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A Cutting Plane Algorithm for Solving

Bilinear Programs

Hiroshi Konno

1. Introduction

Nonconvex programs which have either a nonconvex minimand
and/or a nonconvex feasible region have been considered by most
mathematical programmers as a hopelessly difficult area of re-
search. There are, however, two exceptions where considerable
effort to obtain a global optimum is under way. One is integer
linear programming and the other is nonconvex quadratic program-
ming. This paper addresses itself to a special class of noncon-
vex quadratic program referred to as a 'bilinear program' in the
literature. We will propose here a cutting plane algorithm to
solve this class of problems. The algorithm is along the lines
of [17] and [19] but the major difference is in its exploitation
of special structure. Though the algorithm is not guaranteed at
this stage to converge to a global optimum, the preliminary re-
sults are encouraging.

In Section 2, we analyze the structure of the problem and
develop an algorithm to obtain an e-locally maximum pair of basic
feasible solutions. 1In Section 3, we will generate a cutting
plane to eliminate the current pair of e-locally maximum basic
feasible solutions. For these purposes, we extensively use the
simplex algorithm. Section 4 gives an illustrative example and
the results of numerical experimentations. Some of the important
applications of bilinear programming can be found in references
[11] and [12].

2. Definitions and a Locally Maximum Pair of Basic Feasible

Solutions

The bilinear program is a class of quadratic programs with

the following structure:




s.t. A1x1 = b1 ’ X, > 0
Ax, = b, X, 20 (2.1)
i i SR n,xn
where Cir X; € R 7, bi e R 7, Ai e R , 1 =1,2 and C ¢ R'1 2.

We will call this a bilinear program in 'standard' form.

Note that a bilinear program is a direct extension of the
standard linear program: max{ctx|Ax = b, x > 0}, in which we
consider c to be linearly constrained variables and maximize ctx

with respect to ¢ and x simultaneously. Let us denote

A.x. =b., x, >0}t , 1i1=1,2 . (2.2)

Theorem 2.1. If Xi’ i = 1,2 are non-empty and bounded, then
*
i
ble solution of the constraint equations defining Xi’ i=1,2.

(2.1) has an optimal solution (xT,x;) where x. is a basic feasi-

Proof. Let (§1,§2) be an optimal solution, which clearly
exists by assumption. Consider a linear program:
max{¢(x1,§2)|x1 € X1}, and let x: be its optimal basic solution.
Then ¢(x:,§2) > ¢(X,,%X,) since X, is a feasible solution to the
linear program considered above. Next, consider another linear
program: max{cb(x:,xz)lx2 £ X2}, and let x; be its optimal basic
solution. Then by similar arguments as before, we have ¢(x:,x;)
2 ¢(XT,§2). Thus we conclude that ¢(x:,x;) > ¢(§1,§2), which
implies that (x:,x;) is a basic optimal solution of (2.1). |

Given a feasible basis Bi of Ai' we will partition Ai as
(Bi,Ni) assuming, without loss of generality, that the first m,
columns of Ai are basic. Position X, correspondingly:

X, = ( ). Let us introduce here a 'canonical' representa-

i Xip'¥iN
tion of (2.1) relative to a pair of feasible bases (B1,B2). Pre-
ip ¥ NjXiy T by
we get the following

multiplying B11 to the constraint equation B x

and suppressing the basic variables X.g



system which is totally equivalent to (2.1):

- -t -t t= o o
max ¢ (xqpr¥yn) = CiXqy f Con¥on * o XCroy * 0 (xq,%5)

