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Some Recent Developments in the Theory 

and Computation of Linear Control Problems* 

John L. Casti 

Abstract 

Recent analysis and computational results for the 
solution of linear dynamics-quadratic cost control pro- 
cesses are presented. It is shown that, if the number 
of system inputs and outputs is less than the number of 
state variables, a substantial reduction in computing 
effort may be achieved by utilizing the new equations, 
termed "generalized X-Y" functions over the standard 
matrix Riccati equation solution. 

In addition to the basic X-Y equations, the paper 
also discusses the reduced algebraic equation for infin- 
infinite-interval problems, infinite-dimensional problems, 
the discrete-time case, and Kalman filtering problems. 
Numerical experiments are also reported. 

I. Introduction 

In the symbiosis that has existed between the calculus of 
variations and optimal control theory for the past few decades, 

a central role has been reserved for those variational problems 

whose Euler-Lagrange equations are linear. A great wealth of 

information concerning such problems has been obtained by the 

work of many mathematicians and control engineers. As a result 

of this effort, we now possess very explicit characterizations 

of the properties of the solutions of these problems, detailed 

existence and iniqueness theorems, sophisticated computational 

procedures for determining optimal trajectories and controls, 

and much more. In view of these successes, one might reasonably 

conjecture that the quadratic criteria-linear dynamics control/ 
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variational problem has been successfully laid to rest and that 

no problems of any real mathematical substance remain, particu- 

larly for the subclass of constant coefficient systems. Our 

purpose in this report is to show that such a conjecture, reason- 

able as it appears at first glance, must be rejected on the basis 

of developments over the past few years and that many problems 

of surprising mathematical depth and practical importance remain 

in this most classical of variational problems. 

We shall consider the problem of minimizing the integral 

over all piecewise continuous vector functions u(t), t - < s - < T. 

The functions x and u are n and m-dimensional vector functions, 

respectively, and. are assumed to be related by the linear 

differential system 

Here Q, S, R, F, G I  M are constant matrices of appropriate sizes. 

Usually, we shall require the definiteness assumptions M I  Q - > 0,  

R > 0, although any equivalent conditions that ensure a unique 

minimizing u for all t 5 Twould serve our purposes equally well. 

Utilizing either the Maximum Principle [I], dynamic pro- 

gramming [21, or other means, it is well known that the minimum 

value of J is characterized as 

where P(t) is an n x n matrix satisfying the matrix Riccati 

differential equation 

The minimizing control function u V t )  is given in feedback form 

as 



Until recently, the basic mathematical features of our basic 

problem remained very much as outlined above with the principal 

advances being computational procedures designed to exploit sparseness 

in the system matrices, weak coupling in the dynamics, and so 

forth, most developments being of a somewhat ad hoc character. 

The classical paper by Kalman [3] gives a good account of the 

mathematical picture, while numerous articles in the IEEE 

Transactions on Automatic Control, Automation and Remote Control, 

SIAM Control Journal, and other periodicals may be consulted 

for subsequent advances. 

From a system-theoretic viewpoint, the state of affairs 

sketched above is somewhat puzzling since no explicit use is 

made of the concept of system inputs and outputs. Of course, 

this is not unexpected from a classical mathematical standpoint 

since work in the calculus of variations has never explicitly 

recognized the engineering notions of state, input, and output 

in its formulations and approaches to variational problems; 

however, control engineers have utilized the important con- 

ceptual advantages to be gained by explicitly d.istinguishing 

between inputs, outputs, and states for many years in their 

studies of feedback control systems. 

