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Maximization of a Convex Quadratic

Function under Linear Constraints

Hiroshi Xonno

Abstract

This paper addresses itself to the maximization of
a convex quadratic function subject to linear constraints.
We first prove the equivalence of this problem to the
associated bilinear program. Next we apply the theory
of bilinear programming developed in [9] to compute a
local maximum and to generate a cutting plane which elimi-
nates a region containing that local maximum. Then we
develop an iterative procedure to improve a given cut by
exploiting the symmetric structure of the bilinear program.
This procedure either generates a point which is strictly
better than the best local maximum found, or generates
a cut which is deeper (usually much deeper) than Tui's
cut. Finally the results of numerical experiments on
small problems are reported.

1. Introduction

Since the appearance of a pioneering paper by H. Tui [14],
maximization of a convex function over a polytope has attracted
much attention. Two algorithms were proposed in his paper:
one cutting-plane and the other enumerative. The idea of his
cutting plane is admittedly very attractive. Unfortunately,
the numerical experiments reported in [16] on a naive cutting
plane approach were discouraging enough to shift the researchers
more into the direction of enumerative approaches ([7,8,17]).

In this paper, however, we will propose a cutting plane
algorithm for maximizing a convex quadratic function subject
to linear constraints by fully exploiting the special structure
of the problem. We will first prove the equivalence of the
original quadratic program and an associated bilinear program.
We will then discuss the ways to generate a valid cut and

develop the iterative improvement procedure of a given valid cut




by using the theory of bilinear programming (see [9] for de-
tails). The algorithm has been tested on CYBER 74 up to the
problem of size 11 x 22, the results of which are summarized
at the end of the paper. It turned out that the iterative

improvement procedure is quite powerful in generating a deep
cut. This work is closely related to [9], whose results will
be frequently referred to without proof. Also some of our

results parallel those established in [2].

2. g-Locally Maximum Basic Feasible Solution

and Equivalent Bilinear Program

We will consider the following quadratic program:
max f(x) = 2ctx + xth
s.t. Ax =b , x>0 , (2.1)

X
where ¢, x ¢ Fn, b ¢ Rm, A e B ang Q € R0 is a symmetric
positive semi-definite matrix. We will assume that the fea-

sible region
X = {x ¢ R%|ax = b, x > 0} (2.2)

is non-empty and bounded. It is well known that in this case

(2.1) has an optimal solution among basic feasible solutions.
Given a feasible basis B of A, we will partition A as

(B,N) assuming, without loss of generality, that the first m

columns of A are basic. Partition x correspondingly, i.e.

X = (xB,xN). Premultiplying Bm1 to the constraint equation

Bx_ + NxN = b and suppressing basic variables x

B B’
following system which is totally equivalent to (2.1):

we get the

- _ ...t t_
max f(xN) = ZCN%N + xNQxN + ¢o
s.t. B 'Nx. < B 'b x. >0 . (2.3)
‘e N - A



Here, ¢0 = f(xo) where x° = (xg,x;) = (B—1b,0) and
= _ _ =t _ o=t t o
cy = cN N cB 2N QBBb + 2QBNxB '
= _ =t S _ o=t
Q = Quy * N'QpgN = 2N Qpy
_ 1 % 9y
where N =B N and Q = .
t
QBN QNN

Introducing the notations:
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we will rewrite (2.3) as:

t t
max g(y) = 247y + y Dy + ¢

s.t. Fy

[ )

£ , y>0 , (2.4)

and call this a 'canonical' representation of (2.1) relative
to a feasible basis B. To express the dependence of vectors
in (2.4) on B, we occasionally use the notation d4(B), etc.

Definition 2.1. Given a basic feasible solution x £ X, let

Nx(x) be the set of adjacent basic feasible solutions which
can be reached from x in one pivot step.

Definition 2.2. Let ¢ be a non-negative scalar. A basic

feasible solution x* € X is called an e-locally maximum basic

feasible solution of (2.1) if

(1i) £(x*) > £(x) - ¢ , Yx € Nx(x*) .




Let us introduce here a bilinear program associated with

(2.1), which is essential for the development of cutting planes:

t t
CXy + CTX, + X,0%,

max ¢(x1,x2)

s.t. Ax, =b , x, 20 (2.5)

sz =b , x

v
o
.

Theorem 2.1 [9]. If X is non-empty and bounded, then (2.5)
*

* *
has an optimal solution (x1,x2) where X4 and X, are basic fea-
sible solutions of X.

Moreover, two problems (2.1) and (2.5) are equivalent in

the following sense:

Theorem 2.2. If x* is an optimal solution of (2.1), then

(x1,x2) = (x*,x*) is an optimal solution of (2.5). Conversely,
* Xk '
if (x1,x2) is optimal for (2.5), then both X, 1%, are optimal for

(2.1).

