
Software Systems Viewed as an
Analogy to Industrial
Organizations

Orchard-Hays, W.

IIASA Research Memorandum
September 1975

CORE Metadata, citation and similar papers at core.ac.uk

Provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33891938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Orchard-Hays, W. (1975) Software Systems Viewed as an Analogy to Industrial Organizations. IIASA Research

Memorandum. Copyright © September 1975 by the author(s). http://pure.iiasa.ac.at/466/ All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage. All copies

must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or

to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

mailto:repository@iiasa.ac.at

SOFTWARE SYSTEMS VIEWED A S AN ANALOGY

TO INDUSTRIAL ORGANIZATIONS

Wm. O r c h a r d - H a y s

S e p t e m b e r 1 9 7 5

R e s e a r c h M e m o r a n d a are i n f o r m a l p u b l i c a t i o n s
r e l a t i n g t o ongoing o r projected areas of
research a t I I A S A . T h e v i e w s expressed are
those of t h e a u t h o r , and do n o t n e c e s s a r i l y
re f lec t those of I I A S A .

Software Systems Viewed as an Analosv

to Industrial Organizations

Wm. Orchard-Hays

Abstract

This paper is not "scientific" in any usual sense.
Rather, software systems are described by means of
analogies with large industrial and other organizations.
The curious nature of software is first pointed out,
and then its major dimensions are listed. Typical
attributes of a large organization and its functions
are briefly set forth and then these abstractions are
related to systems of programs. The dual nature of an
organization and its technology is suggested and then
applied to systems of programs and the data structures
on which they operate. The role of the user is discussed,
several aspects being shown. Finally, a few maxims for
building, maintaining, and using software systems are
given.

"An idea, like a ghost, ..., must be spoken
to a little before it will explain itself."

- Dickens

Foreword

The use of computers is entirely dependent on software.

A computer system itself--that is, the hardware--is a kind

of miniature world of a special sort in which a particular

class of activities occur. These activities are essentially

the transformation of data and their transmission, i.e. ship-

ment and handling. We need not get into abstract discussion

of what data are, what distinctions may exist between data

and information, or how data are represented and recorded.

Neither a semanticist's nor an electronic engineer's viewpoint

is to our purpose. Nor is there any need to be awed by

the computer's prodigious feats of arithmetic and data

processing--these are what computers are designed to do.

Rather, given these kinds of ca~abilities, the theme is how

to organize our thinking and our approaches to programming in

order to make best use of then.

Programmers have, in fact, made good use of computers

from the beginning, though it must be admitted that excellence

has not been universal or consistent. But as computers have

improved in speed, capacity, reliability and standardization--

and computer applications have grown in scope, complexity and

importance-.-software has become more massive, intricate and

overwhelming. Most analysts and researchers, and even many

application programers, make no pretense of understanding

software systems in any but the most superficial way. While

it is true that it takes years of experience--and perhaps a

special sort of aptitude--to become an expert system pro-

grammer and designer, it must be possible for the user to

understand in some effective way the nature of the system he

utilizes. This is particularly true of interactive systems

which hold so much promise for man-machine interplay in

attacking important planning and control problems.

This writer has long sought for a useful analogy for a

software system both to organize his own thinking and to

give meaningful explanations to others. As early as 1959, he

attempted to characterize software in terms of a management

structure but the idea was premature and incomplete and fell

flat. However, continuing experience and reflection, plus

the elaborate and seasoned software in being, make it appear

that the idea nay now be nature and valuable enough to set

forth in some detail. It is hoped that the scope of the

analogies drawn will not offend the reader's intellect or

sensibilities. There is no intent to construe anthropo-

morphisms but it will be necessary to see similarities in

structure between human and abstract organizations--both of

which are human inventions.

"Allegories are fine ornaments and good
illustrations, but not proof."

- Luther

Why an Analogy?

The question may arise why an analogy should be used as

the nain basis for discussing a subject and not merely to

illustrate. The answer is twofold: the curious nature of

software and the lack of fundamental principles in a scientific

sense. The field of management shares the latter weakness

but, since it has a long history both as a subject for study

and as a practical arena of activity, it has principles and

guidelines which are widely accepted and proven by experience.

ilence it makes an excellent type for an analogy if it fits

the antitype. The thesis of this discussion is that it does.

Software is curious mainly because it is an active agent

and yet one cannot point at it or any physical representation

of it--such as regarding a generator as electrical energy.

It is even hard to pinpoint where computer programs exist.

Anyone using a computing facility is familiar with huge listings

of assembled or compiled programs, tabulations of data, and

run submission forms, card decks, etc. But these are more

in the nature of delivered products or order forms. When a

programmer receives an assembly listing, it is like receiving

delivery of some item or subassembly which he previously

ordered and which was produced by another software complex.

