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On the Dynamics of the Ignition of Paper

and Catastrophe Theory*

R.K. Mehra**
E.H. Blun***

Abstract

1.

The purpose of this note is to study the phenomenon of
ignition of paper considered by Shivadev and Emmons [1] from
the viewpoint of stability theory and catastrophe theory [2].
It is shown that ignition results from a sudden or cata-
strophic change of the kinetics governing temperature from
a locally stable to a locally unstable equation. Using the
model of Shivadev and Emmons [l] and the above criterion,
equations for the ignition temperature and the corresponding
heat flux are derived. These equations are shown to provide
a good match to the experimental data of Reference [lT.
Further extensions of this work to combustion and the
appearance of cusp catastrophes are also discussed.

Introduction

Nonlinear physical, sociological and engineering systems

may exhibit large sudden changes in their behavior with rela-

tively small changes in their parameters. In the theory of

nonlinear differential equations, this phenomenon has been

studied under Structural Stability and Bifurcation Theory [2].

More recently, Thom [2] has developed a general theory of

*
The research reported in this document was supported

partially by IIASA, Laxenburg, Austria, and partially by the
U.S. Joint Services Electronics Program under Contract
N00014-67-A-0298-0006 extended to Harvard University.

* %
Harvard University, Cambridge, Massachusetts, U.S.A.,

and IIASA, Laxenburg, Austria.

*
IIASA, Laxenburg, Austria, and The Rand Corporation, New

York, New York, U.S.A.



elementary catastrophes (in the sense of discontinuities or
bifurcations) for such systems.

In this note, we consider the phenomenon of ignition of
paper studied by Shivadev and Emmons [1] and show that ignition
has the qualitative properties of an elementary catastrophe.
Based on the local stability properties of the nonlinear dif-
ferential equations of the reaction energetics, we develop a
criterion for ignition and show its usefulness in explaining
the experimental data. Some proposals for the extension of
these concepts to the combustion phase and for the design of new
experiments to validate further theoretical results are also

discussed.

2. Stability Properties of Chemical Kinetics Equations

Shivadev and Emmons [l] have given the following equations
for the second phase reactions occurring during the thermal
degradation and spontaneous ignition of paper sheets in air

by irradiation.

aE - —azmexp(-ez/RT) ’ m(o) = m (1)
odT _ _ _ 4/3 - 4 _
me” 3% q hO(T Ta) KT  + r2a2mexp( e2/RT) ,
T(O) = Ta ’ (2)

where h = h (T - Ta)l/3, K = 20ef and all the other gquantities



are as defined in Reference [{]*. (For easy reference, we
have included a nomenclature section with numerical values
used at the end of the paper.) The experiments give the
critical temperature and heat flux values at ignition to be
% = 680 + 15°K and % = 0.58 + 0.03 cal/cmzsec respectively.

It is easily seen by numerical calculations that up to
the critical temperature, the reaction rates are fairly small,
but are increasing rapidly around the critical temperature.
Thus the change in mass m up to ignition is quite small (96 2.8)
and for stability analysis of equation (2), one may regarg
m to be a constant.

Now, let us consider equation (2) for temperature. When

a particular heat flux g is applied, the corresponding equi-

librium temperature is obtained by setting %% = 0 in
equation (2). Notice that the equilibrium in temperature is

achieved very rapidly compared to the changes in mass m since
below critical temperatures, the time constant of equation (2)
(approximately IE%i) is much smaller than the time constant of
equation (1). (The ratio is typically of the order 103.)

Let the equilibrium temperature be Te' Then setting

= = 0 in egquation (2), we obtain

*
In equation (2), we have neglected the term [fa(Té)oTé] since

it is of the order of .00563, but have retained the radiation
term KTu since at T = 68c°K (experimental ignition temperature),

this term is .49 compared to h(T - Ta), which is .258 cal/cm2 sec.




4/3 4 _ _
- KTe + r,a.,mexp ( e2/RTe) =0 . (3)

q =~ hy(Tg = T 232

a)

Equation (3) can be solved for T, as a function of g
using known values of all the other parameters*. (m may be
assumed to be mo or equation (3) may be solved for different
values of the ratio m = m/mo.) Figure 1 shows a plot of To
versus g which is found to contain a sharp bend or fold at

q=qg-
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Figure 1. Plot of Equilibrium Temperature Te versus Input

Heat F lux g.

9
Clearly at this point g%— = 0 and immediately thereafter,
e

the slope changes sign. In other words, the rate of increase

*
Numerically, it is much easier to assume T. and calculate the
corresponding value of q.



of the heat of reaction with temperature overtakes the rate of
increase of heat loss with temperature. This also implies that the
temperature equation (2) is changing from a locally stable

to a locally unstable equation, since for g < 9 (or Te < Tc),
any small increase in temperature results in a net heat loss
and any small decrease in temperature results in a heat gain
so that the temperature returns to the equilibrium point.