1 -1

s.t. By Nyxyn S By b1 Xy 2 0
8. N.x.. < BL'b Xow > 0 (2.3)
2 272N - T2 T2 7 2N = ! ‘
where
o - o o _ -1
X; = (ypexiy) = (By by 0)
For future reference, we will introduce the notations
L L.
2. = n, - m d. = c e R T Y: = X.., € R .
i i i ! i iN ! i iN ’
-1 mi XLy -1 my
F, = B; N, e R , £, =B, b, eR , i=1,2
LaxL
= 1772
Q=CeR ’ ¢0 = ¢(x?lxc2))
and rewrite (2.3) as follows:
_ Lt t t
s.t. Fiy, 2 f1 rYq 2 0
Foy, S £, v ¥, 20 (2.4)

We will call (2.4) a canonical representation of (2.1) relative
to (B1,B2) and use standard form (2.1) and canonical form (2.4)
interchangeably, whichever is the more convenient for our presen-
tation. To express the dependence of vectors in (2.4) on the
pair of feasible bases (B1,B2), we will occasionally use the no-
tation d1(B1,B2), etc.




Theorem 2.2. The origin (y1,y2) = (0,0) of the canonical

system (2.4) is

(i) a Ruhn-Tucker point if di <0, 1i1=1,2;
(ii) a local maximum if (a) and (b) hold:
(a) di <0, 1=1,2

(b) either d1i < 0 or d2j < 0 if qij < 0;

(iii) a global optimum d, < 0, i = 1,2 and Q < O.

1

Proof.

(i) It is straightforward to see that Y, = 0, Yy = 0

together with dual variables u1 = 0, u, = 0 satisfy the Kuhn-
Tucker condition for (2.1).
2.
(ii) Let y; € R l, i = 1,2 be arbitrary nonnegative vectors.

Let J; = {jlqij < 0} and let £ be positive scalar. Then

.t t 2.t
w(ay1,ey2) = z—:d1y1 + €d2y2 + € y1Qy2 + ¢o
< e ) d;.yjs v e 1 dyay,s + e2 y
jeJ1 J= ] jz—:J2 37 <] ieJ1
jaJ2

or
13¥11Y25 * %o

because qij < 0 when i £ J, and j £ Jye Obviously, the last

1 = ¢ and J2 = ¢. It is less than

¢o for small enough ¢ if J1 # ¢ or J2 # ¢'since the linear term

expression 1is equal to ¢O if J

in € dominates the quadratic term. This implies that
Vieyy,ey,) < ¢, = ¥(0,0) for all y; > 0, vy, > 0 and small enough
e > 0. ||
(iii) This is obviously true since w(y1,y2) < ¢O = ¢ (0,0)
for all Yq 2 0, Yoy 2 0.
The proof of Theorem 1 suggests to us a vertex following
algorithm to be described below:



Algorithm 1 (Mountain Climbing)

Step 1. Obtain a pair of basic feasible solutions,
x? € X1, xg € X2. Let k = 0.

Step 2. Given (x?,xz), a pair of basic feasible solutions
of X1 and X2, solve a subproblem: max{¢(x1,x];)|x1 £ X1}. Let
x$+1 and B$+1 be its optimal basic solution and corresponding
basis.

Step 3. Solve a subproblem: max{¢(x$+1,x2)|x2 € X2}, and
let x§+1 and B§+1 be its optimal basic solution and corresponding
basis.

Step 4. Compute d1(B$+1,B§+1), the coefficients of1y1 in1
the caniiicai+§epresentation (2.2) reiiﬁive to*bases B$+ ’ B§+ .
if d1(B1 ,B2 ) < 0, then let B.l = Bi and X be the basic

feasible solutions associated with BI, i =1,2 and HALT. Other-
wise increase k by 1 and go to Step 2.
Note that the subproblems to be solved in Steps 2 and 3 are

linear programs.

Proposition 2.3. If X1 and X2 are bounded, then Algorithm

1 halts in finitely many steps generating a Kuhn-Tucker point.