X X
Proof. Let x* be optimal for (2.1) and (x1,x2) be optimal for
(2.5). By definition f(x*) > f(x), ¥x e X. 1In particular,

" > £ * _ % * L= 1.2 .
f(x ) 2 (Xl) = ¢(xilxi) ’ 1 = ’ ’

also

% ]
¢(x1.x2)

max{¢(x1,x2)|x1 e X, x, € X}

v

max{¢ (x,x) |x e X} = £(x*) .
To establish the theorem, it suffices therefore to prove that

f(xz) = ¢(x1*,x;), i=1,2 (2.6)



because we then have f(x ) > f(x*), i =1,2 and ¢(x*,x*)

* *
= f(x*) = ¢(x1,x2) Let us now prove (2.6). Since (x1,x ) is
optimal for (2.5), we have

¥ % x % £t * * * ¢ * *

0 < o(xq,x,5) - ¢(x1.x1) =c (x, - x1) + (x9) 7 Q(x, - x,)
¥ % * * * * * *

0 < 0(x3,xy) = 0 0x,%y) = cT(x; - x)) + (x)F 0lx] = x,)

Adding these two inequalities, we obtain
* * t * *
(x1 - x2) Q(x1 - xz) <0 .

. e . * *
Since Q is positive semi-definite, this implies Q(x - X

2) 0.
* *
Putting thls into the 1nequa11ty above, we get c (x - x2) = 0.
* *
Hence ¢(x1,x ) ¢(X1,X2) ¢(x2,x ) as was requlred
As before, we will define a canonical representation of
(2.5) relative to a feasible basis B:
t t t
max ¢(Y1:Y2) =d z, + d z, + 2.0z, + ¢
s.t. Fz, <f , z,20 (2.7)
Fz, < £ , 2z, >0 ,
which is equivalent to (2.4). Also let
L
={y e R"|Fy < £, y > 0} . (2.8)

Now that we have established the equivalence of (2.1) and

(2.5), we can use all the results developed in [9].




3. Valid Cutting Planes and Iterative Improvement Procedure

We will assume in this section that an e-locally maximum
basic feasible solution x° and corresponding basis B have
been obtained. Also, let ¢max be the best feasible solution
obtained so far by one method or another.

Given a canonical representation (2.4) relative to Bo'
we will proceed to introduce a 'valid' cutting plane in the
sense that it

(i) does eliminate the current e-locally maximum basic

feasible solution, i.e., the point y = 0;

(ii) does not eliminate any point y in Y for which

gly) > ¢max + e

Theorem 3.1 [14]. Let ei be the larger root of the equation:

2_ -—
Zdik + diix = ¢max ¢O + c . (3.1)
Then the cut
3
H(8): ) y;/8, > 1
i=1

is a valid cut.
This theorem is based upon the convexity of g(y) and the
simple geometric -observation illustrated below for the two dimen-

sional case. x°

Figure 3.1

I



Though this cut is very easy to generate and attractive
from the geometric point of view, it tends to become shallower
as the dimension increases, and the results of numerical experi-
ments reported in [16] were quite disappointing. 1In this
section, we will demonstrate that if we fully exploit the
structure, then we can generate a cut which is generally much
deeper than Tui's cut.

Let us start by stating the results proved in [9], taking
into account the symmetric property of the bilinear programming
problem (2.7) associated with (2.4).

Pheorem 3.2. Let ei be the maximum of A for which

max max{wz1,22)|0 Szgg S A zgs
z, 2 J
2 1
=0, j#1i, z, € Y} < ¢max + e .
Then the cut
2
H(B): ] y./6. >1

is a valid cut (relative to (2.4)).

Theorem 3.3. ei of Theorem 3.2. is given by solving a linear

program:

s.t. Fz - fz_ < 0 (3.2)

d

where di- is the ith column vector of D.




The readers are referred to section 3 of reference [9]
(in particular Theorem 3.3 and 3.5) for the proof of these
theorems. E. Balas and C.-A. Burdet [2] obtained the same
results by applying the theory of generalized outer polars,
while our approach is based upon bilinear programming.

Though the bilinear programming cut (BLP cut) of Theorem
3.2, is usually stronger (eliminates more feasible region)
- than the corresponding Tui's cut, it need not always be so.
Therefore, we will proceed further to improve this cut or
any given valid cut to generate a cut which is always stronger
(and usually much stronger) than Tui's cut by using local
information only.

For a given positive vector 9 = (61,...,62) > 0, let

L
AO) = {y e R*| | y./6.

j=1,...,2} . (3.3)

Theorem 3.4. Let 17 > 6 > 0. If

max{w(z1,22)|z1 e A(B), 2z, e Y} £ ¢+ € (3.4)

and if

max{w(z1,22)|z1 e A1), Z, € YN\A()} < dmax ¥ € (3.5)

then
L
H(T): Toys/T1. > 01
is a valid cut (relative to 2.4)).

