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Optimal Sequencing in Installing

Wastewater Treatment Plants1

S. Rinaldiz, R. Soncini—Sessaz, and H. Stehfest3

Abstract

If a set of wastewater treatment plants is to be
installed in a river basin within a given time period,
an interesting optimization problem is to select the
best sequence in which the plants should be built. Two
segquencing problems of this kind are discussed in
this paper, and branch and bound algorithms are pro-
posed for solving them. The validity of some simplifying
assumptions and the effectiveness of the methods from a
computational point of view are shown by analyzing the
case of the Rhine river in The Federal Republic of
Germany.

1. Introduction

A problem that has been extensively dealt with in the
recent literature on river pollution is that of optimal design
and allocation of wastewater treatment plants in a river basin.
The criterion followed by most of the authors consists in mini-
mizing the total cost of the plants that give rise to a tolerable
stream quality index. The solution of this optimization problem,
from now on called primary optimization problem, is represented by
a set S of plants that, once installed, will entail a water

quality that satisfies certain standards. The cost of such an

1This work has been supported by the International Institute
for Applied Systems Analysis, Laxenburg, Austria, and by Centro
Teoria dei Sistemi, C.N.R., Milano, Italy.

2Centro Teoria dei Sistemi, C.N.R., Via Ponzio 34/5, Milano,
Italy.

3Institut flir angewandte Systemtechnik, Kernforschungszentrum,
Karlsruhe, Federal Republic of Germany.




optimal solution is usually so high that it takes a reasonably
long time--i.e. several years--before all the plants are in-
stalled. For example, in the case of the Rhine river described
in this paper the cost of the optimal solution amounts to
approximately $15 billion which is about 20% of the annual budget
of the Federal Government of the F.R.G.

Hence, after solving the primary optimization problem one
is usually faced with the secondary optimization problem of

determining the best sequence in which the plants must be built,

i.e. the sequence {st}t§1’ where Sy is the set of plants acti-
vated in year t (so that s, N s = @ (empty set) if t, # t

N t1 t2 1 2
and U s_ = S) and N is the number of years within which all

t
t=1
plants are to be installed. The economic constraint that actu-

ally generates this sequencing problem can be specified in dif-
ferent ways. The most realistic one seems to be the uniform
distribution of the investment over the N years. 1In other words,
if the cost of the plants we are to install within N years is C,
then the amount of money Ct we are allowed to spend during the
first t years (t = 1,2,...,N) must be less than or equal to Ct/N.
An interesting feature of this rule is that the decisions taken
in the first t years (i.e. the set of plants that have been acti-
vated during the first t years) influence future budgets, because
the money available in year (t + 1) is C(t + 1)/N - Ct’ which

is, in general, more than the average budget C/N because of

past savings. This is the main characteristic that differentiates
this problem from those which have been dealt with in the litera-
ture (Deininger, 1965; Revelle et al., 1969).

In order to specify the objective function for the sequencing
problem we must first define a water quality index by means of
which we can determine, for any subset St C S5 of the plants in-
stalled up to the year t, the associated pollution index P, of
the river basin. The initial (year O) and final (year N) values
of the pollution index are given, since SO = @ (empty set) and
Sy = § for any sequence {St}t§1' Moreover, the pollution index P,
will in most cases be a strictly decreasing function of time,

since the implementation of any subset of plants will, in general,



better the conditions of the river basin. Given a pollution
index, there are still many options in defining the optimization
criterion; two of these seem to be of particular interest in the
problem under consideration and will therefore be dealt with in
this paper. The first one consists in activating each year that
subset Sy of plants which gives rise to the greatest improve-
ment, i.e. to the minimum value of the pollution index Pt' This
"myopic" criterion has been extensively used in the past, in
particular in control problems (e.g. minimum time control) and

in mathematical programming problems (e.g. steepest descent
method), and usually entails less computational effort' than any
alternative scheme. The second criterion, certainly more rational
than the myopic one, consists in determining that sequence

{st}t§1 which minimizes the sum of the pollution indices over all
N :

years ( & P, = min). Because of the saving effect described
t=1
above, this sequencing problem turns out to be an optimal control

problem of a dynamic system and the algorithm for its solution
will therefore be quite sophisticated and time-consuming.