The actual program which he assembled resides on some magnetic

device in the hardware complex but it is only stored there.

Xhen he causes it to be executed, we say it is "in the computer"

but one would be hard pressed to identify its particular

electrical impulses. Anyway, the electrical impulses are not

the program either, any more than neuro-muscular impulses

are people. A program carries out a specific piece of work

for some purpose. But even this "work" cannot be interpreted

in the sense of physics since it costs neither more nor less

to have the computer on whether any program is executing or

not, except for printed output. (We ignore the inertial aspects

of such devices as card readers and tape drives.)

A program has an author but it is not like a book nor

a system like a library. This is why copyright and trademark

laws have 2roven inadequate for software. Software carries

out useful, often complex and sometimes novel procedures,

but it is not a machine. Hence patent laws are inadequate.

Programs have a personality, endowed by the programmers and

analysts, but this persists and may be duplicated long after

the programmer finished checking it out. Indeed, the pro-

grammer may no longer be alive. Something similar is true

of books, photographs and recordings but these do. not continue

to carry out actual tasks or to work dynamically with similar

items with different origins. All in all, it seems fair to

say that software is a rare, if not unique, product of human

ingenuity.

"The knowledge we have acquired ought not to
resemble a great shop without order, and
without inventory; we ought to know what
we possess and be able to make it serve us
in our need."

- Leibnitz

The Maior Dimensions of Software Systems

The terms software and systems are subject to a variety

of definitions and scopes of meaning. There are dangers in

construing them either too broadly or too narrowly but perhaps

no firm limits are possible. Software is sometimes understood

to include manuals, procedures, forms, methods, and all the

rules an6 regulations common in large computing centers.

While this may seem much too broad for a discussion of actual

systems of programs, some aspects of each of these items

must be taken into account. Good manuals, for example, are

most assuredly a necessary part of the delivery of any software

system, yet one might tend to exclude them from a discussion

of the organization of the actual i3rograms. Bowever, one of

the manuals, or a part of it, will contain just such a dis-

cussion and this information will exist nowhere else. Its

status is entirely analogous to the status of organization

charts, job descriptions and procedure manuals in a company.

These are a part of the company even though the company itself

is their subject. More importantly, the functioning of the

company is partly dependent on these documents, the more so

the more rigid is company discipline. This is perhaps as

good a place as any to point out the biggest weakness in our

analogy: the discipline of software executing in a computer

is virtually perfect. However, it is the user, not the com-

puter, who reads the manuals.

In any event, a software system has several major com-

ponents or dimensions, including the following:

- The Hierarchy of Routines; their purposes and
responsibilities.

- Categories of Data Sets; their relationships
and access methods.

- User Controls; man-machine interfacing and acti-
vation.

- Documentation and User Training.

- Execution Controls; storage allocation and
operating system.

- System Maintenance and Extension; programming
languages, system integrity, program libraries,
dissemination.

- Testing and Experimentation.

The first four of these will take up most of the sequel. The

other three, though essential, are less important to the user

except for general concepts. However, the appropriate analogies

will be indicated.

"Good order is the foundation of all good
things. "

- Burke

Hierarchical Organization

It is hard to say whether organization precedes or

follows the growth of an enterprise. This is a chicken-and-

egg question. In reality, they grow and evolve together

but it seems apparent that some concept of an organization

must exist before it can come into being. The most elementary

undertaking by two or more people almost invariably has a

boss, if not ex~3licitly then tacitly or de facto. In

contemplating nore extensive operations, a leader will

mentally organize the effort, either from instinct or experience,

or he will not remain the leader. It seems unnecessary to

belabor the point.

An organization of humans nearly always takes the form of

a hierarchy, that is, a pyramid or inverted tree. Many

variations exist but these fall mainly into two types: more

or fewer branches from one node, and the size and number of

auxiliary branches. This has led to innumerable discourses

on "span of authority" and relative importance of "line and

staff." There would be no point in entering into such

controversies here; we merely accept such concepts as valid

principles drawn from extensive experience. However, the

notion of centralization and decentralization will receive

special comments.

Software from the beginning appeared with an embryonic

hierarchical structure, although it started in the middle and

grew both up and down. One of the first little gems of the

programming art was to devise a method for one routine to

"callu--i.e. to command execution by--another routine. It

was some years before computer architecture made this relatively

automatic so software preceded hardware in establishing rank.

In fact, except for 1/0 operations and later a class of

privileged instructions, computers still treat everything with

impassive equality.