To formulate the above variational problem in explicit 

input/output form, assume the systems output is a p-dimensional 

linear function of the state, i.e. 

where H is a p x n constant matrix. Further, suppose we desire 

to minimize the weighted sum of the p outputs and m inputs (controls) 

Then it is easy to see that the problem with criteria J is 

equivalent to the problem with criteria 3 under the identifications 



Our principal aim in this paper is to exploit the situation 

in which the number of inputs and outputs is less than 

the dimension of the state space. We will show that in this 

situation, the optimal feedback control law may be characterized 

by a set of no more than n(p + m) ordinary differential equations 

of non-Riccati type, and that the new equations possess inherent 

analytic and computational features not present in the usual 
Riccati set-up. The original results of this type were obtained 

in [4] in the context of linear filtering, while the control 

theoretic versions were announced in [5]. In addition to the 

basic finite-interval results, we shall also present a new 

"steady-state" theorem characterizing the optimal infinite- 

interval feedback law by means of a system of nm nonlinear algebraic 

equations, as contra ted with the n(n + 1 ) / 2  equations of the 

algebraic Riccati equation. Our presentation concludes with 

results of numerical experiments using the new equations, and 

a discussion of related topics such as optimal linear filtering, 

infinite dimensional problems, time-dependent systems, and 

discrete-time problems. 

11. The Riccati Lemma 

From the preceding discussion, it is clear that most of the 

useful information concerning the linear quadratic variational 

problem is present in the matrix Riccati equation for P. Our 

development will be based upon this fact and the following 

crucial lemma: 

Riccati Lemma [6,7]: Let n(t) be the solution of the 

matrix Riccati differential euuation 

dn - = A + B n  + TIC+ ITDn 1 
dt 

n(a) = F , 

where A, B, C, D l  F are constant n x n matrices. Further, assume 

i) rank Z (= A + BF + FC + FDF) = p , 

ii) rank D = r , 



and that Z and D are factored as 

with Z 1 d 2 ,  G, H being constant matrices of sizes n x p, p x n, 

n x r, r x n, respectively. Then n(t) admits the representation 

Bn (t) + n (t)C = Ll (t) L2 (t) - Kl (t)K2 (t) - A , 

where L L , K K satisfy the initial-value system 1 L 2 -  1'----2 

- -  dL2 - L2 (t) [C + G K ~  (t) l , dt L2(a) = Z2 , 

dK1 - -  
dt - Ll (t)L2(t)G I 

Kl (a) = FG , 

The proof of this lemma follows by differentiating ll(t), 

and using the properties of linear matrix equations. Full details 

may be found in [6,7]. 

The importance of the Riccati lemma for practical problems 

resides in the following two facts: 

1) The system of equations for L1 ,  L2, K1,  K represents 2 
2n(p + r) equations with known initial conditions. Thus, if 

p + r < 4 2 ,  there are fewer equations than in the matrix 

Riccati equation for ll (t) ; 

2) in the proof of the lemma, the definitions 



are used. This is of paramount importance since in almost 

all practical problems what is desired is not the solution of 

the Riccati equation itself, but rather a linear functional 

of the solutions (compare the expression for the optimal feed- 

back gain above). In fact, what is usually required is precisely 

the function K l  (t) (or K2 (t) ) . Thus, the L - K system enables 

us to calculate directly the relevant physical quantity, 

totally bypassing the usual Riccati equations. 

Before passing on to the specific case of the linear- 

quadratic control problem, a few supplementary remarks concerning 

the Riccati lemma are in order: 

i) if the symmetry conditions 

are satisfied, one can easily show that 

Thus, the L - K system is reduced to n(p + r) equations in this 

case; 

ii) in the event n(t) exists over the semi-infinite interval 

(0, ) , the standard approach to determine II (a) is to set = 0 

and solve the resulting algebraic Riccati equation. However, the 

same technique fails for the L - K system since the equations 

for K1  and K2 do not contain L 1  or L2; 

iii) the functions L L2, K1 ,  K are substantial general- 1' 2 
izations of the X and Y functions introduced into radiative 

transfer by Ambartsumian and Chandrasekhar in the 1940's [8,9]. 