As far as the pollution index is concerned, following Lieb-
man (see Kneese and Bower, 1971, pp. 94-5), we use "the total
oxygen deficit in the river basin", as opposed to other indices
that are related to the stream standards, such as "the mileage
out of standards" (Deininger, 1965) or "the maximum deviation
from the stream standards" (Revelle et al., 1969)._ There are
two a priori reasons that justify this choice. First, this index
takes into account the global situation of the basin, since each
point of the river gives its contribution to the total deficit;
by contrast, the maximum deviation from the stream standards is
a more pointwise measure. Second, Liebman's index enjoys some
remarkable properties (see next section) that make it quite
attractive from a conceptual point of view and permit reasonably

efficient algorithms to be devised for solving the sequencing problem.

2. The Oxygen Deficit as a Pollution Index

The problem of defining a pollution index for a river basin

is certainly not a new one and many suggestions can in fact be



found in the literature. The formulation of such an index can
be done in two steps. First we define a water quality measure
and then we suitably integrate this measure over the entire
river basin. The first step is without doubt the more difficult
one to accomplish, since the water quality measure should take
into account the composite influence of significant physical and
chemical parameters and the different uses of the water. Un-
fortunately, the soundest proposals known to the authors are so
complex and detailed that they cannot be used for solving problems
of the kind.considered here, since they would require the use of
models far more sophisticated than those that have so far been
validated. For example, the water quality index described by
R.M. Brown et al. (1972) takes into account the following eleven
parameters: dissolved oxygen, fecal coliforms, pH, 5-day BOD,
nitrate, phosphate, temperature, turbidity, total solids, toxic
elements, pesticides; and there is no model that can predict all
these variables at one time. Therefore, we are forced to select
so compact a measure of water quality that any standard river
gquality model allows the computation of this measure. Fortunately,
we do not have significant alternatives in making this choice
since all reasonable measures of water quality have in common only
one parameter, namely the dissolved oxygen concentration.

For these reasons the pollution index we propose is the
total amount of oxygen missing in the river basin with respect to

the ideal conditions of fully saturated water, i.e.

P = A(x)D(x)dx , (1)
L

where [ is the set of spatial coordinates defining the river
basin and A(x) and D(x) are, respectively, the cross-sectional
area and the oxygen deficit at point x. The index P is in general
time-varying, but in the following only the stationary case will
be dealt with; this turns out to be justified if we assume low
flow conditions.

We will now prove that under suitable assumptions the pollu-

tion index P satisfies a very important property that we call



"additivity property". For this, let us first define the im-
provement Q(X) of the index P due to the presence of a set X

of wastewater treatment plants, i.e. write
P(X) = PO - Q(x)y , (2)

where Py is the initial value of the pollution index (Q(@) = O0).
Now "additivity" means that the improvement due to two disjoint
sets of plants A and B is the sum of the two single improve-

ments, i.e.
Q(A U B) = Q(A) + Q(B) . (3)
Thus, the pollution index (2) can be rewritten in the form

=P, - I .
P(X) 0 ify 9 (4)

where q; is the contribution of the i-th plant to the total
improvement Q(X). In other words, each plant contributes sepa-
rately and in an additive way to the pollution index; this is
indeed a very important feature because it allows us to charac-
terize a plant with two positive numbers, namely the cost c;
and the "quality indicator" qj- Thus, the efficiency of the
i-th plant expressed in mg of oxygen per dollar can be defined

as

n, = ay/c; (5)
and will be shown to play an important role in the solution of
the problem.

Different proofs of eq. (4) can be given, depending upon
the kind of model and upon the spatial variability of the param-
eters involved in it. The simplest case is that of a basin
constituted by a uniform and semiinfinite (x > 0O) channel in
which the integral of the distributed load along the river is

finite, so that all significant variables describing the system




go to zero for x > « because of self-purification. 1In fact,
let us first assume that the river is described by the well

known Streeter-Phelps model (Streeter and Phelps, 1925):

dB(x) _ _ _ (6a)
I = - le(x) + U(x) + i(Ui ui) §(x xi),

daD(x) _ _
ax = le(X) k2D(x) , (6b)

where B(x) stands for biological oxygen demand (BOD), U(x) is

the BOD load distributed along the river, Uy is the BOD load

of the i-th plant, uy is the amount of BOD removed by that plant,
X, is the spatial coordinate of the plant, § is the impulse
function and kl and k2 are suitable constant parameters. Since
egs. (6) are linear, their solution depends linearly on the
boundary conditions B(0) and D(0O) and on the amount uy of BOD
removed by each plant. Moreover, the integral of D(x) is finite
since the integral of U{(x) is finite, so that the pollution index
P(X) is well defined and is a linear functional of the deficit

D(x). Therefore eqg. (4) a priori follows, with

a; = Kui ’ (7)
since a given amount of BOD removed will have an effect on the
index P (X¥) that is independent of the location X of the treat-~
ment plant (i.e., K is independent of i in eqg. (7)).