At the top of an hierarchical pyramid there is always

a big boss--president, chairman, commander-in-chief, pope,

or whatever. His authority is seldom absolute in a general

sense but the chief prerogatives are his and the office

commands respect almost irrespective of the incumbent. This

office has a number of functions attached directly to it,

before one gets down to the next level of command. Their

avowed purposes, in addition to necessary services to the

chief executive, is to give the organization consistent

direction, policy and administration. The heads of these

functions do not constitute a chain of command, which is a

decentralizing force, but the senior staff level which

fosters centralization. Their actual authority depends on

a number of things but, usually, it is indirect. There are

other ways to enforce centralization, or more properly,

standardization, which does involve direct command. For

example, Henry Ford was willing, even anxious, to decentralize

many operations but he was insistent on a central foundry.

There were good reasons: it is a separable, largely self-

contained activity requiring highly developed techniques and

enormous capital investment and its output impacts the

quality of the entire production of the corporation. However,

running the foundry is not a staff position even if its

manager reports directly to the top and has no subsidiary

divisions under him.

The chief executive, once appointed, is usually not left

to his own devices with no reporting function. (When this

happens it almost always leads ultimately to disaster, the

delay being proportional to the capability of the executive.)

First, in modern terms, there is a board of directors to

whom the chief executive is responsible. Sometimes the board

is mostly a rubber stamp but, second, there will also be a

senior executive council or some inner circle with whom -the

chief executive must deal regularly and whose wishes and opinions

he :.lust respect. Thirdly, the past history of the organization

methods which limit the freedom of the chief executive. He

is himself a product of this history.

As one goes down to the next level of command, say the

operating or group vice-presidents, these executives find

themselves in a similar position with the senior staff playing

the role of the board of directors, their own lieutenants

playing the role of the inner circle, and the same organizational

history constraining their actions. Additionally, of course,

they must also report to the chief executive and follow his

general directions.

A principle of organization which seems to be universally

valid is that each element shou.ld have the same basic

structure, even though specialized in function, and that

larger aggregations should be similarly formed from smaller

aggregations. This is really what a hierarchical organization

chart depicts. It is also the way living things grow. It

seems to be what gives cohesion, integrity and identity to

any complex structure.

Be that as it may, an organization can be extended

downward several levels with the same general structure,

provided each echelon need only report directly to its

immediate superior. Also, two or more entire organizations

can, provided they are of similar structure and philosophy,

be brought together to form a larger organization by adding

a super-executive cap and combining, paring and slightly

realigning certain functions of the prior chief executive

offices. At least this seems true in principle; in practice,

it is often traumatic and less than successful.

Similarly, a branch from one organization may, in principle,

be cut off and grafted into another organization, as when a

corporation sells a division. The same problems may arise

here as in combining two organizations into a larger one.

Some Software Analogies

The chief executive of a software system is the operating

monitor or executive routine. This is often called the

"control program" which is an understatement giving the effect

of an overstatement. (Builders of operating systems are

noted for their arrogance.) Its board of directors (it is

hard not to say "his") are real human beings. We must be

careful to draw our analogies meaningfully. Operating systems

are normally provided by the computer manufacturer and of

course there are executives and technicians responsible for

this function of the manufacturer's business. From the

present point of view, however, it is the manager and

technicians of the computing center who play the role of the

board. They decide what options and features of the operating

system (and also hardware) available from the manufacturer

(analogous to current technology) will be activated, specialized

and possibly modified in the particular installation.

Presumably they are guided by the purposes and requirements

of the installation's users, i.e. customers. The analogy

cannot be pushed too far here since we are moving from human

to abstract organizations.

The operating monitor has a large and powerful staff and

certain important line functions directly under its control

(strong centralization). Chief among the latter is the 1/0

monitor which is charged with c.arrying out all actual data

transmission operations (shipping and handling). The authority

of the 1/0 monitor is virtually absolute in this function

and all transmission, including that for the operating monitor,

must conform to its regulations. Lower echelons usually have

"departments" specifically organized to deal with the 1/0

monitor and, in turn, enforce their regulations on their peers

and subordinates. There are many reasons for this strict

discipline--some technical, some historical and some to

protect the proprietary interests of the computer manufacturer.

It is as though the transportation industry were run by an

army under a powerful general. By and large it runs well and

reliably, but not too efficiently and certainly not considerately.

The operating monitor also has a central accounting

department, which receives detailed invoices from the 1/0

monitor and other sources, and a central planning office

which schedules all operations both in a gross sense and in

resolving immediate conflicts for capacity. It will accept

priority designations in addition to applying its own

elaborate rules. Its principle guideline is to optimize

the utilization of equipment without too greatly impeding

the carrying out of production in a timely fashion. Although

an attempt is made to meet demand, it can be heavy handed in

granting authorizations for the use of facilities. The

operating monitor can be tedious in its processing of orders

and maddening in its disposition of discovered errors.

