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T h i s  r e c o r d  has b e e n  pu t  t o g e t h e r  i n  a  

l i m i t e d  t i m e  f o r  prompt d i s t r i b u t i o n .  I t  i s  n o t  a  

p r o c e e d i n g s  vo lume.  R a t h e r  i t  i s  a  c o l l e c t i o n  o f  

a l l  memoranda, d iag rams ,  and l i t e r a t u r e  r e f e r e n c e s  

t h a t  were c i r c u l a t e d  b e f o r e  t h e  workshop,  u s e d  t o  

s u p p o r t  p r e s e n t a t i o n s  d u r i n g  t h e  workshop,  o r  w r i t t e n  

down t o  p r e s e r v e  some i d e a s  and some ou tcomes  o f  

c o m p u t a t i o n s  t h a t  a r o s e  f rom t h e  workshop.  The 

o n l y  o r g a n i z i n g  p r i n c i p l e  i s  t h e  tempora l  sequence  

i n  wh ich  t h e  m a t e r i a l s  were  p r e s e n t e d  o r  p repared .  





TABLE OF CONTENTS 

Preface iii 

List of Participants 

from outside IIASA 

from IIASA staff 

Workshop Organization 

Advance Description of Workshop 

RECORD OF PLENARY OPENING SESSIONS, JULY 2 1  AND 22 

Welcoming Remarks to the Participants 
R. Levien 

Opening Remarks on the Proposed Activities 
T.C. Koopmans 

Dynamic and Equilibrium Problems in Climatology 
J.G. Charney 

Computational Aspects of the Modeling of 
Atmospheric Dynamics and Estimates of the 
Influence of Different Factors 

V.V. Penenko 

~ethodological Problems in the  odel ling and 
Analysis of Ecological Systems 

C. Walters and W. Clark 

Fixed Point Methods 
H.E. Scarf 

Description of Fixed Point Algorithms 
T. Hansen 

An Outline of Structural Stability Theory 
P. Walters 

i x 

xi 

xii 

xiii 

Extrapolation Methods for ~quilibria Calculations 
M.L. Juncosa 5 7 

Newton's Method for Systems of Nonlinear Equations 
S .M. Robinson 6 7 

Self-organizing Chemical Systems 
P. Schuster 



FU2CORD OF WORKING SESSIONS AND IIASA SEMINARS, JULY 23-31 

Bifurcations and the Appearance of Attracting Tori 
H.R. Griimm 8 3 

A Geometrical View of Fixed Point Algorithms 
H.E. Scarf 

Analysis of a Compact Predator-Prey Model 
The Basic Equations and Behaviour 

D.D. Jones 

Volterra's System and the Equation of 
Michaelis-Menten 

A.D. Bazykin 

Stability Analysis of Predator-Prey Models 
Via the Liapunov Method 

M. Gatto and S. Rinaldi 

Zubov Procedures for Estimating the Domain 
of Attraction 

J.L. Casti 

Some Elements of the Response Function of the 
Enterprise in the Socialist Economy 

J. Beksiak 

Fixed Points, Periodic Orbits, etc., in 
Climatological Models 

J.G. Charney and K. Fraedrich 

Immunity - A Mathematical Model 
A. Molchanov 

Time Averages Near Strange Attractors 
K. Sigmund 

On Stochastic Stability and Resilience 
Yu. Rozanov 

Elementary Model of Eutrophication 
A.D. Bazykin 

Drought as a Biogeophysical Feedback Elechanism 
J.G. Charney 

MEMORANDA CIRCULATED DURING THE WORKSHOP 

Rigorousness May Be Dangerous 
A. Molchanov 

Rigorousness May Be Dangerous 
But Not Necessarily 

A. Molchanov 

Stability Versus Resilience 
A. Molchanov 



Equilibria in Local and Distributed Systems 
A.D. Bazykin 

RECORD OF PLENARY CLOSING SESSION, JULY 31 

What Have We Learned? 
T.C. Koopmans 

The Role of Fixed Points and Closed Orbits in 
Dynamical Models of Climate 

J.G. Charney and K. Fraedrich 

An Approach for Solving Non-Stationary and 
Stationary Problems of Meteorology 

V.V. Penenko 

What Have We Learned? 
W. Clark and A.D. Bazykin 

Dynamic Characteristics of a System and the 
Choice of Techniques 

H.E. Scarf 

Fast computation of Planar Limit Cycles 
M.L. Juncosa 

Computing Closed Orbits and Periodic Points 
H.R. ~r%rtm 

Computational Experiments 
T. Hansen, assisted by H.R. ~ rknm,  
D.D. Jones, and P. Schuster 

Retrospect and Prospect 279 

Appendix: List of Papers Distributed During the Workshop 281 

vii 





List of Participants 

(from outside IIASA) 

Dr. Alexander D. Bazykin 
Research Computing Center 
USSR Academy of Sciences 
Pushchino Moscow Region 
USSR 

Prof. N.J. Beksiak 
Central School of Planning 

and Statistics 
Warsaw 
POLAND 

Prof. Jule G. Charney 
Department of Meteorology 
Massachusetts Institute of Technology 
Cambridge, Plassachusetts 
USA 

Dr. William Clark* 
Institute of Animal Resource Ecology 
University of British Columbia 
Vancouver, B.C. 
CANADA 

Prof. Klaus Fraedrich 
Meteorology Institute 
Free University Berlin 
Berlin 
FEDERAL REPUBLIC OF GEWANY 

Prof. Terje Hansen* 
Institute of Econonics 
Norwegian School of Economics 

and Business Administration 
Bergen 
NORWAY 

Dr. Dixon D. Jones* 
Institute of Animal Resource Ecology 
University of British Columbia 
Vancouver, B.C. 
CANADA 

Dr. Mario L. Juncosa 
The RAND Corporation 
Santa Monica, California 
USA 



Prof. Tjalling C. Koopmans* 
Cowles Foundation 
Department of Economics 
Yale University 
New Haven, Connecticut 
USA 

Prof. A. Molchanov 
Research Computing Center 
USSR Academy of Sciences 
Pushchino Moscow Region 
USSR 

Dr. Vladimir V. Penenko 
Computing Center of the Siberian Branch 

of the USSR Academy of Sciences 
Novosibirsk 
USSR 

Prof. Stephen PI. Robinson 
Mathematics Research Center 
University of Wisconsin 
Madison, Wisconsin 
USA 

Prof. Herbert E. Scarf 
Cowles Foundation 
Yale University 
New Haven, Connecticut 
USA 

Prof. Peter Schuster 
~nstitute for Theoretical Chemistry 
University of Vienna 
Vienna 
AUSTRIA 

Prof. Karl Sigmund 
Institute for Mathematics 
University of Vienna 
Vienna 
AUSTRIA 

Mr. Armand Taranco 
Institute of Advanced Scientific Studies 
Bures-Sur-Yvette 
FRANCE 

Prof. Peter Walters 
Department of Mathematics 
University of Warwick 
Coventry 
UNITED KINGDOM 

*former IIASA staff members 



L i s t  o f  P a r t i c i p a n t s  

( f rom I I A S A  s t a f f )  

D r .  John L. C a s t i  
Research Plathemat i c i a n  
Methodology P r o j e c t  

D r .  Hans R. GrUrnm 
C o n s u l t a n t  
Energy P r o j e c t  

D r .  Yur i  Rozanov 
Research S c h o l a r  
Methodology and Water P r o j e c t s  

D r .  C a r l  Wa l t e r s  
P r o j e c t  Leader  
Ecology P r o j e c t  



Workshop Organization 

Chairman of the Workshop 

Assisting the Chairman in 
preparation of the Workshop 

Advisory Committee 

Editor of the Record 

Editorial Committee 

Secretarial and organizing 
assistance prior to, 
during and after the 
Workshop 

T. C. Koopmans 

J. L. Casti 

A. D. Bazykin, J. L. Casti 
Wm. Clark, K. Fraedrich 

H. R. ~ rknm,  T. Hansen 
T. C. Koopmans, S. M. Robinson 

J. L. Casti, Wm. Clark 
H. R. G r h ,  T. C. Koopmans 

Linda Berg, Brigitte Gromus 
Eva Matt, of the staff of 

IIASA, and Lydia Zimmerman 
of the Cowles Foundation 

Yale University 
New Haven, Conn., U.S.A. 

xii 



Advance Description of Workshop 

In the last few years problems have come to the fore in 

c-, in ecology, and in economics that have a common 

mathematical structure. 

In climatology and ecology, these problems concern systems 

described by a set of differential equations in which non- 

linearities are an important aspect of the problem. Mathematical 

treatment has therefore emphasized simplifying assumptions or 

complex simulations. The former destroys many subtle behavior 

characteristics while the latter can be expensive, and may lack 

the generality needed for transfer of findings to other situations 

Another handhold for analysis is present if the system has 

the property that as time proceeds the motion of the state 

variables approaches an asymptote (or rest point). Mathemat- 

ically, such a rest point also qualifies as a stationary solution 

of the differential equations. Moreover, such a solution can 

also be considered as a fixed point of a continuons mapping of 

the set of possible initial states into itself. 

In the economic theory the notion of a fixed point is the 

principal mathematical tool for the analysis of economic 

equilibria. However, unlike in the other two fields, the re- 

presentation of the path to equilibrium has not received com- 

parabel emphasis in the research in economics of the last decade. 

In all three fields there is a need for methods to find 

the fixed points or rest points of the system if such exist, 

and also for each such point the "basin" (or region of stability), 



that is, the set of initial conditions from which the solution 

ultimately approaches a given fixed point. The ecological 

concept of resilience is closely related to the notion of the 

basin. 

As to the computation of fixed points, the methods most in 

use by the climatolo~ists depend on tracing a path from a suit- 

able initial state through time until it stabilizes. For an- 

alyzing the sensitivity of climate to specified present or 

possible future effects of man's activity such a calculation has 

been made for both the unperturbed ("base-line") equilibrium and 

fro the perturbed alternative. G.I. Marchuk has developed a 

procedure that replaces the second calculation by an approxi- 

mation utilizing the result of the first and exploiting the 

bilinearity of the equations. One should ask further whether, 

if knowledge of the equilibrium without the details of the 

path has value in itself, one could also dispense with the 

first calculation, using methods and algorithms to approximate 

the unperturbed and perturbed equilibria directly. 

Among the methods that should be explored and tried out 

on moderate-size examples are any one or possible combinations 

of 

(a) Direct solution of some finite-difference 

approximation to the differential equations 

defining a steady state, 

(b) Fixed point algorithms such as have been 

developed in economics in the last 6 years 

(Scarf, Hansen, Ruhn, and others), 



( c )  Ex t rapo la t i on  procedures such a s  those  

developed by Aitken, Shanks, and o t h e r s ,  

(d )  Gradient  methods and, i n  p a r t i c u l a r ,  Newton 

o r  quasi-Newton methods. 

Of t h e s e ,  ( a ) ,  (b )  , (d )  need supplementat ion by a  procedure 

t o  a s c e r t a i n  t h e  s t a b i l i t y  p r o p e r t i e s  of t h e  equ i l i b r i um o r  

e q u i l i b r i a  found. 

I n  o t h e r  cases ,  i n  any o f  t h e  t h r e e  f i e l d s ,  t h e  u l t i m a t e  

n a t u r e  of a  s o l u t i o n  of t h e  system of d i f f e r e n t i a l  equa t ions  

may be n o t  an approach t o  a  s i n g l e  l i m i t  p o i n t ,  b u t  an approach 

t o  a  l i m i t  c y c l e ,  o r  t o  ano the r  less r e g u l a r  pa th  t h a t  remains 

w i t h i n  an " a t t r a c t o r  s e t "  of d imens iona l i t y  much less than t h a t  

of t h e  space of s t a t e  v a r i a b l e s .  I t  i s  d e s i r a b l e  t o  exp lo re  

t h e  p o s s i b l i t y  of genera l i z ing  t h e  methods found s u i t a b l e  f o r  

l i m i t  p o i n t s  t o  t h e  determinat ion  of l i m i t  c y c l e s  i f  t h a t  c a s e  

p e r t a i n s ,  o r  else t o  t h e  p lac ing  of bounds on t h e  a t t r a c t o r  s e t s ,  

o r  t h e  es t ima t ion  of means and va r iances  of i n d e f i n i t e l y  con- 

t i n u i n g  motion. 

The s tudy  o f  any o f  t h e s e  s e v e r a l  problems should,  i n  an  

i n s t i t u t e  f o r  app l i ed  systems a n a l y s i s ,  be accompanied by 

t r y o u t s  of c a l c u l a t i o n s  on models from t h e  t h r e e  f i e l d s  t h a t  

i n  t h e  beginning have a  r a t h e r  smal l  number of dimensions, t o  

be fo l lowed l a t e r  by more ambi t ious  tests i f  t h e  r e s u l t s  a r e  

encouraging. 

I n  p a r t i c u l a r ,  i n  regard  t o  c l imato logy ,  t h e  proposed 

t r y o u t  problems might i nc lude  pro to type problems of t h e  e f f e c t s  

on c l ima te  o f  l a r g e  and sus ta ined  waste h e a t  r e l e a s e s  i n  v a r i o u s  



locations, such as have been made by and for the IIASA Energy 

Project. A valuable focus for ecological tryouts is the Ecology 

Project's present Pacific salmon fishery management study, with 

a spectrum of six to eight models of growing complexity. Economic 

examples would be brought in by participants. 

To stimulate research along the lines described, we are 

holding a two-week summer workshop at IIASA, July 21 through 

August 1, 1975. We are inviting about three people each from 

climatology, ecology, and economics whose main concern is that 

the models are, within chosen limitations of size and complexity, 

good representations of significant real phenomena. In addition, 

we are inviting four or five people who are specialists in 

algorithm development and tryout. This adds up to about 15 

invited scientists minus some allowance for people who belong 

in more than one category. About six to ten IIASA staff members 

would take regular part in the work of the workshop. One or 

two computer programmers should also be allowed for. 

We have in mind an intensive working group which pretty 

much writes its own ticket with regard to frequency of dis- 

cussions and formation of subgroups, except that a few plenary 

overview sessions are to be scheduled at the beginning and 

at the end. 
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OPENING PLENARY SESSION, SCHLOSS, JULY 21, AM 

Welcoming Remarks to the Participants 

Koopmans: Dr. Roger Levien has agreed to make a few welcoming 

remarks on behalf of IIASA. Dr. Levien is slated to succeed 

Professor Raiffa as Director of IIASA this fall. 

Levien: Thank you. IIASA is a complex dynamic system, and its 

establishment was part of a conscious policy intended to encourage 

equilibrium and stability in the world system. Whether that 

policy will succeed or fail, it is too early to determine. All 

we can say is that so far the local conditions are good. 

In the spirit of science 1 want to describe the behavior 

of this dynamic system, IIASA, beginning with its initial con- 

ditions. Those occurred at the end of 1966 when President 

Johnson of the United States asked his former National Security 

Advisor, McGeorge Bundy, to explore the possibility of establishing, 

jointly with the Soviet Union, a center for research on problems 

common to developed countries. Bundy travelled to Moscow where 

he met Professor Jerman Gvishiani, the Deputy Chairman of the 

State Committee of Science and Technology. After initial 

discussions it was decided that the idea warranted further ex- 

ploration. 

A series of negotiations then took place from 1967 through 

1972 and proceeded in ever widening circles, engaging more and 

more countries in the discussion. By October 1972 when the 

negotiations culminated in the signing of the charter at the 

Royal Society in London, there were twelve member organizations 



who subscribed to the charter. What they subscribed to was a 

charter creating an institution that was non-governmental, 

independent, and of scientific character, to work on those 

problems that arise as a result of scientific and technological 

progress-the general difficulties facing the world today. The 

countries represented were the US and the USSR, by their Academies 

of Sciences; and the UK, France, Poland, CSSR, FRG, GDR, Italy, 

Bulgaria, Japan, and Canada, by analogous organizations--in 

some cases, a specially created scientific institution such as 

the Committee on Applied Systems Analysis of Canada. An important 

characteristic of these founding members is that they are non- 

governmental scientific organizations. 

The twelve organizations committed themselves to budget 

contributions which fell into one of two categories: each of 

the category A members--the US and USSR--contributes one million 

US dollars a year, and each of the category B members 150,000 

US dollars. The initial contributions were thus on an annual 

basis of 3.5 million dollars. In 1973 Austria became a member 

through its Academy of Sciences, and in 1974 Hungary joined, so 

that there are now fourteen national member organizations and 

budget contributions of 3.8 million US dollars. In this one 

regard the founders showed less than perfect foresight, because 

they established the contribution schedule in terms of US dollars. 

At that time it was unclear where IIASA was going to be located-- 

whether in France or in Austria, the two contenders--so the 

dollar was chosen as the common denominator. But shortly after 

the charter was signed the dollar was devalued and has been 

several times since; and of course inflation has cut into the 

real value of the contributions. Less actual money is available 

for the institute than had been intended. Nevertheless, our 



growth has been satisfactory, and as you can see, we are now 

located in Austria in this marvelous Schloss, which has been 

donated by the Austrian government and renovated with their funds 

The Central Court was completed in December of 1974, and 

I think this is a good point to use to characterize the initial 

trajectory. I told you something about the initial conditions. 

Work started here in May 1973, when one scientist, one project 

and one corridor of the Schloss were ready to go. In fact at 

that time Howard Raiffa used to take visitors around, open the 

door of the one scientist's office, and say: "And here is a 

typical IIASA scientist at work." Well, that typical scientist 

has grown from one in May 1973 to in the order of 70 right now. 

The one project has grown into eleven, and the one corridor into 

most of the Schloss. Over the next years the Austrian government 

will be renovating the remainder of the Schloss that you can 

see when you walk outside. 

Now let me say something briefly about the current state of 

the Institute. There are eleven projects, as I mentioned. I 

find it convenient to group them into a few categories. We have 

an area that you might call the resources and environment area. 

Here three projects are actively under way. One of them, in 

the water resources area, has been primarily concerned with the 

management of river basins, looking at a couple of examples: 

the Vistula River and the Tisza River, both in Eastern Europe. 

The ecology project has been concerned with the management of 

complex ecological systems. We will hear more about their work 

today, but I might mention quickly that their approach has been 



a detailed examination of actual examples. They began with 

extremely interesting work on the managment of a forest pest, 

the spruce budworm, which is endemic in Eastern Canada but also 

in Poland, the USSR, Japan, and the US. The project did work 

on the complex policies involved in controlling this dynamic system. 

Then they investigated international fishery, that of the Pacific 

salmon which is exploited by four different countries: Canada, 

the US, Japan, and the USSR. They have also studied the Obergurgl 

region of Austra, to look at the impact on a rather fragile Alpine 

ecosystem when its natural resources are exploited for tourism. 

The third project, just beginning now, will concern itself 

with world's food and agricultural problems. I can't say too 

much yet about what we'll do, except that like many other people 

we are aware that these are central problems of the future, and 

we ought to have a bare understanding of their dynamics, the 

potential, the way in which maximum exploitation in value can 

be obtained from our few resources. 

The next grouping of activities concerns human settlements 

and social services. Here we have a project on urban and regional 

development which has been focused primarily on national settle- 

ment systems; that is, the ways in which people are located 

around countries and the dynamics which govern demography and 

mobility in various kinds of societies--those which are centrally 

planned, those which are market societies, and so on. Of course, 

we are taking advantage of the opportunity that IIASA represents 

to compare alternative policies and different kinds of societies. 

We have also been looking at municipal management, and the 



question of managing urban emergency services and urban traffic 

problems. The second project under the heading of human settle- 

ments and services is the bio-medical project, and here again 

we are really just beginning to build up momentum. Our concern 

is with two issues--modelling national health care systems, in 

particular trying to compare their structure in different kinds 

of economies; and coordinating international bio-medical research 

programs, on which we will be cooperating with WHO. 

A third category is a management and technology grouping; 

here we have two projects. The one on large organizations has 

again taken the opportunity to do comparison studies. Last 

year we looked carefully in a retrospective way at the manage- 

ment of a complex regional development system, the Tennessee 

Valley Authority in the US. We held a very large conference 

last November/December on the TVA, with a heavy representation 

from the TVA, and from the USSR and other member countries, 

to discuss the techniques used in developing that forty-year-old 

system and in managing it. But what makes that particular in- 

stance interesting is that at the end of the year we will have 

a comparable case study on the Bratsk-Ilim development in Siberia. 

So we will be able to compare carefully the ways in which large 

regional developments based on hydro-power have progressed in 

both the US and the USSR. And we hope to follow that up with 

yet another such comparison, either in a developing country 

or in Japan. 

We have an integrated industrial systems project which 

has been doing another kind of comparison: an around-the-world 



comparison of the way in which the steel industry is managed, 

with a focus on production planning, from very long-term to 

day-to-day planning. This comparison has involved examination 

of the steel industry in Japan, the USSR, the FRG, the CSSR, the 

US, the UK, and so on. The result has been a distillation of 

the world state of the art and an appreciation of what advances 

are likely to occur in the management of the steel industry. 

A little closer to home, we have a fourth grouping which I 

would say is the scientific methodological base for systems 

analysis, and this group is Systems and Decision Sciences. It 

includes our Methodology and Computer Science projects. The 

first leader of the methodology project was George Dantzig; the 

second, Tjalling Koopmans, was first succeeded briefly by Bill 

Jewel1 of Berkeley, and now for a long term, three years at 

least, by Michel Balinski. I am sure you will hear quite a bit 

about the activity of the methodology project over the next few 

days. I am not going into a major discussion of it, but will 

simply say that it has been engaged in optimization, mathematical 

programming in particular, and decision analysis, and in a number 

of other related areas. 

Our computer science project has been primarily concerned 

with developing a computer network. As IIASA members will know, 

we have been experimenting with computer connections between 

IIASA and Moscow, IIASA and Budapest, IIASA and Bratislava, and 

IIASA and existing Western European networks. We have a local 

network linking us into computers in Vienna and in Frankfurt, 

which can provide access to large scale computer capacity. Our 



own facilities consist of a PDP 11/45 system, which is quite 

adequate for many local purposes but is not the sort of thing 

which can handle the very large problems we occasionally face. 

One of the most important projects, and in fact the first 

at IIASA, the one which has progressed farthest and is the largest 

of all, is the energy project led by W. Hdfele. Again, I am 

sure you will hear more about it during the rest of the meeting. 

But I want to emphasize its major concern, that of exploring 

alternative energy options for the medium- and long-term future. 

By this we refer not to the next ten or fifteen years, but to 

what we will do after that: whether nuclear options, solar 

options, standard use of coal, geothermal, or the better use of 

hydrocarbon energy will be the way in which society can meet its 

global energy needs. The project has been concerned not only with 

the technologies of energy production but with the way in which 

these technologies imbed themselves--Professor Hdfele's term--in 

the economy, in the environment, and in the social system. So 

we have been taking a rather long-range view of the impact of 

alternative energy technologies and various transition strategies 

from the current energy system to a more stable long-term system. 

Finally I'll mention briefly the project I have been en- 

gaged in for the last year, a state-of-the-art survey of systems 

analysis. We have been trying to stimulate the production of 

a series of monographs, to be published by John Wiley, on various 

aspects of systems analysis. For example, we will have a volume 

on multi-attribute decision making, one on computer-aided design, 

one on global modelling. Ultimately, we will also produce a 

handbook of applied systems analysis. 



These remarks may provide a background for an observation 

that has in a sense led to this workshop. We've realized that 

those here--who have been dealing with energy, with environment 

and climate, with ecology, with food and agriculture--all face 

methodologically or mathematically similar problems: they are 

dealing with the behavior of complex systems, particularly their 

stability and equilibrium. And it is this striving to see how 

these relationships develop and what they mean that led us to 

invite you hear for the next few weeks. 

I've said something now about the initial conditions and 

the current state: the future is harder to predict. IIASA got 

off to a good start. I think we can all agree that the future 

is promising. Whether our behavior is governed by differential 

or diffidence equations I can't say; but I can say that I hope 

IIASA will make a difference, and that this workshop will too. 



Opening Remarks on the Proposed Activities 

Koopmans: We at IIASA are delighted and gratified with the 

response and participation in answer to our workshop proposal. 

In these brief remarks I will want just to trace the origins 

of the proposal, both in the work of IIASA and in the much longer 

history of work in various fields elsewhere. I will speak of 

the various applications and methods fields with trepidation: 

I have never had the responsibility for preparing or organizing 

any effort that ramifies so widely in different subject matter 

fields as well as method fields. It will be apparent in prac- 

tically everything I say that I have a very incomplete under- 

standing of the aspects involved. With regard to ecology, my 

exposure has been mostly through my colleagues at IIASA. There 

has been an intensive collaboration between the Ecology and 

Methodology projects at IIASA from well before I was here, 

particularly in the study of the forest pest that has already 

been mentioned. In that study the emphasis was rtiostly on 

optimization over time in a dynamic system. George Dantzig, 

David Bell, John Casti, and Carlos Winkler have been very active 

on the method side of this work. The system studied was of 

course a dynamic system and therefore, along with this optimizing 

work, we did develop an interest in the dynamic structure of 

the system for its own sake. This in turn led to looking at 

much simpler ecological models. The people working along these 

lines here at IIASA that I am aware of were John Casti, William 

Clark, Dixon Jones, and in the summer of 1974 Terje Hansen. 



This work has been continuing since I returned to the US and 

several papers have been circulated by members or former members 

of the Ecology Project, including one by Rinaldi and Gatto. 

On the climate sensitivity problem, the sensitivity of 

climate to human intervention, my first exposure to this problem 

was in learning of the work that was done at the initiative of 

Professor Hafele, Leader of the Energy Project of IIASA, in 

collaboration with the British Meteorological Office in London, 

to test the sensitivity of climate variables in various locations 

to large sustained waste heat releases in various hypothetical 

locations. This work was based on the detailed equations of 

motion of the atmosphere taken from the laws of physics as 

applied to the atmosphere and the oceans. Computational precision 

was achieved by a fine resolution of space and time. I had 

subsequent conversations also with Academician Marchuk of 

Novosibirsk, Director of the Computer Laboratory there, first 

in Baden and then in Leningrad, about the methods developed by 

him and used in his Institute in Novosibirsk. These methods 

are directed towards shortcuts in the computing procedures that 

take advantage of the bilinear character of the equation system. 

After that I had the privilege of having further discussions 

with other meteorologists on the extent to which equilibrium 

concepts are helpful in climate sensitivity problems. These 

discussions occurred first here at IIASA, at a conference at 

the end of April 1975, where Professor Hasselmann of a new 

institute in Hamburg was very informative in his remarks to 

me. He drew attention to models that have been made by a 



number of meteorologists in which the variables are themselves 

defined as averages over time or space. In such models one 

can expect stable equilibria to arise from the computations. 

On the contrary, in the more complex "general circulation models" 

in which variables are defined with reference to a fine grid of 

points in space and time, any equilibrium one finds is likely 

to be unstable, because the very equilibrium conditions preclude 

the important phenomena of turbulence, including large-scale 

turbulence such as cyclones, cold fronts - I am not sure of the 

correct terminology. Much of the transport of energy and of 

momentum takes place through such large scale turbulence and 

would be missed in a computed equilibrium. After that I had 

the privilege to speak successively with Professor Lorenz and 

with Professor Charney at MI?, who is with us. Professor Charney 

indicated that his research led him to expect additional uses 

for computation of equilibria, or in any case of closed orbits 

in the state space, even with reference to the finer grid of 

the general circulation models if I understood him right. If 

I did not he will undoubtedly correct me, but in any case I 

trust he will educate us in his ideas. 

I was delighted to hear on arrival here that we will have 

another field of application, that of chemistry, represented 

in the Workshop. We look forward to hearing from Professor 

Schuster about the applications of equilibria, closed orbits 

and other attractor sets in the study of biochemical evolution. 

I am struck by a contrast in the role of equilibrium and 

other dynamic concepts in the three fields of application, 



climate, ecology, chemistry, on the one hand, and in economics 

on the other. Certainly, in economic thought of the last fifty 

years in the countries with preponderantly market-oriented 

economies, the equilibrium concept received more attention than 

the systematic consideration of the dynamics of an approach to 

equilibrium. It is my impression that in climatology and in 

ecology the entire dynamics is in the center of attention, not 

the consideration of an equilibrium apart from the dynamics. 

Equilibria, closed orbits, stable or not, and the domains of 

attraction (the basins) in the state space from which the stable 

equilibria, orbits, or other attractor sets are approached, are 

all of interest. The central question I wish to address to the 

specialists in the various groups of application is the following: 

Does knowledge of equilibria, of the closed orbits and their 

stability properties provide a useful starting point for ex- 

ploring what you want to know about the dynamic structure? 

The mathematical terms I have been using without definition 

need careful spelling out and backing by theorems dealing with 

dynamic systems, theorems in differential topology and in 

ergodic theory. Professor Peter Walters has already indicated 

his work in this area. Our colleagues from the USSR, Professor 

Molchanov, Dr. Bazykin, and Dr. Penenko, use methods from this 

field, and Drs. Casti and GrUmrn from IIASA also represent these 

areas. 

With regard to methods of computation, the choice of algo- 

rithms, the IIASA approach is to start with the problem and to 

try out any method or combination of methods that has a chance 



of being useful. We are fortunate in having experts and 

practioners of various methods among our participants. In 

particular I want to mention the fixed point methods of cal- 

culating equilibria, that have come from economics. These 

methods use pivot steps similar to those used in mathematical 

programming, but they do not involve optimization. Also, once 

started up these algorithms are locked into a fully determined 

sequence of pivot steps without the choice of a "change of 

basis" frequent in mathematical programming. Herbert Scarf, 

who is with us, is the originator of these methods. They were 

then developed further by Hansen, also with us, and by Harold 

Kuhn at Princeton, Curtis Eaves at Stanford, and other people, 

mostly in the U.S. and mostly coming from applied mathematics 

rather than from economics. There are also other methods that 

we want to compare or combine with the fixed point methods. 

Steve Robinson is our expert here on Newton methods, which 

have a long history, and Juncosa on extrapolation methods. 

Grtimm, Casti, Walters, and Taranco represent mathematical 

systems theory, systems of differential equations of the types 

that arise in these various applications. 

I propose that we use the time today and tomorrow morning 

for making brief statements to each other from the points of 

view of the various specialties, to open up the dialogue. 



Dynamic and Equilibrium Problems in Climatology 

Charney: I am not the best qualified person to talk about the 

problems of equilibria, stability and limit cycles in meteorology. 

My colleague at M.I.T., Prof. Lorenz, who was invited but was 

unfortunately unable to come, has done pioneering work in this 

field and would have been the more appropriate person. I hope 

to present some of his ideas during the workshop, but for this 

introductory talk I will present a point of view toward calcu- 

lating climate which is not unrelated to his and which does 

involve the calculation of fixed points and limit cycles in a 

phase space. 

Let me state the climatological problem as I see it. The 

earth is a spinning globe with an atmosphere and oceans whose 

circulations are driven by solar energy. The rotation of the 

earth with respect to the sun produces diurnal and semi-diurnal 

thermal tides in the atmosphere, but, since the radiative time 

constants are long, these tides are negligible, and if the sur- 

face properties of the earth were symmetric about its axis of 

rotation, solar heating would produce an axisymmetric circulation. 

Because of the earth's rotation and the tendency for conservation 

of angular momentum this circulation would appear as primarily 

zonal (east-west) with weak meridional (north-south) components. 

But such a circulation would never be observed, except perhaps 

in the tropics, because it would be unstable for wave-like pertur- 

bations propagating zonally eastward whose wave-lengths and 

periods would not be unlike those of the great waves and vortices 



observed in the middle and upper troposphere. In the actual 

atmosphere the low-level motions are strongly influenced by the 

thermal and topographic inhomogeneities of the earth's surface 

and appear as the quasi-permanent high and low pressure areas 

of the surface weather map. The upper flow is more nearly zonal, 

but I have shown that this flow is unstable for one or more 

characteristic modes (Charney, 1947), and more recently Lorenz 

(1 972) and Gill (1 974) have shown that such modes, when they 

grow to finite amplitude, become unstable themselves, so that 

the final state of the atmosphere resembles more a fully tur- 

bulent flow than a uniformly progressing wave superimposed on 

a symmetric zonal flow. When one considers also the small- 

scale, mechanically and thermally driven, turbulence of the 

surface boundary-layer, it is found that the flow is turbulent 

over some nine or ten decades of scale, ranging from millimeters 

to thousands of kilometers. Fortunately for high-speed compu- 

tation, the rotational constraints concentrate the energies in 

the larger sides, and the kinetic energy per unit horizontal 

wave-number, K, falls off like K - ~  rather than, for example, 

like K -5'3 as predicted by Kolomogoroff for turbulence in the 

so-called inertial subrange. Because of this rapid decrease of 

energy with decreasing scale, the bulk of the atmosphere's 

energy is at wave-lengths greater than 1000km and at periods 

greater than one day. 

But even when the energy remains primarily at large scales, 

the system remains intrinsically unstable; the motion is not 

described by stable periodic orbits in a representative phase 



space; and if the initial point in the space is perturbed 

slightly, as by observational error, the resultant path will 

deviate unstably from the unperturbed path until eventually the 

perturbed and unperturbed states of the system will differ by 

as much as two states taken at random. Thus, in principle, the 

error in a deterministic prediction must grow until after a 

time there is no predictability left. Numerical experiments 

indicate that this time is of the order of two weeks to a month 

for the largest atmospheric scales and is smaller for smaller 

scales. 

What can be said of climate as a statistical ensemble of 

such motions? Or of climatic change? Lorenz (1  968) has dis- 

cussed the various possibilities which might exist if the at- 

mosphere-ocean system were driven by a constantly radiating 

sun and the conditions at the surface of the solid earth were 

constant. It is not obvious that there would be any climate 

at all; that is, the statistical moments of the atmospheric 

time-series from time tl to time t2 might not approach a limit 

as t2 - t approaches infinity. Or if there is a climate for 1 

t2 + m, it might depend on the configuration of the system at 

the initial time t l ,  i.e., the system might be intransitive, 

with the path spaces associated with different initial points 

in the phase space being disconnected. It is possible to con- 

struct highly simplified laboratory or numerical systems with 

strong symmetries which exhibit such intransitivity, but I 

shall assume that sufficiently strong random forcing always 

exists in the asymmetric flow to prevent such intransitivity 

and ask how one may calculate the climate. 



One way is to calculate long time series of solutions of 

the equations of motion numerically for the atmosphere-ocean 

system (perhaps also taking into account the dynamics of polar 

ice) or to play Monte Carlo games with ensembles of shorter 

period solutions. But this, while perhaps ultimately the only 

way, is extremely expensive in computer time and not particularly 

conducive to the discovery of causal relations. Let us there- 

fore consider climatic models which permit the direct calculation 

of climate without explicitly calculating time series or ensembles 

of transient flow. 

The simplest of these is the spherically symmetric, "astro- 

physical" model in which horizontal asymmetries are ignored and 

only radiative-convective effects are taken into account. Such 

models are useful for estimating the vertical temperature 

structure and how it might vary with changes in gaseous or par- 

ticulate constituents such as C02, 0 and volcanic dust. An- 
3 

other type of one-dimensional model is obtained by considering 

vertically and longitudinally averaged quantities varying only 

with latitude. The basic dependent variable is temperature, 

and all quantities such as horizontal heat transport, cloud, 

ice-cover and albedo are determined from it. Such models often 

exhibit two equilibrium states, corresponding to glacial and 

interglacial climates, and sometimes a catastrophic third state 

in which all the earth is covered with ice. They are useful 

in focusing attention on all three components of the atmosphere- 

hydrosphere-cryosphere system, and lead to interesting specu- 

lations, such as Budyko's, on the possibility of the existence 



of  a  s t a b l e  i ce - f ree  o r  ice-covered Arc t i c  bas in ,  bu t  they f a i l  

t o  t a k e  i n t o  account so  many e s s e n t i a l  phys ica l  p rocesses t h a t  

t h e i r  va lue is only t o  suggest  what must be considered i n  more 

complete models. 