Let us now prove that this result holds for the case in which
the river is described by a higher-order nonlinear model of the

kind

dg;x) = - £(W(x), D(x)) + U(x) + iwi -uy) S(x - x) (8a)
dg}i") = oTEW(x), D(x)) - k,D(x) (8b)

where W(x) can be loocked upon as a suitable m-th order vector

describing the various stages in the degradation of the organic



pollutants, f, U(x), Ui and u, are m-th order vectors and
aT is an m-th order row vector of conversion factors. 1In fact,
solving eq. (8a) with respect to f and substituting in eg. (8b),

one obtains

v}
i
x‘l H

T
ax ax + 00U+ o z_(Ui - ui) S(x - Xi)} ,

T dW dD T
—a —
1

from which

P(x) = AJ D(x)dx = fL [aTW(O) + D(0) - lim aTW(x) - lim D(x) (9)
0 2 X+ X

0
+ aTJ U(x)dx + aT r U, - aT z ui}
(0]

ieX 1
follows.

If we confine ourselves to the biochemical degradation processes,
the two limits in the preceding expression are zero under the
assumption that the integral of U(x) is finite; the final formula
for P(X) is then

P(X) = %i.l}Tw(O) + D(0) + aTJ U(x)dx + oY 5 U, - ot I ui} , (10)
0]

2 iex 1 iex

which is of kind (4) with

- A T
9; T % i

2 1

The structure of model (8) is so general that it contains as
particular cases all models known to the authors; therefore, the
next thing we have to do is to relax the assumptions of the
channel being infinite and uniform. Thus, suppose that the

river is described by a linear model of the kind

2 - rzx) + 6 (U + Uy - uy) sx-x)] ()




where z(x) is an m-th order vector, F(x) and G(x) are matrices
of suitable order and O ¢ x ¢ L. Since the deficit D(x) is
certainly one of the components (for example the last one) of
the vector z(x) we can, for the sake of simplicity in notation,

introduce a row vector hT such that
T
A(x)D(x) = h™(x)z(x),
where
T
h™(x) = |00 ... A(x)]| . (12)

For example, for the Streeter-Phelps model (6) with k1 and k2

dependent on x, we have

) [ B(x)] [—kl(x) o)
V4 = =
) = | by #  F k (x) <k, ()]

1 0
G(x) 0 R h™(x) = 0 A(x)

I

Integrating eq.(ll) we obtain

X
z (x) $(x,0 J , - -
X (x,0)z(0) + . ®(x,8)G(g) [u(g) + i(Ui u) 8 (8 - x,)]dg

X

¢ (x,0)z(0) + J P(x,E)G(E)U(E)AE + 0 (x,x.)G(x.)U. -
0 i i i’¥i

- Io(x,x.)G(x.:)u.
i i 1’71 !

where the m X m matrix ¢(x,£) is the well-known transition
matrix of linear systems (Zadeh and Desoer, 1963). From egs. (1)

and (12) we obtain



L T L T X
P(x) = f h” (x)?9(x,0)z(0)dx + f h™ (x) J ®(x,£)G(E)U(E)dEgdx
(0] 0 (0]
L T L T
+ i Jo h™ (x) o (x,x;)dxG(x;)U0, - ? fo h™ (x) @ (x,x;)dxG(x;)u; ,
which is of the form (4) with
L T
q; = f h (x)(b(x,xi)de(xi)ui . (13)
0

Expression (13) for the quality indicator a; shows that even in
the case in which u; is a scalar, the coefficient qi/ui is, in
general, dependent upon i, and this turns out to be true also for
uniform but finite channels. In other words, in a uniform river
two plants characterized by the same BOD removal give rise to the
same improvement of the pollution index only if they are located
sufficiently far upstream. This fact explains why the total
biodegradable load proposed by Deininger (1965) as a pollution
index for the river basin differs from Liebman's index (1), even
in the simple case of a uniform finite channel described by a
Streeter-Phelps model. Finally, it is worth while noticing that
eq. (4) holds also for the cases in which some of the plants are
located on tributaries of the main river (this result follows
immediately from the linearity of the model).