It displays many of the attributes of a bureaucracy in a

planned economy or the management of a monopoly.

All orders for production are funnelled through the chief

executive's office. In most systems these orders must include

commitments or good estimates for the facilities required:

main and auxiliary storage, and amount of central processor

time. Many systems also require complete specification of the

source and nature of input data (special raw materials), though

some may be included with the order (job deck). The complete

request is reviewed carefully for correctness and consistency

and, if not in order, it is rejecked. A charge is made for

this review. The job is not authorized until all is in

order and all required facilities and input are available.

Once the job is authorized, it must be scheduled. There

are two parts to this. The initial scheduling is not done

until necessary facilities are free and only then is the job

initiated. During execution of the job, however, there may be

insufficient processor time or transmission capacity for all

active jobs. Resources are then allocated piecemeal, giving

note to any priorities. Thus production delays can occur even

after a job is initiated.

When a job is initiated, control (i.e. authorization to

proceed) is given to its main routine. This routine can be

regarded as an executive directly subordinate to the chief

executive. Operating monitors can, and do, supervise a great

many such subordinates over time, far more than the span

of authority of any human would permit. However, we must

take into account another flaw in our analogy here. At any

one time, the operating monitor has only a limited number

of executive routines under it, say seven or eight. Each job

specifies what executive routine it requires which may be

any one of many in storage. Hence the active organization

actually changes as each job is initiated and terminated.

Depending on the nature of the job, its subhierarchy of

routines may be very simple (conceivably only one routine

plus a canned package of 1/0 routines) or very elaborate. An

example of the latter is a Mathematical Programming System

(I4PS) which may have a structure rivalling the operating

system. A number of elaborate structures are also standard

items of the software system, such as compilers, linkage

editors, and sort-merge programs. However, these are treated

no differently from any other application subsystem, such

as an MPS.

Henceforth, we will use an MPS as an example of a

subsystem. Typically, its top routine, often called EXECUTOR,

fills a similar role with respect to math programming jobs

as the operating monitor plays to all jobs. However, there

is one important difference: the human user, or customer,

interacts with EXECUTOR much more intimately than with the

operating monitor. This becomes particularly true with an

interactive system. The user does submit job decks to the

operating monitor (or logs in and initiates subsystems with

an interactive setup) but this is very stereotyped and

formalized. With batch operations, it is mainly a confounded

nuisance to the user and he may even relegate the details to

an aide. But if he is interested in math programming jobs,

he gains some virtuosity in communicating with EXECUTOR, or

he should. More will be- said later on the role of the user.

"It is much easier to design than to perform.
A man proposes his schemes in a state of
abstraction ..., and is in the same state with
him that teaches upon land the art of navigation,
to whom the sea is always smooth, and the wind
always prosperous."

- Johnson

What Is Really Going On?

There are those who believe management is an art (some

might even claim a science) which has an existence of its

own, and can be learned and then applied to any kind of

enterprise. One could point to some monumental failures to

refute this, but all that has been said so far about organizations

would seem to confirm it. Apparently one can draw a blank

organization chart, with some provision for more or fewer

boxes, and then fill in the appropriate titles for most any

organization, including abstract ones. Such charts depict

lines of authority and responsibility and indicate ranks but

the trouble with them is that they never show what is going

on, what all these people are about.

Let us set aside such organizations as government,

military or church, for which we would have to pile metaphor

on analogy. In industrial and commercial organizations,

what is going on is a series of transformations of some kind

of structured aggregations--whether it is converting steel,

glass, etc. to automobiles, converting fuel to electrical

energy, converting goods to money, or whatever. It is these

transformations which are the raison d'etre of the organization.

On the other hand, the transformations will not occur without

the system. There is a reflexive nature to organized activities.

In the case of a software system, what is going on is

the transformation of data; there is no other function which

a computer can perform. Of course, we attribute all sorts

of meanings to the different forms and aggregations of data

but that occurs only in our minds. A software system is an

abstract organization which carries out transformations of

data which are deemed to be of some purpose and meaning by its

users, just as an industrial organization transforms raw

materials to products which are deemed to be of value by

society.

The transformations which an organization carries out are

somehow in a different dimension or plane than is the organiz-

ational hierarchy. It is difficult to view them both at once.

If one goes into the executive offices of, say, a steel company

and talks with the people there, he gets one impression of the

operation. If he then takes a tour of the mills, foundries and

yards, he gets a completely different impression. It is likewise

difficult to consider both a linkage and control chart for a

system of routines and a flow diagram of the data on which they

operate. One needs three dimensions to show all the paths.

Even then, other aspects of the total system must be neglected.