Proof. 1If every basis of X1 is nondegenerate; then the
value of objective function ¢ can be increased in Step 2 as long
as there is a positive component in d1. Since the number of
bases of X1 is finite and no pair of bases can be visited twice
because the objective function is strictly increasing in each
passage of Step 2, the algorithm will eventually terminate with
1(B]1<+1,B]2<+1) < 0 being satisfied. When X,
degenerate, then there is a chance of infinite cycling among

the condition 4 is
certain pairs of basic solutions. We will show, however, that
this cannot happen in the above process if we employ an appro-

priate tie breaking device in linear programming. Suppose that



¢(xk+1,xk) = max{¢ (x ,xk)lx e X,} : optimal basis
1 2 1772 1 1
Bk+1
1
k+1 _k+1 _ k+1 . k1
LEC S S = max{cb(x1 ,x2)|x2 e X,} 1B,
k+2 _k+2-1, _ k+2-1 Cpk+2
¢(x1 1 Xo ) = max{q>(x1,x2 )|x1 € X1} : B)
k+2 k+2 k+2 kK+42
¢(x1 Xy ) = max{cb(x1 ,x2)|x2 £ X2} : B ,
where xk+g = xk+1, for the first time in the cycle. Since the

value of objective function ¢ is nondecreasing and

k+2 k+2 k+1 k+2& k+1 _k+1

(x3 "ox, 7)) 2 ¢ (x5 x5 ) 2 0(xg Thxy )
we have that
k+1 _k+1, _ k+2 _k+1, _ _ k+2 _k+2
<;b(x1 ' X, ) = ¢)(x1 1 X5 Y = ... 0= q>(x1 23 ) .
It is obvious that d,(BX"',BE*!) < 0 by the definition of opti-

mality of B§+1. Suppose that the jth component of d1(B?+1,B§+1)

is positive. Then we could have introduced yij into the basis.
However, since the objective function should not increase, yij
comes into the basis at zero level. Hence the vector Y remains
zero. We can eliminate the positive element of d1, one by one
(using tie breaking device for the degenerate LP if necessary)
with no actual change in the value of Yq- EvenEEi%ly, we have
d2 < 0 with yq = 0 and the corresponding basis B1 . Referring
to the standard form, the corresponding X, value remains un-
changed i.e., stays at x$+1 and hence d2(§$+1,Bg+1) < 0, because

B§+1 is the optimal basis for Xy = x§+1, and §§+1 = x§+1. By

Theorem 2 (i), the solution obtained is a Kuhn-Tucker point. ||



Let us assume in the following that a Kuhn-Tucker point
has been obtained and that a canonical representation (2.4)
relative to the associated pair of bases has been given.

By Theorem 2 (iii), that pair of basic feasible solutions
is optimal if Q < 0. We will assume that this is not the case
and let

K =1{(,3) a4 > 0}

Let us define for (i,3j) € K, a function wij :Ri -+ R,

Wij(irn) = d1ig + dzjn + qijgn

Proposition 2.4. If wij(go,no) > 0 for some 50 > 0, Ng 2 0,

then

wij(E,n) > w(&o'no) for all & > &, mn > ng

Proof.
lPlJ (E:Tl) - wlj (Eo:no) = (g - gO) (d1i + qijno)

£,)

+ (n - ”o)(dzj + g o

i3

+ qij(E - Eo)(n - no)

nO

(o]

g
+ (n - ng)(-d ﬁg

(o]
+

qij(g-io)(n-no)>0 . ||

This proposition states that if the objective function increases

in the directions of Y13 and Y2j’ then we can increase more if we
go further into this direction.




Definition 2.1. Given a basic feasible solution X, € Xi’

let Ni(xi) be the set of adjacent basic feasible solutions which

can be reached from X, in one pivot step.

Definition 2.2. Let € be a nonnegative scalar. A pair of

basic feasible solutions (x:,x;), x; £ Xi' i =1,2 is called

an €-locally maximum pair of basic feasible solution if

(l) dlfO’ l=1,2

. * % * .
(ii) ¢(x1,x2) > ¢(x1,x2) - £ for all X; € Ni(xi), i=1,2.