But for g > qc (or T > TC), any deviation results in a
movement away from the equilibrium. In practice, one would
observe a sudden increase in temperature (Figure 1) as the
heat flux crosses the critical value 9.+ The temperature
essentially Jjumps to a new equilibrium point determined by
the properties of the combustion phase. In Figure 1, the
locus of combustion phase equilibria is shown by a thin solid
line. Notice that this locus cannot be computed from
equations (1) and (2} since the equations for the combustion
phase must involve other variables such as oxygen feed rate,
volume of combustion products, etc. The dotted line in
Figure 1 is the locus of unstable equilibria. The S-shaped
curve of Figure 1 is one of the simplest catastrophes and has
been called a fold catastrophe by Thom [2]. We will discuss
further properties of this curve later on after deriving the

equations for ignition temperature and for critical heat flux.

3. Criteria for Ignition

Let us linearize equations (1) and (2) around the point

(m,Te) and denote the deviations by ém and 8T. Also let



The eigenvalues

given by the A-roots

Equation (6) may

2

AT+ A+ v

where

)| 8T (5)

of the linearized system (4)-(5) are

of the determinental equation

be written as

(7)




or

k(Tg)(gque)+-4KT§) , (9)
since the rest of the terms drop out due to equation (3).

The stability conditions may be expressed directly in
terms of § and Yy since they are respectively the sum and the
product of the roots of equation (7). When equations (4)-(5)
become unstable, at least one root moves from the left half plane
to the right half plane and its real part goes through zero.
If the roots of equation (7) were real, this would imply that
Y would go through zero, but this is impossible since from
equation (9), y > O. Thus the roots are complex and at the

critical point, § = O. This gives us the following condition

for the ignition temperature Tc:

r.e
k(T) |1 - 22|+ L (4n(r) +4rr’) =0 (10a)
c o_, .2 o\3 C c
C RT mc
c
or
e, (rzez/coRTi) -1
Te =1 /9 —1— 73 3V (- (10b)
(3}1(Tc) + 4KT )
mc a c
2
Equation (10Ob) is a transcendental equation in Tc and
may be solved by trial and error. However, certain simplifi-

cations are possible by neglecting smaller terms and by using

dimensionless variables. Let y' = TC/Ta. From equation (1Ob)
RaEs
—5 - 1 -
yl
y' = E log ’ (11)
2 4 + 4B 3
3A 2Y



all dimensionless variables.

Since R2E2/y'2 >> 1, and Aszy'3 >> 1, Equation (l1ll1l) may
be written as
y' = %2
log A, + log 3 R2E2 - log 3A_B y'3
2 4 V2 272
Y
or
E,
y' = . (12)
3 - _ .
log 2 R2E2 log 3B2 5 log y
In BkBquation (12), log y' term is much smaller than the

other terms in the denominator so that a first guess for y'

may be obtained by neglecting this term. Using the numbers
given by Shivadev and Emmons [l] and assuming M = 0.8, a trial
and error hand calculation with equation (10) gives Tc 2 657OK.
The corresponding heat flux obtained from Equation (3) is

q. = .54 cal/cm2 sec.

These results compare favorably with experimental values
of 680 + 15°K and 0.58 + 0.03 cal/cm2 sec. It should be noticed,

however, that Tc or y' is very sensitive to e, and a change

2

of e, from 54 to 56 would give Tc * 670°K and s = .61 cal/cmzsec.

A slightly higher value of e, would also give a better fit to

2
the transient data of Reference [1], Figure 3. It is possible

to determine e, using nonlinear least squares or maximum



likelihood techniques to obtain in some sense a "best" match

to the data [3].

Remark:
1. As shown in Figure 1, g%— = 0 if the rate of
®lr =T
e o)
change of mass m is neglected around Tc' Using Equation (3),
we get an equation for Tc,
r.e,m
k(r ) 22 - 4p(r) - 4kt =0 . (13)
lo 2 3 T C c
RTc

Equation (13) is identical to Equation (l0Oa) except for
the term k(Tc) which is negligible in comparison with
r,e,m
RT
c

Thus in the present case, %%— =0
e

T =T
e C

k(Tc)

provides a simple criterion of ignition. This method will
be elaborated further in Section 4 under discussion of

Catastrophe Theory.