To try to project these onto one plane is only confusing.

Generally speaking, a chain of command such as depicted

by the echelons of an organization chart is a decentralizing

force. The vice-president does not do exactly what the

president said and the general manager does some things which

he does not tell the vice-president. The farther one gets
from the source of a general order, the less precise its

execution becomes. But then no one wants an organization

of robots except on a parade ground.

On the other hand, the transformations of structured

aggregations are a strong centralizing force, assuming normal

incentives exist. It is almost a truism that the first design

of a process is too elaborate and cumbersome. It is by

experience and continual refinement that methods are perfected.

They then become building blocks for more elaborate processes

and thus technology grows. It is almost impossible for a

newcomer, however well backed, to break into a seasoned

industry, as witness Henry Kaiser's bid in the auto industry.

It is an error to regard centralization and decentralization

as antonyms. They bear a relationship more akin to duality.

So do an organization and the technology or business in which

it is engaged. The same is true with software. The hierarchy

of routines should be capable of extension, modification and

innovation, within limits, but the transformations of data

structures should become more refined and standardized.

The Front Organization

Neither the formal organization nor the technical

operations are what most outsiders see in dealing with a

company. In a department store, one deals with clerks and

cashiers; an airline passenger deals with reservation agents,

gate agents and stewardesses, with occasional glimpses of the

pilot in his PR role. In ordering equipment, one deals with

salesmen and technical representatives. Furthermore, internal

management deals mainly with records, reports, studies, etc.,

rather than with actual physical things. Apart from our own

specialities and private lives, the world we deal with is

largely one of paper, numbers and brief, impersonal conversations.

These front organizations we deal with are not something

separate from or superimposed on the real enterprise. They

are the projections of those parts whose function it is to

carry out activities with exogenous attributes. The ticket

agent has a spot on the organization chart and the pilot really

flies the airplane. The production reports which the general

manager reads are summaries of real work done by real

machines and real people, and most of the records would be

produced whether the manager reads them or not. All these

things are merely our perception of the normal activities of

the work-a-day world. Of course, they are often embellished

to make them more attractive and convenient but this is just

a special case of technical improvement.

The s i t u a t i o n i s r e a l l y no d i f f e r e n t w i th a wel l -

designed sof tware system. The system cannot j u s t s i t t h e r e

and run w i th no o u t s i d e con tac t . Also, t h e i n t e r n a l record-

keeping i s voluminous. I f t h e system i s wel l b u i l t , it i s

even poss ib le t o g e t summaries and r e p o r t s f o r s p e c i a l

purposes. Unfor tunate ly , t h e e x t e r n a l p r o j e c t i o n s have n o t

y e t , i n many c a s e s , been made a s a t t r a c t i v e and convenient

a s they could be. For example, t h e IBhT O S / 3 6 0 opera t i ng

system i s very e l a b o r a t e and powerful and has a weal th of

c a p a b i l i t i e s . I ts job c o n t r o l language (J C L) , however, i s

p a r t i c u l a r l y ugly and d i f f i c u l t t o read and w r i t e . The

r e s u l t i s t h a t many people th ink t h e system i s very bad,

and i n a sense it i s f o r t h i s reason a lone.

Every i ndus t r y o r o t h e r broad a r e a has i t s own jargon.

Some of it i s very t e c h n i c a l and understood on ly by i n s i d e

expe r t s . P a r t of i t , however, r i s e s t o t h e s u r f a c e and

becones pub l i c p roper ty . Every seasoned a i r t r a v e l l e r knows

what a hold ing p a t t e r n i s and can t e l l a 747 from a DC-8.

With r e s p e c t t o computing, everyone now recogn izes an IBM

ca rd and most people have some concept of what computerized

account ing means (probably an i n c o r r e c t one) . However, i f

one i s t o a c t u a l l y u t i l i z e a computer, he must be f a m i l i a r

w i th t h e jargon a t a deeper l e v e l . A computer u s e r i s more

l i k e an i n d u s t r i a l customer. A br idge b u i l d e r o rde r ing steel

must be f a m i l i a r i n depth w i th a good d e a l of terminology

from t h e s t e e l i ndus t r y .

Use of a computer, t h a t is , of a sof tware system, has

one added conceptua l d i f f i c u l t y no t common t o many o t h e r

a renas of a c t i v i t y : it i s hard t o d i s t i n g u i s h t h e product

from t h e records . When t h e programmer g e t s h i s assembly

l i s t i n g (t h e p r o d u c t) , t h e r e is another page o r two g i v ing

t h e f i l e s accessed, t h e CPU seconds used, t h e number of 1/0

opera t i ons , t h e t o t a l charge, e t c . A l l of t h e m a t e r i a l he

rece i ves i s chicken- t racks on paper. Also, t h e assembly

l i s t i n g i t s e l f i s n o t r e a l l y t h e product , which i s a r o u t i n e

stored somewhere, but just a printed representation of it.