In summary, we have proved that the additivity property (4)
holds for linear models under very general conditions, while
for nonlinear models we can say only that there is a tendency
for this property to be satisfied if the river basin is approxi-
mately uniform and if the amount of biodegradable matter going
out of the river basin is small enough. An example of the
validity of the additivity property for a nonlinear model is

given in Section 5.

3. The Myopic Sequencing Problem

As described in the introduction, a solution of the sequenc-

ing problem is given by an ordered partition of the set S5 of the



-10-

plants into N blocks {(years), i.e. by a sequence {st}tl;]1 with

s; M S5 = 2 ifi#A3
N
Us, =85 .
t=1 °©
If C(4) is the cost of a subset 4 of the plants (C(4) = I ci)

ic4
and C is the cost of all plants (C = C(S)), then a sequence
{st}tgl is said to be feasible if it satisfies the following

budget constraints:

C(sl) C/N ,

IN

C(s,) & C/N + (C/N - C(sy)) ,

C(s3) < C/N + (2C/N - C(sl) - C(sz)) ’
N-1

c(sN) < C/N + ((N - 1)C/N - _zl C(si)) ;
l:

or, equivalently, a sequence is feasible if

C(s.) & Ct/N , t=1,2,...,N , (14)

where

S¢ =

t
1=

ll

The myopic sequencing problem can now be formulated as

follows: for each year t(t = 1,2,...,N) find the subset

s, 5 - S,._1 such that the pollution index P(S.) is minimized
while the budget constraints (14) are satisfied.
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This problem would in general be very difficult to solve
without making use of the additivity property described in the

preceding section. Using this property, the myopic optimization

problem can be stated as follows: for each year t (¢t =1,2,...,N)
find the subset s, C s - S¢-1 Such that the improvement
Q(St) = _Z qi
ies,

is maximized while constraint (14) is satisfied.

Each one of these N subproblems is a simple linear integer
programming problem known in the literature as the knapsack
problem. Since standard algorithms are available today for
the solution of this problem (see, for instance, Kolesar, 1267;
Greenberg and Hegerich, 1970; Barthes, 1975) we will not go into
many details here. Nevertheless, we will briefly outline a
branch and bound procedure for the solution of the knapsack
problem since this will serve as a basis for the description of
the algorithm presented in the next section for the non-myopic
case.

Before describing how a branch and bound algorithm works in
general, let us first consider a simplistic but quite attractive
way of attacking the problem. For this, assume that we are
interested in solving the knapsack problem related to the first
year, so that we can omit subscript t in the following. Thus
we have a set S of n plants with given costs cy and quality
indicators q - and we can assume, without loss of generality,

that they are ordered by decreasing values of their efficiencies

n; = qi/ci, i.e.

2 ... 2N . (15)

We can now associate a zero-one variable Xy with each plant and
assume that X, = O means that the plant is not activated, while
X; = 1 means that the plant is activated. Thus, the knapsack

problem is described by
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n
max I g X (16)
i=1
subject to
n
I ocix. € C/N , (17)
i=1
X; = 0,1 , i=1,...,n , (18)

where n is the number of plants to be built.

If we now relax constraint (18) into the new constraint
0 < X 1 , i=1,...,n , (19)

we obtain a linear programming problem the solution of which

is given by

§i =1 , i=1,...,k=1 , (20a)

_ k-1

X, = (C/N - E Ci)/ck , (20b)
i=1

Ei =0 |, i=%k+1l,...,n , (20c)

where (k - 1) is the highest integer number, such that

k-1

I ¢c. £ C/N
. i
i=1

Therefore, the integer solution

x. =1 , i=1,...,k-1 , (21a)
X, = o , i=%,...,n , (21b)

is a feasible solution (called simplistic from now on) of the
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knapsack problem, and its associated improvement represents a

lower bound (L.B.) for the optimal solution, i.e.