For this reason, they have been termed "generalized X-Y functions" 

[ 6 1  or "Chandrasekhar-type algorithms" [ 7 ]  in the r e ~ e n t  lit- 

erature on this problem; 

iv) unless F is of special structure (as it is in radiative 

transfer, for example, where F is diagonal) the representation 

formula of the lemma, while of some theoretical interest, is 

only of practical value for computing n(t) itself if the solution 

is desired at only a small number of values of t. However, as just 

remarked, in most practical cases what is desired is not II 



but a functional of II, with n(t) itself being needed at only 

one, or a small number of t values. 

111. Generalized X-Y Functions in Control Theory 

We now return to the control problem posed in section I 

and apply the Riccati lemma to obtain an appropriate L - K system. 

The relevant Riccati equation here is 

-dP - -  
dt 

- HIOH + PF + F'P - (PG + H's)R-~ (PG + HIS) ' , 

We may apply the Riccati lemma to the above equation by making 

the identification of quantities 

Riccati Lemma 

A 

B 

C 

D 

F 

Control Problem 

H' (~R-ls' - Q)H 
HtsR-lGw - F f  

GR-~SIH - F 

G R - ~ G ~  

H MH 
[a-l~t - Q + MHGR-~B~  + S R - ~ G ~ H ~ M  

+ F ~ H G R - l ~ ' ~ t ~ ~ ~  - H'KTHF - F ~ H ~ K H  

Since the symmetry conditions of remark i) are satisfied, we 

have L1 = L2' and K1 = KZ1. Thus, the appropriate L - K system 

for the control process is 



Here we have made use of the definition K (t) = R-~ /~G 'P  (t) . , 

Thus, the optimal feedback law u*(t) is given by 

Again, several comments are called for: 

i) elementary properties of rank show that rank Z - < 3p 
- 

and, if M = 0, rank Z = p. Also, rank GR-'G' - < m. Thus, the 

L - 1: system ( * t )  represents, at most, n(3p + m) equations 

suitable for computing the basic feedback quantiy K(t). If 

3p + m < (n + 1)/2, this is a fewer number of equations than 

in the usual Riccati equation. Thus, we see how the number of 

inputs and outputs to the dynamical system directly, and possibly 

dramatically, enter into the complexity of the mathematical 

equations describing its regulation. The L - K system confirms 

ones intuitive feeling that a system with only a small number 

of input and output channels should be "easier" to deal with 

than a system possessing a richer set of possibilities for 

interaction with the external world; 
- 

ii) in the frequently occurring case R = I, S = 0, the 

function K(t) becomes exactly the optimal feedback gain function 

and, in any case, we always have the inportant relation 

which cay be used to calculate P(t) by quadrature for a fixed 

value of t, i.e. 

as an alternative to inverting the representation formula of 

the Riccati lemma. 

To demonstrate the utility of the L - K system in practice, 

several comparative numerical experiments were performed, cal- 

culating the optimal feedback gain by the L - K system and by 



the standard Riccati equation. In all experiments, 'the matrices 
- 
S = 0, R = I, = 0. Thus, the critical matrix Z = - Q. In 

the first set of experiments the matrices F and G were chosen 

in the forms 

so that F is completely specified by its characteristic values. 

Furthermore, it was assumed that Q was a rank one matrix 

Q = (iq)(iql), where q had entries chosen randomly. The exper- 

iments consisted in integrating both the Riccati and the L - K 

systems over the interval [0,1] to a prescribed degree of 

accuracy using both variable-and fixed-step size integration 

procedures. Various systems of state dimensions n = 4, 8, and 16 

were investigated. The variable step method was the GBS 

extrapolation procedure [lo], while a standard Runge-Kutta 

routine was used with a fixed step h = 0.02 for the fixed-step 
-4 integration. A local discretization error of 0.5 x 10 was 

employed in the variable step made. The results for n = 4 and 

16 are displayed in Tables 1-2. 



-10- 

Table 1. Computing Times* (in Secs.) for n = 4. 

factor factor 

Variable Step 

Table 2. Computing Times* (in Secs.) for n = 16. 

roots of I.' 

