENDIX A 

Mathematical Structure of Analysis 

Width Distribution 

The probability density of width is assumed to be 

distributed as the Maxwell distribution with unknown 

parameter u 

£ (w(u) = 
42 wL 2 2 

exp [-FI / 2 u  ] . 
u3 fi 

Further, assuming that borings intersecting the body are 

randomly distributed across the body width, the probabil- 

ity density function of the distance, e, between a boring 

and the centerline is 

Hence, 

which decays as a (one-sided) normal distribution. This d-istri- 

bution corresponds to that of the error in locating the centerline. 



A Bayesian regression to estimate parameters of the 

centerline is performed on known locations of the body 

using a zero-mean normally distributed error term with 

variance u2, and an - a priori pdf on the regression 

parameters, 

This is the so-called "uninformed" prior based on uniform 

distribution of - B and In a. Using the notation of Section 

111, the posterior distribution of the parameters (B ,o)  

in which v is the degrees-of-freedom, 

and 



The centerline passing through any line x = xo is a 

weighted sum of the random variable 8, 

and given the posterior distribution of equation A 8 ,  

Zellner (1971) shows this weighted sum to be distributed 

as a univariate Student t, 

in which 

and 

The procedure for using the pdf of centerline location 

along any line x = xo in conjunction with the pdf of width 

to predict body location is described in Section 111. 

Three simple trend models were fitted to the data 

(linear, quadratic, and cubic) with equal a - priori 

probabilities (i.e., 1/3). These probabilities were updated 

using Bayes' Theorem to arrive at posterior model probabil- 

ities, then used in forming the weighted or composite model 

for predictions: 



in which 

and 

where tne conditional distribution'of the observations is 

Student t with v degrees-of-freedom, and hii is the 

(i,i)th element of the inverse of H I  

The weighted sum of the model predictions is formed. 

as in Section 111, to generate final predictions. 

The probability distribution of body width inferred 

from each of the models is computed using the marginal 

posterior distribution of a and the relationship, 





APPENDIX B 

A Second Numerical Examwle 
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APPENDIX C 

Informed Priors 

The use of non-informative or diffuse priors in 

Bayesian analysis has been a source of controversy, and 

indeed a point of major criticism of Bayesian methods by 

members of the frequentist school. This controversy is 

discussed in several places (e.g., Jeffreys, 1966; Savage, 

et al., 1963; Zellner, 1971), and so won't be summarized 

here. 

When prior information on feelings does exist, some 

prior pdf on fi and a which accounts for this information 

should be used (i. e. , rather than "uninformed" priors) . 
Since the procedure for updating a prior distribution on 

B and a by sample d-ata rapidly becomes intractable unless - 
the shape of the prior distribution is jud~ciously chosen, 

one is well advised to select this distribution in coordi- 

nation with the likelihood function. One such distribution 

is the conjugate of the likelihood function which has the 

property of closure under Bayesian updating. That is, a 

conjugate distribution is one which when updated by the 

likelihood function yiel2s a distribution of the same 

family, but with different parameters. Zellner shows 

that for normal multiple regression the conjugate 

distribution is 



or the same as the posterior distribution generated using 

the "uninformed" prior. 

Assessment of subjective probabilities in terms of 

this distribution is clearly complicated, but as a first 

approximation, marginal distributions of - f3 and a might be 

assessed independently. The marginal distribution of 

is multivariate normal, which for multivariate assessments 

is easier than most; and the marginal distribution of a 

is inverted-gamma, which being univariate is at least 

straightforward. It is also conceivable that specialized 

methods of assessment, by sketching ranges and most- 

probable axes on a map, say, could be developed. 



APPENDIX D 

Symbol List 

t 
constant = xo(g 5)-I 5, - - 
cost of drilling 

error term 

prior probability density function 

posterior probability density function 

relationship of production to distance 

order of polynomial 

likelihood function 

model number i 

prior probability 

posterior probability 

"probability density function" 

probability body located at point (xo,yo) 

sum of squared errors in regression 

data set: known body locations 

random location of body centerline given x 

expected location of centerline given x 

data set = ( 5 , ~ )  - 
regression coefficients 

most likely value of regression coefficients 

gamma function 

variance of error about center, and 

parameter of width distribution 
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