L.B. = I q; |, (22)

while the solution (20) of the linear programming problem gives

an upper bound (U.B.) of the optimal solution, i.e.

1 k
+ nk(C/N -
1 i

1
. Ci) . (23)

e

The computation of L.B. and U.B. given by (22) and (23) is
straightforward once the plants have been ordered according to
(15); the difference between U.B and L.B. gives an upper bound
for how much we can improve the feasible solution (21) by further
investigations. Only in the case in which (U.B. - L.B.) is
sufficiently large with respect to L.B. is the application of

the branch and bound algorithm described below justified from

a practical point of view. .

Let us now describe the main characteristics of a branch
and bound search. This method is very suitable for solving
combinatorial optimization problems by successively examining
subsets of the set of solutions until one of the solutions
located in one of the subsets is proved to be optimal. Solu-
tion classes are obtained by assigning a value of O or 1 to a
given set of variables. This process is usually represented
on a graph, called search tree, in which each node represents
a particular class of solutions (see, for example, Figure 1).
The terminal nodes (leaves) of a search tree represent disjoint
classes of solutions: for example, in Figure 1 node X, = 0
represents all subsets of plants not containing plant 1, node

= O represents all subsets of plants containing plant 1 but

X
2

not containing plant 2, while the terminal node identified by

X, = 1 represents all subsets containing both plants 1 and 2.

A node in a search tree is said to be closed if it contains no

feasible solution or if the solution class cannot be partitioned
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ORIGINAL
PROBLEM
X]_:O Xl-_—l
Figure 1. Example of search tree.

again (see, for example, node x, = 1 of Figure 1l); or, finally,

if for some reason it is known that the optimal solution is
not contained in the corresponding class. By exclusion a node
is called pending when it is not closed.

Now that we have introduced the convenient terminology we
can describe a general branch and bound algcrithm (see Barthes,

1975) for a more detailed exposition).

Algorithm

Step O The original problem is examined first. The whole
set of solutions is assigned to the root of the search
tree. At each iteration solution classes are examined

as follows.

Step 1 Node Analysis

1.1. Check feasibility of the node. If the solution
class contains no feasible solution, then close

the node and go to step 3. Otherwise, compute a
feasible solution and the corresronding lower

bound for the class.

1.2. Compute an upper bound for the solution class.
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Step 2 Closure of Pending Nodes

Close all pending nodes characterized by an upper
bound less than or equal to the best feasible solution

determined so far.

Step 3 Termination Test

If all nodes are closed, stop; otherwise go to step 4.

Step 4 Node Generation

4.1. Select the solution class corresponding to the
pending node that has the highest upper bound.

4.2, TUse a suitable rule to partition this class into
two subclasses, i.e. decide which variable Xy has to
be frozen and the first time freeze it to 1.

4.3. Close the branching node if all subclasses

have been generated and go to step 1.

It is worth noticing that this algorithm is completely speci-
fied only if it is possible to compute lower and upper bounds
(see points 1.1 and 1.2 of the algorithm) and if the partitioning
rule of point 4.2 is given. In the case of the knapsack problem
it is possible to compute an L.B. and U.B. for any solution class,
as has been shown above for the set of all possible solutions
(see egs. (22) and (23)). A satisfactory partitioning rule
consists in freezing the variable corresponding to ik in (20b).
Finally it must be noted that for large scale problems the
computational effort required by the algorithm may easily be-
come prohibitive. It might therefore be convenient to replace

the termination test by the following rule.

Special Rule: Stop if the difference between the highest upper

bound on pending nodes and the lower bound cor-
responding to the best feasible solution computed
so far is smaller than or equal to a given per-

centage of the lower bound.

This termination rule will possibly generate satisfactory sub-

optimal solutions within a reasonable time.
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4. The Far-Sighted Sequencing Problem

We now consider the problem that consists in determining the
sequence minimizing the sum of the pollution indices over the
N years. The formal statement of the problem is as follows:
N
find the sequence {s_} § such that £ ©P(S,) is minimized
t t=1 =1 t A

while the budget constraint (14) is satisfied. Since P(St) =
N
P. - Q(S5,), the minimization of I P(S
6} t N t=1 t
maximization of I Q(St); thus if the additivity property (4) is
t=1

fulfilled we can reformulate the problem in the following way:

N
find the sequence {s_} § such that = I q. 1s maximized

t t=1 . 1
t=1 1eSt

while the budget constraint (14) is satisfied.