1,1.4,1.5,9.5 

-5.5f3.5iI8.4,-12.4 

3.3,-7.5.-0.2f9.2i 

-O.l+i,-0.2+9.2i 

1.75,-8,-8,-8 

-8,-8,-8,-8 

Variable Step I I Fixed Step 

LK 

0.137 

0.155 

0.161 

0.170 

0.191 

0.180 

*All computing times are for computations carried out by 

Dr. 0 .  Kirschner on a CDC Cyber 74 computer. 

P 

0.1!40 

0.475 

' 0.972 

0.891 

0.737 

0.908 

factor 

10.05 

8.62 

factor 

7. (10 

7.06 

LIZ 

0.561 

0.589 

P 

16.723 

13.091 

roots of F 

-0.5,-O.t3,1,1fi1 

2,2ki,-3,3+ir 

-4,4?2i,5,-6 

-0.5,-0.8,l ,-I . L \ t  

1+i,1.5,2+i15,-6, 

P 

11.150 

4.156 

LK 

1.664 

1.565 

-8,-8,-8,-8,g.S 

-0.5,-0.8,1,1fi,2, 

2+i,-3,-4,5,-6, 

-7,8,0.1+3.3i 

7.16 0.580 1.052 
I 

4.151 12.753 12.12 



The most significant point about Tables 1-2 is not the 

fact that the LK-system produced the optimal feedback law faster 

than the P-system, but the magnitude of the improvement. On 

a purely equation-counting basis, one would have expected an 

improvement of approximately 1.25 for n = 4 and 4.25 for n = 16, 

taking account of the symmetry of P. Instead, we see compu- 

tational improvements of two to three times greater than the 

theoretical expectation. Two possibilities immediately 

suggest themselves to account for this observation: i) the 

special structure of F and G are somehow particularly favorable 

for the LK-system; and/or ii) the LK-system possesses much 

better analytic properties than the P-system, thereby admitting 

fewer numerical operations and, in the variable-step mode, 

much larger integration steps. 

To test the foregoing hypotheses, two additional sets of 

experiments were performed. The first involved retaining the 

structure of F and G, but choosing a Q matrix of full rank. 

Thus, in this case there will be twice as many equations 

in the LK-system as in the P-system. This experiment was 

designed to partially test conjecture (ii). The results for 

n = 4 and 16 are given in Tables 3-4. The second experiment 

involved returning to a rank one Q matrix but now selecting 

the components of F, G, and Q to be random numbers of absolute 

value less than 1. These results for n = 4 and 16 are given 

in Tables 5-6. 



Table 3. Computing Times for n = 4, Q = full ranli. 

Variable S t e ~  

roots of F 

Table 4. Computing Times for n = 16, Q = full rank. 

Fixed Step 

Variable Step 

2,2+i,-3,3+i,-4, 63.201 

factor 
I 1  

factor 1 I LK P 

P 

Fixed Step 

factor factor LK P 
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Table 5. Computing Times for n = 4,  F,  GI Q = random. 

Table 6. Computing Times for n = 1 6 ,  F I  G I  Q = random. 

Variable Step 

6  1 0 . 4 5 7  1 0 . 6 8 6  1 . 5 0  1 0 . 0 9 9  1 0 . 2 1 9  1 2 .21  
I 

Case No. 

1  

2  

3  

4  

5  

Fixed Step 

LK 

0 . 0 8 8  

0 . 0 9 4  

0 . 0 8 2  

0 .093  

0 . 0 8 1  

Variable Step 

LK 

0 . 3 2 1  

0 . 3 4 1  

0 .368  

0 . 3 4 6  

0 . 2 7 3  

Case No. 