The next  i n  order  of s i m p l i c i t y  i s  t h e  two-dimensional 

model i n  which q u a n t i t i t e s  a r e  averaged l o n g i t u d i n a l l y  b u t  

al lowed t o  vary l a t i t u d i n a l l y  and v e r t i c a l l y .  Le t  us  assume 

t h a t  t h e  p r o p e r t i e s  of t h e  e a r t h ' s  s u r f a c e  a r e  axisymmetric. 

Then a  s u f f i c i e n t l y  low s o l a r  hea t ing  w i l l  produce an axisymmetric 

vo r tex ,  bu t  w i th  l a r g e r  hea t ing  t h e  vo r tex  w i l l  become uns tab le  

and break down i n t o  asymmetric waves propagat ing zonal ly .  These 

waves w i l l  appear a s  s t a t i o n a r y  f lows i n  a  coord ina te  system 

moving wi th t h e  phase speed o r  a s  pe r iod ic  motions i n  which 

both phase and ampli tude f l u c t u a t e ,  i . e . ,  a s  s t a b l e  l i m i t  c y c l e s  

i n  a  phase space. Fur ther  i nc reases  i n  t h e  s o l a r  heat ing  w i l l  

cause t h e  t r a n s l a t i n g  o r  pe r iod ic  f lows t o  become uns tab le  them- 

s e l v e s  and appear a s  t r u l y  aper iod ic  motions, i . e . ,  a s  tu rbu lence.  

A l l  t h e  evidence i n d i c a t e s  t h a t  it i s  t h e  l a t t e r  c l a s s  of f lows 

we have t o  d e a l  with. For a  hea t ing  parameter, p, which i s  

only moderately g r e a t e r  than i t s  va lue ,  pc, f o r  i n s t a b i l i t y ,  

one may es t ima te  t h e  e f f e c t  of  t h e  p e r t u r b a t i o n  i n  powers of  

p - p .  To f i r s t  o rde r  t h i s  i s  equ iva len t  t o  so lv ing  f o r  t h e  

c h a r a c t e r i s t i c  pe r tu rba t ion  modes of t h e  uns tab le  f low, a l lowing 

them t o  i n t e r a c t  w i th  t h e  mean flow b u t  n o t  wi th themselves, 

and determining ampli tudes and i n t e r a c t i o n  c o e f f i c i e n t s  from 

a second-order energy c l o s u r e  cond i t i on .  This was f i r s t  done 

f o r  simple heat ing  and geometry by Charney (1959 )  and more 



complete ly  by Lorenz (1963) us ing  t runca ted  f u n c t i o n a l  expansions.  

Fu r the r  ex tens ions  were made by Pedlosky (1972) and Stone (1973).  

The l o g i c a l  ex tens ion  of t h e s e  i d e a s  t o  t h e  h igh l y  asymmetric 

atmosphere-ocean system invo lves  t h e  c a l c u l a t i o n  of t h e  uns tab le ,  

three-d imensional ,  s t a t i o n a r y  f low. H e r e  one has  n o t  t h e  c r i -  

t e r i o n  of axisymmetry t o  d i s t i n g u i s h  t h e  s t a t i o n a r y  from t h e  

non-s ta t ionary  f low,  Nor, s i n c e  t h e  s t a t i o n a r y  f low,  i f  it 

e x i s t s ,  is u n s t a b l e ,  is it p o s s i b l e  t o  c a l c u l a t e  it, a s  i n  t h e  

symmetric case ,  a s  t h e  asymptot ic  t i m e  l i m i t  of  a  d i s s i p a t i v e ,  

non-s ta t ionary  f low. I n  an unpubl ished work, Mi l ton Halem and 

I have c a l c u l a t e d  a  s t a t i o n a r y  Hadley c i r c u l a t i o n  by Newton's 

method, b u t  t h i s  method appears  t o  be t o o  compl icated and t i m e -  

consuming t o  apply t o  t h r e e  d imensional  f lows. Not long ago 

I suggested t o  Eugenia Rivas,  a  former s t u d e n t  and now an M.I.T. 

co l l eague ,  t h a t  perhaps a  f a l s e  t ime-var iab le  p rocess  having 

t h e  e f f e c t  o f  r a p i d l y  damping t r a n s i e n t  f lows could be found 

t h a t  would converge t o  an u n s t a b l e  s t a t i o n a r y  f low. She has  

found such a  method, and it appears  t o  have q u i t e  genera l  

a p p l i c a b i l i t y .  She has  been k ind enough t o  supply t h e  workshop 

a  d r a f t  d e s c r i p t i o n  of  t h i s  method, t o g e t h e r  w i th  some examples 

of  i ts a p p l i c a t i o n .  I n  p a r t i c u l a r  s h e  has  a p p l i e d  it t o  an un- 

s t a b l e  two-dimensional channel  f low and has  shown t h a t  it does 

i n  f a c t  y i e l d  t h e  s t a t i o n a r y  s o l u t i o n .  

On t h e  assumption t h a t  some method such a s  S c a r f ' s  of  Rivas '  

w i l l  permi t  t h e  c a l c u l a t i o n  of  t h e  uns tab le  s t a t i o n a r y  f low a s  

a  f u n c t i o n  o f  a  parameter  u ,  t h e  nex t  s t e p  w i l l  be t o  c a l c u l a t e  

t h e  p e r i o d i c  ( l i m i t  c y c l e )  p e r t u r b a t i o n s  made f o r  smal l  u - uc.  



For s u f f i c i e n t l y  l a r g e  u - pc one might suppose t h a t  t h e  l i m i t  

c y c l e s  themselves become u n s t a b l e  and approach something re-  

sembling fu l ly-developed tu rbu lence .  A t  t h i s  s t a g e ,  I make 

t h e ,  perhaps n a i v e ,  c o n j e c t u r e  t h a t  t h e  average va lues  and 

s t a t i s t i c a l  moments de r i ved  from t h e  u n s t a b l e  l i m i t  c y c l e s  w i l l  

c o n s t i t u t e  a good approximat ion t o  t h o s e  of  t h e  a c t u a l  t u r b u l e n t  

f low.*  I n  meteoro log ica l  t e r m s ,  I sugges t  t h a t  a c a l c u l a t i o n  

which r e p r e s e n t s  t h e  index-cyc le f l u c t u a t i o n  between smal l  and 

l a r g e  ampl i tude wave-vortex regimes a s  e x a c t l y  p e r i o d i c ,  r a t h e r  

t han  merely r e c u r r e n t ,  would c a p t u r e  much o f  t h e  c l ima te .  Th is  

remains t o  be  seen,  bu t  any method which avo ids  having t o  c a l -  

c u l a t e  t h e  weather  day-by-day f o r  y e a r s ,  i f  no t  f o r  c e n t u r i e s  

( i n  view of t h e  long t i m e  c o n s t a n t s  of t h e  o c e a n s ) ,  would seem 

t o  m e r i t  s e r i o u s  cons ide ra t i on .  

*This appears  t o  be  t h e  c a s e  f o r  t h e  s imp le  model d i scussed  
by Lorenz (1963).  
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Computational Aspects of the Modeling of Atmospheric 

Dynamics and Estimates of the Influence of Different Factors 

V.V. Penenko 

Abstract of Presentation 

A method of construction of discrete models of dynamic 

atmospheric processes employing calculative variation technique 

is considered. 

The main statement of the method is illustrated by an 

example of a dynamics atmospheric model on the foundation of 

primative hydrothermodynamics equations in diabatic approximation 

in an isobaric coordinate system on the sphere. 

The computational algorithm is based on the splitting-up 

method which is used in two aspects: 

a) splitting with respect to the physical process; 

b) splitting with respect to the independent variables. 

From the point of computations this method allows us to 

construct economical and stable algorithms. 

The elements of perturbation theory are discussed for 

problems of the investigated class. Formulas are obtained for 

functional variation computations in connection with input 

parameter variations of the model. The construction algorithm 

of the perturbation theory formulas uses the solution of the 

adjoint problem of hydrothermodynamics. 

The major steps of the numerical experiment related to 

modelling physical processes in the atmosphere and evaluation 



of different factors incorporated in mathematical models on 

the dynamics of the modelling processes are presented. The 

general principles of the design of computational algorithms 

and the programs for the computer in solving problems of 

mathematical atmospheric modelling are discussed. 



OPENING PLEYARY SESSION, SCHLOSS, JULY 21, PN 

Methodological Problems in the Modeling and 

Analysis of Ecological Systems 

C. Walters: I would like to give you an overview of basic 

ecological modeling and analysis problems by discussing three 

things. First, I will try to explain the general subject 

matter. This is a different perspective from that of many 

here, and we will almost certainly fail to understand each 

other if you imagine us to be, say, economists with an interest 

in animals. Second, I will review those structural character- 

istics of ecological systems which have made their analysis 

particularly difficult. We like to think that it is a least 

in part these difficulties which have kept us rather behind 

the rest of you in a number of methods-related areas. Finally, 

I'll give a brief picture of the kinds of dynamic and stability 

behavior which we encounter in real and model ecological 

systems, using as examples cases presently under investigation 

at IIASA and available for study at this workshop. 

I. An Ecological Perspective 

As you look out over a forest or field or lake or what- 

ever, you will see a system of interacting plants and animals. 

In its broadest sense ecology is a science attempting to 

understand how these interactions are structured, how spatial 

and temporal patterns of species distribution are influenced 

by these interactions, why some creatures persist while others 



die out, and so on. The interactions and resulting dynamics 

which concern us are highly complicated and subtle, but tend 

to exhibit a fairly strong hierarchical structuring. At the 

level of most immediate reference to this workshop, the hier- 

archy can be viewed as one of the "eaters" and the "eaten" 

(i.e. of predators and prey). Further, the hierarchy is given 

a directional component by the fact that energy enters the 

system only at the lowest level of the hierarchy (plants), 

and flows through it (dynamically) from level to level in a 

manner determined by the inter-animal interactions I referred 

to earlier (Figure 1). (1 )  

Some interesting and essential work has been done on 

dynamics and stability properties related to the structure 

of the hierarchy(2). Most of the interesting analysis of 

ecological stability properties, however, has concerned it- 

self with the structure and behavioral properties of the prey- 

predator and competitor-competitor interactions per s, largely 

extxactedfrom their larger hierarchical settings. Of course, 

this isn't to say that the larger picture is unimportant, but 

rather to observe that brute force attempts to tackle the 

hierarchy en masse have been largely confusing, unproductive 

and crippling in terms of our analytical capabilities. With 

this in mind, I'll turn now to a description of the general 

structural properties underlying the interactions of the 

hierarchy, couching my presentation largely in terms of the 

( 3 )  prey-predator interactions . 



11. Structural Characteristics of~cological Interactions 

Without pretending to a comprehension or detailed analysis, 

I'd like to note several fundamental properties of ecological 

systems which have caused us problems in their modeling and 

analysis. 

(A) Nonlinearity: Ecological processes are essentially 

nonlinear in nature. At a fundamental level this is often due 

to the existence of saturation phenomena--an animal's rate of 

feeding will increase with available food concentration only 

until the animal is spending all his time feeding; higher 

survival rates of a parental generation will increase 

production of young only until all breeding sites are taken; 

and so on. Additionally, many biological processes-not only 

ecological ones-function "optimally" only under a narrow range of 

conditions of temperature, water availability, etc., with 

process rates dropping off in nonlinear ways on either side 

of the optimum. Although local linearization sometimes con- 

stitutes a useful approximation of system behavior over a 

specified range of conditions, it cannot be justified in 

( 4  general . 
(B) Thresholds: Ecological interactions are largely thresh- 

old phenomena. They switch on and off in an essentially dis- 

continuous manner, with dramatic effects on system behavior. 

Hibernation is the most obvious example. Minimum food densities 

necessary to stimulate feeding response are another. 

(C) Stochastic effects: Many ecological interactions are 

essentially stochastic. Colonization, low density breeding, 

prediction search success, and such pertain here. From another 



persepctive, the paramters of population interactions are 

distributed, even if those of individual interactions are 

assumed to be unique values. We know from experience that 

it is the tails of these parameter distributions which largely 

determine the long term success of populations, and one is 

invariably led into stochastic modeling in an effort to deal 

with them effectively. Finally, the environment within which 

ecological interactions occur provides important random inputs 

of such factors as weather, food supply, and so on. How far 

we can get through deterministic modeling of these essentially 

stochastic processes remains to be seen. 

(D) Discrete time: The threshold problem alluded to 

earlier appears under a slightly different guise in the dis- 

crete time nature of ecological processes. Biological organisms 

are generally not continuous systems. They come in integral 

units of organisms, exhibitperiods of feeding, of reproduction, 

of quiesence, of dispersal which are discrete and not inter- 

changeable. Some progress has been made through use of con- 

tinuous system (differential equation) approximations which 

treat populations as pools of biomass or energy, hut these 

approaches are approximations and their results must be inter- 

preted with this in mind. Several of the stability analysis 

properties related to this discrete time nature of ecological 

processes will be shown in Dr. Jones' talk later on (5) 

(El Spatial heterogeneity: The ecological world is full 

of situations in which an interaction occuring at a given place 

and time effects interaction at other places only as a non- 

trivial function of time and location. In a sense, this is 

very much like the spatial problem discussed by Dr. Charney 



in the climatological context. In ecology, however, the prob- 

lem is complicated by the existance of a variety of poorly 

understood dispersal (or "diffusion") mechanisms, many of which 

exhibit the stochastic, discontinuous, nonlinear properties 

referred to above. Some work in biological oceanography has 

applied differential equation models of diffusion and turbu- 

lance, drawn from the fluid dynamics literature, to spatial 

dispersal problems in simple ecosystems(6). In more complex 

cases governed by biological rather than physical diffusion 

rules, the only workable approach has been to perform numerical 

simulations on a model with explicit physical grid structure. 

I will describe one such study later on, but the obvious dis- 

advantage is the lack of generality inherent in the brute force 

approach. Nonetheless, there is no conceivable ecological 

problem in which the spatial component is not an essential one 

in the determination of stability properties and dynamic 

behavior. 

(F) Evolving parameter structure: The ultimate problem 

for ecological modeling ana analysis is that the so called 

parameters of our systems are, for the most part, actually 

dynamic ("control") variables which the process of natural 

selection is inexorably pushing towards local system "optima". 

I won't go any further into this for the moment, except to 

call your attention to the fact that even where we can identify 

dynamic and/or stability properties of an ecological system 

(or model), these must be viewed as in some sense transients. 

The subsequent inquiry into the parametric and even structural 

sensitivity of the solutions is carried out not merely to see 



what would happen if we got the measures wrong, but more 

importantly to see what we expect the system to be doing next. 

111. Dynamics and Stability Behavior of some Ecological Systems 

Let me now say a few words about the behavior of prey- 

predator systems. If we examine the state space representation 

of such a system, the most common case for simple experiments 

and models is that of Figure 2a. Here, from all starting 

points including some predators, the predator eats all the Prey 

and then itself starves to death. Twotrivial equilibria, 

unstable to positive perturbations, exist for the zero 

predator and zero predator-prey cases, respectively. Under 

different values of model parameters, and in imperfectly mixed 

experimental systems we get the globally stable limit cycles 

of Figure 2b. An additional range of parameter values yields 

Figure 2c's globally stable equilibrium, a situation which I 

may add, seems to be extremely rare in natural ecological 

systems. Finally, it is possible in slightly more complicated 

models to get multiple equilibria of the sort shown in Figure 2d. 

(Of course, a variety of cases are possible; one of the most 

interesting in an ecological sense is shown). These multiple 

equilbria cases arise as a result of a variety of ecological 

phenomena such as depensatory mortality, predator learning, 

or even simple minimum densities below which one or both of 

the species fail to reproduce. This last situation is shown 

for the discrete generation case in Figure 3. Note that the 

very small X zone is 'reflected' in a much larger portion min 

of state space, points in which have the property of describing 



t r a j e c t o r i e s  which e n t e r  t h e  Xmin r e g i o n .  Note a l s o  t h a t  t h e  

d i s c r e t e  n a t u r e  of t h e  prey-predator  i n t e r a c t i o n s  a l l ows  

' t r a j e c t o r i e s "  t o  jump ove r  t h e  c e n t r a l  s t a b i l i t y  reg ion .  You 

w i l l  f i n d  such systems desc r i bed  i n  more d e t a i l  i n  t h e  working 

(7) paper  d e s t r i b u t e d  by Dixon Jones  . 

A s  a l a s t  example, I ' d  l i k e  t o  t a l k  about  a r e a l  system 

we've s t u d i e d  i n  which t h e  s p a t i a l  h e t e r o g e n e i t i e s  r e f e r r e d  

t o  e a r l i e r  p l a y  an  impor tan t  r o l e .  

The system c o n s i s t s  of t h e  c o n i f e r  f o r e s t s  o f  e a s t e r n  

North America and an i nsec t - - t he  sp ruce  budworm--which p e r i o d i -  

c a l l y  undergoes tremendous epidemic ou tb reaks  and d e f o l i a t e s  

t h e  f o r e s t .  I n  a smal l  area--say a coup le  of a c r e s  of t r ees - -  

t h e  t ime behav io r  o f  t h e  budworm i s  a s  shown i n  F igu re  4. 

This  i s  analogous t o  t h e  prey-predator  system I d iscussed  

e a r l i e r :  t h e  budworm goes a long f o r  a t ime a t  v e r y  low d e n s i t i e s ,  

suddenly  i n c r e a s e s  i ts  d e n s i t y  ove r  5 o r d e r s  of magni tude,  

e a t s  a l l  t h e  t r e e s ,  and then  a lmost  d i s a p p e a r s  a s  a r e s u l t  o f  

s t a r v a t i o n .  I t  t a k e s  35 y e a r s  o r  s o  u n t i l  t h e  f o r e s t  has  

recovered  enough t o  suppor t  an a d d i t i o n a l  ou tbreak .  

I f  we look over  t h e  whole o f  e a s t e r n  North America, however, 

t h e  system is  much l e s s  "peaky" ,  look ing  more l i k e  F igu re  5.  

Somewhere i n  t h i s  r e g i o n ,  t h e r e  i s  almost  always a l o c a l  ou t -  

break i n  p rog ress ,  w i t h  t h e  r e s u l t  t h a t  t h e  average d e n s i t y  of  

budworm i s  much more c o n s t a n t .  What i s  r e a l l y  hapenning appears  

n e i t h e r  i n  F i g u r e s  4 nor  5, b u t  r a t h e r  i n  a p h y s i c a l  map o f  

e a s t e r n  North America i n  which we t r a c e  t h e  temporal  spread 

o f  ou tb reaks .  These t u r n  o u t  t o  be a wave o r  " r i p p l e "  phenomena, 

a k i n  t o  t h a t  produced by dropping a s t o n e  i n  a l a k e .  The wave 



of the outbreak passess outward from its point of origin 

(Figure 6) giving local effects such as those shown in Figure 4 

and the global ones shown in Figure 5. Restart of the cycle 

may occur by insects dispensing from the y=40 wave front back 

to the area devestated in y=O, and now recovered sufficiently 

to support a new outbreak. The process is, therefore, one 

which in any small (local) interaction can be described by a 

stable limit cycle of high amplitude in foliage-budworm space. 

These small areas are connected by dispensal of insects which 

leads to the large scale almost constant ("equilibrium"?) 

behavior of Figure 5. The very concept of "stability" seems 

a spatial one ... But our management interest here is 

precisely one of controling or influencing the local "peaky- 

ness" of the system, trying to spread the inevitable budworm 

damage over longer periods so that the acute free mortality 

caused by the outbreaks is reduced. We are trying to find 

a way to break up the waves of Figure 6, perhaps by reducing 

the amplitude of ~ h e  cycle in Figure 4b. We would be very 

interested to know, for instance, whether there exists (even 

in a mathematical sense) a nontrivial stable equilibrium to 

the system at both the local and regional spatial level. At 

present, the very high dimensionality of the spatial system 

makes grid search techniques for such stable points hopelessly 

inefficient. We wonder if any of the compuational methods 

known to you people can help us. And we're equally interested 

in getting some comments from the other applied people here on 

what seem to be useful conceptualizations of such concepts 

as "stability", "equilibrium", "periodicity", in such cases 



a s  t h i s .  W e  j u s t  d o n ' t  have a  u s e f u l  way of  even t a l k i n g  

about  t h e s e  problems a t  p r e s e n t .  And w i t h  t h a t  r a t h e r  f o r e -  

l o r n  p l e a ,  I guess  I ' l l  s t o p  (.8)(9) 

CARNIVORE -EATERS 
( BIGGER CARNIVORES, 
PARASITES) 

INTERACTIONS HERBIVORE - EATERS 
(CARNIVORES) 

-PLANT- EATERS 
( HERBIVORES 

+PLANTS 

SUNLIGHT 

E N E R G Y  

F i g u r e  1: H i e r a r c h i c a l  n a t u r e  of e c o l o g i c a l  systems.  

Note t h a t  t h e  f i g u r e  i s  h i g h l y  o v e r s i m p l i f i e d  i n  t h a t  

among o t h e r  t h i n g s ,  r e a l  systems a r e  l e s s  s t r i c t l y  h i e r -  

a r c h i c a l ,  a r e  no t  f i x e d  i n  t h e i r  i n t e r a c t i o n  p a t t e r n s ,  

and i n c l u d e  r e c y c l i n g  ( o r  decomposer) l i n k s  from a l l  

l e v e l s  back i n t o  t h e  bottom one o r  two. Note a l s o  t h a t  

impo r tan t  compe t i t o r  i n t e r a c t i o n s  w i t h i n  h i e r a r c h y  l e v e l s  

(1) a r e  n o t  shown . 
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Figure 3: Multiple equilibria, caused by minimum density 
Xmin below which predators fai l  to reproduce. 
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Figure 4a: Local time pattern of budworm densities. 
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Figure 4b: State space pattern of local budworm-free 
interactions. 



F igu re  5a: Large s c a l e  t ime p a t t e r n  of budworm 3 e n s i t i e s .  
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F i g u r e  5b: S t a t e  space p a t t e r n  o f  l a r g e - s c a l e  ave rage  
i n t e r a c t i o n s  (an a p p a r e n t l y  s m a l l e r  s t a b l e  
l i m i t  c y c l e ) .  
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F igu re  6: Phys ica l  l o c a t i o n  of budworm outbreak i n  Eas te rn  
North America, by year .  
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Fixed Point Methods 

H.E. Scarf 

Fixed point methods have been devised to solve the general 

systems of equations and inequalities arising in the study of 

economic equilibria. The methods are completely global, making 

no assumptions concerning a linear approximation to the system 

in the neighborhood of an equilibrium nor requiring a good 

initial estimate of the solution as lIewtonls method does. One 

of the purposes of the present workshop has been to explore 

the possibility that these methods may be applied in a variety 

of other fields such as ecology, the study of chemical equi- 

libria and climatology. 

In order to apply fixed point methods it is customary 

to transform the underlying problem into one requiring the 

numerical determination of a fixed point of some continuous 

mapping of a closed, bounded convex set into itself. Let us 

consider an example in which the simplex ' 

mapped into itself by the continuous map (x1,x2,x3) + 

+ (fl(x), f2(xl, f3(x)) with fi(x) - > 0, and fi(x)ll. We 

i=l 

begin by constructing a simplicia1 subdivision of the simplex, 

with vertices {v7I. 



Each vertex vJ of the simplicia1 subdivision is given 

an integer label 1 (vJ) contained in the set (1,2,3) , and 

according to the following rules. 

1. If vJ has a zero coordinate it is given the label 

corresponding to that coordinate (if several coordinates are 

zero some specific rule is required, such as selecting the 

first zero coordinate for the label). 

2. If all the coordinates of vJ are positive the label 

is selected as one of the coordinates i, for which 

It is clear that a simplex in the subdivision all of 

whose labels are distinct,forms an approximation to a fixed 

point of the mapping, with the degree of the approximation 

dependant upon the fineness of the subdivision. An algorithm 



for the determination of such a simplex (which is far less 

efficient than several recently developed variations) may 

briefly be described as follows. Begin the algorithm at the 

shaded simplex whose vertices are v4 ,v5 and v6. According to 

4 5 
our rules j(v ) = 2, and a(v ) = 3. If j(v6) = 1 the 

problem is over. Okherwise we move to the adjacent simplox 

obtained by removing that vertex whose label agrees with 

6 4 
l(v ) , say v . In the triangle (v5,v6,v7) we again check 

to see if all labels are distinct. If not, we move to the 

adjacent simplex determined I& removing that vertex whose 

7 label agrees with 1 (v ) . 
It may be shown that such a process never cycles, never 

attempts to leave the large simplex, and must therefore termi- 

nate in a finite number of iterations with a desired answer. 

Extensive computational experience seems to indicate that the 

number of iterations--and therefore the number of function 

evaluations--is proportional to thefineness of the grid, and 

to the square of the dimension of the problem. The method is 

therefore quite suitable for problems ranging up to say n = 20. 

A number of modifications have been made in the basic 

method which permit us to start with an arbitrary guess of the 

solution rather than at a vertex of the large simplex. More 

importantly it is quite easy to revise the method so that the 

grid size is continuously decreasing rather than being pre- 

scribed in advance. These improvements have permitted us to 

solve problems in as many as S O  variablzs in relatively short 

periods of time with an accuracy of 10 decimal phaces. Moreover, 



there is both mathematical and computational evidence to suggest 

that the final stages of the algorithm--with a very fine grid--are 

virtually identical with ~ewton's method, even though the 

entire algorithm is global in character. 
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Desc r ip t i on  o f  F ixed P o i n t  A lgor i thms 

T e r j e  Hansen 

Le t  u s  cons ide r  t h e  fo l low ing  cont inuous  mapping of t h e  

u n i t  s implex i n t o  i t s e l f  

f o r  a l l  i , X x i = l  , X y i = l  . 
i i 

A f i x e d  p o i n t  of  t h e  mapping i s  a  s o l u t i o n  t o  t h e  system of 

equa t i ons  

1 n  The f i x e d  p o i n t  a lgo r i t hms  y i e l d  n  v e c t o r s  x  ,..., x  such t h a t  

and 

f o r  a l l  i, j and k ,  where D i s  a  l a r g e  p o s i t i v e  i n t e g e r .  The 

number o f  i t e r a t i o n s  requ i red  f o r  t h e  a lgo r i t hms  t o  t e r m i n a t e  

t y p i c a l l y  i n c r e a s e s  w i t h  n  and D. 



The original fixed point algorithm due to Scarf and Hansen 

requires the degree of accuracy to be specified in advance. For 

this algorithm the expected number of iterations for a specific 

class of problems tended to increase approximately according 

to the following formula : 

Number of iterations required = cl . D - nL 

where cl is a constant. The table below which results from 

applying the algorithm to problems from the same general class 

depicts this relationship. 

Number of iterations required for 

the algorithm to terminate 

Later versions of the fixed point algorithms due to Eaves 

and Merril permit a continuous refinement of accuracy. These 

algorithms are much more efficient than the original one pro- 

posed by Scarf and Hansen. The same kind of experiment as the 



one cited above has not been done with Eaves' and Merrill's 

algorithms. On the basis of a variety of examples and general 

insight as to the behavior of these algorithms it seems reason- 

able to conjecture the following approximate relationship be- 

tween the expected number of iterations and D and N: 

Number of iterations required = c2 log D n2 . 

The following table depicts the relationship between the number 

of iterations and n in 5 applications of Eaves algorithm. 

Number of iterations required for 

the algorithm to terminate. D = 1024 

Number of iterations 

3 5 

144 

3 4 0 

546 

Let us conclude by saying that the amount of computation 

required at each iteration is essentially equivalent to evaluating 

the functions fi(xl, ... ,x ) ,  (i = l,.. .n) . n 



An Outline of Structural Stability Theory 

Peter Walters 

This is a description of some results on structural stability 

of differential equations that may be useful to people at this 

workshop. 

Let M be a Cm manifold of dimension n. This means M is a 

separable connected topological space which is covered by a 

family of open sets with the following properties: for each such 

open set U there is a homeomorphism a mapping U onto an open sub- 

set 

(Such a pair (U,a) is called a chart) and if (U,a) and (V,B) 

are charts so that UnV f I$ then the map 

has partial derivatives of all orders. So a manifold is a 

space on which we can do differential calculus in a consistent 

n way. Simple examples are R , spheres, tori, and open subsets 

of R". 



A cr vector field (or differential equation) on M is an 

assignment of a tangent vector v(x) at each point x of M in such 

r 
a way that they vary smoothly in a C sense. 

Rigorously: Let T M be the collection of all tangent vectors 
X 

at x. This is a vector space. Let TM be the collection of all 

tangent vectors to M. TM can be made into a Cm manifold using 

charts obtained naturally from those on M. If (U,a) is a chart 

on M let (TU,Ta) be the corresponding chart on TM. Define 

T : TPI + M by assigning to a tangent vector the point x of M 

r 
where it is tangent. Then a C vector field is a C map 

v : M + TM so that .rrov(x) = x for all X E M .  The expression for 

a vector field in charts is x' = f(x). So a vector field is a 

first order autonomous differential equation on M. 
r 

Let y r ( ~ )  denote the collection of all C vector fields 

on M. Y'(M) is a vector space. 



If M is a decent manifold, for example compact, then each 
r 

veq(M) generates a flow, i.e. there exists a C map $t : RxM -+ M 

such that for each x the curve t -+ $(t,x) is the solution curve 

of v which passes through x at time 0. Let $t : M -+ M denote 

the map $I~(x) = $(t,x). Then ( J ~ ( x )  is the point the system comes 

to after flowing for time t from the point x.  We have 

$O = identity and $t+s - - $td$s- We usually denote the flow by 

{$I~}. (In fact if M is a complete Riemannian manifold and v 

is bounded then a flow exists for v.) 

So we can consider the orbit diagram or phase portrait of 

v. This is the diagram of solution curves on M. 

We want to say a vector field v is structurally stable if 

nearby vector fields have similar phase portraits. We must 

explain "nearby" and "similar phase portraits" but first we 

mention some motivation for the concept of structural stability. 

Suppose we do some experiments and decide from them that a 

system satisfies a certain differential equation. This may not 

be the correct differential equation because of experimental 

error but if the correct differential equation is structurally 

stable and if experimental error is small, then the two equations 

will have "similar" phase portraits and hence the same qualitative 

behavior. 

Let me try to explain what is meant by "similar phase portraits". 

If two vector fields v, w have similar phase portraits then we 

would like them to have the same number of equilibrium points, 

the same number of periodic orbits and have the same general 

qualitative behavior. This definition captures these features: 



Two vector fields, v, w one topologically conjugate if 

there is a homeomorphism h of M mapping directed solution comes 

of v on to directed solution curves of w. 

Note, that if xo is an equilibrium point of v, then h(xo) 

is an equilibrium point of w, and the image of a closed orbit 

of v is a closed orbit of w. 

We now explain "nearby vector fields" by putting a topology 

onV1(M). We say v and w are close if they are pointwise close 

and so are their first derivatives. (We do this rigorously when 

M is compact. Choose a finite cover of M by charts (Ui,ai) k . 
i= 1 

We can then choose an open cover V1,  ..., Vk of M so that V . ~ U  
1 i 

for each i. Let (TUi,Tai) k be the corresponding charts for TM. 
i=l 2 n Tai maps TU to an open subset of R . Then i 

r is a C map from an open subset of Rn. Let 

D (~a~ovoa-' i ) (y) EL (R" , R ~ ~ )  

denote its derivative at 



Put 

I v I l  =[.ax [.ax sup- I T ~ ~ O V Q ( I - ~ I ( Y ) I  I , 
1 <i<k i 
- - ycai (Vi) 

ycai (Vi) 

The sups exist as they are taken over compact sets (which is 

the reason for introducing the Vils). This is a norm which 

makes lyl (M) a separable Banach space. Then we say v and w are 

close if ( Iv - wl 1 is small. 

So the definition of structural stability is: 

A vector field v W ( M )  is structurally stable if there is 

a neighborhood N(v)  of v iny" ((M) every member of which is 

topologically conjugate to v. 

Let 

S. S. (M) = all the structurally stable vector fields on M . 

Then S. S. (M) is a non-empty open subset of YK' (M) . The main 

problem is: Find necessary and sufficient conditions for a 

vector field to be structurally stable. 

Examples. 

1. Simple harmonic oscillator. 



As a first order system this is 

The solutions are circles centered at the origin. 

This is not structurally stable because any vector field topo- 

logically conjugate to v has all its orbits periodic, and we 

can always tilt the arrows slightly towards the origin and obtain 

a nearby vector field with a non-periodic orbit. 

2. Van der Pol equation. 

This is one periodic orbit and every orbit outside it moves in 



towards it and every  o r b i t  i n s i d e  s p i r a l s  o u t  towards t h e  per-  

i o d i c  o r b i t .  Th is  equa t i on  is  s t r u c t u r a l l y  s t a b l e .  

3 .  When M is  compact and o f  dimension two, Andronov and 

Pont ryag in  ( f o r  t h e  2-sphere) and Pe ixo to  (gene ra l  c a s e )  have 

c l a s s i f i e d  S.S.(M), c o n s i d e r  t h e  fo l l ow ing  f o u r  c o n d i t i o n s :  

i) v  has  f i n i t e l y  many e q u i l i b r i u m  p o i n t s ,  each hyperbo l i c .  

(Hyperbol ic  means t h a t  t h e  d e r i v a t i v e  of t h e  map @ t  h a s  

no e igenva lues  o f  u n i t  modulus) ;  

ii) v  h a s  f i n i t e l y  many p e r i o d i c  o r b i t s ,  each hype rbo l i c .  

(A  p e r i o d i c  o r b i t  is hype rbo l i c  i f  t h e  Po incar6  f i r s t -  

r e t u r n  map has  a  hype rbo l i c  f i x e d  p o i n t ) ;  

iii) s t a b l e  and u n s t a b l e  man i fo lds  of e q u i l i b r i u m  p o i n t s  and 

p e r i o d i c  o r b i t s  meet t r a n s v e r s a l l y  when t h e y  i n t e r s e c t .  

(Th i s  means no tangency i s  a l lowed between s t a b l e  and 

u n s t a b l e  man i fo lds)  ; 

i v )  t h e  non-wandering p o i n t s  a r e  j u s t  t h e  e q u i l i b r i u m  p o i n t s  

t o g e t h e r  w i t h  t h e  p o i n t s  on t h e  p e r i o d i c  o r b i t s .  ( A  



point x is non-wandering if for each open neighborhood 

U of x and each T > 0 there is a t > T with $tUnU f 4 ) .  

If v has all these properties it is called a Morse-Smale 

system. Let M.S.(M) denote those vector fields having 

all these properties. Then if 

i.e. the Morse-Smale systems are exactly the structurally 

stable ones. If dim M - > 2 then M. S. (M)CS. S. (M) , (Palis-Smale) . 
The structural stability of Morse-Smale systems comes 

from the hyperbolic nature of the equilibrium points and 

periodic orbits. We now define some vector fields where 

hyperbolic behavior occurs at each point. 