Given a Kuhn-Tucker point (xT,x;), we will compute ¢(x1,x2)
for all x,; ¢ Ni(x;), i = 1,2 for which a potential increase of
objective function ¢ is possible. Given a canonical representa-
tion, it is sufficieft for Ehis purpose to calculate wij(gi,ﬁj)
for (i,j) & K where Ei and nj represent the maximum level of

nonbasic variables x and x2j when they are introduced into the

13
bases without violating feasibility.

Algorithm 2 (Augmented Mountain Climbing)

. * .
Step 1. Apply Algorithm 1 and let X; € Xi, i=1,2 be the

resulting pair of basic feasible solutions.

Step 2. If (x:,x;) is an € -locally maximum pair of basic
feasible solutions, then IIALT. Otherwise, move to the adjacent

pair of basic feasible solutions (&1,§2) where
A A _ * .
O(x,,%,) = max{¢>(x1,x2)|xi e Ny (x3), i-= 1,2}
and go to Step 1.

Proposition 2.5. If X, and X, are bounded and if ¢ > 0,
Algorithm 2 halts in finitely many steps generating an e-locally

maximum pair of basic feasible solutions.

Proof. It follows immediately from the following facts
that:



(i) step 1 converges in finitely many steps (by
Proposition 2.3),
(ii) whenever we pass Step 2, the value of the objective
function is improved by at least (> 0),
(iii) there are only finitely many basic feasible solutions
for X, and X,. | |

3. Cutting Planes

We will assume in this section that an e-locally maximum
pair of basic feasible solutions has been obtained and that a
canonical representation relative to this pair of basic feasible
solution (x:,x;) has been given. Since we will refer here ex-
clusively to a canonical representation, we will reprcduce it
for future convenience:

t t * %
max ¥y (yq,,¥,) = d?y1 tdoy, *y 0y, tod(xg,x,)

s.t. Fuy, < £, Yq 2 0
F2Y2 S fz ’ y2 z 0 ’ (3.1)
where
d. <0 , f£. >0 , 1i=1,2
i - i =
Let
L.
Y. = {y. ¢ R "|F.y., < £., y. > 0} i=1,2 (3.2)
i i iti i’ 4i ! ’ :
(2) '3
Y, {y, e R |y, 2 04 Yi3 =0, 3 # 2}
L =1,...,8., 1 =1,2 , (3.3)
i
i.e. Yig) is the ray emanating from y; = 0 in the direction Yig-
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Lemma 3.1. Let

¢1(‘) = max{w(',y2)|y2 € y2} . (3.4)

If W1(u) > 0 for some u ¢ Y{Q), then W1(v) > W1(u) for all

vV € Y;Q) such that v > u.

Proof. Let u = (0,...,0, Uy, 0,...,0). First note that
. . t
u, > 0, since if u, = 0, then ¥, (u) = max{d2y2|y2 € y2} = 0.

Let v = (0,...,0, Vo 0,...,0) where vy 2 . Then for all

y2 £ Y2, we have

L

2
Vo = 4y 22
> Y(u,y,) + 5 aqu, + _Z_ (d2j + quuQ) Y23
j=1
v
L
= — Y (u,y,) .
u, 2
The inequality follows from d2 < 0. Thus
Ve
max{y(v,y,) |y, e ¥ } > T, max{y (u,y,) |y, € ¥,}

v

max{y (u,y,) |y, e ¥,} . X

This lemma shows that the function W1 is a strictly in-

creasing function of Y, on Y;R) beyond the point where W1 first

becomes positive.
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¥ (yq)

+
max

Figure 3.1. Shape of the function W1.

Let ¢max be the value of the objective function associated
with the best feasible solution obtained so far by one method

or another and let us define el, L = 1,...,21 as follows:

el - max 6 for which

(%)
max{W1(y1)|Y1 €Yy 'y 0 2yq, 2 6} < dmax * € -

(3.5)

Lemma 3.2. el >0, = 1,...,8,.