) is equivalent to the

In order to solve this problem by means of a branch and
bound algorithm, it is first convenient to put it into an
integer programming form. For this, let us introduce the zero-

one variable X which is equal to one if plant i is built in

t
year t, and zero otherwise. Then, taking into account that

indicator q; is weighted (N - t + 1) times in the performance
index if the i-th plant is built in year t, and that for each

plant i there is one and only one X5 equal to 1, we obtain the

t
following linear integer programming problem:

N n
max 2 I (N -t + 1) g.x. (24)
t=1 i=1 it
subject to the constraints
N
z .., =1 , i=1,...,n , (25)
£=1 it
t n
z I c Xip £ Ct/N , t=1,...,N , (26)
h=1 i=1
x., = 0,1 , i=1,...,n t=1,...,N . (27)
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If we now relax the integer constraint (30) into the

inequality constraints

1,...,N , (28)

0O < Xiy <1 , i=1,...,n , t
we obtain a linear program (24-26), (28), which is of somewhat
the same structure as the one considered in the preceding sec-
tion. It is easy to show that if the plants have been ordered

as in (15), the solution of this linear program is given by

Xil =1, i= l,...,kl~— 1 ,
J kl-l
Year 1 Xkll = (C/N - 151 ci)/ckl , (29a)
X9 = o, i = kl+l’ .,n ,
~
(512 =0, i=1,...,k-1,
X = l - }—{ r
k12 kll
Year 2 { Xip =1, i=ky+l,...,ky-1, (29b)
k2—l
X = (2C/N - I c.)/c '
Kp2 i=1 177Ky
212 =0, i= k2+l,...,n ,
\
etc.,

where (for t =1,2,...,N) kt is defined by the conditions
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k,—-1 k

t t
z cp € Ct/N , z cy > Ct/N .
h=l h:l
*
The simplistic solution Xi¢ of the integer programming
%
problem (24-27), which is obtained from (29) by putting x, , = O,
t
* * - 3 . 1] 13
th,t+l = 1, and Xip = X4, in all other cases, coincides with

the simplistic myopic solution (easy to check). The corresponding
value of the performance (24) represents an L.B. for the optimal
solution, i.e.

N n

*
L.B. = L T (N=-t+1)a.x,
t=1 i=1 1

e - (30)

Of course, the solution of the linear program (24-26), (28)

is a U.B. for the optimal solution of the sequencing problem,

i.e.
N n _
U.B. = I L (N~-t + 1) g.x. . (31)
t=1 i=1 171t
Thus if (U.B. - L.B.)/L.B. is small enough we can be satisfied

. . o . * v
with our simplistic suboptimal solution Xy if not, we can

;
apply the branch and bound algorithm descrzbed in the preceding
section to improve the suboptimal solution, or, if possible, to
get the optimal solution. The computation of an L.B. and a U.B.
for each node of the searching tree can be easily carried out by

solving the linear program (24-26), (28) with the Xip variables

defining the node frozen to integer values. If Eit is the solu-

tion of this linear program then a feasible integer solution
*
it -
integer t such that Xy # O. Then for i =1,...,n

X can immediately be derived as follows. Let ts be the maximum

*
Xip = 0 for t # ti ’

*
xit =1 for t = ti .

Thus, L.B. and U.B. can be obtained by means of (30), (31).
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Finally, the partitioning rule we propose corresponds to

freezing that non-integer variable x., which gives the highest

it
contribution in the upper bound (31), i.e. to select the indices
(i,t) in such a way that (N - t + 1) qiiit

The algorithm used for solving the case presented in the

is maximized.

next section is somewhat different from the one just described.
But we do not describe this algorithm (though it is available
upon request) since this would entail too much analytical detail.
The basic difference is the partitioning rule, which generates a
search tree in which the analysis of each node can be carried

out more quickly, since a closed form solution similar to (29) of
the corresponding linear program can be used.

Finally, we must point out that these algorithms could
easily become very time consuming, since the integer variables
are now N * n instead of n as in the preceding myopic problem.
Nevertheless, the advantage is that with the special termination
rule based on (U.B. - L.B.)/L.B., we can easily avoid the
usually very long phase of refinement necessary to get the optimal

solution.