Let M be compact and let I I I (  denote a Riemannien 

metric on M (this gives a norm to each tangent space). 

is an Anosov vector field if 

a) V(X) f 0 all XEM (i.e. no equilibrium points) ; 

b) at each point x of M the vector space TxM is a direct sum 

of three linear subspaces 

T ~ M  = E~~BEE~BE: 

such that E: is the one-dimensional space spanned by v(x) and 



S 
C) Ex is contracting exponentially and E: is expanding 

exponentially, i.e. j a  > o and c > o such that 

if t > 0 and SEE: and 

if t > 0 and ~cE: .  Let A(M) denote the collection of all 

Anosov systems on M. Then Anosov proved: 

r 
(i) A(M) is an open subset of C (M) 

(ii) A (M)CSS (M) 

(iii) If X is a compact manifold of negative curvature 

the geodesic glow on TX = M is an Anosov vector 

field. 

5. Smale observed that the stability probably arises from 

the hyperbolic behavior at non-wandering points. Let 

R(v) denote the non-wandering points of v. v is said to 

satisfy axiom A if 

i) R (v) = R,UQ, where R, consists of a finite number of 

equilibrium points all hyperbolic, and .Q2 contains no 

equilibrium points. 

ii) The periodic orbits are dense in R2 and for each point 

x of R 2  we have 



T ~ M  = E O ~ E ~ ~ E ~  
X X X  

satisfying b) and c) as in 4. 

If v satisfies Axiom A then the stable mainfolds 

wS(x) = { Y E M I  distance (+ty,+tx) + 0 as t + + - 1  are 

submanifolds of M for XEO and wS(x) is tangent to E: at x. 

Similarly, w';~)= { = E M \  distance (mty,mtx) + 0 as t + -a) 

is tangent to E: if xcO. v is said to satisfy the strong 

transverality condition if whenever wU (x) and wS (y) 

intersect then they do so transversally. There is the 

theorem: If v satisfies Axiom A and the strong trans- 

versality condition then v is structurally stable (Robbin, 

Robinson). It is conjectured that the converse is true. 

A reference which is probably the best beginning reading is: 

L. Markus, "Lectures on Differentiable Dynamics," Regional 
Conference Series in Math., A.M.S. Monograph No.3. 
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Extrapolation Methods for Equilibria Calculations 

M. L. Juncosa 

When asked to give this expository talk, I had a problem of 

decision relating to what was implied by here in this workshop 

the concept of equilibrium as it appears in differenf contexts, 

economic, dynamical system, chemical climate, ecological, 

statistical, etc., and what exprapolation methods for their 

calculation meant. 

Mathematically, an equilibrium point of a transformation, 

G, mapping some general space (usually a Banach space) into 

itself, has been defined as equivalent to a fixed point (x = G(x)) 

of the mapping. Its relation to a "steady state" of a system is 

close when one generalizes the notion of a point to include a 

cycle or a periodic sequence of iterates of the transformation 

G of the point x. 

At any rate, many problems of equilibrium calculations can 

be subsumed by the problem of solving the equation F(x) = 0 

or the equation x = G(x) where F is a mapping from a Banach 

space to another while G is from one into itself. For computational 

considerations, these spaces are usually n-dimensional Euclidean 

spaces. 

At various times it may be more advantageous to deal with 

F(x) = 0 rather than x = G(x) and vice versa; but they are 

equivalent to each other. (E.g., if F(x) = 0 and if A is any 

appropriate non-singular linear transformation, then 

x = x +AF(x) = G(x) . )  



Extrapolation methods are local rather than global methods, 

i.e., from local information on local values of the function, 

evaluated at an estimate of a solution in a single point method 

and at several successive estimates in multi-point methods, an 

extrapolation (which could be an interpolation in some multi- 

point method) to a hopefully better estimate of a solution is 

made. However, without some general topological conditions on 

the transformation extrapolation methods can at best, only pro- 

duce local solutions. Notwithstanding that at times they may be 

inferior to global methods in robustness and in domain of con- 

vergence, when they converge, they usually do with a much greater 

rate than those that are global, e-g., search methods. 

Of the single step, or single point, extrapolation methods 

for solving equations the simplest in concept, though not 

necessarily computationally the fastest, is Newton's (Raphson's) 

method which consists in linear extrapolation from a functional 

value at an estimate to a zero of the extrapolation for the 

hopefully improved estimate. 

Thus, for the problem of seeking a solution of a system of 

non-linear equations F(x) = 0, starting with an initial estimate 

Xo' the algorithm is to improve the n-th estimate successfully 

by solving the linear system 

where F'(x ) is the Jacobian matrix of F with respect to x n 

(whenever it exists) evaluated at the point x. 



When it converges to a simple root, the process does so 

rapidiy, i.e. it has second order convergence: 

where K is some positive constant. At each step its computational 

price is the evaluation of F and F 1  at xn and the inversion of F'. 

Quadratic extrapolation methods, e.g., the method of tan- 

gent hyperbolas, in one dimension going back at least to HalLey 

of comet fame, has third order convergence when converging to 

a simple root. However, except in one dimension, generalizations 

to higher dimensions (e.g., that of Idertvekova to a Banach space) 

involve not only computations of F and F' and inversion of F' 

but usually also the coumputation of F" and the inversion of 

an additional operator. The computation of F" is usually a 

factor of the dimension more costly than that of F'. For the 

cheaper price of two successive Newton extrapolations considered 

as one step one gets fourth order convergence. 

Thus, in higher dimensions, from the computational point 

of view, one generally should not consider methods of any higher 

order than second for solving equations. 

Computational considerations usually outweigh considerations 

of rate of convergence alone and have led to variants of Newton's 

method such as keeping the initial F1(x0) throughout the sequence 

of iterations or least for some fixed number of them before 

recomputing F'. Other alternatives involve linear extrapolations 

in other directions other than those determined by F9(x ) .  
n 



T h i s  makes them u s u a l l y  m u l t i - s t e p  methods which may be con- 

s i d e r e d  a s  g e n e r a l i z e d  s e c a n t  methods. The i r  r a t e s  o f  conver- 

gence a r e ,  f o r  s imple r o o t s ,  b e t t e r  t han  f i r s t  o r d e r  b u t  n o t  

q u i t e  second o r d e r :  

Wolfe, Comm. ACII., 1959, and Barnes,  B r i t .  Comp. J o u r n a l ,  1965, 

and o t h e r s  have produced g e n e r a l i z e d  s e c a n t  method a lgo r i t hms .  

I ' l l  go no f u r t h e r  on t h i s  t o p i c ,  Newton's Method and 

v a r i a n t s  be ing  t h e  t o p i c  o f  t h e  n e x t  speaker .  

Regarding a  problem i n  t h e  form x  = G(x), t o  which, a s  

no ted  above, F ( x )  = 0  i s  e q u i v a l e n t ,  t h e  t y p i c a l  e x t r a p o l a t i o n  

i s  s u c c e s s i v e  s u b s t i t u t i o n s  o r  P i c a r d ' s  method f o r  d i f f e r e n t i a l  

and i n t e g r a l  e q u a t i o n s  o r  r e l a x a t i o n  methods f o r  l i n e a r  e q u a t i o n s ,  

a s  f u n c t i o n a l  i t e r a t i o n s  a r e  v a r i o u s l y  c a l l e d .  

Computat ional  o p e r a t i o n s  p e r  e x t r a p o l a t i o n  a r e  about  a s  

cheap a s  one cou ld  e x p e c t ,  b u t  a r e ,  when convergent ,  s low,  i - e . ,  

one h a s  f i r s t  o r d e r  convergence: 

where 0 < < 1 .  To improve t h e  convergence r a t e  a  p rocess  

2 known a s  t h e  A i t ken-S te f fensen-Househo ld .e r -Os t iowsk i -  - ex t ra -  

p o l a t i o n  p rocess  can be used.  (Ostrowski ,  S o l u t i o n  o f  Equat ions  

and Systems o f  Equat ions ,  Acad. P r e s s ,  1960) .  I n  one dimension a t  

t h e  c o s t  of  no new f u n c t i o n a l  e v a l u a t i o n s ,  o n l y  some t r i f l i n g  



arithmetic, higher convergence rates can be obtained through 

the use of the formula 

where x ~ - ~  and x are successive iterates of G on x ~ - ~ .  One of 
n 

the derivations of this formula is to apply the secant procedure 

to x - G(x) = 0. 

Not only does this process usually (but not always; counter 

examples are possible) have a higher rate of convergence than 

linear but often converts a divergent iteration of G into a 

convergent one and also often has a larger domain of convergence. 

Investigating the convergence of the 6'-extrapolation 

procedure Ostrowski (1960) ha's considered it as a problem of 

investigating the rate of convergence of iterations of 

toa f i xedpo in t  c=Y(c ) .  If 

he showed that 

X a) E bounded as x -+ 5 *Y(x) - 5 =d(lx - 51 ) 



(If a > 0, if the approach of x to 5 is one-sided, then so are 

the conclusions of a) and b).) 

A 11: I£ a = 0, A > 1 and E(x) = (G(x) - ~)/lx - 51 I 

then 

3A-1 a) E bounded as x + 5 *Y(x) - 5 = @()x - 51'- 

A-1 111: If a = 1, GI (x) continuous near 5 and G' (x) - 1 = T(x) 1x1 , 
where T(x) + A f 0, either as x + 5 or x + 5, then 

1 Y' (5) = 1 - and 5 is a point of attraction of Y (x) 

from the corresponding side. 

To generalize the ~~-extra~olat ion process to higher dimen- 

2 sions, one may attempt 6 -extrapolation in each discussion. With 

empirical success, Noble has applied it to a solution of non- 

linear integral equation discretized to a system of non-linear 

transcendental equations and Bellman, Kagiwada, and Kalaba to 

the zero boundary-value problem for u" = eU on (0,l) discretized 

for computation. 

However it is easy to construct a very simple example in 

two dimensions, viz., 



whose fixed point, the origin, has no circle of convergence in 

which component-wise 62-extrapolation converges for all points 

in the circle. 

This suggests that a generalization to higher dimensions 

probably requires simultaneous involvement of all component 

equations. Thus, in the spirit of some one-dimensional 

2 derivations of the 6 -extrapolation procedure and multi-dimen- 

sional derivations of generalized secant methods, one multi- 

dimensional ~~-ext ra~ola t ion process is given by 

* 
where x is the more rapidly converging improvement to x ~ + ~ ,  n+l 

I is the unit matrix in the Euclidean space of, say, k dimensions 

of the problem and Kn is determined by solving the linear matrix 

equation 

where bracketed expressions are k x k matrices whose columns 

are successive differences of the indicated vectors determined 
* 

from a sequence of k + 1 iterates of G on x ~ - ~  the previously 

improved iterate. 

Thus in k dimensions this generalized 62-extrapolation 

process has as its iteration function 



k  k  y ( x )  = G ( x )  - [ G  ( x )  - Gk-' ( x )  , . . . , G ( x )  - X I  

2 [ck+' ( x )  - 2 G k ( x )  + Gk-' ( x )  , . . . ,G ( x )  - 2 G  ( x )  + X I - '  

[ck+' ( x )  - G ( x )  1 

i where G (x) is the i-th iteration of G  on x .  

Some of the results of Ostrowski can be obtained for this 

generalization under similar conditions. 

Convergence Theorem: Let G ( x )  be differentiable and its 

Jacobian satisfy a Lipschitz condition in a neighborhood of 

5 ( =  G ( 5 ) )  and, furthermore, that its value, J, at x = 5 satisfies 

the condition that J (J - I) is non-singular. Then Y (x) is 

a contraction mapping in a neighborhood of 5 .  

Theorem: With the same hypothesis of the convergence 

theorem, then for X > 1 

implies 

and 



implies 

Theorem: If the Jacobian of G is Lipschitzian near 5 and 

vanishes at 5 then for X > 1 

implies 

k X +A-1 
Y(X) = 5 + @:I Ix - 51 I 1 

and 

implies 

Other generalizations in Banach spaces have been given by 

J.W. Schmidt, ZAMM 1966, S. Yu. Ulm, USSR Jour. Comp. Math. and - 
Math. Physics 1964, and Ion Pavaloiu, Rev. Rom. de Math. Purer 

et Appl., B. T. Polyak, USSR Jour. Comp. Math. and Math. Physics 

1964. 



There can be some computational problems associated 

with this method. Let us go back to the equations for the 

k-dimensional €i2 iteration function, Y (x) . Look at the 

equation defining K particularly at the matrix multiplying n' 

Kn and also the right hand side matrix. As n gets larger, 

the consecutive values of xn get closer and closer together, 

so the columns in these matrices get closer and closer to 

zero. Therefore, there has to be an appropriate upscaling 

of the columns of these matrices in order to get a practical, 

computational solution for K . This is something like saying 
n 

that Kn times a nearly null matrix is equal to another nearly 

null matrix, if there is no upscaling, a highly unstable 

computational situation. But of course, that appears in the 

one dimensional form as well. Here we have the same kind of 

situation. Here we have the numerator and denominator close 

to zero. From the computational point of view, one must pay 

attention to these problems of sensitivities, to achieve 

meaningful results. 



Newton's Method for Systems of Nonlinear Equations 

Stephen H. Robinson 

I. Introduction 

Newton's method is a device for the numerical solution of 

certain nonlinear operator equations; it may also be adapted 

for use with inequalities. Although it can be used for equations 

in either finite-dimensional or infinite-dimensional spaces, 

our consideration here will be restricted to finite-dimensional 

systems of the form 

where f is a differentiable function from B" into itself. The 

Newton method is based on the very simple observation that, 

near a point x E R n r  the linearized function 

is a good approximation to f, and on the fact that linear sys- 

tems are usually easier to solve than nonlinear ones. The 

algorithm, in its simplest form, proceeds as follows: 

1.  Start with some x E &In; set k: = 0. 
0 

2. Given xk, find some xk+, (if any exists) such that 

= 0.  

3. Decide whether to stop; if not, set k: = k + 1 and 

go to Step 2. 



General-purpose programs for implementing this algorithm 

exist, and are often worth using for problems not possessing 

special structure nor presenting unusual difficulties (see 

Section IV for some discussion of common difficulties). One 

such program is described in [4]; it includes provisions for 

automatic determination of error bounds for the computed solution. 

11. Convergence properties 

The fundamental convergence result for Newton's method in 

this form states that if f' is Lipschitzian in a neighborhood 

of a simple zero x* of f (i.e., a point satisfying f(x*) = 0 

and for which f'(x*) is invertible), then there is some neigh- 

borhood Q of x* such that for each initial point xo E Q, the 

sequence {xkI exists and converges R-quadratically to x,: that 

is, there are some constants a and y, with y E (0,1), such that 

for all k, 

where 1 1 1 1 is an arbitrary, but fixed, norm on R ". Thus, the 

sequence of errors { I  lxo - x,l 1 ,  I I x ,  - x * I  I ,...I is majorized 

by the sequence ~ a y  ,ay2 ,ay4 ,ay8 ,ayl ', . . .I , which converges 

rapidly to zero. This extremely fast convergence is one of 

the principal reasons for using the Newton method. 

Actually, an even stronger convergence result holds for 

this method: the result, due to L.V. Kantorovich, permits one 

to infer the existence of x, from data at the initial point x 0 



and from a knowledge of the Lipschitz constant for f'. For a 

statement of this theorem, see Theorem 12.6.2 of [5], and for 

somewhat improved error bounds see [I]. The book [5] is a 

very complete reference for many kinds of procedures for the 

solution of systems of nonlinear equations; also, an excellent 

expository treatment of Newton's method (and of other solution 

techniques) can be found in [7]. The theorem of Kantorovich 

appears in his famous monograph of 1948 [ 3 1 .  

111. Variants and extensions 

Many variants of Newton's method have been devised, some 

designed to reduce the computational labor involved in the use 

of the method, others to "tailor" the algorithm to a specific 

type of problem (such as finding an unconstrained local mini- 

mizer of a real-valued function). Many of these algorithms 

are treated in [5]; see also the comments at the end of Section 

IV below. 

In addition, the method can be extended to solve mixed 

systems of inequalities and equations; substantially the same 

type of convergence analysis is possible as in the case of 

equations alone. For details, see [6] , [El . 

IV. Possible difficulties in using Newton's method 

There are two major sources of possible difficulty in 

applying the Newton method to a practical problem: one relates 

to the choice of a starting value, and the other to the com- 

putations which must be done in Step 2 (basically, setting up 



and solving an n x n system of linear equations). As noted 

above in the discussion of convergence, the initial point x 
0 

must be "close enough" to the solution in order for the con- 

vergence theorems to apply. As a practical matter, it has been 

found that starting points which are too far away from x, to 

satisfy the theoretical requirements very often still yield 

convergent sequences; however, randomly selected starting points 

cannot be expected to result in convergence. It should be kept 

in mind also that for a problem having several solutions, the 

choice of a starting point will determine to which (if any) 

of these solutions the sequence of iterates will converge. 

The other major difficulty involves the work in Step 2 of 

the algorithm: for each k, one must compute f'(x ) (an n x n k 

matrix) as well as f(xk), then solve an n x n system of linear 

equations. The difficulty of computing f1(xk) obviously is 

compounded if the partial derivatives involved are difficult 

to compute, of if n is large; on the other hand, in the latter 

case f'(x ) may be sparse, so that only a few elements have to k 

be computed. Complicated partial derivatives can be dealt with 

by using an automatic (analytic) differentiation program (see, 

e.g., [2]). Another way of dealing with this difficulty is to 

avoid computing fl(x ) ,  and to use instead an approximation, k 

often obtained numerically from values of the function f .  The 

so-called secant methods are based on this idea; for details 

about these methods, see [5]. Sometimes one can approximate 

the inverse of f' (xk), so that no equations need be solved; 

however, if this is not done or if one computes f'(x ) directly, k 



then it will be necessary to solve a system of n linear equations 

in n unknowns. If n is not too large (say, not more than a 

few hundred) and if the equations are not ill-conditioned 

(i.e., if their solutions are not excessively sensitive to 

small variations in the data) this should not be too difficult 

with a good code for solving linear equations. On the other 

hand, the presence of ill-conditioning of the requirement to 

solve very large systems usually means that special precautions 

need to be taken to ensure that the computed solution is not 

very different from the true answer. Ill-conditioning can be 

visualized, in the case of a single equation, by thinking of a 

function whose graph is nearly horizontal close to a zero. Such 

functions do not determine their zeros very well, and this is 

often an indication that the mathematical formulation of the 

original physical or economic problem could better have been 

done in a different way; alternatively, the trouble may be 

inherent in the problem, but in either case a re-examination 

of the problem and its formulation is generally in order. The 

solution of large linear systems, on the other hand, is a 

problem of numerical analysis, and the techniques used are 

likely to be highly problem-dependent: one generally tries 

to take as much advantage as possible of the special form (if 

any) of fl(xk), and different solution techniques (e.g., itera- 

tive methods [ 9 1 )  may be employed for large systems than would 

be used for small ones. 

Another devise for avoiding the repetive solution of 

linear systems is to use a fixed matrix in place of f ' (xk) , or 



alternatively to recompute fl(xk) only periodically, instead 

of at each step. In either case one has to carry out the 

factorization of the resulting matrix only the first time it 

is used; at succedding steps the previously-computed factors 

are employed, together with the current value of f(xk), to 

2 3 compute x ~ + ~  in only O(n ) operations instead of O(n ) as 

would be the case if a new matrix had been used. Unless one 

uses the (generally unknown) matrix f' (x*) , the iteration 

with a fixed matrix will not be quadratically convergent; 

however, if the matrix is close to fl(x,) then the method is 

likely to converge at a rather fast, even though linear, rate. 

Thus, for problems whose derivatives do not change quickly 

around x,, this technique may well be worth trying. For a 

rigorous discussion and convergence results, see [5, 5510.2, 

12.6.11. 

Naterial Added in Response to Discussants Remarks 

Let me briefly indicate some extensions of the Newton 

method. So far we have been talking about problems of the 

following form:, f(x) = 0. This is, of course, one way in 

which one can express an equilibrium condition for many problems. 

On the other hand, there are problems in which inequalities 

are essential to the description of the equilibrium. One of 

them might be the kind of non-linear problem which was discussed 

by Professor Scarf -- g (x)  2 0, x 5 0, <x,g (x) > = 0. Now this 

kind of problem, although it can be represented in the form 

of a system of non-linear equations, is probably not naturally 



so represented. One would ask then if there are Newton methods 

for this kind of problem. There are, in fact, Newton methods 

for solving systems of inequalities and equations, such as the 

following: g (x) = 0 and h (x) ( - 0, and these proceed in a 

manner not too different from the classical Newton method. It 

is not all that different and the convergence analysis is pretty 

much the same.* The difficulty is that when doing the Newton 

method we require a regularity condition, namely that the deri- 

vative of f at x be non-singular. Now there is a corresponding 

regularity condition for this kind of system, which is necessary 

or seems to be necessary in order to obtain a convergence 

theory for methods for solving this type of equation-inequality 

system. Unfortunately, problems like the nonlinear complemen- 

tarity problem never  satisfy such a regularity condition. In 

other words, such systems are always singular in the sense of 

not being able to satisfy the condition that one seems to re- 

quire for convergence of this type of method. This suggests 

to me that we need to know considerably more about the dynamics 

of solutions of systems of inequalities of this particular 

form under changes in the functions, because notice that in 

the Newton method what we are really doing is introducing a 

certain perturbation into the function, which changes it a 

little bit. Near xo the linearized function is very much like 

f(x) and it's from the knowledge of the dynamics of the sol- 

ution set of the linearized system versus the original system, 

that we get the convergence theory of Newton's method. I know 

of no such information about complementarity problems or 

*For example, see the Kantorovich-type theorem in [ e l .  



equilibrium problems in general. We do have some information 

about systems of inequalities if they satisfy a regularity 

condition, but we do not have such information about equilibrium 

systems, and I would suggest that this might be a very, very 

important topic of study, among other reasons for the development 

of more effective computational methods. 
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Self-organizing Chemical Systems 

Peter Schuster 

The usual problem to find fixed points in chemical systems 

corresponding to chemical equilibrium or stationary states is 

rather simple with respect to its mathematical background since 

in the meaningful range of variables in general only one stable 

fixed point does occur. Recently, people became interested in 

more complex chemical systems showing ranges of instability, 

multiple fixed points and limit cycle oscillations. This kind 

of system turned out to be able, furthermore, to fulfill a 

number of necessary requirements to start a process of self- 

organization which is of crucial importance for any theory on 

the origin of life. In this lecture I will restrict myself to 

this kind of system. 

I. Origin of the problem 

In the early stages of biochemical evolution exclusively 

biopolymers or their precursors with random or nearly random 

sequences were present. There was no structural or functional 

correlation between them. The step of the development we are 

interested in here leads from these random polymers to the 

first ordered entity which we can recognize as a precursor of 

the most primitive organisms showing the three most important 

characteristics of living systems: 1) Metabolism or energy 

flux; 2) Multiplication of self-instructed reproduction; and 

3) Mutations or small errors in the reproduction. Eigen [I , 2 ]  

formulated for this purpose a theory of Darwinian evolution 



on a molecular level and we will follow the mathematical back- 

ground briefly here. Selection on the molecular level will 

be formulated as an optimization process in discrete steps, 

which correspond to favorable mutations. The function to be 

optimized, the value function w ,  is related to the dynamics of 

the self-organizing system or more basically to the physio- 

chemical properties of the macromolecules themselves. 

11. Mathematical background of the problem 

There are two sets of macromolecules ISi) and {pi} char- 

acterized by different sequences and properties. S.  corresponds 
1 

to a macromolecule acting as information storage for the synthesis 

of a macromolecule P which is the active biochemical catalyst, i' 

roughly speaking S are the precursors of nucleic aci2s and Pi i 

the precursors of proteins. We start with two sets of pop- 

ulations {X.} and {Y.), which are functions of t and represent 
1 1 

the number of polymers at a given time. 

In the first period of the self-organizing process at 

maximum a few copies of a given sequence will be present: 

A stochastic treatment of the dynamics for such a system capable 

of self -instruc ted replication ( 1 ) and degradation (2) 



Bv + energy + + + A v (3) 

coupled to an "energy bath" (3) shows, that after some time 

only a few sequences will be present, but now each sequence in 

a large number of copies: > >  lo3. Bartholomay [3] has 

treated a similar problem in biology by Doob's matrix technique 

for Markov chains. For further details see the given reference. 

Now we can assume Xi to be a quasi-continuous variable 

and formulate a set of differential equations, which describe 

the evolution of the system (4) : 

E~~ are small terms in general, representing the probability 

for a spontaneous mutation from Xk to Xi. Fi and Di in almost 

all realistic cases are complicated functions of many kinds of 

small molecules and macromolecules present. They represent the 

growth and degradation terms of Si. 

The growth term Fi can be split in a production rate A i 

and a quality factor Qi representing the accuracy of repro- 

duction (Qi = 1 means no errors, probability for mutation = 0). 

Now we can formulate new quantities the excess production E i' 

the mean excess production E and the value function w . ( 5 - 8 ) :  
1 



Inserting these expressions in (4) we obtain a new set of diffe- 

rential equations (9), which is very suitable for a discussion 

of selection on a molecular level: 

Since g(t) does not depend on a particular species a population 

is increasing if w > E and decreasing if w < E. The function i i 

to be optimized in the procedure of evolution is wi. Concrete 

examples are presented in [I] and [ 2 ] .  For a given set of 

macromolecules ISi) the sequence with maximum value of wi will 

be selected. wi, however, might well depend on the concen- 

trations of other macromolecules present in the system. In 

this case the result of the selection is not unique and will 

depend on initial conditions. Model systems were chosen in 

order to learn more about growth properties, selection mech- 

anisms and probabilities for survival of mutations. 

111. Model Systems 

Out of all model systems discussed until now [1,4] we 

choose here one representative example. A set of n sequences 



{sir i = I, ..., n) is dynamically correlated to a set of n 

sequences of type {Pi, i = I, ..., n]. According to the following 

set of reaction equations forming a catalytic cycle: 

i - .  si + Pi-, - i 'i-I 

These equations can be easily translated into the following 

system of coupled ordinary differential equations (10-12): 



The general type of solution was found to depend on the concen- 

trations of macromolecules present and on the number of members 

in the cycle. 

a) low concentration limit: Xi, Yi-l < <  Ki 

Xi n 
simplified equations ? = f X X - - i i i-1 c fjXjXj-l i j=l 

Normal modes around central fixed points: Xi > 0 

n = 2, stable fixed point, no oscillation 

n = 3, fixed point, damped oscillations 

n = 4, metastable fixed point, undamped oscillations with small 

amplitudes 

n 2 5, unstable fixed point, limit cycles or more complicated 

attractors 

b) high concentration limit: Xi, Yi-l >> Ki 

Xi n 
simplified equations X = fixi-, - - i c o j=1 'j ' '1-1 

f .  = f2 =...=f = 1 . 
1 n 

Normal modes around central fixed point: Xi > 0 



Stable fixed points, n 2 3 damped oscillations. 

IV. Conclusions 

Different growth terms were found to have substantial in- 

fluence on the selective behavior of the system. Linear growth 

terns, w # wi (Xi, X Y ) , lead to selection of the species with i j 

best or "fittest" physicochemical properties. The number of 

0 sequences present at the initial conditions (Xi) has no in- 

fluence on the outcome provided X: is above the level of stochastic 

threshold. Favorable mutants are tolerated at the beginning 

and finally selected. Systems with nonlinear growth terms, 

however, show a different behavior. After one species has been 

selected a favorable mutant has no chance to survive. Thereby 

decisions "once and for all" along the path of evclution are 

made and indeed there are some hints that those decisions occurring 

in the early historical evolution of life on earth - unique 

genetic code, unique chirality in all organisms known. The 

kind of model discussed here would allow such "once and for 

all" decisions at the beginning of evolution (low concentration 

limit) and then finally switch to a Darwinian type of evolution 

based on a mutation-selection mechanism. 
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Bifurcations and the Appearance of Attracting Tori, July 23 

H.R. Grllmm 

In the last years, there has been renewed interest in getting 

a qualitative understanding of turbulence on the basis of the 

behavior of the system in the neighborhood of a range attractor. 

This approach was mainly pioneered by D. Ruelle with the 

collaboration of R. Bowen and F. Takens. This presentation 

intends to give an outline of these ideas and to show how they 

can be applied to the purpose of the workshop. Rigorous proofs 

will be mostly omitted. From the beginning I want to stress 

that in my opinion it is possible to apply the following to a 

range of questions considered in the workshop, mainly climato- 

logical models, chemical evolution models and ecological food 

chains. 

Let us assume we are given a family of continuous-time 

dynamical systems, given by = F (x), on a possibly infinite- 
lJ 

dimensional manifold (to include problems with partial spatial 

derivative). l~ is a parameter describing a "driving force" of 

the system, like solar inradiation or energy input to a food 

chain. We assume further that for l~ = 0 there is a stable fixed 

point x of F corresponding to a stationary state of the system 0 lJ 

which becomes unstable for larger l ~ .  (p > v O  > 0) As l~ in- 

creases from 0, the implicit function theorem gives the exis- 

tence of a fixed point x of F close to x 
P lJ 0' 

We look for the spectrum of the operator DF (x ) * :  if 
lJ P 

*This is a shorthand notation for the matrix (q). 



u ( 0 certain u it will still lie in the left half-plane, 1 ' 
0 "slightly perturbed'' stationary state. Suppose that at 

u = u 1  a pair of complex-conjugate eigenvalues crosses the 

imaginary axis. An argument due to Hopf and extended by Ruelle 

and Takens shows that, depending on the sign of a higher order 

term in the expansion of F at x an attracting closed orbit u - u' 
appears. One says that the fixed point bifurcates to form this 

closed orbit. At u just above the critical level u,, it is 

approximately located in the plane spanned by the eigenvectors 

of DF (x 1 belonging to the two unstable eigenvalues. 
IJ IJ 

As IJ increases further, more pairs of eigenvalues will 

cross the imaginary axis and the closed orbit will become un- 

stable. One can look at its Poincarg map: at a certain = u2 

the center fixed point becomes unstable and again depending on 

the sign condition an attracting manifold diffeomorphic to a 

circle and invariant under the Poincarg map will branch off. 

This of course corresponds to the formation of a 2-torus around 

the original fixed point. 





By these arguments it becomes very plausible, and further 

confirmation can be obtained by a theorem by Hirsh and Shub, 

that in general the following happens: if k pairs of eigenvalues 

have crossed the imaginary axis and the sign conditions are 

right, an invariant attracting k-torus will form. This can be 

understood as a Hopf bifurcation in each of the k planes spanned 

by eigenvectors belonging to a pair of eigenvalues. 

The flow on the attracting torus will describe the behavior 

of the system in a neighborhood of the unstable fixed point. We 

can describe only its "generic" characteristics. If the torus 

is 2-dimensional, by Peixoto's theorem there will be a finite 

number of attracting closed orbits on it. So almost every 

point in the vicinity will tend to one of these closed orbits. 

This is, for instance, the situation found in the Lorenz model 

(see presentation by Professor Charney). 

For tori of higher dimension, the situation is very compli- 

cated. One can make only general statements on the generic 

behavior. A quasi-periodic flow (k periods of oscillation on 

the k-torus, with irrational ratios so that every orbit would 

be dense) is not to be expected since such a dynamic system 

can be changed by arbitrarily small modifications into one with- 

out this characteristic.* Indeed, we can modify it in such a 

way that it shows a strange attractor. The random-like and 

irregular behavior associated with a strange attractor may well 

be the reason for the well-known nature of turbulence. Compare 

the situation in Lorenz' model. 

*There is another argument against the appearance of quasi- 
periodic flow in turbulence: the time-correlation functions 
would not go to zero for such a flow, as they are observed to do. 



A last added idea: the location of the unstable elements 

(fixed point or closed orbit) may be interesting for time- 

averages, like in climatology. The average of an observable 

over the attractor might be roughly approximated by its value 

at the fixed point or its average over the closed orbit. 

Note added in proof: 

For clarification I want to explain some terms in this 

paper. An attractor is a closed set A in phase space, invariant 

under the flow sudh that there exists a neighborhood U of A 

which will contract to A in the future and no closed subset of 

A has this property (i.e., stable fixed point, limit cycles). 

A strange attractor is an attractor which is not a smooth mani- 

fold. The simplest example of a strange attractor looks locally 

like the product of a cgntor discontinuum and an interval. 

The best reference for this field is the original paper 

of Ruelle and Takens: "On the Nature of Turbulence", Comm. Math. 

Phvs.. 1971. 



A Geometrical View of Fixed Point Algorithms 

Herbert E. Scarf 

This lecture, given by Scarf on July 24, covered 
the contents of Sections 1, 2, 3 and some examples 
taken from Section 4, of Curtis Eaves and Herbert 
Scarf, "The Solution of Systems of Piecewise Linear 
Equations," Cowles Foundation Discussion Paper 
No. 390, February 27, 1975, to be published in 
Mathematics of Operations Research, Volume 1, and 
is included with the permission ot that journal. 

Introduction 

In this paper we study, from a geometrical point of view, 

the solutions of systems of piecewise linear equations involving 

one more variable than equations. As our examples will indicate, 

virtually all of the fixed point and complementary pivot algorithms, 

as well as a number of related techniques which have been devel- 

oped over the last decade can be cast in this framework (Lemke 

and Howson [15], Lemke [16], Scarf [20, 211, Scarf and Hansen 1221, 

Kuhn [13, 141, Eaves [4, 6, 81, Shapley [24], Merrill [18], 

Katzenelson [I 21 , Fujisawa and Kuh [I 01, and Chein and Kuh [I 1 ) . 
This geometrical setting leads naturally to an index theory-- 

analogous to that of differential topology--which is of consider- 

able importance in the study of uniqueness and monotonicity of 

these algorithms. Examples of the use of index theory in com- 

putation have recently been given by Kuhn [14], Shapley [23] 

and Lemke [I 7 ] . 
In the development of our ideas we have been strongly in- 

fluenced by the lucid exposition of differential topology pre- 

sented by Milnor [18], and by a number of stimulating conver- 

sations with Stephen Smale. Other important sources are the 



exposition of index theory on discrete structures given by 

Fan [19], and the constructive proof of the piecewise linear 

non retraction theorem of Hirsch [Ill. 

In the interests of simplicity we have avoided the most 

general presentation and restricted our attention to a small 

number of well known applications. For example, the domain on 

which our equations are defined will be the union of a finite 

number of compact convex polyhedra. With some cost in simplicity 

the domain could equally well have been a non-compact orientied 

piecewise linear manifold. We have also omitted from the paper 

applications such as the non-linear complementarity problem in 

which index theory is extremely useful. These will be described 

in subsequent publications. 

11. Piecewise Linear Mappings of Polyhedra 

We shall be concerned with a set of points P in R"+' which 

is the union of a finite number of compact convex polyhedra, 

P I ,  P2,...,Pk each of which is assumed to be of dimension (n + I), 

and no two of which have an interior point in common. The 

term polyhedron, with the adjective "convex" omitted, will be 

used to describe such a set. The convex polyhedra used in 

constructing P wil be referred to as the pieces of the polyhedron. 

Figure 1 represents a somewhat extreme example of such a 

polyhedron. As the figure illustrates, the polyhedron P need 

not be convex even though it is composed of convex pieces. It 

need not be connected or for that matter simply connected, and 

moreover the intersection of two adjacent pieces of P need not 



be a  f u l l  f a c e  of e i t h e r  polyhedron a s  they  a r e  assumed t o  be 

i n  a  s i m p l i c i a 1  subd i v i s i on .  