Proof. Let Yy = (0,...,0, Yqgr 0,...,0). Since d1 < 0,
d, < 0, we have

W(Y1IY2) = d12Y12 + Z d2jy2j + Yiq Z quYZj + ¢O

1A

Yig L Gpy¥p5 * b -
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Letting ¢ = max {Zg jy2j Y, € Y, > 0, we know from the above
inequality that

>

(¢

+ a =0 . | |

< - ¢O + e)/a >0 a >0

-—

ma

Theorem 3.3. Let

L. 1

1, _ 1 1
A7) = {y, e R j£1 y1j/ej <1,y 201 . (3.6)

Then

1
max{W(Y1,Y2)|Y1 € A1(9 ), Y, € Y2} S bpax T €

Proof. Let

5] if e; is finite
_ (3.7)

D2
Ul —

6 if 6, = o

where eo > 0 is constant. Then

1
maX{W(Y1rY2)IY1 € A1 (6°), Y2 > Y2} .

. ~1
= 1lim max{w(y1,y2)|y1 e A (87), ¥, € Y.} .

g >
(o}

The right hand term inside the limit is a bilinear program with
bounded feasible region, and hence by Theorem 2.1, there exists
an optimal solution among basic feasible solutions. Since the
basic feasible solution for the systems of inequalities defining
A(51) are (0,...,0) and yf = (0,...,0, 51, 0,...,0), 2 =1,...,%

we have

1!
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max{W(y1rY2)|Y1 € A1(51)' ¥y € ¥p)

2
= max [max{xp(o,yz)ly2 € Y2}, mzx 1?x{w(y1,y2)|y2 € Yz}] .
2

However, since d2 < 0,

max{W(O,yz)ly2 € y2} = max{d§y2|y2 € Y2} + 0, S by S 0pax TE
Also,

max{w(y1,Y2)|y2 e Y, } < dpax T €

Y2
by the definition of 61 (See (3.5) and (3.7)). Hence

L

lim max{w(Y1IY2)|Y2 € Yo} S bpax T € .
g > o

o

This theorem shows that the value of the objective function
¢(Y1rY2) associated with the points y, in the region Y1f1 A (91)
is not greater than ¢ ax T € regardless of the choice of Y, € Y2
and hence this region Y N A (e ) can be ignored in the succeed-

ing process to obtain an e- optlmal solution. The cut

is, therefore, a 'valid' cut in the sense that it:

(i) does not contain the current e-locally maximum pair
of basic feasible solutions;

(ii) contains all the candidates y, ¢ Y; for which

max {y (v,,¥,) |y, € Yol > b v e -
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Since 5] is dependent on the feasible region Y,, we will occa-

2
sionally use the notation 81(Y2).

Since the problem is symmetric with respect to Y1 and Y2,
we can, if we like, interchange the role of Y, and Y, to obtain

another valid cutting plane relative to Y2:

%
2 2 2
H, (87) :j£1 yzj/ej = 1

Cutting Plane Algorithm

Step 0. Set & = 0. Let xg =X, 1i=1,2.

Step 1. Apply Algorithm 2 (Augmented Mountain Climbing

Algorithm) with a pair of feasible regions X%,X%.
Step 2. Compute 61(Y§). Let Y$+1 = Yf\e1(61(Y§). If
Y$+1 = ¢, stop. Otherwise proceed to the next step.
Step 2' (Optional). Compute 62(Y$+1). Let
P Ty 4 62yt 2+1 . 4
2 = 2\\2(6 (Y1 If Y2 =-¢, stop. Otherwise procee

to the next step.

Step 3. Add 1 to &. Go to Step 1.
It is now easy to prove the following theorem.