1  

2  

3  

Fixed Step 

P 

0 .215  

0 . 2 1 3  

0 . 2 2 5  

0 .216  

0 . 2 1 5  

4  1 . 8 0 2 / 2 2 . 7 5 2 1  1 2 . 6 3 1  

LK 

0 . 8 9 0  

0 .871  

0 . 9 0 1  

P 

1 . 1 1 1  

0 . 6 4 7  

0 . 9 8 5  

1 . 3 5 4  

0 . 7 6 2  

factor 

2.44  

2.27 

2 .74  

2 .32  

2 .65  

0 . 9 0 6 5 . 5 6 8  6 .15  

LK 

1 . 4 5 2  

1 . 6 6 7  

1 . 6 0 2  

factor 

3 .46  

1 . 9 0  

2 .68  

3 .91  

2 .79  

P 

5 . 5 2 2  

5 . 5 4 7  

5 . 5 6 0  

P 

2 2 . 0 2 4  

2 7 . 4 7 4  

1 6 . 5 7 4  

factor 

6 . 2 0  

6 .37  

6 .17  

factor 

.15 .17  

1 6 . 4 8  

1 0 . 3 5  



The overwhelming conclusions to be drawn from Tables 1-6 

are that the LK-system not only yields a smaller system of 

equations if the number of system inputs and outputs is small, 

but also possesses a more favorable analytic structure. This 

last point is well illustrated by the variable-step experiments 

when, for example, in the case n = 16, a theoretical factor 

of between 4 and 5 is expected while the observed factor is 

between 10 and 16 (Table 6). Even in the fixed-step mode 

the LK-system exceeds theoretical expectations due to the 

requirement of performing fewer numerical operations in a single 
integration step than that required for the P-systems. 

IV. Infinite Interval Case 

Many problems of control and estimation require the optimal 

gain function over the semi-infinite interval [ (0 , or ( -  a, T) 1 . 
When calculating optimal gains using the P-system, it is an easy 

matter to obtain the relevant algebraic Riccati equations for 

P(m) simply by setting 6 = 0. This yields the quadratic 

matrix equation 

(t) H'DH + PF + F'P - (PG + H's)R-' (PG + HIS) ' = 0 . 

Under conditions of controllability and observability on the 

system (F, G, H) a unique, positive semi-definite solution to 

(t) exists [Ill. 

The situation for the LK-system is not quite so simple. 

Examination of Eq. ( * )  shows that the standard approach of 

setting = k = 0 in order to obtain the appropriate algebraic 

equation for L (a) , K (a) yields only the information L (a) = 0. 

This is because the function K(t) does not appear in the equation 

for k. To overcome this difficulty, we employ a useful lemma 

from matrix theory. 

Lemma. Let P, A, Q be any three matrices for which the 

product PAQ is defined. Then 



where 8 denotes the Rronecker product and a is the operator 

which "stacks" the columns of a matrix into a column vector, 

Proof. Direct component-by-component verification of 

the asserted relation. 

Using the lemma, we may manipulate (t) to obtain an 

equation for K(m). The main result is the 
- 1 - Steady-State Theorem 1121: Assume the matrix F - GR S'H 

has no purely imaginary characteristic roots and no real char- 

acteristic roots symmetric relative to the origin. Then the 
A optimal steady -- state gain K(= K(w)) satisfies the algebraic 

equation 

Proof. Collecting terms in (t), we see that 

Now apply a to both sides of this equation and use the char- 

acteristic value hypothesis to see that 

-1- -1- - 1 - a(P) = [(F - GR SIH)'BI + IB(F - GR S'H)']-~O(K'K - H'(c - SR S1)H) , 

where we use the definition K = R-"~G'P. Next, apply o to the 

definition of K obtaining 

completing the proof. 



The importance of the Steady-State Theorem is that it gives 

an algebraic equation in the nm variables of K t  rather than 

the n(n + 1)/2 variables of P. Also, for many purposes of 

analysis the form of the equation for K is more desirable since 

the effects of the three basic system quantities F, G, and Q 

are separated in a multiplicative manner rather than in the 

additive manner of the algebraic Riccati equation. 

Since the final utility of the Steady-State Theorem is mea- 

sured in the improvement in computing time it affords as compared 

with the algebraic Riccati equation, several comparative 

numerical experiments were performed. The basic approach was 

to integrate both the LK- and P-systems to a value of t* for 

which the terminating condition was that a change of less than 

1.0 x be observed in all components of L, Kt  and P in 

going from t* - A to t*. These values of L, K t  and P were 

then used as initial approximations in a modified Newton 

iteration procedure [I31 to compute the solutions of both the 

algebraic equation for K and the algebraic Riccati equation. 