F igu re  1 .  

An example which i s  more t y p i c a l  o f  t h o s e  a r i s i n g  i n  t h e  

a p p l i c a t i o n  of our  techn iques  is  g i ven  i n  F igu re  2 .  I n  t h i s  

example t h e  polyhedron P i s  t h e  p roduc t  o f  an  i n t e r v a l  w i t h  t h e  

3 

2 

1 

F igu re  2 .  



simplex S = (xl ,x2) [xi 2 0, xl + x2 5 1). The pieces {pi) are 

obtained by taking the product of this interval with each n-simplex 

in a simplicia1 subdivision of S. 

We consider now a mapping F of the polyhedron P into Euclidian 

n space R , which is assumed to be linear (F (ax + (1 - a)xl) = 

aF (x) + ( 1  - a) F (x' ) ) in each piece Pi and continuous in P. In 

each of our applications the polyhedron P and the mapping F will 

be defined by the nature of the problem and we shall be concerned 

with solutions to the system of equations 

for a specific vector c in R". 

In order to motivate the subsequent arguments let us begin 

with a few intuitive and not quite rigorous remarks about the 

character of the set of solutions to such a system. In each 

piece of linearity Pi the mapping F(x) is linear with a maximal 

n rank of n, since the mapping is into R . If the mapping is, in 

fact, of rank n in a given piece of linearity then the intersection 

if it is not empty, is generally a straight line segment touching 

two distince faces of P of dimension n. i 



Figure 3. 

Consider an adjacent piece of linearity Pi whose intersection 
2 

- 1 
with Pi contains a single point of F (c). Since the mapping is 

continuous on the common boundary P and P we expect in general i j 

that 

will be a straight line segment in the piece of linearity P 
j 

which fits together continuously with the corresponding segment 

in Pi. We shall see shortly what technical points must be ex- 

amined in detail in order to make this type of argument precise. 

For the moment, however, these remarks seem to suggest that the 

set of solutions F-' (c) can be obtained by traversing a series 

of straight line segments from one piece of linearity Pi to an 

adjacent one. 



Since  t h e  polyhedron i s  composed o f  a  f i n i t e  number o f  

bounded p i e c e s ,  t h e r e  a r e  e s s e n t i a l l y  two t ypes  of c u r v e s  (by 

a  curve  we mean a  homeomorph of c l o s e d  bounded i n t e r v a l  o r  a  

c i r c l e )  t h a t  can a r i s e  i n  t h i s  f ash ion .  One p o s s i b l i t y  is t h a t  

t h e  p rocess  o f  moving from one p i e c e  o f  l i n e a r i t y  t o  an  a d j a c e n t  

p i e c e  w i l l  t e r m i n a t e  by reach ing  t h e  boundary o f  t h e  polyhedron 

P. Since  movement is p o s s i b l e  i n  two d i r e c t i o n s  t h i s  would 

imply a  curve  touch ing  t h e  bound.ary o f  P i n  two d i s t i n c t  p o i n t s ;  

w e  s h a l l  c a l l  such  a  cu rve  a  p a t h .  T h i s  c a s e  is  i l l u s t r a t e d  i n  

F i g u r e  4 ,  i n  which t h e  dashed l i n e  r e p r e s e n t s  F-' ( c ) .  

F i g u r e  4 .  

Another p o s s i b i l i t y  t h a t  may a r i s e  by con t i nu ing  t h e  s t r a i g h t  

l i n e  segments is t h e  g e n e r a t i o n  o f  a  c l o s e d  curve  o r  loop  which 

has  no i n t e r s e c t i o n  w i th  t h e  boundary o f  P. F i g u r e  5 i l l u s t r a t e s  

a  p o s s i b i l i t y  i n  which t h e  set o f  s o l u t i o n s  F-' ( c )  c o n t a i n s  

such a  l oop  i n  a d d i t i o n  t o  a  p a t h  t e r m i n a t i n g  i n  a  p a i r  o f  

boundary p o i n t s  o f  P.  



Figure 5. 

These rough arguments suggest that the set of solutions 

to F(x) = c will either be empty or be a disjoint union of a 

finite number of paths and loops. As we shall see, this impor- 

tant conclusion will generally be correct. However, the problem 

may occasionally become degenerate for specific choices of the 

function F and vector c and produce a set of solutions more 

complex than that described above. 

For example, we may be working in a piece of linearity P 
i 

in which the rank of F(x) is less than n. In such a region 

the solutions of F(x) = c may very well form a set of dimension 

strictly larger than one. Another illustration of difficulty 

arises if for some piece of linearity P the set Pin~-'(c) i 

lies fully in the boundary of Pi. 



F igu re  6 .  

A f i n a l  example occu rs  when t h e  s e t  F-' ( c )  i n t e r s e c t s  t h e  

boundary of a  p i e c e  o f  l i n e a r i t y  P i n  some f a c e  o f  dimension i 

less t han  n. A s  F igu re  7 i l l u s t r a t e s ,  t h i s  c a s e  may produce a  

b i f u r c a t i o n  of t h e  p a t h  i n  two d i f f e r e n t  d i r e c t i o n s .  The common 

F igu re  7 . 



feature of these examples, and in fact of all difficulties caused 

by degeneracy, is the fact that F(x) = c has a solution on some 

face of dimension less than n, of a piece of linearity. 

In the next section we shall use this idea to impose a con- 

dition on the basic problem which avoids degeneracy and permits 

us to establish the main theorem characterizing the set of 

solutions to F (x) = c. 

It may be appropriate at this point to provide a formal 

definition of the terms "path" and "loop," which have been used 

in the previous discussion. 

2.1. [Definition] A path is a curve in P with two end- 

points, each of which lies in the boundary of P and whose inter- 

section with each piece of linearity is either empty or a straight 

line segment. A loop is a closed curve with no endpoints whose 

intersection with each piece of linearity is either empty or a 

straight line segment. 

Figures 4 and 5 illustrate paths and loops; Figure 6 a path 

but of the type we shall avoid, and in Figure 7 the dotted set 

is neither a path nor a loop. 

111. The Plain Theorem 

We are given a polyhedron P in Rn+' and a piecewise linear 

mapping F which carries P into Rn. The following definition 

employs a modification, which is suitable to our purposes, of 

well known terminology used in differential topology. 

3.1. [Definition] A vector c in Rn is a degenerate value 

of F : P + R" if there is an x in P lying in a face of dimension 



less than n of some piece of linearity Pi, for which F(x) = c. 

A vector c which is not a degenerate value is called a regular 

value of the mapping. 

Consider the following simple illustration of this definition. 

Figure 8. 

2 The polyhedron P is composed of four triangles in R . The mapping 

1 into R is given by F(xl ,x2) = XI + x2. According to the defini- 

tion the degenerate values are those taken on at the six O-dimen- 

sional faces (vertices), and are therefore given by (0, 1, 2, 3). 

The regular values of the mapping consist therefore of all points 

in R' other than these four values--illustrating the fact that 

vectors in R" which are not assumed by F are considered to be 

regular values. We also see that degenerate values can be assumed 

on faces of higher dimension; for example, the value 1 is assumed 

by F on the entire face connecting (0, 1) and (1, 0). 



We shall now provide a complete description of the set of 

solutions to F(x) = c, when c is a regular value of the map. 

We shall organize the argument by demonstrating the following 

preliminary lemma. 

3.2.  [Lemma] Let Pi be a piece of linearity, let c be a 

regular value of F, and assume that P i n  F-' (c) is not empty. 

Then P ~ ~ F - '  (c) consists of a single straight line segment whose 

endpoints are interior to two distinct faces of dimension n of Pi. 

Figure 9. 

In order to demonstrate this lemma let us assume that 

F(x) = Ax + b in P with A an nx(n + 1 )  matrix. First of all i 

let us remark that the matrix A has rank n. Otherwise the value 

c is assumed on a face of dimension n - 1 of Pi, contradicting 

the assumption that c is a regular value. 

Since A is of rank n the solutions to Ax + b = c in Pi 

form a straight line segment. The line segment cannot be fully 



con ta ined  i n  any f a c e  of dimension n  o f  Pi, s i n c e  ex tend ing  it 

would t h e n  enab le  u s  t o  reach a  f a c e  o f  dimension n  - 1.  Its 

endpo in t s  must t h e r e f o r e  be con ta ined  i n  t h e  i n t e r i o r s  of two 

d i s t i n c t  f a c e s  o f  Pi. Th is  demonst ra tes  t h e  lemma. 

We a r e  now prepared t o  prove t h e  major theorem c h a r a c t e r i z i n g  

t h e  s e t  of  s o l u t i o n s  t o  F ( x )  = c ,  where c  is a  r e g u l a r  va lue .  

3 . 3 .  [Theorem] Le t  F  : P -+ R" be  con t i nuous  and l i n e a r  

i n  each p i e c e  P  and l e t  c  be a  r e g u l a r  va lue .  Then t h e  s e t  i r  

of s o l u t i o n s  of F ( x )  = c i s  a  f i n i t e  d i s j o i n t  un ion of p a t h s ,  

each o f  which i n t e r s e c t s  t h e  boundary of P  i n  p r e c i s e l y  two 

p o i n t s ,  and l oops ,  which have no i n t e r s e c t i o n  w i t h  t h e  boundary 

o f  P. 

The proof  o f  Theorem 3 . 3 .  i s ,  of  c o u r s e ,  an immediate con- 

sequence o f  t h e  arguments o f  t h e  p rev ious  s e c t i o n  combined w i t h  

Lemma 3 . 2 .  I f  F-' ( c )  has a  non-empty i n t e r s e c t i o n  w i t h  a  p i e c e  

Pi, t h e n  t h i s  i n t e r s e c t i o n  w i l l  c o n s i s t  o f  a  s t r a i g h t  l i n e  seg- 

ment touch ing  two f a c e s  of dimension n  o f  Pi ,  and no lower dim- 

e n s i o n a l  f a c e  e i t h e r  of  Pi o r  o f  any a d j a c e n t  p i e c e  of l i n e a r i t y .  

I f  e i t h e r  endpo in t  o f  t h i s  l i n e  segment is  n o t  on t h e  boundary 

of p  it w i l l  be con ta ined  i n  p r e c i s e l y  -- one o t h e r  p i e c e  of l i n -  

e a r i t y ,  s a y  P  
1- 

(The f a c t  t h a t  t h i s  endpo in t  is  con ta ined  i n  

a t  most one o t h e r  p i e c e  o f  l i n e a r i t y  i s  t h e  f e a t u r e  which a s s u r e s  

t h a t  p a t h s  do n o t  b i f u r c a t e  a s  i n  F igu re  7 .  ) Eut  t hen  P  , n F-I ( c )  
7 

w i l l  n o t  be  empty and w i l l  c o n s i s t  o f  a  s i m i l a r  s t r a i g h t  l i n e  

segment. 

Th is  p rocess  w i l l  e i t h e r  produce a  p a t h  which i n t e r s e c t s  

t h e  boundary o f  P  i n  t w o  d i s t i n c t  p o i n t s ,  o r  a  pa th  which r e t u r n s  



to itself and is therefore a loop. This provides us with one 

component of the set of solutions to F(x) = c. If there is 

another piece of linearity which intersects F-I (c) we continue 

by constructing an additional component. Since there are a 

finite number of such pieces of process of constructing paths 

and loops will ultimately terminate. This demonstrates Theorem 

3.3. 

This characterization of the set of solutions to F(x) = c 

is valid only if c is a regular value of the mapping; if c is 

degenerate the corresponding set may be considerably more complex. 

In applying Theorem 3.3. it will be necessary to avoid degenerate 

values, which, as the following theorem indicates, form a neg- 

ligible subset of Rn. 

3.4. [Theorem] The set of degenerate values is a closed 

subset of Rn, contained in a finite union of (n - 1) dimensional 

hyperplanes. 

This theorem, analogous to Sard's theorem in the case of 

differentiable manifolds, is an immediate consequence of the 

definition of a degenerate value to be the image of a point x 

lying in an n - 1 dimensional face of some piece of linearity. 

There are a finite number of such faces, each of which is carried 

by F into a closed subset of an n - 1 d.imensiona1 hyperplane in 

Rn . 
Theorem 3.4., in the form stated above, is not quite suitable 

for most of our applications since a value c is considered to 

- 1 be a regular value whenever F (c) is empty. While the degenerate 

values form a small subset of Rn, they need not form a small 



subset of the image of P under F. For example, if F maps all 

of P onto the same vector then all values for which F-' (c) is 

not empty, will be degenerate. The following theorem is a 

sharpening of Theorem 3.4., which is more appropriate for our 

purposes. 

3.5. [Theorem] Let Q be a face of dimension n of a piece 

Pi, and let x be interior to this face. Assume that the image 

of Q under the mapping F is of dimension n. Then any relative 

neighborhood of x on the face Q, contains points x' for which 

c ' = F (x' ) is regular. 

Figure 10. 

The hypothesis of Theorem 3.5. imply that any neighborhood 

of x, on Q, will be mapped into a set of dimension n by the lin- 

ear transformation obtained by restricting F to Q. Since the set 

of degenerate values of F is a set of dimension n - 1 or less, 

there will be many values of x' in this neighborhood, whose 

image is a regular value of F. 



Theorem 3.3. permits us to treat degeneracy by a slight 

perturbation of the vector c, as is customary in linear pro- 

gramming. (See any standard reference which discusses the 

resolution of degeneracy in linear programming.) 

IV. Examples of the General Method 

In the present section we shall illustrate the significance 

of our characterization of the set of solutions to F(x) = c 

by applying this result to a series of examples which have 

played an important role in the development of fixed point com- 

putational techniques. There are many other examples which we 

have chosen not to discuss in this paper. 

Example 1 

Our first example is that of "integer labelling," one of 

the earliest techniques for the numerical approximation of a 

fixed point of a continuous mapping of the simplex into itself. 

For simplicity of exposition we shall take the particular form 

of this method described in Chapter 7 of [16]. (Also see Cohen 

[21 and Eaves [ 4 ,  51 . )  

Consider a simplicia1 subdivision of the simplex S = {x = x l ,  
n 

...,x,)(x. > 0, C xi 5 1) which is arbitrary, aside from the 
1 - 1 

assumption that the only vertices of the subdivision lying on 

the boundary of S are 



Figure  11. 

Le t  every  v e r t e x  v of t h i s  subd iv i s ion  be g iven an i n t e g e r  l a b e l  

1 (v )  s e l e c t e d  from t h e  s e t  ( 0 , l  , . . . , n )  . The l a b e l  a s s o c i a t e d  

w i th  a g iven v e r t e x  w i l l  t y p i c a l l y  be  ass igned  on t h e  b a s i s  of 

some under ly ing  mapping of t h e  s implex i n t o  i t s e l f .  For our  

purposes,  however, t h e  l a b e l l i n g  can be cons idered t o  be a r b i -  

i 
t r a r y ,  a s i d e  from t h e  prov iso  t h a t  v  r e c e i v e  t h e  l a b e l  i ,  f o r  

i = O , l , . . . , n .  

We s h a l l  show t h a t  Theorem 3 . 3 .  can be employed, i n  t h e  

p r e s e n t  c o n t e x t ,  t o  demonstrate t h e  e x i s t e n c e  of  a t  l e a s t  one 

s implex i n  t h e  subd iv i s ion  a l l  of whose l a b e l s  a r e  d i s t i n c t .  



This conclusion can be viewed, of course, as a simplified 

form of Sperner's lemma. 

The conventional computational procedure for determining 

such a simplex starts out with the unique simplex in the sub- 

1 n 
division containing the vertices v ,..., v and the additional 

vertex vj. If the label associated with vj is 0, the process 

terminates. Otherwise we remove that vertex of the simplex 

say vk whose label agrees with that of vj. A new vertex v 
L 

1 n is introduced, where the vertices v , . . . ,v , vJ, vL, with v k 

omitted, form a simplex in the subdivision. If the label 

associated with vL is 0 the process terminates; otherwise we 

continue by removing the vertex whose label agrees with that 

L of v . 
At each iteration we are presented with a simplex whose 

vertices bear the labels 1,2, ..., n. Of the two vertices with 

the same label, we remove the one which has not just be intro- 

duced. The argument that the algorithm does not cycle and 

must terminate with a simplex of the desired type may be found 

in the previously cited reference. 

v3 is assumed to have 
the label 2. 

Figure 12. 



I n  o r d e r  t o  p l a c e  t h e  problem i n  o u r  con tex t  we make t h e  

fo l low ing d e f i n i t i o n .  

4 . 1 .  [ D e f i n i t i o n ]  Def ine a  cont inuous map f  : S + S of 

t h e  s implex i n t o  i t s e l f  a s  fo l lows:  

1 .  Let  v be any v e r t e x  of t h e  s i m p l i c i a 1  subd iv i s ion ,  and 

l e t  R(v) = i be t h e  i n t e g e r  l a b e l  a s s o c i a t e d  w i th  v .  We then 

d e f i n e  f  (v )  t o  be vi. 

2.  We extend t h e  d e f i n i t i o n  of  f  t o  t h e  e n t i r e  simplex 

by r e q u i r i n g  f  t o  be  l i n e a r  i n  each s implex of  t h e  subd iv i s ion  

of S. 

With t h i s  d e f i n i t i o n  t h e  f u n c t i o n  f  i s  p iecewise  l i n e a r  

i n  S ,  and because of t h e  s p e c i a l  s t r u c t u r e  of t h e  subd iv i s ion  

it i s  easy  t o  s e e  t h a t  f  (x )  i s  t h e  i d e n t i t y  map ( f ( x )  - x )  on 

t h e  boundary of  S. I n  o r d e r  t o  demonst ra te  t h e  e x i s t e n c e  of  

a t  l e a s t  one complete ly  l a b e l l e d  s implex it i s  c l e a r l y  s u f f i c i e n t  

t o  show t h a t  f o r  any v e c t o r  c ,  i n t e r i o r  t o  t h e  s implex S t h e r e  

w i l l  e x i s t  a  v e c t o r  x ,  f o r  which 

The v e r t i c e s  of t h a t  s implex i n  t h e  subd iv i s ion  which c o n t a i n s  

x  w i l l  c e r t a i n l y  bea r  d i s t i n c t  l a b e l s .  For i f  t h e  l a b e l  i is  

omi t ted ,  then t h e  image of each v e r t e x  i n  t h e  s implex w i l l  be 

on t h a t  f a c e  of S  whose ith coord ina te  is zero  ( o r  on t h e  f a c e  
n  
C xi = 1 ,  i f  i = 0). f ( x )  w i l l  t h e r e f o r e  l i e  on t h e  boundary 
1 
of S ,  c o n t r a d i c t i n g  t h e  assumption t h a t  c  i s  an  i n t e r i o r  p o i n t .  



Conversely, if the vertices of a particular simplex in the 

subdivision bear distinct labels then it is easy to see that the 

system of equations f(x) = c, has a solution contained in that 

simplex. 

n+ 1 We begin by defining a polyhedron P in R . 
4.2. [Definition] The polyhedron P is defined to be the 

product of the simplex S with the closed interval [0,1], i.e. 
n 

~(x l l . . - lxn ,xn+l )  lxi 0, C X. < 1, and x ~ + ~  5 1). The pieces 
1 l -  

P1,P2,...,Pk of P are obtained by taking the product of an arbi- 

trary n-simplex in the subdivision of S with the same closed 

interval [O, 1 1 . 

1 
Figure 13. 

The following definition will provide us with a function 

F(x ll... I ~ n I ~ n + l )  to which Theorem 3.3. can be applied. 

4 -3. [Definition] Let d be the vector in R" all of whose 

coordinates are unity. We define 



F is a continuous map of P into R" which is linear in each 

piece of the polyhedron P. Our purpose is to show that for an 

- 1 
arbitrary vector c, interior to the simplex S, F (c) will in- 

tersect that face of P on which x ~ + ~  = 0. 

Let c be a vector interior to S and let us examine the 

intersection of F-' (c) with the other faces of P. First of all 

we remark that F-' (c) cannot intersect that face of P on which 

X n+ 1 = 1. This would imply 

which is impossible, since fi (x) 5 1 , d = (1,l , . . . ,1) and ci > 0 

for all i. 

On the remaining faces of P, other than the two ends of 

- 1 
the prism, we know that f(x) E x. A vector x in F (c) which 

is on such a face will therefore satisfy 

the unique solution of which is given by 



Figure 14. 

We have therefore demonstrated the important conclusion 

that if c is interior to S t  the equations F(x) = c have precisely 

one solution on the boundary of P other than on that face where - 

X n+ 1 = 0. But if c is a regular value of the mapping F, Theorem 

3.3. can be invoked to produce a path starting from x*. Since 

the path must terminate at some other boundary point of P, there 

must be a vector on the bottom face of P for which F(x) = c. 

As we have already seen, this demonstrates the existence of a 

completely labelled simplex. 

In order for this argument to be complete we need only show 

that there exists at least one vector c, interior to S t  which 

is a regular value of the mapping F. But this follows immediately 

from Theorem 3.5. and the observation that F maps the face of 
n 

P on which C x = 1 onto an n-dimensional subset of R". 
1 



L e t  u s  examine t h e  pa th  gene ra ted  from x* and t e r m i n a t i n g  

w i t h  a  s o l u t i o n  t o  t h e  problem i n  somewhat g r e a t e r  d e t a i l .  

S ince  c  i s  a r e g u l a r  v a l u e  t h i s  p a t h  w i l l  move from one p i e c e  

o f  l i n e a r i y  t o  an  a d j a c e n t  one by pass ing  th rough t h e  i n t e r i o r  

o f  t h e i r  common f a c e  Q. 

F i g u r e  15. 

The f a c e  Q i s  t h e  produce o f  t h e  i n t e r v a l  [ 0 ,1 ]  w i t h  t h e  i n t e r -  

s e c t i o n  o f  two a d j a c e n t  s i m p l i c e s  i n  t h e  s i m p l i c i a 1  s u b d i v i s i o n  

of S ,  say  Si and S  I t  i s  easy  t o  s e e ,  however, t h a t  t h e  n  
1. 

v e r t i c e s  common t o  Si and S  must t o g e t h e r  b e a r  a l l  o f  t h e  
j 

l a b e l s  1,2,. . . ,n .  For  i f  t h e  ith such l a b e l  were m iss ing  it 

would f o l l ow  t h a t  f .  ( x )  = 0 on t h i s  common i n t e r s e c t i o n ,  which 
1 

c o n t r a d i c t s  



We s e e ,  t h e r e f o r e ,  t h a t  t h e  p r o j e c t i o n  of  o u r  p a t h  t o  t h e  

lower  f a c e  of  P moves th rough s i m p l i c e s  each  of  which has  ve r -  

t i c e s  which t o g e t h e r  b e a r  a l l  t h e  l a b e l s  1 , 2 ,  ..., n ,  and which 

do n o t  b e a r  t h e  l a b e l  ze ro  u n t i l  t h e  p r o c e s s  t e r m i n a t e s .  Each 

such  s imp lex  must have a  s i n g l e  d u p l i c a t e d  l a b e l  be long ing  t o  

t h a t  v e r t e x  which is be ing  removed i n  pass ing  t o  t h e  n e x t  s implex.  

The sequence of  s i m p l i c e s  i s  t h e r e f o r e  i d e n t i c a l  w i t h  t h a t  

produced by t h e  conven t i ona l  a l go r i t hm,  d e s c r i b e d  a t  t h e  beg inn ing  

of t h e  example. 

I t  may a l s o  be i n s t r u c t i v e  t o  remark t h a t  a  second a l g o r i t h m  

t o  F ( x )  = c on t h e  f a c e  xn+, = 0 would g e n e r a t e  a  second p a t h  

l y i n g  on F-' ( c )  which would, o f  n e c e s s i t y ,  r e t u r n  t o  t h i s  f a c e .  

Th i s  p e r m i t s  us  t o  a r r i v e  a t  t h e  w e l l  known c o n c l u s i o n  a s s e r t i n g  

t h e  e x i s t e n c e  o f  an - odd number o f  s o l u t i o n s  t o  f  (x )  = c. (See 

F i g u r e  16 . )  

F i g u r e  16. 



A s  our  second example we s h a l l  i n d i c a t e  a  way i n  which 

f i x e d  p o i n t  methods based on "vec to r "  l a b e l s  ( a  v e r s i o n  of t h e  

main theorem i n  t h e  monograph by Scar f  and Hansen [ 2 2 ] )  r a t h e r  

than i n t e g e r  l a b e l s  may be p laced i n  t h e  genera l  framework of 

t h i s  paper.  W e  begin w i th  a  s i m p l i c i a 1  subd iv i s ion  of t h e  

s implex 

F igure  1 7 .  



1 2  n  Let  t h e  v e r t i c e s  of t h e  subd iv i s ion  be denoted by v  ,v  ,..., v , 
n+ 1 v ,..., vk,  where 

For s i m p l i c i t y  of expos i t i on  we make t h e  assumption t h a t  no 

v e r t i c e s  of t h i s  subd iv is ion ,  o t h e r  than t h e  f i r s t  n  v e r t i c e s ,  

l i e  on t h e  boundary of S. 

Each v e r t e x  vJ w i l l  have assoc ia ted  wi th  it a vec to r  f  ( v j )  

contained i n  R". I n  p r a c t i c e  t h i s  a s s o c i a t i o n  i s  determined 

by t h e  p a r t i c u l a r  problem being solved;  f o r  our  purposes,  however, 

we may cons ider  t h e  vector  l a b e l s  t o  be completely a r b i t r a r y  

a s i d e  from t h e  assumption t h a t  

i i £ ( v  ) = v , f o r  i = 1,2  ,..., n . 

I n  a d d i t i o n  t o  t h i s  assignment of vec to r  l a b e l s  a  s p e c i f i c  posi -  

t i v e  vector  c  i n  R" i s  given. 

By a  s o l u t i o n  t o  t h i s  problem we mean t h e  determinat ion  

of a  p a r t i c u l a r  simplex i n  t h e  subd iv is ion ,  w i th  v e r t i c e s  
I ,  j 2  j  n  

v  ,v  , ,  v , such t h a t  t h e  equat ions 



have a non-negative solution (a ,a ,...,aj ) .  In order to 
j, j2 n 

guarantee that such a solution does indeed exist it is sufficient 

to make the following assumption. 

4.4. [Assumption] Let a = (al ,a2,... ,ak) be non-negative 

and satisfy 

Then a = 0. 

To cast this problem in our general form we begin by defining 

n 
a function f (x) taking the non-negative orthant of R into Rn, 

as follows: 

1. f (vj) = the vector label associated with vj for any 

vertex of the subdivisions; 

2. f(x) is linear in each simplex of the subdivision S, and 

3 .  f (x) is homogeneous of degree 1, i. e., f (Ax) = Xf (x) 

for any X > 0. - . 
According to this definition, f(x) is therefore linear in 

each cone with vertex at the origin whose half-rays pass through 

a particular simplex in the subdivision of S. Because of the 

1 n special assignment of vector labels to the vertices v ,..., v , 

the function is the identity (f (x) ! x) on the boundary of the 

non-negative orthant of Rn. Iloreover, assumption 4.4. implies 

that for no non-negative vector x, other than the zero vector, 

will f (x) be < 0. - 



F igu re  18.  

I t  should be c l e a r  t h a t  s o l v i n g  t h e  v e c t o r  l a b e l l i n g  problem 

i s  s imply e q u i v a l e n t  t o  t h e  de te rm ina t i on  of a  non-negat ive 

v e c t o r  x  f o r  which 

The p a r t i c u l a r  s implex i n  t h e  s u b d i v i s i o n  involved i n  t h e  s o l u t i o n  

i s  then  ob ta ined  by i n t e r s e c t i n g  t h e  ray  from t h e  o r i g i n  through 

x  w i th  t h e  s implex S. 

I n  o r d e r  t o  d e f i n e  an  a p p r o p r i a t e  polyhedron P we beg in  

by remarking t h a t  assumption 4 . 4 .  imp l i es  t h a t  t h e  s e t  of non- 

n e g a t i v e  x  f o r  which f ( x )  ( c ,  i s  bounded. For  i f  t h e r e  were 



1 2  
a  sequence x  , x  . . . tend ing  t o  i n f i n i t y  w i t h  f ( x j )  - < c ,  t hen  

any l i m i t  p o i n t  o f  t h e  sequence 

would be non-negat ive,  d i f f e r e n t  from ze ro  and map i n t o  a  v e c t o r  

a l l  of  whose c o o r d i n a t e s  were l e s s  than o r  equa l  t o  0. For 

s p e c i f i c i t y  l e t  u s  assume t h a t  t h e r e  is  a  p o s i t i v e  c o n s t a n t  M I  

such t h a t  x  2 0,  and f ( x )  < c  imp l i es  t h a t  

4 .5 .  [ D e f i n i t i o n ]  The polyhedron P  is  de f i ned  t o  be t h e  

produc t  of  t h e  c l o s e d  u n i t  i n t e r v a l  0  ( xntl 2 1  w i t h  t h e  s e t  
n  

{ ( x l , . . . , x n )  lxi 2 0 ,  C xi 5 M I .  Each p i e c e  Pi i s  determined 
1  

by a p a r t i c u l a r  s implex of t h e  s u b d i v i s i o n ,  Si ,  and c o n s i s t s  

of a l l  ( x l , .  . . l ~ n l x n + l )  w i t h  

n  
2 .  C x i ( M  , and 

1  

n  
3 .  ( x l , . . . , x n ) /  C x i  con ta ined  i n  Si . 

1  



Figure 19. 

We also define the function F ( X ~ , . . . , X ~ , X ~ + ~ )  in the following 

way. 

4.6.  [Definition] Let d be a vector in R" which is strictly 

larger than c, and assume--for definiteness--that 

We then define 



With t h i s  d e f i n i t i o n  a s o l u t i o n  t o  t h e  v e c t o r  l a b e l l i n g  

problem w i l l  be ob ta ined  by f i n d i n g  a v e c t o r  ( x l ,  ... 'Xn'xn+l ) 

i n  F-' ( c )  w i t h  x ~ + ~  = 0. I n  o r d e r  t o  a rgue t h a t  such a v e c t o r  

- 1 does indeed e x i s t  l e t  u s  examine t h e  i n t e r s e c t i o n  of F ( c )  

w i t h  t h o s e  boundary f a c e s  of P o t h e r  t han  t h a t  f a c e  w i th  x ~ + ~  = 0. 

1.  The upper  f a c e  x ~ + ~  = 1.  

An i n t e r s e c t i o n  on t h i s  f a c e  would s a t i s f y  f ( x l ,  ..., x ) + d = c ,  n 

which i s  r u l e d  o u t  by sssumpt ion 4 . 4 .  s i n c e  d > c .  
n 

2. The f a c e  C xi = M ,  x ~ + ~  > 0. 
1 

Such an  i n t e r s e c t i o n  would s a t i s f y  f ( x l , . . . , x n )  < c and 
n .. 
C xi  = M ,  which is  a g a i n  imposs ib le  by t h e  i m p l i c a t i o n s  of 
1 
assumpt ion 4 . 4 .  

3 .  The f a c e  x = 0 ,  f o r  i = 1 ,  ..., n. i 

On any such f a c e  t h e  f u n c t i o n  f ( x )  is  t h e  i d e n t i t y ,  and t h e  

system of equa t i ons  F ( x )  = c may t h e r e f o r e  be w r i t t e n  a s  

Given o u r  assumpt ion however t h a t  c l / d l  < c j / d j  f o r  j = 2,  ..., n ,  

it is  easy  t o  s e e  t h a t  t h e  on l y  such i n t e r s e c t i o n  i s  t h e  v e c t o r  

x* = (C  - ( ~ ~ / d ~ ) d , c ~ / d ~ ) ~  on t h e  f a c e  x l  = 0. 



Figure 20. 

We have reached the important conclusion that F-' (c) inter- 

sects the boundary of P, other than that part of boundary where 

X n+ 1 = 0, in a single point. If c is a regular value of the 

mapping this completes our argument, since the path beginning 

at x* must reach a second boundary point of P which necessarily 

lies in the face xn+' = 0. If c is not a regular value of the 

mapping we appeal to Theorem 5.3. The image of the face x = 0, 
1 

under F ,  is clearly of dimension n (since f is the identity on 

that face) and we therefore conclude that there are values of 

x', lying on that same face and arbitrarily close to x*, for 

which c = F (XI) is regular. The system of equations f (x) = c ' 

will therefore have solutions, and by passing to the limit, so 

will the original system. 



It may be useful, as a final remark, to show that the path 

generated above--when c is a regular value--moves through a 

sequence of simplices which is identical to that generated by 

the algorithm described in Scarf and Hansen [221. Consider 

two adjacent pieces of linearity P1 and P2 whose commong face 

Q is traversed by the path. Since c is a regular value the 

Figure 21. 

mapping F must take Q into a subset of R~ of full dimension, 

for otherwise a component of F-' (c) would be fully in this face. 

Let us express the action of F on Q as follows. The piece 

P, is generated by a simplex in the subdivision with vertices 

j l  j2 J n 
v ,v , . . . v and P2 by the simplex, say, in which v 

replaced by v'. Any ( X ~ , . . . , X ~ , X ~ + ~ )  on the face Q can there- 

fore be written as 



Since this mapping has full rank, it follows that the matrix 

has a non-singular determinant. Since A ( x ~ + ~ , ~  ,..., a ) '  = c 
j 2 J n 

at the point of intersection of the path and Q, it follows that 

the columns of A form a feasible basis whose columns correspond 

to the vertices of the simplex defining P --with the single 1 
'1 exception that the column d has replace the image f(v 1. This 

is precisely the general position of the conventional almost 

complementary algorithm. 

The paper continues with several other examples and a 

discussion of the index of a solution. 
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Analysis of a Compact Predator-Prey Model 

The Basic Equations and Behaviour 

Dixon D. Jones 

Introduction 

This paper is the first of a series dealing with the analysis 

of a compact, relatively uncomplicated predator-prey model. 

Here, only the basic equations are given and a selected subset 

of system behaviour illustrated. Written documentation con- 

cerning this model and its analytic investigation are being 

documented as completed to speed communication among interested 

parties. As this model is becoming a focus for several method- 

ological and conceptual discussions, the need has arisen for 

a concise description of the equations. 

The model itself stands midway between more traditional 

differential or difference equation systems and complex simulation 

models. (For a review of systems of the former type and access 

to the flavor of their behaviour, see May, 1973 or Maynard 

Smith, 1974.) This model is not an embellishment of simpler 

classic equations but rather an aggregation and consolidation 

of a complex detailed predator-prey simulation model developed 

from an extensive program of experiment and submodel development 

(Holling, 1965, 1966a, Griffiths and Holling, 1969). The ob- 

jectives of that program are best summarized in Holling 1966b. 

The complete model continues to be refined, but a detailed 

documentation, with primary emphasis on the predation process 

has been prepared (Holling, 1973b). In its present form the 



model is a synthesis of the best validated components of the 

analog processes of predation and parasitism. 

The performance of the simulation model exhibits dynamic 

systems behaviour with far-reaching conceptual and theoretical 

implications. Holling's paper (1973a) on the resilience of 

ecological systems is the overture to a major reorientation of 

ecological perspective. To further explore the dynamic properties 

of this class of system, we mathematically and pragmatically 

require an analytic system that is tractable while providing 

the rich variety of behaviour found in the full simulator. 

The goal of this series of IIASA working papers is to 

explore the dynamic topology of this analytic system and outline 

a general protocol for analysis of similar systems. There is 

clearly room to venture back into the ecological domain and use 

this model to gain insight into the biological aspects of the 

predation process. However, such a move is not envisioned in 

the current context. In a subsequent paper I will include a 

discussion of the theoretical and experimental foundations of 

this model complete with ecological assumptions and limitations. 