5. Application to the Rhine River

i

|

For a realistic application of the techniques described above, |

a section of the Rhine River in West Germany was chosen. The |

section extends from Mannheim-Ludwigshafen to the Dutch-German
border, and is = 500 km long. The major pollution sources in
this section are Mannheim/Ludwigshafen with the inflow of the
Neckar River, Mainz/Wiesbaden with the inflow of the Main River,
Koln/Bonn, and the Ruhr district. Both a Streeter-Phelps model
and an ecological model were developed for this section. The
dependent variables of the ecological model are concentration

N, of easily degradable pollutants, concentration N2 of slowly

1

degradable pollutants, concentration N, of non-degradable pollut-

3
ants, bacterial mass density B, protozoan mass density P,

oxygen concentration O. The model equations are
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N, = - a;|N|B/(aj, + Nj) + aj, (32a)
Ny = = ayNpB/(ay, + Ny + ay3N)) + ay, (32b)
Ny = ay, (32¢)
B = a4lNlB/(a12 + Nl) + a42N2B/(a22 + N2 + a23Nl)

- a43BP/(a44 + B) - a45B (324)
P = ag BP/(a,, + B) - ag,P (32e)
O = ag (05 = 0) = ag,NiB/(ay, + N)) = ag3N,B/(ay, + N, + a,:N))

- a64B - a65BP/(a44 + B) - a66P + ags (32f)

where OS and a;y are parameters (which are not all independent) .
The model is of form (8) and has been described in detail else-
where (Stehfest, 1973). The Streeter-Phelps model consists of
the usual equations for oxygen concentration and oxygen demand
and an additional equation for the non-degradable pollutants
that is the same as (32c). Figures 2 and 3 show how both models
fit measured data; the curves approximately describe the situation
in 1971.

The optimal solution whose optimal implementation has been
investigated resulted from a dynamic programming calculation.
In this program the decision variables were the treatment effort
in each of sixteen reaches of the river section, and the objective
was to meet standards for both oxygen concentration and concen-
tration of non-degradable pollutants at minimum cost. The
details of the program are described in a forthcoming paper
(Stehfest, 1976). Figure 4 shows the optimal treatment effort
in all reaches, if everywhere in the section the oxygen con-
centration has to be > 6.5 mg/l and the concentration of

non-degradable pollutant < 9 mg/l. The calculation was
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Figure 4. Optimal treatment effort
' along the Rhine River.

carried out for a water temperature of 20°C and mean river
discharge, and the ecological model was used. The Streeter-Phelps
model gave almost the same result for this combination of stan-
dards; therefore only the set of plants given in Figure 4 was used
for the sequencing problem. This also allowed us to check for

the effect of using different models on the optimal sequence.

Each unit of waste treated, which corresponds to 36.4 tons of
chemical oxygen demand per hour, was looked upon as one treat-
ment plant. For the sequencing problem the plants in each reach
were assumed to be uniformly distributed over the reach. The
treatment cost per unit of waste produced was for each reach one
of three distinct values. (The cost category was determined

mainly by the population density in the reach.) To make these
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costs more realistic for the sequencing problem they were changed

randomly by up to * 25%. The costs for the 22 plants used in

the sequencing problem are given in Table 1. The time within

which the plants had to be installed was chosen to be five years.

Table 1l: Costs and contributions to the quality

improvement of treatment plants on the

Rhine River (using the Streeter-Phelps

model). The plants are ordered accord-

ing to their location on the river.
Number cost [10%$/y] q; [10 t 0,]

1 19.5 2.92
2 17.2 2.93
3 21.1 2.94
4 44.6 2.99
5 25.3 2.82
6 18.6 2.76
7 28.5 2.63
8 25.7 2.61
9 27.3 2.60
10 20.4 2.59
11 22.7 2.58
12 25.9 2.57
13 17.9 2.56
14 17.7 2.43
15 28.5 2.47
16 24.6 2.45
17 21.4 2.41
18 25.9 2.35
19 28.2 2.27
20 23.2 2.19
21 19.5 2.10
22 30.6 1.73
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Using the Streeter-Phelps model, the pollution index Py

before installation of any of the 22 plants was 1.04

3
107 t 02,

the contributions q3 (see (#4)) to the improvement of this index

are given in Table

1.