One is forced to think abstractly and to make mental

classifications.

A related difficulty is that the user plays many roles.

When he is assembling routines, he is building software.

When he submits production runs, he is using software. He

may do both plus other functions on one submission or

terminal session. In fact, in all the parts, he is also

using existing software, even when he is building more. It

can be a complicated game.

The Role of the User

The purpose of this entire discussion, of course, is to

try to give the user a better view of his role in achieving

meaningful results with a computer. As already suggested

above, a user does not necessarily play a single role and,

of course, there is a wide variety of users. However, from

an organizational viewpoint, something approaching a single

role can be defined.

First and foremost, a user is a customer, but he is a

customer with rather unusual prerogatives. He supplies his

own raw materials, in prescribed forms, or on occasion may

specify input from available sources either public or

authorized. He orders standard processes to be applied to

his input but the results are uniquely his. If no standard

processes are appropriate, he can create his own, using other

standard processes, and have them installed either temporarily

or permanently for his use or the use of others. Furthermore,

and particularly with interactive systems, he can personally

enter into the higher level decision making and sequencing

activities in carrying out his production. Perhaps the

nearest analogy is that of the government's role in a large

research and development contract.

The user may also store material in a suitable place and

use it whenever he wishes. It is never used up but continues

to replicate itself as necessary. If he is through with

certain material, he must explicitly destroy it. (This is

another unique feature of data processing.) He may order

certain finished products to be delivered.

idevertheless, the user must not forget that he is, after

all, a customer and that a whole complex organization is at

work in filling his requests. In spite of his prerogatives,

ne must act within rigidly defined rules and regulations.

To the extent that he may and chooses to enter into internal

decision making, he must act as a part of the organization

and not superior to it. His decisions and requests must make

sense technically. In short, he must be both knowledgable

and polite if he expects good results.

When the user has perfected a scheme of production, he

can order production runs at any time. The system usually

has facilities for automating this so that simplified order

forms may be used. In effect, this production scheme

becomes another standard process of the system though it

may have security locks or command special charges.

Thus a user, in the most general sense, is part of a highly

accelerated evolutionary process with extreme flexibility. This

is accomplished with a basic structure which is very rigid,

formal and highly centralized. More fundamental improvements

come more slowly, of course. It takes years to make substantial

improvements in the basic operating system or even in elaborate

application systems like an MPS. Improvements in the underlying

hardware may take place concurrently and asynchronously with

quantum jumps every several years. But the user need not con-

cern himself with these matters, except as he wishes to stay

abreast of the state of the art. He has a highly useful and

fascinating milieu in which to work now, provided he understands

the facilities available and their organization.

Some Plaxims for Building Software

We present here, rather dogmatically, some opinions about

good design principles. Analogy will be used freely as

appropriate.

- Segrega te A c t i v i t i e s C lean ly

I n b u i l d i n g so f twa re , and l a t e r ex tend ing it,

it i s impor tan t t h a t each r o u t i n e and procedure

have a c l e a r l y d e f i n e d f u n c t i o n , and t h a t t h i s

f u n c t i o n be s i g n i f i c a n t i n t h e o v e r a l l purpose

of t h e package. Th i s i s e a s i e r s a i d t h a n done

and h a s l i t t l e r e l a t i o n t o s i z e nor n e c e s s a r i l y t o

complex i ty . For example, a major procedure i n

an MPS i s an e l a b o r a t e p r ima l s implex a lgo r i t hm.

A c r i t i c a l f u n c t i o n i s t o select, from a 'set o f

c a n d i d a t e v e c t o r s , t h e one which w i l l make t h e

most improvement when s u b s t i t u t e d i n t o t h e b a s i s .

Th i s has , i n t u r n , t h r e e main p a r t s : c a l c u l a t i o n

and/or v a l i d a t i o n o f reduced c o s t s , s e l e c t i o n of

p i v o t i n each column necessa ry t o main ta in o r

improve f e a s i b i l i t y , and s e l e c t i o n o f t h e b e s t

column based on p r i o r i t y s i f t i n g r u l e s . For a

number of t e c h n i c a l r easons , combining t h e s e

i n t o one s u b r o u t i n e would be a m is take , p r i m a r i l y

because t h e scann ing schemes a r e e n t i r e l y d i f f e r e n t

and t h e midd le r o u t i n e is u s e f u l s e p a r a t e l y .