At present I am offering a system of equations for mathematical 

enquiry. 

The Model Eauations 

The model is equivalent to a deterministic pair of difference 

equations. Indeed it can be so formulated, but to do that 

would cloud, rather than clarify. The iteration time interval 

is unspecified in absolute terms. During each time step, predators 



attack and remove prey. Then predators and prey both reproduce. 

The event orientation of the formulation ties the iteration 

most strongly to the prey generation time. 

The two state variables are the densities of predators and 

of prey. At the start of each iteration the initial densities 

are 

x = initial prey density 

y = initial predator density 

The functional response of predator attacks to prey density is 

Because attacks of predators on prey are distributed nonrandomly 

among the prey, we incorporate the negative binomial distribution 

to account for this (see Griffiths and Holling, 1969). The 

number (per unit area) of prey attacked is z and is expressed as 

The number of prey that excape predation is 

h 

x = x - Z  . ( 4 )  

These reproduce according to some function H(G) that provides 



a density of prey x' at the beginning of the next time step. 

The reproduction function used is a descriptive one. It in- 

corporates a minimum density reproduction threshold and a maxi- 

mum at some finite prey density. 

Prey reproduction depends on three parameters: 

x = minimum density for reproduction 
0 

M = maximum reproductive rate 

OPTX = prey density at maximum reproduction rate (5) 

These parameters are recombined as 

Y = 1 + OPTX 

The final form of H ( G )  is 

The function describing predator reproduction incorporates 

both "contest" and "scramble" types (Nicholson, 1954). The 

parameter C, varies between 0 and 1, and specifies the degree 

of scramble in the process. The predator density that begins 

the next iteration, y', is given as 



In summary the equations are 

The "graph" of this model is relatively simple (Figure 1 ) .  

The quantity y '  is entered twice to emphasize the symmetry. 

The broken arrows from x' to x and from y' to y indicate a new 

iteration in the time sequence. 

Model Behaviour 

A BASIC program was written to implement this model on a 

Hewlett-Packard 9830A calculator. A small subset of the possible 

conditions are illustrated in Figures 2 through 5. 

In the course of development of this experimental and 

modelling work, certain parameters have evolved into what we 

call our "Standard Case". These particular values do not 

necessarily carry any fundamental biological significance; they 

only serve as a common base for comparing the effect of changes 

in parameter values. The "Standard Case" in the present notation 

is 



Note: In the figures 

that follow a value of 

a = 0 .0714  was inad- 2 

vertently used. The 

resulting differences are 

minor. 

Figure 2 shows a phase plane trajectory for the Standard 

Case. The initial starting point is at "x"; the trajectory then 

spirals counter-clockwise into an equilibrium point. (The 

trajectory has been terminated before it reached that point.) 

The Standard Case is not globally stable. Combinations 

of state variables that lead to prey densities less than xo 

result in extinction of the prey population followed by the 

predators. Figure 3 shows an enlarged section of the state 

plane with a disperse collection of starting conditions. The 

actual trajectories have been suppressed in this plot. Initial 

points are marked with "xu; subsequent locations are marked 

with "0" if they are outside the domain of attraction or 

with "+" if they eventually lead to equilibrium. With enough 

trial initial points, the boundary of the attractor domain begins 

to be defined as indicated by the freehand curve. 



Previous explorations with the full simulation model have 

identified K and C as important and sensitive parameters to 

the topology of trajectories (Jones, 1973). Table I. outlines 

the qualitative behaviour trends for increasing values of k 

for C = 0  ("contest" predator reproduction) and C = 1 ("scramble" 

reproduction). The exact division between these models have 

not been located. They could be, of course, given enough paper 

and patience. The goal of the present analytic effort is to 

shortcut that necessity and develop a more comprehensive pro- 

cedure for looking at this type of system. 

As one example of the behaviour of this model see Figures 

4 and 5  in conjunction with Figure 2. When the binomial co- 

efficient k = 1.0 the system becomes globally unstable (Fig. 4). 

The analogy of Hopf bifurcation would suggest that there is an 

intermediate range of k values for which a periodic orbit exists. 

Figure 5  shows the phase behaviour for k = 0.825.  A periodic 

orbit does seem possible although visual inspection is not an 

absolute judge. 



R e f e r e n c e s  

[I] G r i f f i t h s ,  K . J .  and  H o l l i n g ,  C.S.  "A C o m p e t i t i o n  Sub- 
model  f o r  P a r a s i t e s  and P r e d a t o r e s , "  Can.  Entom. 101 ,  
1969 ,  785-818. 

[2] H o l l i n g ,  C.S. "The F u n c t i o n a l  Response  o f  P r e d a t o r s  t o  
Prey  D e n s i t y  and I ts  R o l e  i n  Mimicry and  P o p u l a t i o n  
R e g u l a t i o n , "  Mem. E n t .  S o c .  Canada,  45, ( 1 9 6 5 ) ~  1-60.  

[3] H o l l i n g ,  C .S .  "The F u n c t i o n a l  Response o f  I n v e r t e b r a t e  
P r e d a t o r s  t o  P r e y  D e n s i t y , "  Mem. E n t .  S o c .  Canada 48,  - 
( 1 9 6 6 a ) ,  1 -86.  

[4] H o l l i n g ,  C.S.  "The S t r a t e g y  o f  B u i l d i n g  Models o f  Complex 
E c o l o g i c a l  Sys tems , "  i n  K.E.F. Wat t  ( e d . )  Sys tems  
A n a l y s i s  i n  Eco logy ,  ( 1 9 6 6 b ) ,  Academic P r e s s ,  New York .  

[5] H o l l i n g ,  C .  S.  " R e s i l i e n c e  and  S t a b i l i t y  o f  E c o l o g i c a l  
Sys tems , "  Annual  Review o f  Eco logy and  S y s t e m a t i c s ,  
Vo l .  4 ,  ( 1 9 7 3 a ) ,  Annual Revs .  I n c . ,  P a l o  A l t o .  
( R e p r e n t e d  a s  : IIASA R e s e a r c h  R e p o r t ,  RR-73-3, S e p t  . 197:) 

[6] H o l l i n g ,  C . S .  " D e s c r i p t  i o n  o f  t h e  P r e d a t i o n  Model, " 
RM-73-1, Sep tember  1973b ,  I n t e r n a t i o n a l  I n s t i t G t e  o f  
A p p l i e d  Sys tems  A n a l y s i s ,  Laxenburg ,  A u s t r i a .  

[7] J o n e s ,  D . D .  " E x p l o r a t i o n s  i n  Paramete r -Space , "  WP-73-3, 
Sep tember  1973,  I n t e r n a t i o n a l  I n s t i t u t e  o f  A p p l i e d  
Sys tems  A n a l y s i s ,  Laxenburg ,  A u s t r i a .  

[8] May, R . M .  S t a b i l i t y  and C o m ~ l e x i t y  i n  Model Ecosys tems ,  
P r i n c e t o n  U n i v e r s i t y  P r e s s ,  1 9 7 3 .  

[9] Maynard S m i t h ,  J .  Models i n  Eco logy ,  Cambridge a t  t h e  
U n i v e r s i t y  P r e s s ,  1 9 7 4 .  

0  N i c h o l s o n ,  A . J .  "An O u t l i n e  o f  t h e  Dynamics o f  Animal 
P o p u l a t i o n s , "  A u s t .  J .  Zool ,  2,  ( 1 9 5 4 ) ,  9-65.  



Tab le  I .  Behaviour t r e n d  w i t h  i n c r e a s i n g  k ,  f o r  C  = 0 and 

C = 1. 

Long Narrow Domain of 

A t t r a c t i o n  ( pe rhaps  ex-  

t e n d i n g  t o  y = 00 ) 

Beginn ing o f  O s c i l l a t o r y  

T r a j e c t o r i e s .  F i n i t e  

Domain. 

N e u t r a l  O r b i t s  I n s i d e  a  

F i n i t e  Domain 

G loba l  I n s t a b i l i t y  

I n c r e a s i n g  speed  t o  

e x t i n c t i o n .  

- - 

Large  Domain o f  A t t r a c t i o n  

( pe rhaps  i n f i n i t e  i n  h igh  

x ,  y  c o r n e r )  

F i n i t e  Donain o f  A t t r a c t i o n  

C o n t r a c t i o n  of Domain 





F igu re  2 .  Sample T r a j e c t o r i e s  f o r  "S tandard  Case" 

2.0 

LUG X I  PREY 



F igu re  3 .  Domain o f  A t t r a c t i o n  f o r  "S tandard  Case" 

1.8 

LUG X I  PREY 



F i g u r e  5 .  Sample Phase  Pla,ne T r a j e c t o r y  f o r  C = 0 

and k = 0 .825  

rn '=! m C9 E =? 61 5 
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Figure 6. Sample Phase Plane Trajectory for C = 0 

and k = 1.0 
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Volterra's System and the Equation of Michaelis-Menten 

A.D. Bazykin 

Abstract of presentation 

A modified set of Volterra's differential equations for 

dynamics of prey and predator population sizes is analyz@d. This 

modification takes three effects into consideration: 

1 )  Satiation of predator resulting in the incapacity of both 

the rate of eating away of prey by predator and the 

rate of predator reproduction to increase infinitely 

with growth of prey number. 

2) Limited resources of prey, as a result of which prey 

population size cannot increase infinitely even in the 

absence of predator. 

3) Limited external resources (unrelated to prey) of preda- 

tor, as a result of which predator population size cannot 

grow infinitely even when there is an excess of preys: 

Analysis of this set of equations gives many different regimes 

depending on the values of parameters. 

This model as a whole prognoses a number of situations: 

situations in which the behavior of a predator-prey system is 

adequately described by Volterra's equations; situations in 



which t h e s e  equa t i ons  cannot  d e s c r i b e  t h e  dynamics of prey- 

p r e d a t o r  r e l a t i o n s ;  s i t u a t i o n s  i n  which t h e s e  r e l a t i o n s  change 

s i m i l a r i l y  t o  Vol:.<rra's under c e r t a i n  i n i t i a l  c o n d i t i o n s  and 

does no t  change i n  o t h e r  c o n d i t i o n s .  
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Stability Analysis of Predator-Prey Models 

Via the Liapunov Method* 

M. Gatto and S. Rinaldi* 

Abstract 

As is well known from the classical applications in 
the electrical and mechanical sciences, energy is a suit- 
able Liapunov function; thus, by analogy, all energy 
functions proposed in ecology are potential Liapunov 
functions. In this paper, a generalized Lotka-Volterra 
model is considered and the stability properties of its 
non-trivial equilibrium are studied by means of an energy 
function first proposed by Volterra in the context of 
conservative ecosystems. The advantage of this Liapunov 
function with respect to the one that can be induced 
through linearization is also illustrated. 

1 . Introduction 

One of the classical problems in mathematical ecology is the 

stability analysis of equilibria and, in particular, the deter- 

mination of the region of attraction associated with any asymp- 

totically stable equilibrium point. It is also known that the 

best way of obtaining an approximation of such regions is La Salle's 

extension of the Liapunov method [2], [4]. 

Nevertheless, this approach has not been very popular among 

ecologists, the main reason being that Liapunov functions (i.e. 

functions that satisfy the conditions of the Liapunov method) 

are in general difficult to devise. One straightforward, but 

often not very effective, way of overcoming this difficulty is 

through linearization as shown in Section 3, while a more fruitful 

*Work partly supported by Centro di Teoria dei Sistemi, C.N.R., 
Milano, Italy. The paper has been presented at the 7th IFIP 
Conference on Optimization Techniques, blodelling and Optimization 
in the Service of Man, Nice, Sept. 8-13, 1975 

**Centro di Teoria dei Sistemi, C.N.R., Milano, Italy. 



way consists in considering as candidates for Liapunov functions 

any functions that are analogous to the internal energy of the 

system. This is the approach that is, for example, commonly 

followed by engineers in the analysis of mechanical systems or 

in the study of nonlinear electrical networks. The reason why 

the Liapunov method has not been widely used in ecology possibly 

resides in the lack of a definition of an energy function in the 

context of ecological systems. One major exception is represented 

by the pioneering work of Volterra and the more recent work of 

Kerner [ I ]  who discussed the analogy between ecological and 

mechanical systems in terms of energy. Nevertheless, these works 

are limited to conservative ecosystems, a case that seems to be 

very peculiar indeed. 

The aim of this paper is to show how the energy function 

proposed by Volterra (from now on called Volterra function) quite 

often turns out to be a Liapunov function even for non-conservative 

ecosystems. In order to avoid complexity in notation and proofs, 

the only case that is dealt with in the following is the one of 

second order (predator-prey) systems, but the authors strongly 

conjecture that the results presented in this paper could be 

easily generalized to more complex ecological models. 

2. The Volterra Function 

Consider the simple Lotka-Volterra model 

- :: - - x(a - by) 

3 = y(-c + dx) dt 



where x and y are prey and predator populations and (a,b,c,d) 

are strictly positive constants. This system has a non-trivial 

equilibrium (x,?) given by (x,?) = (c/d, a/b) which is simply 

stable in the sense of Liapunov. Moreover, any initial state 

in the positive quadrant gives rise to a periodic motion. This 

can easily be proved by means of the energy function proposed 

by Volterra, 

v =  (x/?- log x/X) + p(y/Y - log y/Y) - (1  + P) , (2) 

where 

since this function is constant along any trajectory and its 

contour lines are closed lines in the positive quadrant. In other 

words, the Volterra function (2) is a Liapunov function because 

it is positive definite and its derivative dV/dt is negative 

semidefinite (identically zero). 

In the following, the Volterra function will be used in 

relation with non-conservative ecosystems of the form: 



where f and g are continuously differentiable functions. More- 

over, we assume that there exists a non-trivial equilibrium 

> 0 and that the positive quadrant is an invariant set for 

system (3) so that it can be identified from now on with the 

state set of the system. 

3. Linearization and the Liapunov Equation 

Liapunov functions can, of course, be constructed by solving 

the so-called Liapunov equation. This proced.ure is now briefly 

described so that the advantage of the Volterra function can be 

better appreciated in the next sections. Let 

be the variations of prey and predator populations with respect 

to the equilibrium (Fly). Then the linearized system associated 

with this equilibrium is given by 

where (fx ,g ,g ) are the partial derivatives of f and g '5 x Y 
evaluated for (x,y) = ( F l y ) .  Now, assume that the matrix F has 

eigenvalues with negative real parts, which implies that the 



equilibrium is asymptotically stable (recall that the converse 

is not true). Under this assumption Liapunov's equation (matrix 

equation) 

has one and only one solution in the unknown matrix P for any 

positive definite matrix Q. Moreover, the matrix P is positive 

definite and the function 

is a Liapunov function because its derivative 

is negative definite. In conclusion, the Liapunov function (6) 

can be very easily determined by solving equation (5) with F 

given as in equation (4) and with Q positive definite (e.g. Q = 

indentity matrix). The only limitation to the applicability 

of this method is the assumption on the eigenvalues of the 

matrix F: for example, the Lotka-Volterra model ( 1 )  cannot be 

discussed in this way, since the F matrix has purely imaginary 

eigenvalues. Nevertheless, even when this method can be applied, 

the results are not in general as satisfactory as the ones that 

can be obtained by means of the Volterra function as shown in 

the next section. 



4. The Volterra Function as a Liapunov Function 

Consider the generalized Lotka-Volterra model ( 3 )  and the 

Volterra function V given by equation (2). Then, the derivative 

of the Volterra function along trajectories is given by 

In order to study dV/dt in a neighborhood of the equilibrium 

(x ,y ) ,  it is possible to expand this function in Taylor series 

up to the second order terms, i-e., 

Since 



- 
f bGx 

- - - y + -  , d i ( ~ ) X , Y  dxdy j di 

eq. (7) becomes 

Therefore the second order approximation of dV/dt turns out to 

be a homogeneous quadratic form; by studying the negative or 

positive definiteness of such a form, it is possible to derive 

sufficient conditions for the Volterra function to be a Liapunov 

function. More precisely, by applying the well-known Sylvester 

conditions and performing easy computations, we obtain 

- 

x 
< 0 I negative definite 

dt 

bgx + d f  < 4bdf 
Y x Y 

- 
fx > 0 

positive definite . 
dt (10) 

Y 



Notice that these conditions are only sufficient for Liapunov 

methods to be applicable; thus, even if these conditions are 

not satisfied, it is possible that the Volterra function turns 

out to be a Liapunov function (see Example 2). 

As far as the study of stability properties in the large is 

concerned, the Volterra function is definitely advantageous with 

respect to the quadratic forms derived by means of Liapunov's 

equation (5). This is apparent in the case of global stability; 

in fact, global stability can be inferred by means of Volterra 

function, whose contour lines in the state set are closed, while 

this is never possible by means of a positive definite quadratic 

form of the kind (6): since the contour lines are not closed 

(see Examples 1 and 2) . 

5. Examples 

This section is devoted to clarifying by means of some 

examples what has been discussed above, with particular emphasis 

on the trade-offs between the Volterra function and the quadratic 

Liapunov function that can be obtained by solving the Liapunov 

equation. 

Example 1 

The first example is a simple symmetric competition model 

for two species described by the following equations (see May [3] : 



where k l ,  k and a are positive parameters. 2 

Provided that 

a non-trivial equilibrium (Fly) exists and is given by 

Thus, the matrix F of the linearized system is given by 

and its eigenvalues have negative real parts, provided that its 

trace is strictly negative and its determinant is strictly positive. 

These conditions are obviously satisfied if a < 1. On the other 

hand, also the sufficient conditions given by eq. (9) work well. 

In fact 



and 

provided that a < 1. 

However, the Volterra function guarantees the global stability 

of the equilibrium. This can be easily understood when taking 

into account that there is no error in the Taylor expansion ( 71 ,  

because the functions f and g are linear. Thus, dV/dt is negative 

definite in the state set and global stability follows from 

La Salle's conditions. 

Example 2 

Consider the well-known modification obtained from the 

classical Lotka-Volterra model, when assuming, in the absence 

of predation, a logistic growth for the prey: 

- dx - - x(a - by - kx) 
dt 

k > O  . 
9 = y (-c + dx) 
dt 

If ad > kc a non-trivial equilibrium 



exists, and linearization around it yields 

which has eigenvalues with negative real parts. On the other 

hand, it turns out that 

Therefore eq. (9) is not satisfied. Nevertheless, a direct 

computation yields 

i.e. dV/dt is negative semidefinite. Since the locus dV/dt = 0 

is not a trajectory of the system (easy to check), Krasowskyi 

conditions are met with and asymptotic stability can be inferred. 

Moreover, since dV/dt is negative semidefinite in the whole state 

set, global stability can be straightforwardly deduced. 



Example 3 

A third example is given to show how a subregion of the 

region of asymptotic stability can be found by means of the 

Volterra function. 

Consider a situation where the prey, in the absence of 

predators, has an asymptotic carrying capacity f3 and a minimum 

density a, below which successful mating cannot overcome the 

death process. This model can be described by 

where a, 8, y are positive parameters which are supposed to 

satisfy the relations 

It is easy to check that there exists only one non-trivial 

equilibrium given by (x,y) = (c, - 
Y (C - a) (C - @I)- 

This equilibrium is not globally stable, since the origin 

of the state space is also asymptotically stable. The regions 

A and B of asymptotic stability obtained by simulation for 

particular values of the parameters are shown in Figure 1.  It 



is possible to determine an approximation of region A by means 

of the Volterra function. In fact, 

d~ - (z x - I )  (-(x - a) (x - 6) - YY) + Y=(- Y y - 1) (-c + x) 
d t -  

Y Y  

is negative semidefinite in the region 

since (a + 6)/2 < c. Moreover the straight line x = x, where 

dV/dt = 0, does not contain any perturbed trajectory. Therefore 

the region bounded by the contour line of the Volterra function 

that is tangent to the straight line x = a + 6 - c (see Figure 1) 

represents an estimate of the region of attraction, since 

La Salle's conditions are satisfied. 

6. Concluding Remarks 

The energy function proposed by Volterra has been used in 

this paper to analyze the asymptotic behaqior of non-conservative 

ecosystems of the predator-prey type. The main result is that 

the Volterra function turns out to be a well-defined Liapunov 

function for a large class of systems and therefore allows the 

discussion of the local and global stability properties of such 



systems. The V o l t e r r a  func t i on  d e f i n i t e l y  seems advantageous 

w i th  r e s p e c t  t o  t h e  Liapunov f u n c t i o n s  t h a t  can be obta ined 

through l i n e a r i z a t i o n ,  p a r t i c u l a r l y  i n  t h e  c a s e  of g l o b a l  

s t a b i l i t y .  Moreover, it is worthwhi le  no t i ng  t h a t  t h e  V o l t e r r a  

func t i on  is  a l s o  of  i n t e r e s t  when t h e  equ i l i b r i um s t a t e  under 

d i s c u s s i o n  is uns tab le .  The r e s u l t s  ob ta ined  i n  t h i s  paper 

a l l ow  us  t o  prove i n  a  very s imp le  form some g e n e r a l  p r o p e r t i e s  

such a s  t h e  fo l low ing:  i f  t h e  f u n c t i o n  f  and g  i n  t h e  g e n e r a l  

model (3 )  a r e  l i n e a r  and s a t i s f y  eq. ( 9 ) ,  t hen  t h e  l o c a l  s t a b i l i t y  

of  an  equ i l i b r i um imp l i es  i t s  g l o b a l  s t a b i l i t y .  
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Zubov Procedures for Estimating the Domain of Attraction 

J. Casti 

(presented July 25) 

I. Introduction 

The basic question to be studied in this presentation is the 

determination of the boundary of stability (domain of attraction) 

of the origin for the system 

Here x (t) is an n-dimensional vector function of time and f is 

a continuous vector-valued function of x such that f(0) = 0. 

The Zubov procedures for determining the domain of attraction 

are based on 

Theorem 1 [ I  1 . In order that the region A C En, containing 

the origin, be the domain of asymptotic stability for the zero 

solution of ( * ) ,  it is necessary and sufficient that there exist 

functions V (x) and + (x) such that 

1) the function V(x) is continuous in A, while +(x) is 

continuous in En; 

2) - 1 < V(X) < 0 for XEA, +(x) > o for XEE", I X (  f O;  

3 )  for any y2 > 0, we can find yl and ul such that 

V(x) < - y1 for 1x1 2 y2, +(lxl) > al for 1x1 2 y2; 

4 )  V(x) and +(x) + O  as I x l  + o ;  

5) if y ~ a A ,  y # 0, then lim V(x) = - 1, while if 
X+V 



An important corollary of Theorem 1, valid for f continuously- 

differentiable in each argument is 

Corollary 1. If the zero solution of ( * )  is asymptotically 

stable, then the equation 

has a unique continuously differentiable solution d-efined by the 

condition V(0) = 0, for all XEA, satisfying the conditions of 

Theorem 1 for some function $.  In order that ( * * )  have a solution 

it suffices that c$ satisfy 

for sufficiently small xo. 

(Remark: The reader should note that the conditions of 

Theorem 1 make V (x )  a Lyapunov function for ( " 1  ) . 
Example : 



The equation for V is 

which is obtained by choosing 

It is easy to see that 

X V(x,y) = exp 1 -  1 
2(1 - xy) 

is the solution of this equation. From this function it follows 

that the curve xy = 1 forms the boundary of the stability domain. 

11. Zubov's Approach for Analytic Systems 

Henceforth, we impose the following restrictions on the 

system dynamics: 

(Al) the functions fi(xl, ..., xn) are holomorphic functions 

of (xl ,...,xn) having no constant terms, i.e. 



(A2) the characteristic roots of the linear part of the 

dynamics all have negative real parts, i.e. if P = [p..], then 
1 7  

the equation 

det (P - XI) = 0 

has roots {Xi} all in the left half-plane. 

Under (A1 ) , (A2) , it is not hard to show that Eq. ( * * )  has 

a solution of the form 

where v (x) is a homogeneous form of degree m in the variables m 

(xl, ..., xn). Substituting this representation into Equation ( * * ) ,  

we obtain the following recursive equations for the forms {vi(x)}: 

Here Rm is a known form of degree m, determined by knowledge of 

the forms v2, v 3 t . . s r  v m-1' 

The following properties of the series ( + )  are of special 

importance: 

i) the form v2 (x) is negative definite; 



ii) the series (+) converges in a neighborhood of the origin; 

iii) the function V(x) defined by the cbnvergent series (+) , 

may be analytically continued along any ray emanating from the 

origins and terminating at the boundary of the domain of stability. 

Remark: Choice of the function $ influences the region 

of convergence of (+) . 
Zubov's attack on the stability problem is based on an 

attempt to utilize finite segments of the series (+) to 

successively approximate the stability boundary. The first task 

is to construct a region entirely contained within the domain 

of stability. 

Consider the family of hypersurfaces v2(x) = - p, 0 < p < m. 

Call Y(= aA) the true stability boundary. There exists a value 
- 

of p = such that the surface v2 (x) = - p will be tangent to 

some point of 9. Consequently, since the family v (x) = - p 2 

fills up all of E", we let - be the largest value of v2(x) 
- 

on 9': Then v2 = - p will be tangent to Since Y i s  unknown, 

we proceed as follows. Let 

and find the set of points where W(x) = 0. If we call this 

set Wo, we now find the largest value of v2 on Wo and call this 

- po l  i.e. 



Then we obtain 

Theorem 2. The hypersurface v2(x) = - pO is entirely 

contained within the domain of attraction of the origin. 

The general algorithm proceeds by iterating the above 

procedure. The steps are: 

1 )  Consider the hypersurfaces Sn (:O = - p, where 

s (x) = V2 (x) +. . .+ vn(x). n 

Define 

2) Determine the largest value of Sn on the set Won. Call 

this value - pons 

3) The hypersurface Sn = - pOn will then be entirely contained 

within the domain of attraction. Further, as n + the regions 

Sn = - pOn will converge to 9. 

111. Discussion 

Successful use of the Zubov approach hinges critically upon 

the ability to successfully form the series (+) and to carry 

out the necessary algebraic manipulations to find the forms 

{vi(x)}. Current symbolic manipulation computer languages such 

as PL/I, FORMAC, etc. may be helpful in this reqard. Also, it 

should be noted that in many cases all that is required is a 



reasonable estimate of the boundary of stability so that it 

may be possible to use only two or three terms in ( + ) ,  thereby 

reducing the computational burden. 

Generally speaking, the Zubov procedures are probably not 

as effective for finding the true d.omain of stability for an 

isolated system as the numerical "backward" integration approaches. 

However, if one is interested in structural features, of the 

stability boundary and parametric studies, then the Zubov methods 

are undoubtedly superior as they enable one to systematically 

generate analytic forms which approximate the boundary of stability 

to arbitrary accuracy. 
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Some Elements of the Response Function 

of the Enterprise in the Socialist Economy 

Janusz Beksiak 

(presented July 29) 

In the analysis of the management system of the national 

economy we are interested in the vertical relations between 

central economic authorities (CEA) and enterprises, and hori- 

zontal ones between enterprises and consumers. In the empirical 

research we tried to recognize the ways in which the enterprises 

respond to the stimuli coming to them from other participants 

of economic life. 

We understand the term "response function" in a very 

general, informal sense, as a correspondence between information 

input and output of the enterprise. In our analysis we con- 

centrate on the control elements of this "function", such as: 

price-type and non-price information and elements of the process 

of decision-making. 

During one year we observed the behavior of some number of 

the enterprises producing and trading consumer goods. We 

recorded decisions and events occurring in their behavior. 

It is possible to present now in a very short form a part 

of the provisional results of this work concerning: a) aims, 

b) decision-making procedure, c) managment instruments and 

1 inks. 

We selected eight types of aims described by the enter- 

prises : 



1.  Satisfaction of demands of consumers. 

2. Satisfaction of demands of public opinion. 

3. Maximization of incomes. 

4. Minimization of efforts of the personnel. 

5. Improvement of the enterprise organization and 

efficiency . 
6. Satisfaction of demands of other enterprises. 

7. Satisfaction of demands of central economic activities.* 

8. Satisfaction of demands of other authorities (political, 

local, etc. ) . 
These aims occurred in most cases in groups, with one 

emphasized as the main aim. According to this we selected three 

aggregated "orientations": 

A. Consumers (combination of the aims 1 and/or 2). 

B. CEA (6, 7, 8). 

C. Own interest (3, 4, 5). 

On the basis of frequency of different orientations in 

the behavior of each enterprise, we divided them into two types: 

I oriented on: 1) own interest (C), 2) CEA (B), 3) con- 

sumers (A). 

I1 oriented on: 1 ) consumers (A) , 2) own interest (C) , 

3) CEA (B). 

We have taken into account: a) information basis, b) num- 

ber of variants analyzed, c) method of choice (calculation, not- 

formalized analysis, experience and intuition, routing). 

*Other than given in previous items. 



After determining the minimum necessary requirements of 

methodological rationality for different kinds of decisions, 

we divided them generally into two categories: fully satisfying 

and not-fully satisfying these requirements. Taking differences 

from the average figures (average for all analyzed decisions) 

occurring in each enterprise, we got eight types of decision- 

making procedures. The greatest number of enterprises belong 

to types No. 3, 5, and 8 (see Figure). 

Management instruments and links 

We distinguish 

- three groups of instruments: a) directives, b) price- 

type instruments, c) other, being a composition of (a) 

and (b), or being non-price non-directive information; 

- vertical and horizontal links; 

- directions of control and influence. 

Picking out the enterprises with the greatest differences 

from the average frequency of these instruments used in dif- 

ferent directions we got four situationa and kinds of enter- 

prise behavior: 

I. The enterprise that receives from CEA more directives 

than any other enterprise, and is not actively in con- 

tact with CEA and other economic units. In most cases 

it simply implements the directives and is a subject 

of pressures from o?ltside. Such firms we call "obedient" 

11. Receives as many directives as (I), but tries to exert 

a pressure on CEA. Most of these enterprises, called 

"fighting", exert also a strong pressure on other firms. 



111. The firms, that in more cases then other enterprises, 

receive price-type information, but are not very active in 

relation to CEA. Their contacts with other units are quiet, 

with greater role of price-type instruments. We call them 

"quiet". 

IV. The enterprises have rather rare contacts with CEA 

(in both directions), but exert a strong pressure on other 

firms and consumers. It is a "highly independent" enterprise. 
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Fixed Points, Periodic Orbits, etc., 

in Climatological Models 

Abstract of Presentation, July 29, 

J. Charney and K. Fraedrich 

Following a brief review of the generation of axisymmetric 

circulations on a rotating sphere or in a rotating cylindrical 

annulus by differential heating, and their breakdown into reg- 

ular and irregular waves and vortices, Lorenz' paper, "The 

Nechanics of Vacillation,"* was discussed as offering an example 

of how the topological concepts of equilibrium points, periodic 

orbits, etc. find their way into a model climatological problem. 

Lorenz abstract is as follows (see footnote following page)**: 

The equations governing a symmetrically heated rotating 
viscous fluid are reduced to a system of fourteen 
ordinary differential equations, by a succession of 
approximations. The equatins contain two external 
parameters-an imposed thermal Rossby number and a 
Taylor number. 

Solutions where the flow is purely zonal, and solutions 
with superposed "steady" waves which progress without 
changing their shape, are obtained analytically. 
Additional solutions exhibiting vacillation, where 
the waves change shape in a regular periodic manner 
in addition to their progression, and solutions 
exhibiting irregular nonperiodic flow, are obtained 
by numerical integration. 

For a given imposed thermal Rossby number, the flow 
becomes more complicated as the Taylor number in- 
creases. Exceptions occur at very high Taylor num- 
bers, where the equations become unrealistic because 
of truncation. 

For values of the external parameters where steady- 
wave solutions are found, solutions with purely 
zonal flow also exist, but are unstable. Where 
vacillating solutions are found, steady-wave solutions 

- 

* J. Atn. Scis., 20, 1963, 448-464. - 



also exist, but are unstable. A transition be- 
tween unsymmetric and symmetric vacillation is 
not associated with the instability of either form 
of vacillation. It is hypothesized that where 
irregular nonperiodic solutions are found, vacillating 
solutions also exist but are unstable. 

The problem of calculating unstable stationary flows and 

limit cycles when the boundary conditions and driving forces 

are not axisymmetric was then discussed. 

* *  The thermal Rossby number is a measure of the imposed 
horizontal temperature difference drivinq the relative flow 
in the annulus, expressed as a vertical velocity difference 
divided by the speed of rotation of the annulus. 

The Taylor number is the reciprocal square of the logarithmic 
rate of frictional decay of momentum expressed in units of 
twice the angular velocity of the annulus. 



Immunity - A Mathematical Model 

A. Molchanov 

(presented July 30) 

I. Assumptions 

Immunity may be described by two variables: 

x - number of bacterias 

y - number of lymphoides 

Three main processes are suggested: 

A - reproduction of the bacterias 

B - production of the lymphoides 

C - destruction of both the lymphoides and the bacterias 

as the result of the interaction. 

The differential equation: 

11. A more concrete model 

A = ax exponential growth of the bacterias 

C = yy exponential distruction of the lymphoides 

B = B(x) variable level of the immunity-defense 



The typical behavior of the immunity-defense depends on 

the number of bacterias according to the physiological princ5ple 

"all or nothing." 

Remarks for biologists 

More realistic is a step-by-step inclusion of the various 

levels of immunity. The number of levels ("barriers") is large, 

maybe seven or more. The main properties, however, of the 

immunity-process in time is clear in the simple case of the 

one-barrier immunity. 

111. Model 

X Variables . x + - y - t y  
t 

X 
t - t -  

0 Yo 0 



Remarks for mathematicians 

The system is strictly equivalent to the one describing 

the mechanical motion with viscosity. 

Proof 

Here 

a u 
f (x) = £3 (x) - ax = -- 

ax , 

U = JX [B(x) - axldx - potential function of the 
mechanical system 

Xo  

In the whole (x,y)-space the system has the Chetaev 

function (the generalization of the Ljapunov function). 

If 

then 

dN - - 2 
dt = ( a -  l)(ax- y) . 

~ l l  results about stability can be deduced from this function. 



Iv. R e s u l t s  and  Phase  P o r t r a i t s  

Weak ( n o n - s t e r i l e )  immunity 

P o s s i b l e  r e s u l t  o f  u n c o n t r o l l e d  u s e  o f  a n t i b i o t i c s  

S - p o i n t  o f  n o n - s t e r i l e  immunity ( s t a b l e )  

C - c r i t i c a l  p o i n t  ( s a d d l e ,  n o n - s t a b l e )  

P  - i n i t i a l  p o i n t  a f t e r  i n f e c t i o n  

Q - i n i t i a l  p o i n t  a f t e r  u s e  o f  a n t i b i o t i c s  



V. Results 

Tuberculosis immunity structures 

of the different populations 

I - - Rats Very strong immunity, resistence. 

I1 - Human population "Model-treated" WHO data; various 

types of immunity, more than 6(a, b, 

c, d, e, f ) ,  maybe - 100. 

I11 - Guinea pigs No immunity. 



VI. Future study 

In the model presented the rapid processes are omitted. 

They may, however, be very important in critical situations. 

I I wee$ or 
I lmont 
! I  1 

-wv 
2 3 t bears) 

The real time-dependence 

The model presents the "average" description only. 

A more precise model must be constructed. The process B 

production of the lymphoides depends essentially on the rapid 

variables also. 