The computing times reported in Tables 7-8 are only for the 

iterative scheme and do not include the preliminary generation 

of the initial approximations. However, the computing times 

for the K-equation do include inversion of the matrix 
-1- -1- (F - GR S'H) '81 + I8(F - GR S'H). The stopping criteria for 

the iteration scheme was that the residuals have R2-magnitude 

less than 0.5 x In all experiments, the matrices were 

- - 
R = I  , S = O  , H = O  , Q = random rank one matrix . 

The results, computed on the CDC Cyber 74 computer were 



roots of F 
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Table 7. Computing Times for n = 4. 

factor (theory 2.5) 

Table 8. Computing Times for n = 8. 

factor (theory 4.5) 

5.02 

7.77 

4.35 

5.41 

5.46 

P-equation 

13.447 

22.486 

12.973 

15.280 

14.792 

roots of F 

1,-1.4,1.5,3.3 

-7.5,-0.2+9.2i,9.5 

1,2,2.5,2.5,2.5, 

2.5,-3,-4 

1 ,-I .4,1 -5,-8, 

-8,-8,-8,9.5 

0.5,-3.5,4,-4.5, 

-7,8,0.1+3.3i 

1,-O.l+i,-1.4, 

1.5,O.2+9.2ir9.5 

K-equation 

2.680 

2.894 

2.982 

2.826 

2.711 



Just as in the finite interval case, we see that the observed 

improvement factor for the K-equation is greater than the 

theoretically predicted factor based on a count of the number 

of equations. Again, this is explainable (intuitively) only 

if the K-equation has a "smoother" analytic structure than the 

algebraic Riccati equation. 

Additional results on the K-equation, including implications 

for the "inverse problem" of optimal control theory are reported 

in [12]. 

V. Infinite-Dimensional Problems 

Following one of the major trends in modern control theory, 

we may extend the foregoing results to the case of distributed 

parameter problems with almost no additional effort. Formally 

identifying the matrices F, G, H, a, R, g ,  fi with operators 

on appropriate Hilbert spaces, the finite-interval equations ( * )  

have been rigorously established in [14], together with numerical 

examples. Although the results are not yet complete, there 

seems little reason to doubt the validity of an infinite- 

dimensional version of the Steady-State Theorem. 

One of the most interesting aspects of the infinite- 

dimensional results is that, in contrast to the finite-dimensional 

situation, the LK-system almost always results in a major com- 

putational reduction over the operator Riccati equation. This 

is due to the fact that in virtually every distributed para- 

meter problem there are only a finite number of places where 

input signals may be applied and where observations may be 

made. Thus, although the state space may be infinite-dimensional, 

the input and output spaces are finite-dimensional. Since the 

LK-system is constructed to exploit this fact, a substantial 

computational savings is realized. In fact, from a theoretical 

viewpoint all that is required to realize a computational savings 

is for the input and output spaces to be proper subspaces of 

the state space, although the finite-dimensional case is the 

one of principal practical importance. 



VI. Other Directions and Some Open Problems 

For reasons of space, we have confined our attention to 

only the most basic results in the dimensionality reduction 

possibilities offerd by the LK-approach to quadratic cost- 

linear dynamics-time-invariant control processes. Several 

additional results have been obtained and, as one would hope, 

a number of interesting mathematical questions have arisen 

which remain unsettled at the current time (Summer 1975). In 

this section, we shall briefly sketch some of these developments. 

Linear Filtering Theory - the well known connections between 

quadratic cost-linear dynamics control processes and the optimal 

filtering of a signal in the presence of additive white noise 

[I51 make it no surprise that the results presented in this 

paper have natural filtering theory counterparts. In fact, the 

historical development of the LK-equation was initially carried 

out in this context [4]. Since the results are virtually identical 

to the control versions, we shall not elaborate upon them here 

but refer to the interesting papers of Kailath [7], Sidhu [161, 

and Lindquist [I 71 for details. 