Proof. Let Y, = A(8) NY¥, ¥, = (A(TN\A(8)INY, ¥y = Y\ A(T).

Obviously Y = Y, U Yo U vy, By (3.4) and (3.5), we have that:



max{y(z,,2,) |z, € Yy, 2z, e Y, U ¥

zZ, €Y

max{w(z1,zz)|z1 eY,UY 9

2'

By symmetry of function y, we have that

max{uJ(z1,zz)|z1 € Yy, 2, € Y.} = max{w(z1,zz)|z1 € Yq,

and hence

max{w(z1,zz)|z1 €Y, UY,, z, €Y

2

Referring to Theorem 2.2, this implies that

max{g(y) |y e Yy Uv¥,} <o

1A

IA

max

max

< ¢ + €

max

This, in turn, implies that H(t) is a valid cut.

€ Y2}

This theorem gives us a technique to improve a given valid

cut (e.g. Tui's cut or the cut defined in Theorem 3.2). Given
a cut H(8), let T be

A ) Y\ a(6)

I |

A’
A(T)
1 212
Figure 3.2

the maximum of A for which :
max{w(z1,zz)|0 <zyg S A, 245 = 0, 3 # i, z, € Y\a(8)} < ¢max +
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then H(t) is also a valid cut as is illustrated in Figure 3.2.
It is easy to prove (see [9], Theorems 3.2 and 3.3)
that T, defined above is equal to the optimal objective value

of the following linear program:

T, = min[—dtz + (¢max - ¢O + ¢€) Zo]

s.t. Fz - fz <0
L
_Z dijzj +d;z =1 (3.6)
j=1
'3
z./6. -z >0 .
j£1 3/_ J ° -
Note that since d < 0 and ¢max - ¢o + e > 0, (z,zo) = (0,0)

is a dual feasible solution with only one constraint violated,
and that it usually takes only several pivots to solve this
linear program starting from this dual feasible solution. Also
it should be noted that the objective value is monotonically
increasing during the dual simplex procedure and hence we can
stop pivoting whenever the objective functional value exceeds

some specified level.

Lemma 3.5.
(1) ¢ (xq,%,) < max{d(xy,xq), ¢ (x,,%x)}, WXy € X, x, € X,
(ii) If Q is positive definite and X, # Xy then

¢ (xq,%,) < max{¢(x1,x1), ¢(x2,x2)}
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Proof.

(i) Assume not. Then

0 < ¢(x,,%x,) - ¢(x,,x,) = ct(x - x.) + xtQ(x - X,)
1772 171 2 1 1 2 1

0 < ¢p(x,,%x,) - ¢(xX,,%X,) = ct(x - X.) + (X, = % )th
1772 2’72 1 2 1 2 2

Adding these two inequalities, we obtain

-(x, - x )t o(x, - x,) >0

1 2 1 2 ’

which is a contradiction since Q is positive semi-
definite.

(ii) Assume not. As in (i) above, we get

)t

—(x1 - X Q(x1 - xz) >0 ,

2

which is a contradiction to the assumption that

Xy T X, # 0 and that Q is positive definite.

Theorem 3.6. If Q is positive definite, then the iterative

improvement procedure either generates a point y € Y for which
gly) 2 ¢max
than corresponding Tui's cut.

+ € or else generates a cut which is strictly deeper

Proof. Let H(6) be Tui's cut and let H(t) be the cut resulting
from iterative improvement starting from a valid cut H(w) where
w > 0. Let

z1l = (0,...,0, T:p 0,...,0), i=1,...,% .

1

Let z; € Y\A(w) satisfy

b(21,23) = max{y(2],2,) |z, € YN =6 +e . (3.7)
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i i i i
Case 1. w(zz,zz) > w(z1,z1). It follows from Lemma 3.5 and
(3.7) that

g(z;) = w(z;,zé) > W(zi,zg) = b € -

Note that z; € Y.

case 2. yl(zl,z¥) > y(zl,z1). Again by Lemma 3.5 and (3.7),
Case 2 1721 2722

we have

w(z%,Z?) > w(z%,z;) = ¢max + e .

We will prove that this inequality is indeed a strong one.

Suppose that w(z?,z%) = W(z%,z;); then

i

t, 1 i t i _
- 22) + z1D(z1 - 22) =0

c (z1
From w(zi,z;) > w(z;,z;) we obtain
t, i i t i i
c (z2 - z1) + z2D(z2 - z1) >0 .

~Adding these two, we have that (z% - z;)t'D(z% - z;) < 0, which
is a contradiction. Thus we have established

i
g(z3) > Smax T € 7

which, in turn, implies that LR ei, since Bi is defined (see
(3.1)) as a point at whigh g(+) attains the value ¢max + €.
If, on the other hand, z% satisfying (3.7) does not exist,
then L and therefore T; 2 ei as before.