Therefore: 



E small parameter 

"week" 1 
E -  - ''year'' " 50 ' 

What are the rapid variables? They probably describe energy 

processes in the whole organism. Sone biologists believe (I 

also) that the energy processes are connected closely with 

stress-events. 



Time Averages Near Strange Attractors 

K. Sigmund 
(presented July 30) 

Many dynamical systems which are structurally stable, i.e. 

robust with respect to perturbations of parameters, are very 

unstable with respect to perturbations of the initial conditions. 

This is particularly so in the neighborhood of strange attractors, 

which according to Ruelle might be relevant for the study of 

turbulence. "Smoothingt' the system by taking long term averages 

seems a possible way for reducing this sensitivity with respect 

to initial conditions. For example, meteorologists tend to 

consider climate as a time average: results by Lorenz and Charney 

seem to point to the existence of multiple Hopf bifurcations and 

strange attractors for climatological models. 

Let M be some "state space" and $t a one parameter group 

of transformations of M. The state XEM gets changed in time t 

into the state xt = I$~x. If g is an observable (i.e. a function 

on MI then g (x) will be the value of the observable in the state 

X I  and g(xt) the corresponding value after time t. The time 

average is the limit of the expression 

if it exists. In this case, one has a kind of statistical sta- 

bility. 

The principal result on time averages is the ergodic 



theorem: if M is a measure space $ measurable, and p an t 

invariant measure on M (i.e. p ($tA) = p (A) for all A c  M and 

~ E R )  then for every L, function g, 

exists for IJ almost all x. 

As an example, let M be a sphere and $t a northpole- 

southpole flow on M. 

In this case, clearly every point has a time average. 

But the ergodic theorem tells us only something about the two 

points N and S: indeed, any invariant measure IJ must be con- 

centrated on these two points. 

We shall now describe some theorems, mainly due to Sinai, 

Bowen, Ruelle, which strengthen the statement of the ergodic 

theorem. 

L 
Thus, let M be a connected compact manifold, Ot a C differ- 

ential flow satisfying Axiom AP and m a Lebesque measure on 

M (i.e. ordinary volume). Smale's spectral theoren says that the 

*The meaning of Axiom A is given in Walter's contribution. 



nonwandering set of M can be decomposed i n t o  a  f i n i t e  d i s j o i n t  

union of i n v a r i a n t  c losed sets hi which a r e  t r a n s i t i v e  ( i .e .  each 

hi i s  t h e  o r b i t  c l o s u r e  of some p o i n t ) .  The hi a r e  c a l l e d  b a s i c  

s e t s .  One c a l l s  t h e  s e t s  

S 
W (hi)  = {XEM : x * hi f o r  t * m) t 

t h e  s t a b l e  mani fo lds.  One has 

The b a s i c  set hi is  c a l l e d  an a t t r a c t o r  i f  t h e r e  e x i s t s  

a  neighborhood U  wi th  I$~(~cu f o r  t > 0 and f' I$ U = A .  
t S O  

t 

Ruel le and Bowen proved: 

1 )  I f  A .  i s  an a t t r a c t o r  then  f o r  m-almost a l l  x ~ y a n d  
1 

f o r  every cont inuous observab le  g t h e  time-average 

e x i s t s .  

2 ) M = U  ws (h i )  . 
hi a t t r a c t o r  

3 )  I f  m(hi) > 0 then hi = M. 

4 )  The b a s i c  set hi i s  an a t t r a c t o r  i f  m(wS(hi))  > 0. 

This s a t i s f y i n g  p i c t u r e  is somewhat marred by t h e  f a c t  

t h a t  it need no t  hold f o r  C' f lows. 

I f  t h e  a t t r a c t o r  h i  is  a  f i x e d  p o i n t  y ,  t hen  obviously t h e  

S t ime-average of  every p o i n t  x  i n  W ( { y j )  e x i s t s .  S i m i l a r l y ,  i f  



hi i s  an i s o l a t e d  p e r i o d i c  o r b i t  y ,  t h e  t ime-average o f  eve ry  

p o i n t  x i n  wS ({y}) e x i s t s .  But i f  t h e  a t t r a c t o r  hi i s  n o t  o f  

t h i s  t r i v i a l  t ype  ( i f  it i s  a  " s t r a n g e  a t t r a c t o r " )  t h e n  t h e  

s s i t u a t i o n  changes.  There e x i s t  p o i n t s  x  i n  t h e  b a s i n  W ( h . )  
1 

such t h a t  

does  n o t  converge f o r  every  con t inuous  g. Ac tua l l y  t h e s e  p o i n t s  

(a l t hough  o f  Lebesque measure 0 )  a r e  dense  i n  hi. I t  f o l l ows  

i n  p a r t i c u l a r  t h a t  an  a r b i t r a r i l y  sma l l  change o f  t h e  i n i t i a l  

s t a t e  o f  t h e  system might  change d r a s t i c a l l y  t h e  behav io r  o f  t h e  

t ime-average.  One can  say  t h a t  one h a s  no "Ljapunov s t a b i l i t y  

i n  t h e  mean". 

S i m i l a r  i n s t a b i l i t y  r e s u l t s  ho ld  f o r  t h e  t ime e v o l u t i o n  o f  

s t a t i s t i c a l  s t a t e s .  The reason  f o r  t h i s  u n s t a b l e  behav io r  o f  

t ime-averages l i e s  i n  t h e  f a c t  t h a t  hi Suppor ts  a  ve ry  l a r g e  

number o f  i n v a r i a n t  measures. There a r e  i n f i n i t e l y  many p e r i o d i c  

o r b i t s  f i l l i n g  A i  dense l y .  

A d d i t i o n a l  r e f e r e n c e s :  

Bowen, R . ,  "Ergodic  Theory f o r  d i f feomorph isms, "  S p r i n g e r  Lec tu re  
d o t e s  i n  Mathematics,  470. 

Bowen, R. and D .  Rue l l e ,  "Ergodic  Theory f o r  Axiom A Flows," 
IHES p r e p r i n t .  

Sigmund, K . ,  "On t h e  Time Evo lu t i on  o f  S t a t i s t i c a l  S t a t e s  f o r  
Anosov Systems,"  Math. Z .  138, (1974 ) ,  183-189. 
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On Stochastic Stability and Resilience 

Yu. Rozanov 

Stochastic Stability 

Stochastic stability concerns a dynamic system $ = f(t,x) 

under a stochastic disturbance "6": 

In addition to deterministic Stability Theory it involves many 

important aspects and fundamental results of 

*Markov Processes Theory (diffusion, ergodic properties, 
etc.) 

*Asymptotic Theory of Partial Differential Equations 

*Spectral Theory of Stationary Randon Processes 

*General Ergodic Theory 



1. Typical Phenomena 

Let us consider a system 

with a "potential" 

.(XI = L o x  f(t)dC (see figure) 

It has two equilibrium states "a" and "b". 



A stochastic system 

.. 
x = -2ki + f (x) + 6 i  

(with a random disturbance tern 6h) may behave as shown in the 

following figure: 

Here "a' and "b" are pseudo-equilibrium states. 



2. "White Noise" Approach 

Example: Let us consider a pendulum on a ship (~yrocompass) 

described by the system 

where 6 i  means "sea disturbance. " 

The first figure shows free oscillation: 

"t 

The second one shows forced oscillation with a high frequence 

R >> w of sea waves: 

"t 

But a real trajectory looks as if the system is disturbed 

by "white noise" 6 i .  

"t 



3. Stochastic Linear Systems 

Suppose we deal with a system 

which has a global equilibrium x* = 0 (all A-eigenvalues are t 

negative) : 

X ( x ) - x ; + O  t o  I t+=' 

Yx E R" . 
0 

Let us consider a stochastic system 

; : = A x + 6 k  

where 

fi = standard "white noise" 

6 = a constant n x n - matrix. 

Then there is a stationary (random) process xt such that 

x ( x ) - x ; + o  t o  * t+Q' 

for the system trajectory x (x ) with an initial state x E R". t o  0 



Here x* can be interpreted as a statistical equilibrium and it 
t 

is distributed as the Gaussian stationary process with a spectral 

density 

- 1 
f, = 6 [ (ihE - A) (ihE - A ) * ]  

and the correlation function 

Bt = ABt , t > O  - . 

(E denotes the n x n Unit matrix.) 



4. Statistical Equilibria and Invariant Distributions 

The system 

determines xt as a Markov diffusion process on the manifold 

M E R. Let us set 

The transition density p(*,t,x) satisfies the Kolmogorov- 

Fokker-Planck equation 

where 

is a diffusion matrix. Under certain conditions, * = 0 gives dt 

us a stationary solution p = p* or a statistical equilibrium 

P* such that 



5. Asymptotical Behavior of Invariant Distribution P* 

Let us consider the system 

; (= f ( x )  + 6 i  , 6 = const. + 0 

and its invariant measure P* = P$ in the case of a potential field 

According to : 

Bernstein ( 1  933) 

Pontryagin, Andronov, 

Witt (1933) 

Kolmogorov (1937) 

P*  asymptotically concentrates near the set 

r* = {x* : V(x*) = min V(x)) 
X 

namely 
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6. "PreW-asymptotical Behavior 

Let 

be a deterministic system with a compact phase space M and 

r l ,  ..., rm be a finite number of its w-limit sets. 

Let us consider a corresponding stochastic system 

As shown on the picture the limit sets ri, r .  look like pseudo- 
3 

equilibria. 

It might be shown that "jump" probabilities asymptotically are 

P(ri -+ r . )  - exp {-vij 6 * 1  
3 

where 

and the function V (x, y) is determined by the system & = f (x) . 
(Ventzel, Freidlin (1 969) ) 



7 .  Diffusion Aaainst the Deterministic Flow 

Let us consider a deterministic inflow x = f(x) in a region 

G with a single attractor x* (all trajectories go into G!). 

The corresponding stochastic system 

& = f (x) + 6 i  

determines xt as a diffusion process. The important problems 

concern "first passage" (or "exit") time T : 

(x = X 
0 ' r c GI - boundary of G) . 

Let us set 

Suppose there is a single min point 

y* : ~ ( y * )  = min V(y) . 
ycG' 



Then for all initial states x E G 

wherever E > 0. 

Note 1 .  The function V(x,y) is defined as 

where 

Note 2. Diffusion along the deterministic flow is a trivial case. 

Let 

y* = xt (x) E G' 

be the deterministic "exit". Then 

P x ( l ~ T  - y*l '€1 + 0 I 6 + 0  . 

This is obvious! 



8. Structural Disturbance of a Linear System 

X = A X  , X E R "  . 

Suppose 

where i is a standard m-dim. "white noise", so the system con- 

sidered is 

6x ix an n x m matrix with elements 

Then xt is a Markov diffusion process with absorbing x* = 0. 

Let us set 

Suppose the diffusion matrix B (x)  = (6x1 (6x1 * is non-degenerate in 

the sense that 

Then At  is a Markov ergodic process on the sphere S with invariant 

distribution P*. 



Stability and Non-Stability 

Let us set 

I =/ @(h)P* (dl) 

S 

where 

Then 

I < 0 + Stability: 

X + x * = o  I t t ' OD 

I > 0 + Non-Stability: 

X - + O D  1 t t'rn I ( Y x 0 t ; O )  

1 = 0  + pt = log Ix I - recurrent diffusion process 
t 

-- < Pt < - with repelling boundaries "-m", "+mu 

(Khasminsky (1 960-1 967) ) 
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9. Stochastic Stabilization 

Example 

Let us consider a deterministic system 

with x* = 0 as a saddle point 

Let us consider a stochastic system 

such that 

1 Then x (xl > 0) is a diffusion process with repelling boundary t o  

"+m" and attracting but non-attainable boundary x* = 0, i.e., 

with probability 1 x t s  but the trajectory never hits the point 

x* = 0, Yxo. (See, for example, Prokhorov, Rozanov, "Random 

Processes", Springer-Verlag, 1969.  ) 
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10. S t o c h a s t i c  S p i r a l s  

Let 

be a  s t a b l e  p lanar  system and 

+ 
$t  = $ + 2kt" , kt - a l g e b r a i c  sum of f r o t a t i o n  x  t 

( s e e  f i g u r e )  . 

Then 

i s  a  d i f f u s i o n  process.  

suppose 

B(x)  = (6x) (6x) * i s  non-singular . 

Let  us  s e t  



The following statements hold true: 

ll-ml* - repelling bound 

A > O +  

"+mu - attracting bound 

l - - m l l  - attracting bound 

A < 0 _ [  "+m" - repelling bound 

Qt 2 .Tl lim - = (sign A)- 
t+m t ET 

where 

T = "rotation time", i.e., QT = QO +  IT 

(Khasminsky, (1969) 

Freedman, Pinsky, (1974)). 



1 1 .  Stochastic Lyapunov Function 

Let x be a general Markov process and A - its infinitesimal t 

operator. Examples: 

Definition of Lyapunov function: 

V ( X ) L O  , v ( O ) = O  

AV(x) 5 0 , x + O  . 

It is a positive superharmonic function. 

Stochastic Stability 

The following result holds true: 

v (x) px{sup V(xt) > E }  - < - (X = initial state) . 
t'O E 

For arbitrary small probability p ther is a neighborhood U ( ~ , E )  

of x* = 0 such that V(x) ( p E, x E U. Thus if x E U then almost 

for sure xt, t 2 0, does not leave GE = : V(y) < €1. 



Stochastic Asymptotical Stability 

Let V be a Lyapunov function. Then V(xt), t ) 0, is a 

supermartingale, and 

(E denotes expectation value over all x.) 
X 

One can verify that 

and if 

then 

(Khasminsky (1  960- 1969) 

Busy ( 1  965) 

Kushner ( 1  967) 

and others. ) 
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Elementary Model of Eutrophication 

A. Bazykin 

The pollution of water by biogenic compounds leads first 

to enrichment of the water ecosystem, but when the concentration 

of biogenic elements exceeds a threshold value the ecosystem 

breaks down. Frequently the rise and fall in density of some 

species is observed before degredation of the ecosystem. 

The simple mathematical model which qualitatively describes 

and in some sense explains those phenomena is presented. 

Let us consider a body of flowing water with complete 

mixing which is occupied by an ecosystem including only two 

trophical levels: phytoplankton and zooplankton. The phyto- 

plankton consume biogenic elements, the zooplankton eat phyto- 

plankton. 

Suggestions 

Let us suppose: 

1.  The consumption of biogenic elements by phytoplankton, 

and of the phytoplankton by zooplankton is described by the 

kind of curve shown graphically. 



The special analytical form is not important (and it is not 

known anyhow). For instance it may be dependence of Michaelis- 

Menten's type. 

2. The coefficient of matter transformation from level 

to level is constant. 

Then the ecosystems's dynamic is described by the following 

system of differential equations: 

where s, x, y denote concentrations of biogenic elements, 

phyto- and zooplankton, respectively. 

D - the velocity of flow 

s - initial biogenic concentrat.ion 
0 

p1 , p 2  - maximal rates of reproduction 

m,, m2 - coefficients of the transformations: biogenic 

to phyto- and phyto- to zooplankton 

k l ,  k2 - Michaelis constants, describing saturation effects. 

We have an eight-dimensional parameter space and a three- 

dimensional phase space. Unfortunately, it is the simplest of 

possible descriptions of the situation. 



Changing the scale of s, x, y and t we can reduce the 

number of parameters to four. 

The structure of the parameter space is described com- 

pletely by the two-dimensional projection to the plane (D,s ) .  
0 

The phase behavior in regions I-IV are the following: 



L e t  us  s lowly  i n c r e a s e  So, t hen  t h e  behav io r  o f  zoo- (and 

phyto-) p lank ton  d e n s i t y  w i l l  be t h e  fo l low ing :  



Conclusion 

The presented model explains some main properties of man- 

made eutrophication. 
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Drought as a Biogeophysical Feedback Mechanism 

Jule G. Charney 

Changes in surface albedo cause an immediate change in 

energy received from the sun and therefore, if widespread, can 

have a potentially very great influence. It may be expected 

that regional albedo changes will have an appreciable effect 

on regional circulations. In the Royal Meteorological Society's 

Symons Memorial Lecture for 1974 Charney (2) discussed a bio- 

geophysical feedback mechanism which tends to produce changes 

in rainfall and plant cover. This mechanism operates because 

of the dependence of the surface albedo on plant cover. Ground 

covered by plants has an albedo in the range of 10 to 25 percent, 

whereas ground with no vegetation frequently has a higher albedo, 

as high as 35 to 40 percent in the case of dry, light, sandy 

soil (3). Thus a decrease in plant cover may be accompanied 

by an increase in the surface albedo. This would lead to a 

decrease in the net incoming radiation and an increase in the 

radiative cooling of air. As a consequence, the air would sink 

to maintain thermal equilibrium by adiabatic compression, and 

cumulus convection and its associated rainfall would be sup- 

pressed. The lower rainfall would in turn have an adverse 

effect on plants and tend to enhance the original decrease in 

plant cover. This positive feedback will be particularly im- 

portant in regions such as the Sahara where (i) large-scale 

subsidence already occurs; (ii) most of the rainfall is from 



cumulus clouds; and (iii) transports of heat by the winds are 

particularly weak and inefficient at counteracting temperature 

changes due to albedo changes. This mechanism offers a possible 

explanation for past changes in the climate of the Sahara ( 4 1 ,  

and, in particular, for droughts in the Sahel (the southern 

region of the Sahara), where the process could be initiated or 

prolonged by overgrazing. 

In Charney's analysis an increase in the albedo in a large 

region causes enhanced sinking and drying only to the extent 

that the temperature departs more than before from radiative- 

convective equilibrium, and this departure depends on the 

efficiency of a frictionally controlled circulation which reduces 

the horizontal temperature gradients that would be established 

by radiation alone. However, his mechanism fails to take into 

account the dynamical effect of the release of latent heat in 

precipitation and ignores the effects of the global circulation. 

For example, it does not take into account the interaction of 

the desert circulation in the Sahara with the monsoon circulation 

to the south. 

In order to assess the plausibility of his mechanism, we 

need to calculate its effect together with the effect of all 

other mechanisms which operate simultaneously, and see if the 

net effect is appreciable. In the past decade computer models 

of the general circulation of the atmosphere have been developed 

which implicitly or explicitly include most atmospheric proccsses, 

winds, convection, clouds, rain, radiative absorption, and 

emission. In this study the general circulation model (GCM) 



developed at the Goddard Institute for Space Studies (5) has 

been used to calculate the net effect of a change in surface 

albedo in the Sahel. 

At the same time the albedos in two other areas, the Western 

Great Plains of the United States and the Thar Desert of India- 

Pakistan were modified. Two integrations were performed, and 

for both the observed state of the atmosphere for 1 8  June 1973 

was used as the initial condition. Both integrations were 

carried forward for 6 weeks of simulated time. The only difference 

between the two integrations was the prescribed surface albedo 

for the Sahel, the Western Great Plains and the Thar Desert. 

Both integrations had boundary conditions, such as sea surface 

temperature and soil moisture, prescribed to correspond to 

climatological conditions for July (summer is the rainy season 

in the three areas). In one integration the surface albedo 

was 1 4  percent, and in the other it was 35 percent. These albedos 

simulate, repectively, a surface covered with plants and a 

surface devoid of plant cover. The surface albedos in the un- 

modified case were 35 percent over the Sahara-Arabian-Indo- 

Pakistani complex od deserts, the Great Western Desert of the 

United States and Mexico, and 1 4  percent elsewhere. In the 

modified case the albedos were changed from 1 4  percent to 35 

percent in the Sahel at the southern margin of the Sahara, the 

Western Great Plains at the eastern margin of the Great Western 

Desert and in the Thar Desert at the eastern margin of the 

Afghanistan-Pakistan desert. The model Is resolution is 4O in 

latitude and 5O in longitude. The actual albedo changes were 



at the eleven grid points running from 1 5 O ~  to 35OE at 18ON 

in the Sahel, the eight grid points running from 34ON to 46ON 

at 1 0 0 ~ ~  and 1 0 5 ~ ~  in the Western Great Plains, and the four 

grid points, 26ON 7 0 O ~ ,  2 6 O ~  7 5 O ~ ,  30°N 70°E, and 30°N 75OE 

in the Thar Desert. 

The upper of Figures 1, 2 and 3 show the mean weekly pre- 

cipitation averaged over the three regions from both integra- 

tions. With the exception of the second week in the Western 

Great Plains (here labelled, somewhat inaccurately, the "Dust 

Bowl"), the rainfall in the high-albedo (35 percent) experiment 

was substantially smaller than in the low-albedo (14 percent) 

experiment. With the above-mentioned exception, the consistency 

in the difference in rainfall suggests that the difference is 

real and not a result of statistical fluctuations. However, 

in each case the rainfall in the marginal areas was considerably 

higher than the observed values. This was attributed to a 

deficiency in the ground hydrology which gave excessive evapor- 

ation in arid regions. Accordingly, experiments were performed 

with essentially no evaporation from land surfaces. The results 

are shown in the lower half of Figures 1, 2, and 3. The latter 

suggest again, although not as strongly, that the rainfall 

reduction in the Sahel and "Dust Bowl" areas are real, but that 

the reduction of rainfall in the Thar Desert is questionable. 

Figures 4 and 5 show the latitudinal distribution of the 

mean rainfall and mean vertical velocity over Africa during 

July in the two experiments. From 18ON to 34ON the values 

plotted are the rainfall and vertical velocity averaged over 



all the grid points in the Sahara at each latitude. The shift 

in the rainfall distribution reflects a shift to the south 

of the Intertropical Convergence Zone (ITCZ) over Africa. The 

latitude of the mean low-level convergence over Africa during 

July was shifted about 4O southward by the increase in albedo 

in the Sahel. There was no such shift of the ITCZ over Asia 

in the two experiments. The high-albedo experiment appears to 

be the more realistic one. 

It is concluded that surface albedos can have a substantial 

effect on climate and that the biogeophysical feedback mechanism 

is a plausible one for causing such changes. We can envisage 

overgrazing in the Sahel leading to an increase in the surface 

albedo which causes the ITCZ to move south and the rainfall 

over the Sahel to decrease, perhaps by as much as 40 percent. 

While there is not as much documentation for albedo changes in 

the "Dust Bowl" region, overgrazing and changes in land use 

could have contributed to drought in this area as well. Since 

the GCM we used does not include a model of the biosphere for 

calculating changes in albedo resulting from changes in rain- 

fall, this 40 percent figure is, in effect, an upper bound on 

the amount that would occur if all links in the feedback 

mechanism were included. The need for a model of the biosphere 

empahsizes the complexity of climatic problems. 
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MEMORANDA CIRCULATED DURING THE WORKSHOP 

Rigorousness May Be Dangerous 

(The "F ixed-Point  Ideology")  

A. Plolchanov 

Negat ive S i d e  

Consider  t h e  equat ion  

I t  f o l l ows  from t h e  system, 

i n  t h e  p o l a r  coo rd ina te  system, 

There E i s  a sma l l  parameter  (desc r i bed  more p r e c i s e l y  

below) and f u n c t i o n  a ( r , ~ )  > 0 .  ( 4 )  

There fo re ,  system ( 2 )  has  t h e  L iapunov- funct ion,  

and ( 1 )  may be regarded a s  t h e  equa t i on  f o r  t h e  L - f u n c t i o n  of 

t h e  system ( 2 ) .  



Hence, the system (2) has a unique fixed-point x = 0, y = 0 

and no other fixed-points or limit cycles. All trajectories tend 

to this stable state of equilibrium. 

Suppose, however, that a ( r , ~ )  is small in some domain 

For example, 

In this case, trajectories "drift" very slowly through the ring 

lr-11 - < 6. 



The "through-time" T is 

and may be very long if E is small enough. 

Practically, r = 1 performs the role of a limit cycle. It 

is stable outside and unstable inside. 

But rigorous mathematical considerations have omitted this 

important phenomenon. 



Rigorousness Flay Be Dangerous 

But Not Necessarily 

A .  Molchanov 

Positive Side 

The construction of the previous memorandum may be generalized.. 

Consider now any system in the n-dimension y-space, 

and construct a new system 

by multiplying with the positive scalar function a, 

a ( ; )  > o , 

so that 

System (2) has the same trajectories as ( 1  ) , but the 

velocity depends on the value a. 

Suppose, as in N, a is small in some domains 



Pi - domains, where a is small and, hence, "through-drift" 
is slower. 

Such domains are similar to the quasi-particles in physics 

The trajectory space. The same trajectory in x-space. 
The quasi-particle P has an 
infra-structure. Its "life- 
time T "-- TI + T2 + T3. 

Unhomogeneous Turbulence (Hypothesis) 

The developed approach may be helpful to the problem of the 

relation between homogeneous and unhornogeneous turbulence. 



The energy-flow in the 
theory of homogeneous 
turbulence. 

The possible influence of 
the boundary conditions. 

The domains in k-space, where the energy-flow is small, 

may correspond to the metastable macromotions, such as curls 

of ellipsoidal motion (in the sense of A.M. Obuchov). I believe 

that this approach is very close to the one of Obuchov. 

The quasi-particles in this case are very complicated motions 

in the three-dimensional domains with relative weak interaction. 

The theory of non-linear oscillations is probably applicable 

to such problems. 

If the developed picture corresponds in anyway to the 

"reality" this approach must be helpful in other problems, in 

particular, ecological ones. 



S t a b i l i t y  v e r s u s  R e s i l i e n c e  

A. Molchanov 

A b s t r a c t  

The complex i ty  o f  b i o l o g i c a l  systems ( t h e i r  s t r u c t u r a l  
h i e r a r c h y )  p o i n t s  o u t  dynamical ly  t h e  t ime-sca les  h i e r a r c h y  
o f  d i f f e r e n t  p rocesses .  

Th i s  l e a d s  t o  t h e  h i e r a r c h y  i n  t h e  motion of s t a b i l i t y .  

Rapid p rocesses  do n o t  have f u l l  y  s t a b l e ,  b u t  "me tas tab le "  
s t a t e s  and evo lve  s lowly i n t o  t h e  e x a c t  e g u i l i b r i u m  s t a t e .  

The n o t i o n  " l a b i l i t y "  (we l l  known i n  medic ine)  r e f l e c t s  
t h e  e x i s t e n c e  o f  t h e  s u r f a c e  o f  t h e  p o s s i b l e  quas i -equ i l ib r ium 
s t a t e s .  

R e s i l i e n c e  ( i n  my op in ion )  i s  on ly  a  p a r t i c u l a r  c a s e  
(and no t  d e f i n e d  r i g o r o u s l y )  of  t h e  no t i on  " a d a p t i v i t y "  
( a l s o  w e l l  known). But t h e  d e f i n i t i o n  o f  a d a p t a t i o n  
f o l l o w s  from t h e  i d e a  of s t a b i l i t y ,  which i s  presen ted  
more p r e c i s e l y  below. 

Hierarchy o f  Time S c a l e s  

I. Rapid and Slow Var iab les  

Cor rec t  models o f  b i o l o g i c a l  ( e c o l o g i c a l ,  i n  p a r t i c u l a r )  

systems u s u a l l y  c o n t a i n  a  smal l  parameter  E 

where E is  t h e  r a t i o  o f  c h a r a c t e r i s t i c  t i m e s  

E = 1, 
"y-t ime" 
x-t ime" . 



Rigorous study of such systems was begun in the well-known 

work of A.N. Tikhonov. The trajectories structure can be found 

supposing that E = 0 

-+ 
In the new system vector x is constant, 

-+ -+ + 
x = constant = a 

and, consequently, performs the role of a parameter 

Stationary state of this system are found from the equation 

Let us consider the simplest possiblity when ; and are 

scalars. Even in this case, the set of stationary states is 

not a discrete collection of isolated fixed-points but a con- 

tinuous curve on the surface (a,y). 

Just the rich structure of equilibrium (to be more exact, 

quasi-equilibrium) state sets determines the complexity of the 

stability area concept. 



For instance, let the equation f (a,y) = 0 have a number of 

solutions with different a, 

Figure 1. 

Two semi-infinite branches of stable quasi-equilibria are 

connected by the arc of unstable ones. The upper branch corr- 

esponds to the "working-state" of the system, the lower branch 

describes the possibility of hysteresis. 

11. The Evolution System 

Now remember that the system (5) approximately describes 

a complete system. We shall bring back a slow evolutional 

motion. In our simplest case it is enough to solve a quasi- 

equilibrium equation 



and t o  i n t roduce  y  i n t o  t h e  f i r s t  e q u a t i o n  of t h e  e x a c t  system 

One shou ld  keep i n  mind t h a t  e v o l u t i o n  t a k e s  p l a c e  i n  a  d i f f e r e n t  

way on each o f  t h e  branches of t h e  quas i -equ i l i b r i um curve  

F igu re  2.  

w i t h  approx imate equ i l i b r i um on t h e  curve II of  me tas tab le  

s t a t e s .  On t h e  upper brance t h e  e x a c t  s t a t e  ( A )  i s  s t a b l e ,  on 

t h e  lower one it i s  u n s t a b l e  (B) . 

111. Ex te rna l  P e r t u r b a t i o n s  

L e t  u s  ana l yze  t h e  s i t u a t i o n  d e p i c t e d  on F igu re  2 i n  a  more 

d e t a i l e d  manner and show t h a t  knowing t h e  curve  M and t h e  p o i n t s  

A, B, Q on it f u l l y  de te rm ines  t h e  system behav io r  w i t h  rega rd  

t o  p e r t u r b a t i o n s .  



F i g u r e  3 .  S p l i t t i n g  o f  t h e  c u r v e  M i n t o  t h r e e  b ranches :  
A Q l i s  a  m e t a s t a b l e  b rance ,  RB a n  a d a p t i v e  b rance  and 
BB an  u n s t a b l e  b ranch .  

I f  t h e  p e r t u r b a t i o n  moves t h e  sys tem t o  any p o i n t  o f  G I  

a r e a  t h e n  i ts f u t u r e  w i l l  be  t h e  same a s  f o r  t h e  p o i n t  P I .  

The sys tem w i l l  r a p i d l y  move t o  t h e  upper  "work-branch" of 

t h e  c u r v e  M and w i l l  s l ow l y  r e t u r n  t o  t h e  e x a c t  s t a t e  o f  e q u i l i b r i u m  

P o i n t  P2 i s  a  t y p i c a l  r e p r e s e n t a t i v e  o f  t h e  G2 a r e a .  The 

e v e n t s  t a k e  a d i f f e r e n t  t u r n .  The sys tem r a p i d l y  f a l l s  i n t o  t h e  

" s h o c k - s t a t e " ,  rema ins  i n  it f o r  a  l ong  t i m e  ( w h i l e  t h e  e v o l u t i o n  

R2 -+ R i s  t a k i n g  p l a c e ) ,  b u t  i n  t h e  l o n g  r u n ,  " c o l l e c t s  i ts 

s t r e n g t h "  and r e t u r n s  t o  t h e  "work b ranch"  and o n l y  t o  t h e  p o i n t  

S. Then s low r e s t o r a t i o n  t a k e s  p l a c e ,  t h a t  i s  e v o l u t i o n  S  -+ A. 

Coming t o  G3 a r e a  means d e a t h  o f  t h e  sys tem i f  we mean by 

t h i s  t h e  i m p o s s i b l i t y  t o  r e t u r n  t o  t h e  work s t a t e  t h a t  is on 

t h e  upper  b ranch .  

I V .  S t a b i l i t y  and  A d a p t i v i t y  

Mutual  d i s p o s i t i o n  o f  t h e  p o i n t s  A  and B on t h e  c u r v e  M c a n  

g r e a t l y  change t h e  c h a r a c t e r  o f  t h e  sys tem r e a c t i o n  t o  p e r t u r b a t i o n .  



weakly stable but greatly 
adaptive system 

greatly stable, practically 
non-adaptive system 

Comparing these two figures reveals an important difference 

between adaptive and stable figures. 

The adaptive system "falls into a shock state" already in 

case of small perturbations but is able "to recover" even after 

strong shocks. 

The stable system without adaptation on the contrary, 

preserves its "working ability" even in case of great perturbations 

but falling into a shock state almost means death for it. 

V. ~ e s u m 6  

The concept of resilience is related to the concept of 

metastability of a rapid motion father than to the traditional concept 

of stability. The contrasting of resilience and stability arises 



if slowly changing variables are treated as parameters but 

everything implicitly takes its own place if evolutionary 

system variations are taken into consideration. 

A general stability concept may reasonably be specialized 

for systems with a time-scale hierarchy. The concept of meta- 

stability may be reserved for describing stability of cut down 

systems of rapid motions. 

A stability of slow motions may be described by the well- 

known term "adaptivity . " 
The term "resilience" may be used as a synonym of adaptivity 

for the particular case of ecological systems. 

Such an approach allows for a rigorous definition of the 

resilience concept which previously was introduced at an intuitive 

level. 



Equiiibria in Local and Distributed Systems 

A.D. Bazykin 

Dr. C .  Walters in his lecture of July 21 and Prof. P. Schuster 

in his remarks after Dr. H. Grflmrn's lecture of July 23 attached 

attention to the importance of studying not only local equilibria 

but also equilibria (and cyclic phenomena) in systems with 

distributed variables. I formulate a question from an ecologist 

to a mathematician. 

Let us consider the simplest case: 

(du/d t 

with one-dimensional diffusion I 

First we are interested in the stationary solutions which 

are described by the equation 

- - - -f (u) or the second-order system 
d x 2 



The behavior may be shown on a phase diagram, where trajectory 

and fixed points correspond to stationary distributions u(x) 

(the saddle-points correspond to stable equilibria of (1) and 

to stable, trivial distributions u(x) : constant; the center 

corresponds to the unstable equilibria of ( 1 )  and to the unstable, 

trivial distribution u (x) 0 ) .  

I du'dx 

As in many cases the natural boundary conditions in definite 

intervals are du/dx = 0,  so the most interesting are I - 
I X  - *1,2 

the periodical solutions and the loop of separatrices. 

It is possible to show by perturbation theory methoc?s that 

the solution lying in the shaded area (with small amplitudes 

and periods) are unstable. On an arbitrary interval (if it 

is large enough) some stable stationary nontrivial distributions 

can exist. 

The question to mathematicians is: how to determine the 

domain of attraction of each of those distributions in the infi-ite 

dimensional space of initial conditions? 



I t  is  on ly  t h e  f i r s t ,  s i m p l e s t  q u e s t i o n  i n  t h i s  f i e l d .  

The more i n t e r e s t i n g  (and complex) problems a r i s e  i f  we c o n s i d e r :  

1 .  running waves (very  i n t e r e s t i n g  f o r  a p p l i c a t i o n )  

2 .  two-dimensional d i f f u s i o n  

3 .  more t h a n  one dynamic v a r i a b l e .  



CLOSING PLENARY SESSION, SCHLOSS, JULY 31, AM 

What Have We Learned? 

Tjalling C. Koopmans 

Koopmans: The workshop, I recall, stzrted from the observation 

that there seemed to be mathematical and computational problems 

common to a number of different subject matter fields. We there- 

fore hoped that there might be a benefit in bringing together 

people who do modelling in various areas and people who work 

on alternative algorithmic approaches and on the mathematical 

conceptualizations needed in connection with these equilibrium 

and dynamic models. In my perception of the experiences in the 

workshop, we have had good luck and this has turned out to be 

the case. There were a number of parallels between the different 

fields of application. The analogies that came out most clearly 

in the workshop are those between climatology and ecology. We 

also found that the concepts of purely mathematical fields, 

such as differential topology, and the various ways of describing 

dynamic systems with continuous time and with discrete time, 

deterministic and stochastic, actually form a strong bond 

between the several fields of application. Our main problem 

was how to divide the time between sessions where we talked to 

each other and time where individuals worked by themselves, or 

in groups of two or three. 