2. In the paper by Shivadev and Emmons [1], the criterion

2
for ignition is given as g—g = 0, while ar > O. Since dr
at dt dat

is a function of both T and t,
2
a°r _ 3 (dr)ar , 3 (ar (14)
dt2 aT \dt/ dt 9t \dt :

. . . a [AdTy _ daTr
Now if it is assumed that §E<EE) = 0 and 3t # 0, then



Equation (14) will give the same result as Equation (13).

However the above assumptions regarding g% may not hold in

every case since, by definition, at an equilibrium point %%

and its higher time derivatives are zero. It is alsoc very

difficult to give any physical interpretation to the vanishing
a’r

of — at the ignition point. The differences in numerical
dt

values of T and q. reported in [1] (715°K and 0.68 cal/cmzsec)
are primarily due to neglecting the radiation and a few other

terms which,as is shown here, cannot really be neglected.

4. Catastrophe Theory

The Catastrophe Theory of René Thom [2] is basically a study
of the structural stability properties of dissipative systems
whose state trajectories or flow fields locally minimize a
potential function. Let f(x,c) be such a potential function
where x denotes the state of the system and ¢ is the vector
of control parameters. For a fixed value of ¢, the state x
flows along negative gradient trajectories, viz.

(_iﬁ = —fx(xlc) ’ (15)

where fx = gg is the gradient function and is zero at
equilibrium points. Thom [2] studies the properties of
Equation (15) as c is varied slowly and shows that sudden
changes in the local stability properties of Equation (15)

can occur as c crosses certain boundaries in the control space.



These sudden changes or discontinuities are called catas-
trophes and the corresponding surfaces in the (x,c) space
are called catastrophe surfaces.

The truly remarkable result that Thom [?] derives from
topological considerations is that for ¢ of dimension less
than 6 and x of any dimension whatsoever, there are only a
finite numbe; of catastrophes that can occur. For example,
if ¢ is a scalar, only the fold catastrophe of Figure 1 can
occur. Other catastrophes are listed in Table 1 and for each
catastrophe, a generic potential function f(x,c) is also given.
This potential function has the property that it is the simplest
potential function that exhibits all the catastrophic prop-
erties of more complicated potential functions related to it
by a diffeomorphism (i.e. differentiable, one-to-one and
inverse differentiable transformation of (x,c)). An exact
statement of Thom's Theorem [1,4] can be given as follows:

Let xeR" and ceRm. Then fx(x,c) = 0 is an m-dimensional
manifold M in Rn+m’ corresponding to a sheet of equilibrium
points (see Figure 2 for the case n =1, m = 2)*. The
equation fx(x,c) = 0O can have multiple roots for a given c
and this is what gives rise to singularities of the projection

map Z: M » C where C is the space of control variables.

*
In Figure 2, x corresponds to T and C corresponds to PO

and Q.

2
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For illustration, consider the case n = 1, m = 2 for

which the generic potential function is

_ 1. 4 1 2
f(x,c) = 7 X + 5Cp X + C,X (16)
or
f (x,c) = x3 + c,x + C (17)
x 7 1 2 -
The equation fx(x,c) = 0O can, in general, possess three

real roots* and the location of these roots will change as

c1 and c, are varied. Figure 3 shows the variation of the

stationary points of f(x,c) with Cy for a fixed cy = -3. It is

seen clearly that for Cy < -2, there is only one stationary point,

for -2 < <, < 2, there are three stationary points and for c. > 2,

2

there is again one stationary point, but corresponding to a dif-

ferent minimum than for c, < -2. Thus in going from Cy, = -3 to
C, = 3, there will be a sudden jump in the equilibrium point
at c, = 2 where a maximum and a minimum coalesce resulting in

an inflection point. If Cy is varied in the opposite direction,

the jump will occur at c, = =2, causing hysteresis.

2

The singularity surfaces are characterized by the

inflection point fxx = 0 or
2
3x7 + cq = 0 . (18)
Equations fx(x,c) = O and (18) give equations c, = —3x2,
c, = 2x3 for the singularity boundaries in the control space.

*
Since x is real, we are only interested in real roots of

fx(x,c) = 0.
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The equation of the singularity or catastrophe curve is

1 3 1l 2 _ . . . .
59 €1 +-Zc2 = O which is a cusp as shown in Figure 2.

Now, following Zeeman [4] we can state the more general
theorem of Thom [2].

Let .# denote the spate of c”-functions on IR

with the
Whitney cw—topology (¥ may be regarded as the space of potential

functions).

Theorem: If m < 5, there is an open dense set FC F which
is the set of generic functions. If f is generic then
1) The manifold Mf is an m-manifold,
2) Any singularity of the projection map 3% is equivalent
to one of a finite number of types called elementary
catastrophes,

3) 5% is stable under small perturbations of f.