We will now compare the three approaches to the sequencing

problem:

l. Simplistic approach,

i.e.

according to their efficiency n (see 15));

2. Myopic optimization;

3. Far-sighted optimization.

installation of plants

The sums of the pollution indices over the installation period

for the different approaches are shown in the first column of

Table 2.

Table 2.

The analogous sums can also be calculated for the

Values of the sum of the pollution
index P over the period of implemen-

tation (in 10™ t -« y).

3

Model Used for

Streeter- | Ecological | Ecological |Streeter-
Optimization|Phelps Model Model Phelps
Model Model

N Streeter- | Streeter- Ecological [Ecological
Kind o z P(St) Phelps Phelps Model Model

Optimi- = Model Model
zation

Simplistic 3.401 3.440 3.070 3.168
Myopic 3.375 3.449 3.009 3.232
Overall 3.375 3.437 3.117 3.200

installation sequences that are optimal with respect to the

ecological model.

These values are given in column 2 of Table 2.




-26-

They are also very close to the values in the first column,
mainly because the qi's for the Streeter-Phelps model are not
very different (see Table 1).

For the ecological model, the question arises whether the
additivity property, which holds exactly in case of an infinite,
homogeneous river, is approximately satisfied for the river
section investigated. Numerical calculations showed that the
qi's depend strongly on the initial situation; i.e., a plant
may have completely different effects on the pollution index
depending on the year in which it is built. Only for small
sub-sets y is eq. (4) approximately fulfilled. Table 3 illus-
trates how the q; values change if the conditions under which

the plants are built change.

Table 3. Improvements q; of pollution index (in 10 t O,) by
single treatment plants for different initial”situ-
ations. (Crosses indicate the plants already built
(initial situation).)

3.60 X X X X
3.57 X X X X
3.54 X X X X
3.15 0.78 1.10 1.47 1.97
2.23 0.43 0.80 1.22 1.79
2.04 0.35 0.72 1.14 1.73
0.45 1.13 1.55 2.05 X
0.63 1.24 1.65 2.14 X
0.80 1.35 1.75 2.22 X
0.94 1.43 1.82 2.29 X
1.04 1.49 1,87 X X
1.13 1.54 1.92 X X
1.21 1.58 X X X
1.68 1.87 X X X
1.83 1.97 2.33 X X
1.97 2.08 2.43 X X
2.13 2.22 X X X
2.29 2.34 X X X
2.37 2.36 X X X
2.37 X X X X
2.31 X X X X
1.80 1.57 1.64 1.81 1.97
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The value of the pollution index before a plant is built is
3

0.928 « 10™ t 02. Table 3 suggests that the installation
sequence of all waste water treatment plants should not be de-
cided on the basis of the qi's calculated for the conditions

at the beginning of the installation period. For the simplistic
and myopic approach one can easily use qi's that are calculated
anew each year. An overall optimization that takes into account
the variability of the qi's would be far too complicated, how-
ever.

The third column of Table 2 shows the sums of the pollution
indices for the different approaches to the sequencing problem
using the ecological model for both optimization and pollution
index. Simplistic and myopic optimizations were done with the
qi's calculated anew each year, and the overall optimization was
done with the qi's calculated for the first year. The fourth column
shows the same sums for the installation sequences that are opti-
mal with respect to the Streeter-Phelps model. The differences
within the third and fourth columns are considerably greater
than within the first two columns.

The computing time for 22 9y values as well as for one step
in the myopic optimization was in the order of seconds on an IBM
370/155 computer, and the storage requirement was also very
moderate. The overall optimization took roughly fifteen minutes
and a considerable part of the storage of that machine.

Evaluating the results of this illustrative example, which
are summarized in Table 2, one can say that--considering the
model uncertainties--it is sufficient to install the plants in
the order given by their relative efficiency n ("simplistic
optimization"). 1If, however, a nonlinear river quality model,
such as (32) is felt to apply, the deviation from the additivity
property may be so severe that the relative efficiencies have
to be calculated anew for each year. In cases where the differ-
ences among plant costs are larger than in Table 1 and/or in
which the ratio n/N is smaller, the differences among the three
optimization approaches may become much more pronounced than in
Table 2; instead of the simplistic approach, it may then be
worth using a branch and bound algorithm for myopic or overall

optimization.
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