I said already that the applications considered were mostly 

climate and ecology, with some discussion of problems of chem- 

ical evolution as well. We also had economist.3 represented. 

A majority of those doubled as algorithmists or organizers, and 



were in demand on that score to such an extent that they had 

little time for work specifically in economics. The only 

economist functioning as an economist in our midst was Professor 

Beksiak from Poland, who contributed from his experience with 

empirical problems of economics that bear on the estimation 

of equilibria. 

We cannot, of course, expect to show "results" from two 

weeks of interaction. We do feel that we gained information 

about each others fields and methods, we gained insight about 

our common problems. We also arrived at some conjectures about 

how to adapt or extend algorithmic procedures to the unsolved 

problems that came to the fore. 

I call first on Professor Charney. 

Charney: To answer the question of what we have learned I would 

like to say for myself that I found the workshop exceedingly 

stimulating and that it greatly broadened my view of the pro- 

blems of geophysical fluid dynamics, especially of turbulence. 

I agree with Prof. Koopmans that to find other groups with very 

different models talking about the same kind of mathematical 

problem is extremely useful for one's perception of one's own 

field. I would like to congratulate him for keeping the work- 

shop on a constructive course when, because of so many different 

points of view, it could easily have become a tower of Babel. 

I have come away with the feeling that the concepts of 

differential topology should and will become more and more 

important in dynamical meteorology and oceanography. The point 

of view which I think we should take in approaching the problem 



of  t h e  dynamical  model l ing o f  c l i m a t e  was w e l l  exemp l i f i ed  by 

D r .  Grams rev iew of  t h e  paper  by Rue l l e  and Takens "On t h e  

n a t u r e  o f  t u rbu lence . "  When t h e  l i m i t  c y c l e s  themselves become 

u n s t a b l e  and g i v e  r i s e  t o  something c a l l e d  t u r b u l e n c e ,  t h e  

p o i n t s  i n  t h e  phase space  s t i l l  c l u s t e r  around t h e  u n s t a b l e  

l i m i t  c y c l e .  The o r b i t s  a r e  no l onge r  p e r i o d i c  b u t  remain 

l o c a l i z e d  on a  s u b s e t  i n  t h e  phase space.  I f i n d  t h i s  concep t ,  

though s t i l l  vague t o  me, t o  f i t  ve ry  w e l l  my own i n t u i t i v e  

t h i n k i n g  about  how t o  avo id  hav ing  t o  p l a y  ve ry  expens ive  and 

time-consuming Monte Ca r l o  games w i th  g e n e r a l  c i r c u l a t i o n  

models,  e s p e c i a l l y  when one is  n o t  even s u r e  t h a t  one i s  d e a l i n g  

w i t h  a t r a n s i t i v e *  system, o r  even w i t h  one t h a t  has  a  s t a t i s -  

t i c a l l y  s t a b l e  l i m i t .  There must be an a l t e r n a t i v e  approach,  

and t h e  one t h a t  l ooks  most promis ing i s  t o  c a l c u l a t e  f i r s t  t h e  

f i x e d  p o i n t s  beyond t h e  l i m i t  where t hey  become u n s t a b l e ,  t hen  

c a l c u l a t e  l i m i t  c y c l e s  by p e r t u r b a t i o n  methods and f i n a l l y  t o  

ex tend  t h e  c a l c u l a t i o n s  beyond t h e  p o i n t  where t h e s e ,  t o o ,  

become u n s t a b l e .  My hope i s  t h a t  t hey  w i l l  somehow remain 

c e n t r a l  t o  t h e  phase-space t o r u s  on which t h e  a c t u a l  motion 

t a k e s  p l a c e .  I f  we can  do t h i s ,  we w i l l  have ach ieved a  g r e a t  

d e a l  more i n  deve lop ing  a  t h e o r y  o f  c l ima to logy  t h a n  any th ing  

t h a t  h a s  been done i n  t h e  p a s t .  The problem looks  f e a s i b l e  

though d i f f i c u l t .  

Many o f  t h e  i d e a s  which were ment ioned i n  o t h e r  c o n t e x t s ,  

e . g . ,  D r .  Rozanov's d i s c u s s i o n  o f  s t o c h a s t i c  p r o c e s s e s  which 

c o n v e r t  i n t r a n s i t i v e  i n t o  t r a n s i t i v e  sys tems,  seem t o  me impor tan t .  

*The te rm " t r a n s i t i v e " ,  i n t roduced  by P r o f .  Lorenz, r e f e r s  t o  a  
dynamical  system which i s  governed by e q u a t i o n s  whose s o l u t i o n s  may 
be  ex tended i n d e f i n i t e l y  i n t o  t h e  f u t u r e  and have s t a t i s t i c a l  
p r o p e r t i e s  which a r e  independent  o f  t h e  i n i t i a l  c o n d i t i o n s .  



Let me finally refer to the discussion of computational 

methods by Scarf, Hansen, Grtlmm and others. The methods that 

were discussed seem most applicable when one has a fairly small 

number of degrees of freedom. But they may also be appropriate 

to the meteorological problem because it is often possible to 

simplify the problem by introducing functional representations 

which reduce the dimensionality of the phase space. Other 

methods, such as the backwards-forwards false time extrapolation 

of Rivas are local rather than global in character and may 

require first a global calculation such as Scarf's to localize 

the approximate positions of the limit points and cycles. 

Fraedrich: I do not need to repeat that what Dr. Charney said 

and only want to add a few aspects of application of fixed 

points methods to climatological problems, e.g., a problem 

that has been turned out by Prof. Charney's lecture this morning, 

the problem of looking for feedback systems in regional clima- 

tology as has been mentioned also in some work in the Institute 

and also some work on Blake's "The Feedback of Meteorological 

Dynamical Systems with ~ydrological Systems'' and may possibly 

be extended to ecological systems, that is, to a further 

field of application, to regions where there is data available 

to verify the findings experimentally. A second aspect whlch I 

want to mention as it fits in with the paper that has been 

introduced to me for the first time by Dr. Grflmrn seems to be 

the conviction that the fixed point methods and the 

mathematical factors of different set stages of structure can 



be applied to these hydrodynamic systems which are caused by 

buoyancy. I think these two aspects are thought to be in 

addition to that which Dr. Charney said and may be looked into 

further. 

Koopmans: Thank you very much. We have some time for discussion. 

Anyone who would like to raise a question or make a comment? 

Charney: From the general mathematical point of view, I am 

intrigued by the role of symmetry. In the problem that Prof. 

Fraedrich mentioned, convection between parallel planes, the 

breakdown of stability appears as an infinity of steady cir- 

culations, e.g., in some phase space as a set of fixed points 

which, however, lie in a continuous line. But this property 

depends very strongly on symmetry. Without symmetry it is a 

question as to whether more than one stable fixed point exists. 

The same problem occurs in the Lorenz model. Here you have 

translational symmetry, and the first breakdown of stationary 

flow appears as a steady translating wave. I think, since the 

real climatological problem lacks these symmetries, that this 

special case would be bypassed, e.g., the breakdown of stability 

would appear first as a limit cycle rather than as a fixed point 

in a translating coordinate system. The problems of transi- 

tivity are also related to the various symmetries and I think 

are worth mathematical investigation. 

Grtlmm: I think there is some information on these problems of 

spontaneous breakdown of symmetry from theoretic physics, although 

in a different connection. Maybe the concepts from this field 

could be taken over to this question. But on the other hand 



these problems won't lead very easily to computation because 

a continuous symmetry breaks down and you will certainly have 

a one-parameter family of fixed points or closed orbits. 

Koopmans: As there are no further questions, I now call on 

Dr. Penenko. 

Penenko: At the very beginning I would like to make some general 

remarks. The main attention of our workshop was devoted to 

stability problems and interpretations of stationary solutions. 

But actually we dealt with the broader questions of applied 

mathematics. It gave us an opportunity to discuss many inter- 

esting problems. And the general point of view which we shared 

was the approach of applied system analysis. 

Now I wish to characterize the main system approaches which 

were used in our group for meteorology problems at the Novosibirsk 

Computing Center. The first point concerns the problem itself, 

how to formulate a mathematical model for the real physical 

process description. The next step deals with discrete approxi- 

nation for continuous models. And the main requirement for 

this discrete approximation is that the discrete model have all 

those features that satisfy the same physical process described 

in a continuous form. The most useful and successful approach 

was the one based on the generalized solution definition. The 

very difficult problems connected with the discrete appoximation 

design were reduced to finding stationary points of some 

functionals. The main method for computational algorithm con- 

struction for discrete model realization is a splitting-up 

method. On the one hand, this method helps us to use a simple 

computation procedure and, on the other hand, it gives us some 



new approach to a complex model design. The splitting-up method 

also allows us to combine different methods in one approach, 

for example: methods for the solution of both stationary and 

nonstationary problems. (It is common knowledge that the 

stationary solutions are connected with fixed point problems). 

Let me illustrate these remarks by a few formulas: the 

problem 

where A is any operator and f is any given vector, is nonstationary. 

Suppose that a stationary solution exists, and if t + m, we will 

receive the solution of the stationary problem 

Let us write four discrete approximations which are usually used 

for solving problem (1 ) 



k Here the symbol O(At ) k = 1,2 defines the order of approxi- 

mation errors. Scheme (3) is explicit, and schemes (4) to (6) 

are implicit. In the limit for j + m each of these schemes 

may lead to the stationary solution, and the process itself is 

called "the process of stationarity". Operator (E + A~"B)  is 

called "the stabilization operator". If at2 1 1 B I  I < 1 , then 

schemes (5) and (6) are equivalent as regards accuracy. By 

a special choice of the operator B, we can, on the one hand, 

speed up the stationary process, and, on the other hand simplify 

the realization of the implicit scheme (6). 
n 

Suppose, that the operator A allows a representation A = C Ai 
i= 1 

where the operators Ai(i = 7,s) have a simpler structure than 

A. Then scheme (6) may be reduced to some splitting-up scheme, 

for example, the scheme of the Douglas approximation correction 

Scheme (6) and the form of operator B is obtained from (7) by 

elimination of functions with fractional indexes. 

It is evident that scheme (7) has a simpler and more eco- 

nomical computer algorithm than implicit schemes (4) and (5) 

as, on each fractional step, a simpler problem is solved. This 

approach can be applied to many problems, Russian mathematicians 



use this approach in meteorological, continuum mechanics, 

hydrodynamics problems and others. 

Another short remark. The solution of stability problems 

is closely connected with eigenvalue problems. We developed 

a few numerical methods for solving eigenvalue problems which 

appear in meteorology. It gives us an opportunity to formulate 

new meteorological models of a spectral type. 

General problems concerning complex systems also involve 

such questions as sensitivity and the range of predictability 

analysis connected with the insufficient knowledge of the 

model parameters and input data. These questions also arise in 

connection with problems of a spectral type. For the appropriate 

estimation of the effects of parameter variation it is worth 

while using the technique of adjoint problems of atmospheric 

hydrothermodynamics. The problems concerning stability related 

to parameter variations are closely connected with the identi- 

fication model and the range of predictability. The solution 

of the above mentioned problems allows us to use the mathematical 

models for forecasting purposes. 

Koopmans: Any questions? No, then I call on Bill Clark and 

Dr. Bazykin. 



Clark: We started out at the beginning of this workshop by 

telling you all that the problems we faced in analyzing ecological 

models were nonlinearity, discontinuity, multivariate complexity 

and the occasional stochastic nature of ecosystems themselves. 

This view, I suppose, has been more influenced by our attempts 

to bring fairly strict analytical techniques and later on mathe- 

matical programming to bear on some of our modeling problems, 

and having been knocked down repeatedly because one or more of 

these structural characteristics of the phenomena we tried to 

model. We also mentioned in passing that we were not sure if 

we were not concerned with slightly different behavioral pro- 

perties of these models than some of the other disciplines 

represented here. Our focus was somewhat on stable fixed points, 

but as much, or more so, we were concerned with the existence 

and location of separatrices, periodic orbits and so forth. 

Now it turned out that one of the mistakes we made early on 

was coming into this workshop thinking we knew what we should 

be telling the methodology people and getting that quite back- 

wards. The structural problems which had given us so much of 

a run-around before seem to present not overwhelming difficulties 

in the context of this workshop. It turned out that interest 

developed around the behavioral properties of the systems we 

were interested in analyzing. This interest provided a focus 

for a number of discussions as to whether one could use variants 

of the techniques discussed to get at periodic orbits, and 

whether some of the badly behaved periodic orbits that we 

encountered--these due to the discrete time nature of the 

models--would present special difficulties. 



Koopmans: The behavior  of  t h e  i n d i v i d u a l s  and of s p e c i e s  t h a t  

a r e  i n  i n t e r a c t i o n ?  

C lark :  No. The behavior  of t h e  s t a t e  space.  

Koopmans: So it i s  t h e  way t h e  v e c t o r  f i e l d  of  t h e  t r a j e c t o r i e s  

depends on t h e  parameters of t h e  problem t h a t  you a l l u d e  t o  

w i th  t h e  t e r m  "behavior?"  

C lark :  Y e s .  Now t h a t  is n o t  a s ta temen t  of what we have l e a r n e d ,  

excep t  t h a t  we have learned of d i f f e r e n t  s e t s  of ques t i ons  r e l e -  

v a n t  t o  d i f f e r e n t  people.  L a t e r  on Dixon Jones and,  I guess ,  

T e r j e  Hansen w i l l  speak b r i e f l y  on some computat ional  exper ience 

w e  have had, and on some l e a d s  t h a t  have been developed concerning 

meteoro log ica l  ana log ies  t o  some o f  t h e s e  v e c t o r  f i e l d  behav ior  

problems. I n  a more genera l  sense  it i s  my t e n t a t i v e  i n t e r p r e -  

t a t i o n  t h a t  many of t h e  d i f f e r e n t  a t t i t u d e s  t h a t  we brought  i n t o  

t h e  workshop come from our  fundamental focus  on t h e  dynamics 

of  t h e  system i t s e l f  a s  opposed t o  t h e  economists focus  on 

s t a t i c s  o r  behavior  around c e r t a i n  f i x e d  p o i n t s .  I b e l i e v e  we 

end up sha r ing  t h i s  a t t i t u d e  w i th  t h e  c l i m a t o l o g i s t s .  This  

happened i n  a number of o t h e r  a r e a s  a s  w e l l .  

W e  have found a g r e a t  number of apparen t  s i m i l a r i t i e s  be- 

tween t h e  c l i m a t o l o g i c a l  f l u i d  dynamics problems and ones w e  

f a c e .  Th i s  i s  most c l e a r l y  brought  o u t  i n  a comparison of 

Grfimm's t rea tmen t  of  t h e  tu rbu lence  example w i th  t h e  t a l k  

D r .  Bazykin gave t h i s  morning. You had i n  bo th  c a s e s  a s t r i c t  

analogy where, by vary ing  one parameter  c h a r a c t e r i z i n g  t h e  

behav ior  of  your system, you move from behav ior  which i s  t r i v i a l ,  



concentrated in a degenerated fixed point, to behavior which 

is strictly periodic, to behavior which shifts the fixed point, 

to behavior which--though Bazykin's model did not go that far-- 

will break down into one of these bounded but random phenomena. 

Dr. Bazykin obtained this result using an extremely stra5ght 

forward and simple food chain model. Now we know that in other 

countries--I got this from discussions with Dr. GrUmm--we face 

exactly the same sort of thing. As you vary some basic parameter 

such as a rate of nutrient input into a system, you move among 

these different types of state-space behavior: from one to 

another, a fixed point, a limit cycle, then converging to a 

more "turbulent" flow. I don't know where this sort of analyzing 

is going to lead, but there is clearly a parallel of sorts 

working here; it is going to be interesting to explore. 

The other parallel notion which came out of comparison 

with the climatological cases is the dimensionality difficulty 

that comes into your models--and to the analysis technique you 

apply to them--brought in by spatial character of these phenomena. 

I agree that we can do many tricks with the local character of 

our processes to get the dimensionality down to such a level 

that many of these computational techniques can be brought to 

bear on them. It is not that apparent that we can do the same 

thing with the spatial dimension, and unless I have misread the 

comments from the climatologists this is a common complexity 

problem that neither of us has got a straightforward solution 

to yet. We have not been considering it as long, and we are 

hardly up to even their level of sophistication. 



F i n a l l y ,  w i t h i n  eco logy ,  and comple te ly  independent  o f  

p a r t i c u l a r  purposes  o f  t h e  workshop, we have had a  ve ry  good 

set of  exchanges i nvo l v i ng  some a n a l y s i s - o r i e n t e d  work t h a t  

R i n a l d i  r e p o r t e d  and a  q u i t e  s u r p r i s i n g  s e t  o f  developments 

r e p o r t e d  by D r .  Bazykin which p a r a l l e l  ou r  own s t u d i e s  on 

s t a b i l i t y - - r e s i l i e n c e  p r o p e r t i e s  of  t h e s e  systems.  

A s  p roduc ts  coming o u t  o f  t h i s  workshop, I am i n t e r e s t e d  

i n  s e e i n g  whether t h e  appa ren t  i n t e r f a c i n g  o f  t h e  d i f f e r e n t i a l  

t o p o l o g i c a l  v iews o f  systems behav io r  w i t h  t echn iques  p r e s e n t l y  

o r i e n t e d  towards l o c a t i n g  f i x e d  p o i n t s - - I  da resay  we w i l l  hea r  

about  t h i s  i n  methods r e p o r t s  t h a t  fol low--whether t h i s  s e t  o f  

p a r a l l e l s  is  go ing  t o  be f u r t h e r  developed,  h e r e  o r  e lsewhere .  

A s  a method of  i n t e g r a t i n g  some o f  t h e  l a r g e l y  s t a t i c  and some 

of  them l a r g e l y  dynamic systems v iews,  i t sounds encouraging.  

The o t h e r  p roduc t ,  on a  j u s t  t e c h n i c a l  l e v e l ,  would be some 

way o r  o t h e r  t o  o r g a n i z e  t h e  s t a t e - o f - t h e - a r t  t echn iques  t h a t  

have been i n t roduced  h e r e  i n  such a  form t h a t  they  a r e  a v a i l a b l e  

on t h e  IIASA o r  o t h e r  computer systems and a c c e s s a b l e  t o  some 

o f  u s  i n  a p p l i e d  a r e a s .  

The l a s t  p o i n t  i s  t h a t  t h e  whole n o t i o n  of  s t a b i l i t y  

t echn iques ,  f i x e d  p o i n t  t echn iques ,  e t c . ,  t h a t  have been touched 

on i n  t h i s  workshop sounds l i k e  p o t e n t i a l  m a t e r i a l  f o r  a  hand- 

book of  t h e  s o r t  be ing  p repared  i n  o t h e r  a r e a s  th rough t h e  

a u s p i c e s  o f  t h e  I n s t i t u t e ,  he re .  I s imply  want a  s t a t e m e n t  

from some o f  t h e  methods-people a s  t o  whether t h a t  s o r t  o f  

t h i n g  would be a p p r o p r i a t e  i n  t h e i r  v iew. I t  would c e r t a i n l y  

be something which, a s  a  u s e r ,  I would f i n d  a  d e l i g h t  t o  be 



able to skim through. Dr. Bazykin has some comments to make. 

But before I give him the floor I guess I have to apologize 

for my scepticism in this workshop. I think a lot of us started 

out thinking there was a fair probability that some sort of 

chaos would eventually emerge from it, and I am amazed and 

thankful for the efforts that particularly Professor Koopmans, 

but also everybody here, has put into making things happen that 

really had no right to. 

Koopmans: Thank you very much. That scepticism was beautifully 

concealed as far as I was concerned. 

Now there were two rather distinct parts to your summary. 

The second of them was the point of making the state-of-the-art 

in computing and in formulation avaiable in some way. I would 

expect that there would be responses to that from methodologists. 

I wonder whether they would want to respond immediately. In 

that case, I would like to have some information as to whether 

Dr. Bazykin's remarks also bear on this question of computing, 

or whether they bear more on the questions of modeling, structures, 

etc. But let me first ask the methodologists. Do they want to 

come back to these challenges later or now? 

Scarf: I don't quite know how one transfers state-of-the-art 

knowledge from one place to the other. It always seems like a 

terribly simple thing to do; to pick up a program and move it 

from point A to point B. But of course it is not that simple. 

Point B has to become dedicated to the use of that type of work. 

It is a tricky thing. 



Cla rk :  I know t h a t  IIASA is  f a c i n g  s i m i l a r  prob lems i n  some 

o f  t h e  o t h e r  handbooks b e i n g  p repa red  h e r e .  V?e-might n o t  

b e  a b l e  t o  w r i t e  up a  document on t e c h n i q u e s  which you t a k e  

under  your  arm and go home and r e a d  it and d o  it. But you c a n  

d i s c u s s ,  n o t  t h e  a c t u a l  o p e r a t o r s ,  b u t ,  a t  a  d e s c r i p t i v e  l e v e l ,  

what k i n d s  o f  t h i n g s  you can  do  and what you c a n ' t .  What a r e  

your  c o n s t r a i n t s ?  What a r e  your  s t r e n g t h s ?  I n  p a r t i c u l a r ,  you 

c a n  s t a r t  g e t t i n g  t h e  names o f  peop le  and some c e n t e r s  t h a t  a r e  

do ing  t h a t  k i nd  o f  work. You see, a s  o u t s i d e r s ,  you l i t e r a l l y  

do n o t  know where t o  s t a r t .  Some o f  t h e  books have ended up  

be ing  v e r y  s h o r t  t h i n g s  r e a l l y  j u s t  c o v e r i n g  t h a t  s o r t  o f  

t e r r i t o r y .  I am n o t  a  handbook f a n  myse l f .  The n o t i o n  o f  

work ing o u t  s e t s  o f  t e c h n i q u e s  a s  t o  how t o  do  i t - -which p e o p l e  

a s k  you t o  d o  f o r  e c o l o g i c a l  model ing,  l i k e  e v e r y t h i n g  e l se - -has  

a l l  t h e  f u t i l i t y  a t t a c h e d  t o  it o f  knowing you a r e  w r i t i n g  t h i n g s  

down t h a t  you know nobody w i l l  e v e r  r e a d .  But I t h i n k  some 

good t h i n g s  can  b e  done i n  t h a t  c o n t e x t .  And, it would b e  n i c e  

t o  know what  you f o l k s  t h i n k  o f  it. 

Juncosa :  I c a n  j u s t  imagine how it would work. I f i r s t  t r y  t o  

f i n d  someone who h a s  a n  i n t e r e s t  i n  su r vey ing  t h e  f i e l d .  Then, 

s e v e r a l  t e l e p h o n e  c o n v e r s a t i o n s ,  communicat ion by l e t te rs ,  a  

few s p o t  v i s i t s  i n  a  few p l a c e s ,  and s e a r c h i n g  f o r  l i t e r a t u r e  

t o  p u t  t o g e t h e r  a  su r vey  o f  where one  s t a n d s  f o r  c a l c u l a t i o n  

p rocedu res ,  f o r  f i x e d  p o i n t  methods,  etc.  I t  would i n v o l v e  a  

c o n s i d e r a b l e  b i b l i o g r a p h y .  T h i s  h a s  been done a  number o f  t i m e s  

i n  t h e  h i s t o r y  o f  comput ing,  somet imes by someone who is 

p r i m a r i l y  a comput ing person .  For  i n s t a n c e ,  George ~ o r s y t e ' s  



work some 20 years ago on the solution of linear equations was 

widely received and an extremely valuable thing. We have to 

find someone who has an inclination in those directions and 

who will do the task. I don't think it can be done as a 

collective effort. 

Roopmans: I now call on Dr. Bazykin. 

Bazykin: My participation in the work of this workshop supported 

in some way my preference for further mathematical modeling 

in general. My first impression is trivial: the similarity 

of mathematical problems which arise in many distinct areas. 

From this point of view, I think that the efforts of those who 

organized the meeting of the specialists in very different areas 

was very good and useful. The second impression is the importance 

of nonlinearity in mathematical models. The main properties 

of nonlinear models are very distinct from the properties of 

the linear models, and computation of behavior of linear models 

is much easier. The third impression, very closely linked with 

the second, is that the necessity of concentrating on the inte- 

gration of qualitative and simulation modeling in ecology. 

From my point of view the natural sequence is the following: 

first it is necessary to construct very simple--the simplest 

possible--models of some situation, and to investigate in detail 

its qualitative behavior. The results of this model may lead 

to some idea of problems of the form of the simulation model. 

Those are my main impressions of the workshop. 



Koopmans: A s  t h e r e  a r e  no q u e s t i o n s ,  I c a l l  on Herb S c a r f .  

S c a r f :  I have been impressed,  d u r i n g  t h i s  workshop, by t h e  

g r e a t  d i f f e r e n c e  i n  t h e  ways i n  which v a r i o u s  f i e l d s  t r e a t  

dynamic problems. I should l i k e  t o  make some obvious remarks 

about  t h e  r e l a t i o n s h i p  between t h e  dynamics o f  t h e  systems and 

t h e  cho i ce  o f  a  method t o  t r y  t o  s o l v e  a  p a r t i c u l a r  problem. 

L e t  me beg in  w i th  some remarks about  economic problems i n  

g e n e r a l .  We i n  t h e  workshop d i d  n o t  g e t  i n t o  s p e c i f i c  d e t a i l s  

of  e x h i b i t  nurnberical examples o f  economic problems t h a t  we 

might be  i n t e r e s t e d  i n .  We t a l k e d  more about  gene ra l  methods 

t h a n  we d i d  about  t h e  s p e c i f i c  problems. Economics, o r  a t  

l e a s t  t h e  p a r t  I am concerned w i t h ,  i s  a  r a t h e r  odd f i e l d ,  i n  

t h e  s e n s e  t h a t  it is  i n  a  ca tego ry  where one is  s u s p i c i o u s  

about  t h e  dynamics o f  t h e  system. We have a  no t i on  of equ i -  

l i b r i um,  b u t  we d o n ' t  q u i t e ,  a t  l e a s t  i n  t h i s  f i e l d ,  have a  

c l e a r  n o t i o n  about  how t o  g e t  t h e r e .  That is, we can say  when 

a  system is  no t  a t  r e s t ;  f o r  example, i f  t h e r e  is  a  ve ry  sub- 

s t a n t i a l  demand f o r  shoes ,  and a  very  smal l  supp ly  of shoes ,  

t hen  t h e  system i s  n o t  i n  equ i l i b r i um.  Something w i l l  change; 

e i t h e r  t h e  p r i c e  of shoes  w i l l  go up, o r  more shoes w i l l  be 

manufactured b u t  i t  is  no t  c l e a r  which of t h e s e  e v e n t s  w i l l  

t a k e  p lace .  We recogn ize  a  d i s e q ~ i i l i b r i u m  s i t u a t i o n  b u t  



we don't quite know the process that takes us from that 

disequilibrium situation to an equilibrium situation. As another 

example, we might look at a particular industry which has 

given the technical coefficients for output and the use of 

inputs. If that industry is making a very substantial profit, 

at the prices which happen to prevail, then we recognize that 

this system is not in equilibrium. We don't quite know 

however what will happen to restore an equilibrium. Will 

another competing organization spring into activity-- will 

the price of the output go down? To people in the physical 

sciences this must seem a rather odd situation: you have a 

way of recognizing equilibrium and disequilibrium, but you 

don't quite have a story you can fully believe about the 

process of going from disequilibrium to equilibrium. 

The problems that come to us from economics are therefore 

frequently in the form of: given a family of equations (not a 

dynamic process, but a family of equations), how to find the 

solutions. How to find the rest point, not what is the process 

for getting there. Of course, you can make a picture of this 

family of equations as a vector field on a sphere, and you can 

say that the zero of the vector field is the solution you are 

looking for. But it is not necessarily plausible, that the 

process which is obtained by following the differential equations 

of that vector field will correspond to the underlying economic 

process that takes us to equilibrium. 



In this workshop we have been naturally thinking that a 

problem is solved by writing down a vector field and integrating 

the resulting differential equations. But in an economic 

problem the differential equations = f (x) can just as well 

dx be replaced by - = Af with A an arbitrary non-singular matrix. dt 

The two systems have the same equilibrium points, but the 

stability properties may be quite different in the two cases. 

For economists it is meaningless to talk about stable points 

in terms of the characteristic roots of the Jacobian at 

equilibrium, unless we have some clear notion about the under- 

lying dynamic process. I don't quite know whether there are 

other such fields, but economics can be taken as an example of 

the category in which dynamic problems are viewed with greater 

suspicion than their equilibrium counterparts. And, of course, 

this is the reason why fixed point methods, which are independent 

of considerations of local stability, play an important role 

in economics. 

Let me contrast this approach to dynamics--where the 

dynamics is somewhat suspect--with a second approach to dynamics 

not mentioned in this workshop. Perhaps it would be appropriate 

to call this second category an "implicit dynamics", or "complex 

dynamics". What I have in mind here are problems that arise 

not only in economics, but physics as well, namely, where you 

are working with a control theory problem, or a maximization 

problem over time. In these problems, you are allowed to adjust 

a certain set of parameters subject to local constraints 



at a given moment in time, in order to maximize some global 

objective function, which is perhaps a function of the entire 

path or a function of terminal conditions alone. Problems of 

that sort are studied in "optimal growth theory" in which 

resources are to be allocated over time so as to maximize 

global objective function. Such problems can be solved by 

means of the calculus of variations, or by Pontryagin's 

methods. It may turn out that after you have solved such a 

problem, the path looks as if it behaves according to some 

system of differential equations. But this is a derived 

mechanism that comes from the global problem, and is not 

given in advance. 

I think that optimal control theory problems are an 

example where fixed point methods might be used in the following 

sense. Sometimes it is rather simple to write down explicit 

equations for the asymptotic state of the system. It may then 

be a far simpler matter to address oneself to the calculation 

of the stationary solution, than to calculate the entire time- 

dependent solution starting from a given set of initial 

conditions. But I think it is important to recognize that in 

this problem the local linearization of the stationary equations 

may have nothing to do with the question of dynamic stability 

starting from a given set of initial conditions. The limiting 

equations are not the same thing as tracing out the path from 

the beginning. So again--as in economic problems--there is no 

particular point in restricting one's attention to searching 

for stable solutions of the limiting equations. In this sense, 



control theory problems represent a case where methods which 

are indifferent to the question of local stability are of 

great importance. 

Most of the problems that were discussed in this workshop 

fall into a third category. Namely the dynamics is simple, 

explicit, and described by a system of first-order differential 

equations. This is a case where fixed point methods have to 

face the simple test of whether they are any better than forward 

integration of the differential equation. 

Charney: Only when the fixed points are stable. 

Scarf: As Dr. Charney has just mentioned, one advantage of 

fixed point methods is that they are available even in those 

problems in which the equilibrium point you calculate is un- 

stable or partially stable. I am delighted by the fact that in 

so many of the different applications discussed at this workshop, 

it does seem to be true that a search for unstable equilibrium 

points is of some consequence in analyzing the behavior of 

the dynamical system when a particular parameter is pushed 

beyond a certain critical level. That is, an unstable equilibrium 

point may indicate that a limit cycle exists in the neighborhood 

of this point and that time-averages of a function around the 

'limit cycle may be approximated by the value of the function 

at the equilibrium point. 

In the report on the paper by Eaves and myself, it was 

seen that the determination of a fixed point of a particular 

continuous mapping can be viewed as tracing out the fixed 

points of a homotopic family of mappings. At one extreme of 



t h e  parameter va lue t h e  mapping is  a t r i v i a l  one wi th a unique 

f i x e d  po in t  which is easy t o  c a l c u l a t e .  The curve of  f i xed  

p o i n t s  is then followed u n t i l  t h e  mapping co inc ides wi th  t h e  

o r i g i n a l  mapping whose f i xed  po in t  is t o  be determined. 

I t  seems very poss ib le  t o  me t h a t  s i m i l a r  i deas  might be 

u s e f u l  i n  t h e  c a l c u l a t i o n  of l i m i t  c y c l e s ,  a problem which has 

been i d e n t i f i e d  a t  t h i s  workshop a s  being of major importance. 

A s  a hornotopy parameter v a r i e s  t h e  system may pass from a 

s t a b l e  equ i l ib r ium t o  a p a r t l y  s t a b l e  one enclosed by a l i m i t  

cyc le ,  whose c a l c u l a t i o n  may be f a c i l i t a t e d  by changing t h e  

homotopy parameter i n  smal l  s t e p s .  

Charney: My f e e l i n g  i s  t h a t  probably it won' t  be enough t o  look 

a t  t h e  unstab le  f i xed  po in ts .  We a r e  n o t  completely s u r e  about  

t h a t .  I t h ink  i n  t h e  Lorenz example it probably would have been 

enough t o  g e t  p r e t t y  good c l imatology of t h e  Lorenz-Charney 

model by f i nd ing  a l l  t h e  unstab le  f i x e d  po in ts .  Because they 

do i n  some sense rep resen t  good averages.  I f  you have s t a b l e  

l i m i t s  does t h a t  always imply t h a t  somewhere w i th in  t h e  f a c t o r  

t h e r e  i s  probably p r a c t i c a t i o n  theory? I f  you have a s t a b l e  

l i m i t  c y c l e ,  t h e r e  must a l s o  be a s t a b l e  f i xed po in t .  

Rozanov: Is it p o s s i b l e  t h a t  i ns tead  of l o c a l  dynamics, but  

s t i l l  having devised some dynamics, t o  put  i n  some a d d i t i o n a l  

parameters which desc r ibe  i n  some sense t h e  a b i l i t y  of p a r t n e r s  

t o  behave? For example, you mentioned t h a t  shoe product ion 

wi th  two p o s s i b i l i t i e s :  r i s i n g  p r i c e s  and product ion;  so  t h a t  

i n  your model some kind of parameters a r e  re levan t  t o  

t h i s  s i t u a t i o n ,  and look how your curves w i l l  be changinq 



i f  you have changed your parameters.  So t h i s  approach i s  a 

very  rough i d e a ,  and we d o n ' t  know t h e  dynamics, b u t  how they  

a r e  s l i g h t l y  changeable i s  n o t  dynamics i t s e l f .  I cannot  

fo rmula te  an equa t i on ,  bu t  do you unders tand what I mean? 

Sca r f :  Yes. Economists have s t u d i e d  q u e s t i o n s  l i k e  t h i s .  You 

t a k e  a system which i s  i n  e q u i l i b r i u m  and which has  some degree 

of s t a b i l i t y ,  and you change a parameter ;  e .g . ,  a t a x  r a t e  

goes up, o r  t h e  r a t e  of exchange between one count ry  and ano the r  

changes, o r  some d i scove ry  is made of a new t e c h n i c a l  p rocess ,  

can  you t r a c e  o u t  t h e  p a t h  from t h e  o l d  e q u i l i b r i u m  t o  t h e  new 

one? When t h e  changes a r e  sma l l  l o c a l  methods a r e  f r e q u e n t l y  

adequate .  Fixed p o i n t  techn iques  were developed w i t h  t h e  i d e a  

t h a t  sometimes l a r g e  changes might  be made and t h a t  t h e  

e q u i l i b r i u m  p o i n t  moves a s u b s t a n t i a l  d i s t a n c e .  

Rozanov: So a t  l e a s t  it g i v e s  you t h e  oppo r tun i t y  t o  fo rmula te  

what s t a b l e  o r  uns tab le  means, w i th  r e s p e c t  t o  changing o f  

parameters .  O r  n o t  e x a c t l y ?  