The number of elementary catastrophes depends only upon

m, the dimension of control space, as follows:

m |1[2|3“4|516
Elementary
Catastrophes 1 2 5 7 11 ©

Here equivalence implies: two maps ﬁ% : Mg > Cc and .

jg : Mg - Cg are edquivalent if there exist diffeomorphisms h

and k such that the following diagram is commutative.




-

If.@% and,@% have singularities at xfeM and xgeMg re-

spectively, then the singularities are equivalent if the above

definition holds locally with hxf = Xg' Stable means that

. is equivalent to éz for all g in a neighborhood of £ in &

5. Applications of Catastrophe Theory to Fire Modelling

In Sections 2 and 3, we analyzed pyrolysis and ignition
of paper with heat flux as the control variable. 1In actual
fire modelling including combustion, there are many more
control variables,e.g. oxygen partial pressure, fuel feed
rate, external cooling, fuel feed temperature,etc. Not all
of these control variables can be manipulated so that from an
operational viewpoint, probably oxygen partial pressure and net
external heat flux (which may be negative due to cooling) are the
two important control variables. We are currently analyzing
stability properties of some simple models of combustion based
on chemical reactor analogies and the detailed results will be
reported in the near future [5]. Here, based on catastrophe
theory, we describe qualitatively the behavior of temperature
with oxygen partial pressure and external cooling during the
combustion phase. The behavior is shown pictorially in
Figure 2 and the effects of changing oxygen partial pressure,
Poa and net external heat flux Q are easily observed. The
basic hypothesis used in constructing Figure 2 is that P02
is the splitting factor [4} i.e. for extremely small values
of Poo (e.g. in vacuum), the effect of increasing Q is simply
a temperature rise without ignition and for large values of
Poy 7 the effect of Q is ignition as shown in Figure 1.

In the case where the above hypothesis is correct, the




behavior shown in Figure 2 follows from Thom's Theorem.

The right hand arm of the cusp represents the ignition
boundary and the left hand arm the "quenching" boundary. A
hysteresis effect i1s seen in that the "quenching" occurs at a
lower net heat flux input compared with ignition. This is a
general feature of the cusp catastrophe and it will be inter-
esting to verify it experimentally. Another general feature
is divergence or extreme sensitivity which was observed by
Shivadev and Emmons [l] in ignition with respect to heat flux.

In more general situations where spatial effects are also
present and there are more control variables, one may observe
catastrophes in time and in space, resulting in 'hot ovoints'
similar to those in chemical tubular reactors [6]. Multiphase
reactions may give rise to more cusps and to more than three
sheets of equilibrium points, and jumps between these points
may occur as in Butterfly Catastrophes [2,4]. One of the
philosophical implications of catastrophe theory is that
catastrophes Ooccur more as a rule than as exceptions
in most physical, biological and social systems. Therefore,
it is important in the design and operation of engineering
systems to map out the catastrophe surfaces over the set of

achievable parameter values.

6. Conclusions

It is shown how the general results of catastrophe theory
may be applied to the phenomenon of the ignition of paper due

to thermal irradiation. Based on stability considerations,



equations for ignition temperature and critical heat flux are
derived. These equations are shown to provide a good match
to the experimental data of Shivadev and Emmons [l].- Further
implications of catastrophe theory are discussed for the
combustion phase when oxygen partial pressure and external

cooling are used as control variables.
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Nomenclature and Experimental Quantities

preexponential factor, l.9><lOl6sec_l
dimensionless preexponential factor mocoaz/h

KT3

dimensional radiation factor,
mcoa2

specific heat, 0.32 cal/goc (T > SOOOK)

activation energy, 54 kcal/g-mole

dimensionless activation energy, R
a

opacity of the paper sheet [—]

sum of heat transfer coefficients at top and

bottom, h (T - rT_)1/3 _cal
o a 2 0

cm sec cC

temperature independent term in h, .0000941

reaction rate constant [éec—{]

radiation factor (2ccef), 2.06x10 12

surface density, .0085 g/cm2
normalized surface-density, (m/mo)
heat rate [cal/cm2 sec]

critical heat rate [cal/cmzsec]

dimensionless heat rate, E%—
a

heat of reaction, 444 cal/g

dimensionless heat of reaction,

cal/cmzsec (OK)

4



R universal gas constant, l.987><10—3 kcal/g-mole oc
t time [sec]
T temperature [OK]
Ta ambient temperature, 300°K
Te equilibrium temperature, °k
Tc critical temperature, OK
y' dimensionless temperature, %L
a
€ radiative emissivity [-]
o] Stefan Boltzmann Constant, l.3545><lO_12 cal/cmzsecoK4
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