However, t h i s middle r o u t i n e i s i t s e l f ve ry

complex and q u i t e long and a t f i r s t g l a n c e might

s e e m t o be f u r t h e r decomposable. However, t h e

code i s h i g h l y i n t e g r a t e d which i s impo r tan t t o

o v e r a l l e f f i c i e n c y . Such o b s e r v a t i o n s can be

made o n l y a f t e r a g r e a t d e a l of expe r i ence b u t

it i s impor tan t t o make an a n a l y s i s on an

o p e r a t i o n a l b a s i s . The f a c t t h a t t h e midd le

s u b r o u t i n e i s l onge r and more complex t h a n

some e n t i r e p rocedures i s no argument a g a i n s t

e i t h e r . The eng ine depar tment o f t h e Chevro le t

d i v i s i o n of GM may w e l l be l a r g e r and more

complex t h a n t h e e n t i r e F r i g i d a i r e d i v i s i o n .

- U s e t h e Concept o f R e s p o n s i b i l i t y t o Segrega te
Func t ions

When something goes bad ly wrong i n a compl ica ted

p rocess , t h e source o f t h e t r o u b l e must be found

and c o r r e c t e d . A s soon a s it i s determined what

e x a c t l y d i d go wrong, o r which a r e p o s s i b l e , t h e

f i r s t ques t i on is: Who i s r e s p o n s i b l e f o r t h a t ?

I f t h e r e s p o n s i b i l i t y i s d i v i ded o r confused, it

may be hard t o t r a c k it down and even harder t o

c o r r e c t it. The same i s t r u e when t h e f u n c t i o n

i s t o be changed. I f t h e d e s i r e d change is made

i n t h e a p p a r e n t l y a p p r o p r i a t e p l a c e and then it

i s ove r r i den somewhere else, e n d l e s s con fus ion can

r e s u l t . Any good manager would avo id t h i s problem.

A computer r o u t i n e h a s d e f i n i t e r e s p o n s i b i l i t i e s o r

else it shou ld n o t e x i s t .

- Do Not Cross D e ~ a r t m e n t a l L ines

Any manager who found members of ano the r depar tment

g i v i n g o r d e r s t o h i s peop le would know something was

wrong. A r o u t i n e t h a t h a s long, gang l ing t e n t a c l e s

reach ing i n t o o t h e r p a r t s of t h e system w i th which it

should n o t be concerned is a t r o u b l e maker.

- Put R e s p o n s i b i l i t y a t t h e Lowest Appropr ia te Level

A c h i e f execu t i ve who t a k e s pe rsona l r e s p o n s i b i l i t y

f o r m a t t e r s p rope r l y handled by a p r o j e c t d i r e c t o r

i s d e s t r o y i n g h i s own o r g a n i z a t i o n . The g r e a t e s t

source of t r o u b l e i n a system of r o u t i n e s i s p u t t i n g

a f u n c t i o n a t t h e wrong l e v e l , u s u a l l y t o o h igh . Th i s

o f t e n happens from pa tch ing t h e most a c c e s s i b l e r o u t i n e

f o r some s p e c i a l purpose. A few y e a r s of such pa tch ing

r e n d e r s a system a r t h r i t i c and incapab le o f f u r t h e r

ex tens ion o r mod i f i ca t i on .

- Delay Dec is ions T i l l t h e L a t e s t P o s s i b l e Time

Th is might s e e m t o v i o l a t e t h e maxim t o P lan Ahead.

But t h e r e i s a d i f f e r e n c e between p lann ing and do ing.

A d e c i s i o n must n o t be de layed beyond t h e t i m e it i s

r e q u i r e d t o de te rmine t h e n e x t a c t i o n b u t it should

n o t be made be fo re a l l p e r t i n s n t in fo rmat ion i s

a v a i l a b l e . The counter-maxim i s o l d e r : "The b e s t -

l a i d p l a n s of m i c e and men o f t t i m e s go awry."

- C o m ~ l e t e A S e t of O ~ t i o n s Even i f Not Now Reauired

Th is r u l e must be a p p l i e d w i t h common sense , of cou rse .

But suppose t h e r e a r e two concu r ren t b i na ry d e c i s i o n s

and on l y t h r e e outcomes are de f i ned . One shou ld a lways

cons ide r t h e i m p l i c a t i o n s o f t h e f o u r t h p o s s i b i l i t y

and what would happen i f somehow t h a t cho i ce w e r e

a c t u a l l y made. (R e s t assu red it w i l l be, i f n o t

du r i ng debugging, t h e n on an impor tan t r un .) Occasion-

a l l y one f i n d s a t r u l y v a l u a b l e f u n c t i o n o r i n s i g h t

w i t h t h i s p o l i c y .