Time-Dependent Problems - our presentation has been confined 

to those problems involving constant coefficient matrices in 

the Riccati equation. In fact, the proof of the Riccati lemma 

falls through in the time-varying case. The question is to 

what degree, if any, the dimensionality reduction provided 

by the LK-system may be extended to the time-dependent case. 

This question is of particular importance for nonlinear problems 

in which the linearized version involves time-dependent coefficients. 

While the final verdict is not yet in on this basic issue, 

several preliminary results indicate partial success. At the 

expense of computing generalized inverses, control processes 

have been treated under the restriction of constant G in [18]. 

Also, several filtering theory results [19,20] include 

the possibility of time-varying coefficients in the parameter 

matrices. 



Discrete-Time Problems - a number of interesting control 

problems, particulary those associated with sampled-data systems, 

are most conveniently stated in the discrete-time framework. 

For example, a typical problem of this sort is to minimize 

subject to the difference equation 

The appropriate discrete-time Riccati difference equation 

describing the minimum value of J and the optimal feedback law is 

In the context of a control problem, the appropriate discrete- 

time version of the LK-system for the above Riccati equation 

has not yet been presented; however, the filtering theory results 

[ 2 1 ]  and those cited in the previous subsection contain low- 

dimensional discrete-time equation suitable for computation of 

the optimal filter gain function. Undoubtedly, minor modifi- 

cations of this work will yield the appropriate equations for 

the control problem. 

Connections with Transport Theory - the historical starting 

point for all of the reduced dimension results presented (and 

alluded to) above was the analogy between the Riccati equations 

for the optimal gains and a certain basic Riccati equation 

appearing in the field of radiative transfer in the atmosphere. 

Special cases of our LK-system had been obtained by Chandrasekhar 

[ 91  in connection with the problem of reducing the calculation 



of the radiative transfer Riccati system to that of computing 

vector functions. However, the underlying reason for the success 

of this effort remained unclear until the appearance of the 

Riccati lemma. For infinitely thick atmospheres, an integral 

equation version of our Steady-State Theorem had been obtained 

eve earlier by Ambartsumian [8] in his study of the Milne 

problem. 

In light of the origins of the LK-reduction, it is reasonable 

to ask whether or not other basic results from transport theory 

may play a role in control and filtering processes and, conversly, 

whether filtering and control techniques can be of use in the 

study of transport phenomena. Several preliminary investigations 

have been made to explore these questions and, not surprisingly, 

the results are in the affirmative. The work of Sidhu, Tse, and 

Casti [22,26] studies the parallels between atmospheric transport 

processes and optimal filtering, while the paper [ 2 3 1  investigates 

the connections between neutron transport and filtering theory. 

In both cases, many new insights into filtering processes are 

obtained along with suggestions for new analytic and computational 

approaches. In the opposite direction, the papers [24,25] 

present some new results in transport theory motivated by fil- 

tering consideration. 



References 

[I] Pontryagin, L.S., V. Boltyanskii, R. Gamkrelidze, and 

E. Mischenko, Mathematical Theory of Optimal Processes, 

Interscience, New York, 1961. 

[2] Bellman, R., Introduction to the Mathematical Theory of 

Control Processes, Vol. 1. Academic Press, New York, 

1967. 

[3] Kalman, R., "Contributions to the Theory of Optimal Control," 

~ 6 1 1 .  Soc. Mat. Mexicana. , - 5 (1960), 102-119. 

[41 Casti, J., R. Kalaba, and K. Murthy, "A New Initial-Value 

Method for On-Line Filtering and Estimation," IEEE 

Tran. Info. Th. IT-18 (July 1972), 515-518. 

[5] Kailath, T., "Some Chandrasekhar-Type Algorithms for Quadratic 

Regulators," Proc. IEEE Dec. & Control Conf., 

New Orleans, December 1972. 