Theorem 3.4. If the cutting plane algorithm defined above
stops in Step 2 or 2', with either Y$+1 or Y§+1 becoming empty,

then ¢max and the associated pair of basic feasible solutions

is an e-optimal solution of the bilinear program.

Proof. Each cutting plane added does not eliminate any

point for which the objective function is greater than ¢max + e,

Hence if either Y%+1 or Y§+2 becomes empty, we can conclude that
max{¥(y,,y,) ly; € Yy, v, e Y,} <o+ e.

According to our cutting plane algorithm, the number of
constraints increases by 1 whenever we pass Step 2 or 2', the
size of subproblem becomes bigger and the constraints are also

more prone to degeneracy. From this viewpoint, we want to add
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a smaller number of cutting planes, particularly when the origi-
nal constraints have a good structure. In such cases, we might

as well omit Step 2', taking Y, as the constraints throughout

2
the whole process.
Another requirement for the cut is that it should be as

deep as possible, in the following sense.

Definition 3.1. Let 6 = (8.) > 0, T = (Tj) > 0. Then the
cut j y1j/6j > 1 is deeper than y1j/Tj > 1 if 6 > 1, with at
least one component with strict inequality.

Looking back into the definition (3.5) of 61, it is clear
that 61(U) > 61(V) when U C V C RQJ2 and that the cut associated
with 1(U) is deeper than 61(V). This observation leads to the

following procedure.

Iterative Improvement Procedure. Let H (6 (Y }) and
2 e (Y )) be a pair of valid cuts and let Y1 = Y?\A (o' (Y )) .,
Yé = YS\A 6 (Y }) be the shrunken feasible regions. Generate
cuts H1(6 (Y2)) and H2 (Y )) which are generally deeper than

H1(61(Y2)) and H2(62(Y1)), respectlvely. Iterate this process

until successive cuts converge within some tolerance.
This iterative improvement scheme is very powerful when

the problem is symmetric with respect to Yq and Yo

t t t
max{d"t, + d7y, + y1Qy2|Fy1 < £,y 20, Fy, < £, vy, 2 0}

(3.8)
In particular, maximization of a convex quadratic function

subject to linear constraints

max{2d%x + xtox|Fx < f, x>0}

is equivalent to (3.8) and the iterative process described above
works remarkably well for this class of problems. The details
about this, together with the comparison of our cuts with the
ones proposed by Tui and Ritter, will be discussed in full in

[11].
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The following theorem gives us a method to compute 81

using the dual simplex method.

‘Theorem 3.5.

1 _ . _Lt _
0, = min{-d "z + (00 = 9o * €) zo}
s.t. Fzz - fZZo <0
jLZ
Lodapyzy t gz, = (3.9)
j=1
2,20, 3= 1,00y k2, 2 0

Proof. Let

_ t t t
g(o) = maX{d1y1 + d2Y2 + Y1QY2|F2YZ < f2' Y2 > 0,

0 < Y1Q < 0, Y1j =0, j# L} .

- ¢

62 is then given as the maximum of 6 for which g(8) < ¢

+ g. It is not difficult to observe that

max (o)

t
g(0) = max [O, max{d,;,0 + (d, + 06q,) y2|F2y2 <fyr v, 2 0}] ,

t 1 . ,
where q,, = (q21,-..,q122) . Therefore, 82 is the maximum of 9

for which

_ t
g, (8) = max{d;,0 + (d, + 6qy,) v,|Fyy, £ £,/ ¥y 2 0

< ¢ - ¢ + €

- max o]
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The feasible region defining g1(6) is, by assumption,

bounded and non-empty, and by art duality theorem
. t t
g,(0) = min{fju + d,,6[Fju > d, + 6q,,, u > 0}

Hence 62 is the maximum of 6 for which the system

t t
{fou + 3,6 < ¢ =5+ € -Fou~-gq,0<-d,, uzx 0}
is feasible, i.e.,
ftu + d, 6 < ¢ - ¢ .+ €
2 127 - "max o}
62 = max {6