- Do Not Design Yourse l f i n t o a Corner

Some o ld- t ime programmers (i n c l u d i n g t h i s one) had a

pass ion f o r u s i n g up every l a s t b i t i n a d a t a a r r a y .

The e v o l u t i o n of whole t echno log ies have been a f f e c t e d

because t h e r e was no p l a c e t o mark an a d d i t i o n a l c a s e .

I t i s l i k e r e n t i n g new o f f i c e space w i t h e x a c t l y

enough room f o r a l l t h e desks now needed. Of cou rse ,

t h e r e a d e r can t h i n k of less t r i v i a l examples of t h e

same mis take .

- Remember t h a t Overhead and Waste Motion Cost Money

Th is appea rs somewhat coun te r t o t h e p r i o r

admoni t ion. A ba lance must be made between s t i n g i n e s s

and w a s t e f u l n e s s . But many a n a l y s t s and

programmers have a tendency t o reduce a new

situation to a previously solved case. With the

speed of modern computers this may often be

justified, but not always. Everytime one

branches to a subroutine, there is a nontrivial

amount of overhead. If this is large in

proportion to the amount of useful work the

subroutine does and it must be done many times,

perhaps the subroutine should be put in line.

The situation is somewhat analogous to having

to move work in process to another shop for an

intermediate operation. A situation particularly

to be avoided is the writing of intermediate

data to an external file so some standard program

can be used, say a sort-merge. If a big sort-

merge is really required, fine. But if a small

local sort routine, even if not too efficient,

will do, it should be installed. Writing an

external file, calling another main program and

then reading back the results is like packing up

unfinished items in special containers, shipping

them a hundred miles to another plant, unpacking

them, doing the operation and then sending them

back the same way. It does not take very much

of this to justify installing the necessary

machinery locally.

Some Further Analoqies

The full extent of a software system is much greater

than has been indicated up to now. Much of it has not been

of interest to the user in batch-mode operations, unless we

include application system builders themselves as users.

However, with application systems designed for experimental

work on interactive computers, it will be necessary for users

to have a deeper understanding of the total system.

In another dimension, there is an elaborate structure

of execution controls and storage allocation. When a job is

initiated, it is much like assigning a factory building

(main storage partition) and warehouse space (scratch

files) to a division. Also, the necessary machinery

(subhierarchy of programs) is identified and made available

as well as the source of raw materials (input data). A

number of standard facilities are also available which may

be used as required subject to capacity limitations.

One of the tasks of an application system like an MPS

is to further allocate these assigned resources according

to the nature of the work to be done. It is as though it

had its own Facilities and Maintenance department which is

always setting up, tearing down and moving things around.

This aspect of systems has been one of the most confusing to

users and admittedly it is one of the more difficult aspects

of system design. (One of the goals of virtual memory is to

eliminate much of this problem by pretending that space is

unlimited. Thus far, practice has not matched theory.)

We would be led too far afield if an attempt were made

to describe loading and overlay mechanisms or the facilities

of the operating system for assigning and relinquishing

storage for temporary purposes. However, one can get some

grasp of it by imagining a limited amount of floor space

which must be used serially for a variety of processes. Each

process needs room for machinery and often a large amount of

material which flows in and out. Sometimes much of the

material must be left in place while a whole new battery of

machinery is hauled in. There are also the supervisors'

anu foremen's offices which must be left intact with their

records throughout all this.

Another division of the entire enterprise (in fact one

for each major application area) is concerned with the

maintenance and improvement of the machinery itself and, to

complete the analogy, one should also say the training of the

operating crews. (A routine can be regarded as both the

machinery and its crew for some specific kind of operation.)

This is like an engineering division. The human analysts

and programmers have their own viewpoints and lingo which is

usually reflected in their routines and subsystems. In

finalizing their work, they also become users of the entire

system. They are largely responsible for system integrity

and have such tasks as maintaining and disseminating program

libraries. They also have a heavy responsibility for

documentation.

The final area we will comment on is testing and

experimentation. This is like quality control and advanced

design (often called that). Not enough work of this kind has

been done in many application fields. Much of the current

thrust in MPS development is in this area. The great

difficulty, in addition to cost--a great deal of computer

time can be consumed--is that very few people have the

requisite breadth of knowledge. One must understand the

application area with its methods, algorithms and context,

and also systems with their hierarchies of routines, data

set structures and dimensions of control. In addition, they

must have imagination and be able to conduct well-designed,

meaningful experiments. This is too much to ask of one

person. It will be necessary to have teams of people who can

work effectively in man-machine interplay. One of the members,

at least, must have heavy experience in software systems but

it will be a great advantage if all members have some

meaningful grasp of their nature. Perhaps analogies, such as

have been attempted here, may be helpful.