[61 Casti, J., "Matrix Riccati Equations, Dimensionality Reduction, 

and Generalized X-Y Functions," Utilitas Math., - 6(1974), 

95-110. 

[7] Kailath, T., "Some New Algorithms for Recursive Estimation 

in Constant Linear Systems," IEEE Tran. Info. Th. 

IT-19 (1973), 750-760. 

[8] Ambartsumian, V., "Diffuse Reflection of Light by a Foggy 

Medium," Dokl. Akad. PJauk SSSR, 38 (1943), 229. - 

[91 Chandrasekhar, S., Radiative Transfer. Dover Publ. Co., 

New York, 1960. 

[I01 Bulirsch, R. and J. Stoer, Einfuhrung in die Numerische 

Mathematik. Springer, Berlin, 1973. 

[Ill Anderson, B.D.O. and J. Moore, Linear Control Theory, 

Prentice-Hall Co., Englewood Cliffs, N.J., 1971. 

[12] Casti, J., "A New Equation for the Linear Regulator Problem,'' 

J. Optimization Theory and Application (Forthcoming 

October 1975) . 



[I31 Powell, M.J.D., "A Fortran Program for Solving Sets of 

Nonlinear Algebraic Equations," AERE Report 5947, 

Harwell, 1968. 

[I41 Casti, J. and L. Ljung, "Some New Analytic and Computational 

Results for Operator Riccati ~quations," SIAM Control J., 

13 (1975), 817-826. - 

[IS] Kalman, R., "On the General Theory of Control Systems," 

Proc. 1st IFAC Conf. Moscow, 1960. 

[I61 Sidhu, G., "A Shift Invariance Approach to Fast Estimation 

Algorithms," Ph.D. Dissertation, Dept. of Elec. Eng., 

Stanford University, 1975. 

[I71 Lindquist, A., "On Fredholm Integral Equations, Toeplitz 

Equations, and Kalman-Bucy Filtering," Int'l. J. Appl. 

Math. & Optim. , - 1 (1975), 355-373. 

[I81 Casti, J., "New Equations for the Time-Dependent Regulator 

Problem," IEEE Tran. Auto. Control AC-20(1975), 558. 

[I91 Morf, M., G. Sidhu, and T. Kailath, "Some New Algorithms 

for Recursive Estimation in Constant Linear, Discrete- 

Time Systems, " IEEE Trans. Auto. Control AC-19 (1 974) , 
31 5-323. 

[20] Lindquist, A., "Some New non-Riccati Algorithms for Discrete- 

Time Kalman Filtering," draft manuscript, April 1975. ~ 
[21] Kailath, T., M. Morf, and G. Sidhu, "Some New Algorithms for ~ 

Recursive Estimation in Constant Discrete-Time Linear I 
Systems," Proc. 7th Princeton Symp. on Info. Theory ~ 
and Syst. Sci., Princeton, 1973. 

[22] Sidhu, G. and J. Casti, "A Rapproachment of the Theories of 

Radiative Transfer and Linear Stochastic Estimation," 

Appl. ~ a t h .  6 Computation (Forthcoming 1975). I 
[23] Casti, J., "Optimal Linear Filtering and Neutron Transport: 

Isomorphic Theories?", IIASA RM-75-25, Laxenburg, Austria, 

June 1975 (submitted to SIAM Review). 



[24] Sidhu, G. and J. Casti, "X and Y Functions for Planetary 

Atmospheres with Lambert Law Reflecting Surfaces," 

Astrophysical J. , 196 (1 975) , 607-61 2. 

[25] Casti, J., "X and Y Operators for General Linear Transfer 

Problems," Proc. Yat. Acad. Sci. USA, - 72(1975), 1210-1211. 

[261 Casti, J. and E. Tse, "Optimal Linear Filtering Theory and 

Radiative Transfer: Comparisons and Interconnections," 

J. Math. Anal. and Applic. 40(1972), 45-54. I - 