It turns out that this iterative improvement procedure
quite.often leads to a substantially deep cut. Figure 3.3
shows a typical example.

The deeper the cut H(6) gets, the better is the chance

that some of the non-negativity constraints y; 2 0, 1i=1,...,2
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( mox-221—322*22¥-22122’ Zz%
s.t. -z1 + 23 51
) Z1 - I < 1
_z.l 02225 3
221 - 22< 3

| 2,20, z,2 0
\ 1 :
6
A : —-—-—RITTER'S CUT
§f-. WA TUI'S CUT
Y : ———=BLP CUT
A ~eeee- 18U ITERATION

_____ 2nd|TERATION
3 JTERATION

(3,3)

1 7. a
0511 " Eag 2™
1 1 =
Za )t E e

Figure 3.3. Illustrative example of
iterative improvement.
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become redundant for specifying the reduced feasible region
Y\A(1). Such redundant constraints can be identified by

solving the following linear program:

min{inFy <f,y >0, Zyj/Tj > 1} .

If the minimal value of Y; is positive, then the constraint
Yy 2 0 is redundant and we can reduce the size of the problem.
This procedure is certainly costly and its use is recommended
only when there is a very good chance of success, i.e., when

T is sufficiently large.

4. Cutting Plane Algorithm and the Results of Experiments

We will describe below one version of the cutting plane
algorithm which has been coded in FORTRAN IV for CYBER 74.

Cutting Plane Algorithm

Step 1f »Let 2 = 0 and XO = X, Yo =Y .

Step 2. If 2 > zmax then stop. Otherwise go to Step 3.

Step 3. Let k = 0 and let xo € X2 be a basic feasible

solution and let ¢max = f(xo).

Step 4. Solve a subproblem: max{¢z,xk)|z € Xz}, and let

xk+1 and Bk+1 be its optimal basic feasible solution and

corresponding basis.

Step 5. Compute d(By,,,), the coefficients of the linear
term of (2.7) relative to Bliq- If d(Bk+1) £ 0, then add 1 to
k and go to Step 4. Otherwise let B* = Bk+1' x* = xk+1 and go

to Step 6.

Step 6. Compute matrix D in (2.7) relative to B*. If x*
is an e-locally maximum basic feasible solution (relative to X),
. = * = * 7.
then let Smax’ max{¢max, f(x*)}, 9, f(x*) and go to Step
Otherwise move to a new basic feasible solution ® where f£(R) =
max{f (x) |x € N, (x*)}. Let k = 0, x° = x and go to Step 4.
2
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Step 7. Let j = 0 and let YZ+1 = YQ.

ten 8. 3 341 _ 3 j
Step Compute 6(Y2+1) and let Y2+1 Y2+f\A(6(YQ+1)).

j+1
If Y%+1 = ¢ then stop. Otherwise go to Step 9.
1 .
Step 9. Let a = HQ(Y%+1) - 6(Y%+1)| - If a > a_ (where

a, is a given constant), then add 1 to j and go to Step 8. Other-

w%se let XQ+1 be the feasible region in X corresponding to
+
Y%+1; add 1 to 2 and go to Step 2.

j+1
2+1

empty, then Xnax © X corresponding to ¢max is actually an

g-optimal solution of (2.1). For the finite convergence of

When this algorithm stops at Step 8 with Y becoming

Steps 4 and 5, readers are referred to [9]. Though this algo-
rithm may stop at Step 2 rather than at Step 8 and thus may
fail to identify an e-optimal solution, all the problems tested
were solved successfully. Table 4.1 summarizes some of the

results for smaller problems.

Table 4.1
. Approxi-
Problem Size of the Problem €/d No. of . mate
max Local Maxima .
No. Identified CPU time
m n (sec)
1 3 6 0.0 1
2 5 8 0.0 2 .
3 6 11 0.0 1 .
I} 7 11 0.0 1 .
5 9 19 0.0 2 .
6-1 6 12 0.05
6-2 6 12 0.01 6 3.0
6-3 6 12 0.0
7 11 22 0.1 8 28.0




-16~

Problems 1 ~ 5 have no particular structure, while problems
6-1, 6-2, 6-3 and 7 have the following data structure:

t t
max{c x + Ix ng|Amx <b., x>0} ,
where

1 2....@m1 m 2 -1

S ' A —

(m(m + 1)/2,...,m(m + 1)/2)¢

Q
]
—~~
o

-

-
o
(on

1]

They have m local maxima with the same objective functional
values. All of them are, in fact, global maxima.

The experiments for larger problems are now under way
using a more sophisticated version of the primal simplex
(to be used in Step 4) and dual simplex algorithm (to be used
in Step 8). These results will be reported subsequently.
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