This problem is always feasible, and again using art duality
theoremn,

q;.z + 4 = 1

1220

N
1
T
N
v
o

N
v
o
~
N
v
o
~

with the usual understanding that 62 = + « if the constraint
set above is empty. | |
Note that d2

(z,zo) = (0,0) is a dual feasible solution. Also the linear
1

< 0 and ¢max - ¢o + € > 0 and hence

program defining e2 is only one row different for different 2%,

so that they are expected to be solved without an excessive
amount of computation. Since the value of the objective function
of (3.9) approaches its minimal value monotonically from below,
we can stop pivoting if we like when the value of the objective

function becomes greater than some specified value. The
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important thing to note is that if we pivot more, we get a

deeper cut, in general.

4. Numerical Examples

Let us consider the following simple two dimensional

example (illustrated in Figure 4.1):

11 %21
maximize ¢(x1,x2) = (-1,1) + (1,0)
%12 %22
1 -1 X951
*oxgq0xq,)

-1 1 x22
s.t. /1 4 X414 8 2 1 X51 8
4 1 Xq5] 2 12, [ 1 2 X5y ) 2 8
3 4 12 1 1 5

(x99,%12) 2 0, (Xy1r%X5,) 20

There are two locally maximum pairs of basic feasible solutions
i.e., (P1,Q1) and Pu,Qu), for which the value of the objective
function is 10 and 13, respectively. We applied the algorithm
omitting Step 2'. Two cuts generated at P1 and Pu are shown on
the graph. In two steps, Xf = ¢ and the global optimum (PM’QM)
has been identified.

We have coded the algorithm in FORTRAN IV for CYBER 74 at
the Technische Hochschule, Vienna, and tested it for various
problems of a size up to 10 x 22, 13 x 24; all of them were

solved successfully.



1

3x"04x] 2-"—' 12

7
4 ‘\CUT GENERATED AT

s

1

T Lk

X1 + 375 X221

X3

4

-19-

OPTIMAL SOLUTION
(]92,%) (P,.Q,) :p* = 13

LOCALLY MAXIMUM PAIR
OF b.t.s.
(Py Q) : 9 =10

/2 3 4

Figure 4.1.

A numerical example.
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Size of the Problem No. of' '
Problem No. X1 X2 E/¢max L;SZit??zzga Cigezime
1 2 x4 2 x4 0.0 1
2 3 x6 3x6 0.0 1 < 0.5
3 2x5 2x5 0.0 1
4 6 x 11 6 x 11 0.0 1
< 0.5
5 3 x5 3 x5 0.0 2
6 5x8 5x8 0.0 1
7 3x6 3x6 0.0 1 ! 1.0
8 7x11 7 x 11 0.0 1
9 5x8 5x 8 0.0 2 0.6
10 9 x 19 9 x 19 0.0 2
8.1
11 6 x 12 6 x 12 0.05 5
12 6 x 12 6 x 12 0.01 6
13 6 x 12 6 x 12 0.0 6
14 ‘ 10 x 22 13 x 24 0.05 3 20.7

Problem 2 is taken from [20] and problem 9 from [2].
11 v 13 are the same problems having six global maxima with
equal value. These are in fact global optima. The data for

this problem is given below:

c; =0, c,=0, by =b, = (21,21,21,21,21,21) ¢



2 -1 0 0 0 0] 1 2 3 4 5 611 0 0 0 O
-1 2 -10 0 O 2 3456 1,01 000
0 -1 2 -10 O 3456 1 2100100
C=lo 0o -12-10| 217%|sa 56 12 3,00 010
000 -12 -1 5 6 1 2 3 410 0 0 0 1
(000 0 -1 2] 6 1 2 3 4 5,000 00

+ 1

Ao I6

This is the problem associated with the convex maximization

problem

max{%xthlex <b, x>0} .

Data for problem 14 was generated randomly.
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