S c a r f :  Yes you cou ld  s a y  t h a t ,  b u t  t h e r e  i s  a d i s t i n c t i o n .  For 

example, i n  P ro fesso r  Molchanov's f i r s t  l e c t u r e ,  he wrote down 

a system o f  d i f f e r e n t i a l  equa t i ons  w i th  parameters .  There was 

a q u e s t i o n  o f  whether you a r e  concerned w i th  s t a b i l i t y  w i t h  

r e s p e c t  t o  i n i t i a l  s t a t e s  of t h e  system, o r  s t a b i l i t y  w i th  

r e s p e c t  t o  t h e  parameters  a s  t h e y  change. I t h i n k  t h a t  you 

a r e  r e f e r r i n g  t o  s t a b i l i t y  w i th  r e s p e c t  t o  t h e  parameters  

which is s t a b i l i t y  i n  t h e  sense o f  d i f f e r e n t i a l  topology r a t h e r  

t han  d i f f e r e n t i a l  equa t i ons .  



Koopmans: I would like to ask for some documentation of theorems 

that are pertinent to the models we are discussing, and are 

fully covered by articles in the mathematical literature, but 

that are too difficult for most of the people in applied fields 

to read. I have two candidates for, if you like, that type of 

expository discussion, but there must be many more. One is a 

theorem by Felix Browder that deals with how the set of fixed 

points of a continuous mapping responds to changes in the para- 

meters that define the mapping. It asserts a kind of semi- 

continuity of that set with respect to parameter changes. That 

would seem to me to be an important theorem for people applying 

these models to fully understand both the statement and the 

proof of. I submit the desirability of some exposition of 

that theorem or generalizations or specializations thereof that 

bear on our models. 

There is also another body of theory associated with the 

name of Marston Morse, perhaps among &hers, on constellations 

of maxima, minima and saddle points. This could be extended 

I think to constellations of attractors, repellors, and other 

objects of the kind we are concerned with here in the workshop. 

Is there somewhere an expository treatment of what is known 

about what combinations of these objects can occur together, 

and which can't? It would be desirable and in some sense a 

mathematical contribution to the art of dynamic modeling, if 

we could locate such expositions if they already exist, or else 

induce their preparation. 



Scarf: You have talked about two things; one is Morse theory 

having to do with the relationship between the characteristic 

roots at various zeros, but bearing only on rather special 

vector fields. The other has to do with fixed points of a 

mapping but in particular the parity of the number of fixed 

points. This refers to index theory in the very weakest sense, 

and has no dynamics associated with it. The former question 

is associated with the dynamics of a restricted system, and 

yields a global statement using much more detailed behavior 

at each critical point. 

Koopmans: At this point I call on Dr. Juncosa. 

Juncosa: Dr. Casti and I were struck by the frequency with 

which computing limit cycles was mentioned and many of the related 

problems were of the two-dimensional sort. Several people 

indicated that they simply integrate the differential equations 

for the trajectories until the trajectories appeared to be 

stabilizing, i.e., approaching a limit cycle. 

Our feeling is that the growth of computational error in the 

integration of these differential equations would very frequently 

throw one away frpn the limit cycle and then one would have to 

approach the limit cycle anew. Thus, one may bounce back and 

forth and may never be really guaranteed to be close enough to 

the limit cycle. 

For certain situations, we would like to propose a simple 

alternative whose originality we cannot ascertain without a 

search of the literature but which would avoid integration 

over infinitely long paths. Consider Figure 1. 



Suppose that we happen to have two simple closed non-intersecting 

curves (K1 and K2 in the previous figure), one inside the other, 

that lie in the plane. Suppose further that, perhaps because 

of considerations of the orientation of the trajectories' tan- 

gent vector field, and other considerations, we know that there 

lies a single, stable limit cycle, L, encircling the inner closed 

curve Kt and encircled by the outer one K2. 

The proposed procedure is as follows: choose two points, 

A on K1 and B on K2 such that the line segment between them lies 

completely within the region between K, and K2. Starting with 

A and B as initial points, integrate the trajectory equations 

over an angle 2~r) measured about A, say, from the line segment 

passing through A and B) to arrive at A' and B' respectively. 

Interpolate on the line segment (A', B') to obtain C, say, such 

that A'C/BIB = BIC/AA', or perhaps a different interpolation 

weight could be chosen. In the diagram, C is depicted inside 

the limit cycle L, but it could have fallen outside, depending 

on the interpolation. Next, integrate from C through 2n radians 

to get C' and interpolate with (C, C 1 )  and (B', B) between C' 

and B' to obtain a new point C". If C were outside the limit 

cycle, then (A, A') and (C, C') would be used for interpolation 

between A' and C' instead. The continuation is clear. Termi- 

nation occurs when the interpolation segment is appropriately 

small and consistent with the bounds in the numerical inte- 

gration errors generated in the terminal integrations over 

2n radians. 



Figure 1. 

Figure 2. 



If there were several limit cycles each enclosing the 

preceding, this process would give one of them. Search pro- 

cedures would be necessary to discover the others if we did 

not know of their existence or non-existence a priori from other 

considerations. 

The principal objection to an algorithm of this sort is that, 

as it stands, it is not totally general. For example, in other 

simple situations, one may have several limit cycles each in- 

side the preceding, and, following a procedure of the above 

kind, one would only get one of them without any guarantee of 

which of the several limit cycles was obtained. Of course, 

further interpolatory search and integration procedures could 

seek out the remaining limit cycles for such a case. 

If there were more than one limit cycle where one did not 

enclose another, more complicated problems could arise with 

such an approach and further research is needed here to develop 

a workable algorithm based on this interpolatory approach. 

For example, consider the following Figure 2 with two different 

cuts PI  and P 2 -  
K1 and K 2  are simple closed curves with out- 

wardly flowing trajectory tangent vector fiel.6~ while the 

fielc! is inward on K 
3 '  



One can  see t h a t  w i t h  t h e  c u t s  PI  and P2 ,  t h e  f i r s t  p o i n t  

r e s u l t i n g  f rom i n t e r p o l a t i o n  cou ld  f a l l  i n  t h e  r e g i o n  R , .  T h i s  

is  t h e  " f o r t u n a t e "  c a s e ,  and t h e  p rocedu re  d e s c r i b e d  f o r  t h e  

c a s e  o f  F i g u r e  1  converges .  

On t h e  o t h e r  hand,  one  may f a l l  i n  r e g i o n  R 2 ,  t h e  "less 

f o r t u n a t e "  c a s e ,  and ,  c l e a r l y ,  w e  c o u l d  have convergence  prob lems.  

To g e t  t h e  l i m i t  c y c l e  L1 i n  r e g i o n  R 1 ,  w e  would need a  r u l e  

which would s t o p  t h e  numer i ca l  i n t e g r a t i o n  when one f a i l s  a f t e r  

some p re -de te rmined  t i m e  t o  c i rc le  A w i t h  an a n g l e  o f   IT w i t h  

a n  i n t e g r a t i o n  t h a t  s t a r t e d  a t  t h e  p o i n t  r e s u l t i n g  f rom i n t e r -  

p o l a t i o n  and t h e n  r e s t a r t  w i t h  a n o t h e r  p o i n t  c l o s e r  t o  A t h a n  

B  o r  B' . I n t e g r a t i o n  i n  b o t h  ( x , y )  and ( r , 0 )  may be  n e c e s s a r y  

t o  o b t a i n  s t o p p i n g  c r i t e r i a  and t o  s h i f t  t o  a  new p o i n t  t o  

s t a r t  t h e  i n t e g r a t i o n .  

F u r t h e r  d i f f i c u l t i e s  can  a r i s e  when t h e  c u t  P2 ,  a s  d i s t i n c t  

from P I  does  n o t  c u t  t h e  l i m i t  c y c l e  L2 i n  r e g i o n  R 2 ;  f o r  

example,  n e i t h e r  t h e  second " l oop "  o f  t h e  t r a j e c t o r y  s t a r t i n g  

f rom t h e  p o i n t  B" on P2 i n  R no r  any f u r t h e r  " l oops "  o f  t h e  2  

same t r a j e c t o r y  e v e r  i n t e r s e c t s  P2 a g a i n  and a  r u l e  f o r  s t o p p i n g  

and r e s t a r t i n g  i s  needed. 

The p o i n t  t o  t h e s e  summary remarks is  t h a t  i n f i n i t e  i n t e -  

g r a t i o n  p a t h s  may b e  avo ided  i n  t h e  computa t ion  o f  l i m i t  c y c l e s .  

I n  t h e  s i m p l e  c a s e s ,  an  a l g o r i t h m i c  approach  i s  g i v e n  above,  

b u t  f o r  more g e n e r a l  a p p l i c a t i o n s ,  more r e s e a r c h  is  needed and 

a  h e u r i s t i c  approach  t o  deve lop  t h e  more g e n e r a l  a l g o r i t h m s  may 

b e  r e q u i r e d .  



Molchanov: In particular, if someone is interested, we can 

offer through our computer center the Fortran Program written 

for such kinds of problems. Besides, we have a program which 

searches for Birthing Limit Cycles--a special program which 

automatically searches for changing of limit cycles where, 

depending on the parameter, it is not one system. Suppose you 

have a system which depends on a parameter, that program written 

for Fortran not only can find the limit cycle for the fixed 

parameter, but also they are searching for the change of the 

limit cycle with the change of a parameter. It is made auto- 

matically. This is dealing with three dimensions, not four. 

In four dimensions you might have tori. And now we are almost 

ready with the program for two parameters. 

Koopnans: I now call on Hans Grtimrn. 

G r h :  I would like to discuss some points in relation to the 

computation of closed orbits in the continuous case and periodic 

points in the discrete case. I would like to describe some 

ideas on how to combine abstract differential dynamic system 

results with concrete situations, to describe a cage, a region 

in phase space which encloses the solution (if you want to 

catch this rabbit you first have to put it in a cage). 

In response to Dr. Juncosa, we were not unaware of the 

possibility of working with a ~oincarg cross-section. The 

first problem in this approach is of course the auestion where 

to put the cross-section in a big chunk of phase space. I would 

like to mention two brain-bubbles that came up between Scarf 

and myself that can perhaps give us some guidance for further 

study, but certainly could not be finished during this workshop. 



The f i r s t  b ra in -bubb le  was t h e  f o l l o w i n g .  S t a r t i n g  w i t h  

t h e  geome t r i c  p i c t u r e  o f  t h e  f i x e d  p o i n t  a l g o r i t h m s  g i v e n  by 

~ a v e s ' ,  where you have a p iece-w ise  l i n e a r  map and a p iece-w ise  

l i n e a r  s i t u a t i o n ,  t h e  pre- image under  t h e  p a r t i c u l a r  map o f  a 

p o i n t  is  a p iece-w ise  one-mani fo ld ,  and t h e r e f o r e  c o n s i s t s  o f  

p iece-w ise  l i n e a r  "segments" and  " c i r c l e s . "  I n  t h i s  s i t u a t i o n  

you have a non-c losed p a t h  s t a r t i n g  a t  a f i x e d  p o i n t  and en6.ing 

a t  a p o i n t  on t h e  boundary o f  t h e  c y l i n d e r  c o n s t r u c t e d  by t h i s  

method which is known be fo rehand ,  s o  t h a t  t h e  a l g o r i t h m  you u s e  

would j u s t  b e  " r e t r a c i n g  t h i s  p a t h . "  I f  you c o u l d  g e n e r a l i z e  

t h i s  approach  from a f i x e d  p o i n t  t o  a c l o s e d  o r b i t ,  t h e n  pe rhaps  

f rom t h e  c l o s e d  o r b i t  t h a t  you d o  n o t  know, t h e r e  would grow an  

i n v e r s e  image o f  t h e  whole o r b i t :  a two-d imensional  p iece-w ise  

l i n e a r  man i f o l d ,  which would t h e n  pe rhaps  r e a c h  some boundary 

where you cou ld  i d e n t i f y  i t s  i n t e r s e c t i o n  and t h e n  by t r a c i n g  

it back ,  f i n d  t h e  c l o s e d  o r b i t .  Of c o u r s e  you f a c e  immed ia te ly  

1) S e e  S c a r f  and  Eaves,  The S o l u t i o n  of Systems o f  P iecew ise  
L i n e a r  Equa t ions .  ( t h e s e  p roceed ings )  



the problem of classification of two-manifolds. This is easy 

with one-manifolds because there are just two of them: the 

interval and the circle. In two dimensions, this is much more 

difficult, all kinds of spheres with handles occur, but the 

actual problem is that closed orbit might close--the two-manifold 

originating from the closed orbit might close onto itself. So 

even if we could construct a map whose pre-image would just 

intersect the bottom simplex in closed orbits--better linear 

approximations to orbits--these pre-images might not reach the 

boundaries where we can trace them. The difference between the 

fixed point situation and this one lies in the fact that 

Brouwer's theorem will guarantee the existence of a fixed 



point- - the path has t o  end somewhere--but from p r o p e r t i e s  of a 

map a t  t h e  boundaries of a simplex it is  impossib le t o  conclude 

t h e  ex is tence  of a c losed o r b i t :  t h e  homology of t h e  simplex 

i s  t r i v i a l .  To prove ex is tence of c losed  o r b i t s ,  you have t o  

use t o r o i d a l  (homological ly n o n - t r i v i a l )  cages.  

The second idea s t a r t s  wi th a piece-wise l i n e a r  approximation 

of t h e  flow (corresponding t o  s e t t i n g  t h e  vector  f i e l d  cons tan t  

over each subsimplex i n  t h e  g r i d )  and mapping ou t  c losed cha ins  

of s imp l i ces  a s  i n  the  diagram. 

Coming back from t h e  sky t o  r e a l i t y ,  I want t o  make t h i s  

po in t  of a c ross -sec t ion  c l e a r  aga in .  What we have learned 

from t h e  whole a p p l i c a t i o n  is  t h e  fo l lowing:  you have a f i xed  



po in t  and some d r i v i n g  parameter: e i t h e r  some i r r a d i a t i o n  

o r  n u t r i e n t s  product ion a s  i n  B i l l  C l a r k ' s  t r o p h i c a l  cha in ,  

t h a t  i s  slowly increased.  You go on by a  s t a b l e  c losed o r b i t ,  

uns tab le  c losed o r b i t  (bu t  s t a b l e  a t t r a c t i n g  two- torus) ,  uns tab le  

two-torus, bu t  s t a b l e  a t t r a c t i n 7  th ree - to rus ,  and s o  on. I might 

s t a t e  two th ings  here.  F i r s t  t h i s  s ta tement  i s  mathematical ly 

on t h e  l e v e l  of a  demonstrat ion n o t  of a  proof .  I ' m  using t h e  

not ion  t h a t  demonstrat ions a r e  something t h a t  w i l l  convince a  

reasonable man, and a  proof i s  something t h a t  w i l l  convince 

even a  stubborn man. So t h e  argument i s  no t  completely r i go rous ,  

but  it i s  almost conclusive.  The second remark t h a t  I want t o  

make i s  t h a t  t h e  same can a l s o  be done f o r  d i s c r e t e  t ime,  but  

he re  aga in  i n  t h e  v i c i n i t y  of a  po in t  t h a t  has j u s t  become un- 

s t a b l e ,  you w i l l  have an i n v a r i a n t  c i r c l e ,  beyond t h a t  an 

a t t r a c t i n g  t o r u s  and so  on. I would l i k e  t o  show you how these  

ideas  a r e  app l ied  t o  t h e  model Dixon Jones presented l a s t  Fr iday 

on t h e  prey-predator s i t u a t i o n .  I would l i k e  t o  remind you t h a t  

corresponding t o  t h e  development of a  c e r t a i n  parameter he shows 

t h e  fo l lowing p i c t u r e :  t h e  f i r s t  one wi th  a  parameter wi th l e s s  

than a  c r i t i c a l  va lue;  here  t h e  o r b i t  i s  coming i n ;  and i n  t h e  

second c a s e  he d i d  n o t  draw a  f i xed  p o i n t ,  bu t  everyone knew 

t h a t  it was t h e r e  and we have some i n d i c a t i o n  of where it l i e s .  

With va r ious  o t h e r  p o i n t s  it is  very unstab le .  So, what t h e  

Ruelle-Takens argument t e l l s  us i n  t h i s  p a r t i c u l a r  s i t u a t i o n  i s  

t h e  fo l lowing:  you have a  map wi th  j u s t  an uns tab le  f i xed  po in t ,  

now you have two p o s s i b i l i t i e s  depending on t h e  s i g n  of a  t h i r d  

o rde r  c o e f f i c i e n t ,  e i t h e r  t h e  o r b i t s  go away i n t o  i n f i n i t y  very 

r a p i d l y  o r  t h e r e  i s  an i n v a r i a n t  a t t r a c t i n g  c i r c l e .  



Now, what does this mean in the case of discrete time; a 

invariant circle has nothing to do with the concept of an orbit. 

I might just add that while I'm drawing two-dimensional examples 

here, the "two" does not come from the dimensionality but just 

from the nuaber of unstable eigenvalues of the Jacobian at the 

fixed point. So, what you are reduced to is a question of a 

fixed point and an attracting invariant one-manifold and now 

we can reduce the problem by just looking at the map restricted 

to this invariant circle. It might be equivalent to irrational 

rotations: this would certainly mean that every point starts 

off a dense orbit. Again I'm on the demonstration level, not 

on the proof level. By quoting the Peixoto theorem for the 



circle which says: for an open dense subset of all differentiable 

systems the non-wandering set will just consist of a finite 

number of periodic points. If you grant me that this model 

will not be exceptional in this specific mathematical sense, 

then the situation looks as follows: 

Koopmans: Does that have the interpretation that any point you 

pick will, after the finite number of successors, hit itself 

again? 



GrUmrn: No, not just any point. But every point on the one- 

manifold will be mapped into a point on the same manifold. 

Koopmans: Yes, but you don't necessarily go back after some 

iteration? 

GrUm: Not necessarily, but under a genericity assumption. A 

finite number of points and only these points will come back 

to the same place after some iterations. Now, I would like to 

point out what goes wrong in higher dimensions. Again we find 

for the map an unstable circle and an attracting two-torus 

around it. But we don't have anything like the genericity 

theorem by Peixoto. In general, we will have random-like 

behavior on the torus and therefore in a neighborhood of it, too. 

Perhaps in the context of Prof. Hansen's report on the compu- 

tational examples he will talk further about the details of 

what we did, what method we set up that still did not work. 

Koopmans: There was at an earlier session a discussion which 

started in terms of fixed point algorithms, and then went on 

from calculating a fixed point by a path to estimating a closed 

orbit, by working in two dimensions. An expression that was 

used in that discussion was dropping the dimensionality in a 

mapping by two instead of by one. I did not recognize that 

idea in anything you said, but maybe it was represented. 

GrUm: It was this first idea that as a pre-image of the closed 

cycle, perhaps there would arise a two-manifold. Either you 

get the two-manifold as pre-image of a circle under a map 

"dropping" dimension by one, or of a point under a map dropping 

dimensions by two. 



Koopmans: And, what is the present state of expectation for 

the possible feasibility and success for that procedure. 

Grtlmm: It is hard to say. It just occurred to me that if you 

know the period, you don't have to know the cross-section. 

You can just make a search over the entire space to see which 

points are mapped into inself after this period. ~terating the 

map many times is just a question of conpnter accuracy, but not of 

computing time. 

Koopmans: Any further questions? Then I call on Terje Hansen. 

Hansen: When I came down here I had no idea what kind of 

problems people would be interested in doing. Conceivably we 

could be doing economics problems, we could be doing mathematical 

programming problems, we could be interested in finding a fixed 

point in a meteorology problem, and so on. As it turns out the 

interest that the people here have is somewhat different from 

the interest in statistical economics, where economists are 

typically interested in only one fixed point and, since these 

techniques originated in economics, the main interest so far 

in computational development was to make an efficient algorithm 

for finding one fixed point. The common characteristic of the 

problems that you have presented us with are that you are inter- 

ested in finding many fixed points, and not only are you interested 

in finding many, but you are also interested in finding accurate 

values for many fixed points. Only the last couple of days 

that we have been here has it occurred to Hans Grtlmm and myself 



that conceivably some of the techniques that have been developed 

for economics problems could be combined to efficiently find 

many fixed points. That means that then one would conceivably 

be able to solve with a very high degree of accuracy larger 

scale problems. I would like to give you an idea of this. I 

am limiting myself to a two-dimensional graph. There is no 

reason why we should not be working in n-dimensions, but this 

is the easier case. So, we are going to consider a trivial 

problem. We have a mapping of the unit simplex into itself 

in two-dimensions and this defines the mapping for the first 

variable. The function F is depicted in this graph and as you 

can see there are three fixed points for the map. There is one 

at the quarter, one at the half, and one at three quarters so 

we have a mapping of the unit simplex into itself with three 

fixed points. I just want to use this particular illustration 

a s  an example. 



- 
ENTEF 
HERE - 



W e  a r e  now g o i n g  t o  c o n s i d e r  p o i n t s  on t h e  u n i t  s i m p l e x  

and w i l l  a s s o c i a t e  a  l a b e l  w i t h  e a c h  p o i n t .  The l a b e l i n g  r u l e  

we w i l l  u s e  i s  t h a t  we a s s o c i a t e  t h e  l a b e l  " 1 "  w i t h  a  s p e c i f i c  

p o i n t ,  i f  i t s  f i r s t  c o o r d i n a t e  i s  non-decreas ing  under  t h e  mapping. 

W e  a s s o c i a t e  l a b e l  " 2 "  i f  t h e  second  c o o r d i n a t e  is  non-decreas ing  

under  t h e  mapping. So,  t h i s  means i n  t h i s  c a s e  t h a t  w e  a r e  

u s i n g  t h e  l a b e l  " 1 "  i n  t h i s  r e g i o n  ( p o i n t i n g  t o  t h e  g r a p h )  and 

l a b e l  "2" h e r e .  Note t h a t  i f  we t a k e  t h i s  p a r t i c u l a r  prob lem 

and a p p l y  Eaves '  method, which c o n t i n u o u s l y  r e f i n e s  t h e  g r i d ,  

t h e  k i n d  o f  p i c t u r e  we have i s  t h e  f o l l o w i n g  one :  w e  a r e  s t o p p i n g  

t h e  a l g o r i t h m  w i t h  e s s e n t i a l l y  o n e  v e c t o r  where t h e  f i r s t  

c o o r d i n a t e  i s  z e r o ,  t h e  second  i s  o n e ,  a n o t h e r  v e c t o r  where t h e  

f i r s t  c o o r d i n a t e  is o n e ,  t h e  second  i s  z e r o ,  and a  t h i r d  v e c t o r  

where b o t h  c o o r d i n a t e s  a r e  e q u a l  t o  h a l f .  Then we c a l c u l a t e  

l a b e l s .  By d e f i n i t i o n  a l l  v e r t i c e s ,  when t h e  f i r s t  c o o r d i n a t e  

i s  z e r o ,  a r e  l a b e l l e d  "one" ,  and a l l  v e r t i c e s ,  where t h e  second 

c o o r d i n a t e  is  e q u a l  t o  z e r o ,  a r e  l a b e l l e d  " two" .  What happens 

when we a p p l y  Eaves '  method i s  t h a t  we walk  up i n  t h e  c y l i n d e r  

w i t h  c o n t i n u o u s  r e f i n e m e n t  on t h e  g r i d  and a f t e r  s e v e r a l  i ter -  

a t i o n s  we a r e  up t o  a  r e l a t i v e l y  f i n e  g r i d .  So,  i n  t h i s  c a s e  

i f  we a p p l y  Eaves t e c h n i q u e  we would f i n d  a  f i x e d  p o i n t  t h a t  

would b e  s i g n i f i c a n t  up t o  t h e  s i x t h  d i g i t ,  my g u e s s  would b e ,  

i f  we a p p l i e d  someth ing l i k e  50 i t e r a t i o n s .  Note t h e  prob lem 

w i t h  Eaves t e c h n i q u e  a s  i t  s t a n d s  today  i s  t h a t  i t  i s  n o t  

a t t u n e d  t o  f i n d i n g  more t h a n  o n e  f i x e d  p o i n t .  What I have  

done  i s  t h a t  I have  looked  i n t o  t h e  d i f f e r e n t  l a y e r s  h e r e  and 

c a l c u l a t e d  t h e  l a b e l s  f o r  a l l  p o i n t s  f o r  t h e  d i f f e r e n t  l a y e r s  



and what we s e e  is t h a t  we have on t h i s  p a r t i c u l a r  l aye r  a p o i n t  

which i s  l abe led  "1" and one t h a t  i s  l abe led  "2". These two 

p o i n t s  i n  t h i s  case  correspond t o  what we i n  t h e  o l d  approach 

c a l l e d  a p r i m i t i v e  mat r ix ,  which d i d  n o t  work w i th  t h e  cont inuous 

ref inement of a g r i d .  This simplex i s  completely l abe led  SO 

we have i n  t h i s  sense an approximation of a f i xed  po in t .  This 

suggests  t h a t  i f  we go i n  h e r e  (po in t i ng  t o  graph) on a very 

rough approximation, we w i l l  f i n d  completely l abe led  s imp l i ces ,  

which when we put  them i n t o  t h e  Eaves diagram, w i l l  be p o i n t s  

on an Eaves type t r a j e c t o r y .  Thus, i n  t h i s  very  simple example 

we have Eaves o r i g i n a l  t r a j e c t o r y  going up he re ,  which then 

leads  us t o  a very  good approximation of one f i xed  po in t .  Then 

we have a funny th ing  coming down here ,  apply ing exac t l y  t h e  

same kind of  techn ique,  which i n  t h i s  d i r e c t i o n  go ies  t o  f i xed  

p o i n t  "2" ,  and he re  goes t o  f i xed  p o i n t  " 3 " .  

KoopmanS: Your " t r a j e c t o r y " ,  s h a l l  I t h i n k  of it a s  a sequence 

of mid-points of  success ive  t r i a n g l e s ?  

Hansen: Yes. The th ing  t h a t  I want t o  say i s  t h a t  t h i s  k ind of 

sequence of  s imp l i ces ,  i f  we t h i n k  i n  l a r g e r  dimensions, goes very 

f a s t  upwards such t h a t ,  i f  we only go on t o  t h e s e  t r a j e c t o r i e s ,  

we could qu ick ly  g e t  an accura te  approximation of  a f i x e d  po in t .  

So, t h i s  suggests  t h e  fo l lowing s t r a t e g y .  We t r y  t o  g e t  on t h e  

t r a j e c t o r y  a s  low a s  poss ib le ,  s i n c e  t h e  c o s t  of g e t t i n g  on t h e  

t r a j e c t o r y  depends very much on t h e  f i n e n e s s  of t h e  g r i d  t h a t  

we a r e  apply ing.  When we g e t  on t h e  t r a j e c t o r y  we apply Eavesw 

technique and we g e t  a very accura te  d e s c r i p t i o n ,  a g r e a t  

accuracy of  t h e  f i x e d  po in ts .  



What it means is t h a t  t h e  k ind of  f i x e d  p o i n t  techn iques 

t h a t  were o r i g i n a l l y  dev ised by Scar f  and mysel f ,  w e  apply t o  

one p a r t i c u l a r  l e v e l  he re  and we make a s e a r c h  i n  o r d e r  t o  f i n d  

a s  many f i x e d  p o i n t s  a s  p o s s i b l e .  And those  w i l l  then be p o i n t s  

on t h e  t r a j e c t o r i e s .  

Koopmans: And t h a t  is a l l  you a r e  look ing  f o r  a t  t h a t  l e v e l ?  

Gri lmm: You probably would on l y  have t o  look f o r  one i n t e r s e c t i o n  

o u t  of two i n t e r s e c t i o n s ,  of  t h e  curve of  complete ly  l a b e l e d  

s imp l i ces  w i th  t h e  g r i d  a t  a g iven l e v e l .  

Hansen: Yes, b u t  we d o n ' t  know which one it i s .  

GrUmm: OK,  i f  I found one,  I can go upwards a s  w e l l  a s  downwards. 

Hansen: So, what we would do i n  t h i s  p a r t i c u l a r  c a s e ,  where we 

have 3 f i x e d  p o i n t s  i n  a two-dimensional c a s e  (we have on ly  p rey ,  

f o r  example) .  We would g e t  on a s p e c i f i c  t r a j e c t o r y  and then  i n  

50 i t e r a t i o n s  f o r  each of t h e s e  t r a j e c t o r i e s  ( t h a t  i s  55) we 

- 6 would have t h e  f i x e d  p o i n t  t o  an accuracy of 10 . J u s t  t o  

i n d i c a t e  some of  t h e  p i t f a l l s  t h a t  could occur  i n  t h i s  k ind of 

t h i n g  i s  t h a t  conceivably we want t o  g e t  i n  a s  low a s  p o s s i b l e  

because t h a t  means . tha t  t h e  resea rch  procedure is no t  going t o  

be very  c o s t l y .  We g o t  i n  h e r e  and we found t h a t  f i x e d  p o i n t ,  

b u t  conce ivab ly  t h e r e  could be more up h e r e ,  which would then  

be neg lec ted .  We have a f e e l i n g  t h a t  t h e r e  may be some k ind 

of  connect ion  between t h e s e  t r a j e c t o r i e s .  Poss ib l y ,  t hey  could 

be  such t h a t  they were t a n g e n t i a l  t o  each o t h e r  i n  t h e  sense 

t h a t  we were going up he re  and one t r a j e c t o r y  was more o r  l e s s  



fineness of grid there are some that don't get identified, and 

then you would have to move higher up. 

Jones: My suggestion was that, by analogy, perhaps you could 

get a higher probability of picking a point on opposite sides 

of the fixed points with a smaller number of computations by 

using a random search. 

Hansen: I think the problem is that you want to use your insight 

in a problem to pick the level where you want to go in and make 

your first search. 

Clark: Once you decide the level of your search strategy the 

search can start at some regular interval, a place, random 

interval points, or any of the things that a normal sampling 

advisor would tell you to get at. 

Koopmans: Can you give us some indication how you chose the 

horizontal level? If instead of a line segment you have the 

simplex in n dimensions, how do you do the search at that level 

or grid refinement? 

Hansen: OK. Maybe I should show how this thing is done and 

maybe if we go to dimension 3, that would be enough to give 

you an idea. So, (he draws a graph on the blackboard and 

explains the procedure). The simplex is divided into subsimplexes. 

In a sense you start searching from each of the corners. Then 

you can start searching from the completely labled simplexes 

that you have found and those are the points of these trajec- 

tories that I'm referring to. The coarser the grid is the less 



time it takes to get in, but the amount of points that are 

investigated is very small compared with the total number of 

vertices in the subdivision. 

Schuster: I would like to ask a very brief question concerning 

the refinement technique. Assume you have got a completely 

labeled subsimplex at the level of lower accuracy. Now, your 

final solution need not necessarily lie inside the former sub- 

simplex as is the case in your very simple example. For refining 

the grid what procedure would you suggest? In case you proceed 

to higher levels of accuracy and you search for completely 

labeled subsimplices it will occur that you do not find a solution 

inside your former simplex. Do you have to make a decision to 

go outside the given simplex or does the procedure work auto- 

matically without a particular decision of this kind? 

Hansen: I think there is no problem. The analogy in that case 

is that I have searched through this grid. I have got a com- 

pletely labeled simplex here. And then whatever Y connect it 

up with there doesn't matter, because I already have all the 

labels represented on one grid level so the label on the next 

level doesn't matter. 

Schuster: So, also in case your solution lies outside your 

former subsimplex the suggested procedure converges to the 

desired solution. 

Hansen: It doesn't matter. The only thing that you want is to 

get on to this trajectory and you don't need any more information 

other than that you have found you need a fully labeled simplex 



down here, which means that all the different labels have to 

occur. 

I would just like to add some general comments on the 

ecology problem that we have been doing. In a sense we have 

applied the computational techniques to two classes of ecology 

models. One was given by Ray Hilborn and the other one is the 

model Dixon Jones was talking about some days ago. It seems to 

me that in these particular ecology models there are relatively 

few state variables. I don't mean 2 or 3. They are trivial, 

but when you get up to 5 or 6 it should be particularly suited 

for this kind of analysis. In both cases we then tried to find 

more than one fixed point. We only ran one set of parameters 

for each ecology model. 

Bazykin: What dimension was it? 

Hansen: The kind of techniques that we are talking about have 

nothing to do with dimension, so if we have a dimension 6 or 7 

it doesn't matter. But the specific numerical examples only 

referred to 2 species and the reason is that that is the only 

one that they have presented. In both cases we found 3 fixed 

points and one, as far as I know, in your case is an unstable 

one and also has some particular properties. 

Grfimm: A fixed point generates the separatrix, the boundary 

between the basin of the stable equilibrium and the rest of 

phase space. 



Hansen: W e  a l s o  t r i e d  t o  g e n e r a t e  p e r i o d i c  p o i n t s ,  b u t  un fo r -  

t u n a t e l y  we d i d n ' t  g e t  on  t o  programming t h a t  prob lem u n t i l  

y e s t e r d a y .  W e  d o  n o t  have any r e s u l t s  t o  r e p o r t  on  g e n e r a t i n g  

p e r i o d i c  p o i n t s .  

Molchanov: Very g e n e r a l  c a s e .  

Hansen: There has  been  some m isunde rs tand ing  h e r e  and what w e  

want  t o  d o  i s  t o  t es t  a two-d imensional  c a s e  because  w e  know 

someth ing o f  t h e  p r o p e r t i e s  o f  t h a t .  But t h e  a l g o r i t h m  shou ld  

b e  such  t h a t  it cou ld  b e  done f o r  5,  6 ,  7 ,  and 50.  I t  shou ld  

b e  independent  o f  d imension.  

Jones :  Were t h e  prob lems s t r i c t l y  computer programming ones  

t o  t h i s  p o i n t ?  

Hansen: Y e s ,  maybe we shou ld  a l s o  s a y  t h a t  t h e  computer t i m e  

would b e  i n  t e r m s  o f  1 o r  2 seconds ,  t h a t  would b e  t h e  o r d e r  

o f  it. The prob lem w i t h  f i n d i n g  p e r i o d i c  p o i n t s  i s  t h a t  it 

would r e q u i r e  q u i t e  c o n s i d e r a b l e  computer  t i m e .  

Jones :  The p a r t i c u l a r  pa rame te r  set  we t e s t e d  was based  on  t h e  

v i s u a l  imp ress ion  o f  one  phase  d iagram,  which may i n  f a c t  b e  

g l o b a l l y  u n s t a b l e ,  s o  t h a t  p a r t i c u l a r  set  o f  pa rame te r s  may 

n o t  p roduce  a l i m i t  c y c l e .  But t h e r e  shou ld  b e  some set where 

t h e  p e r i o d i c  c y c l e  h a s  j u s t  been g i v e n  " b i r t h . "  

GrBrnrn: I migh t  add t h a t  a l l  d u r i n g  t h i s  workshop t h e r e  h a s  

been  a c e r t a i n  t e r m i n o l o g i c a l  c o n f u s i o n  between t h e  d i s c r e t e  

and t h e  c o n t i n u o u s  s i t u a t i o n  i n  t h i s  c a s e .  I n  t h i s  prob lem when 

we Sought  t h e  s o l u t i o n  f o r  a  p e r i o d i c  p o i n t ,  w e  d i d  



n o t  i n t e n d  f o r  t h i s ,  i n  any sense ,  t o  b e  a  d i s c r e t e  approximation. 

Th i s  adds ano the r  compl ica t ion  t o  t h e  problem of  t h e  ~ o i n c a r 6  

c ross -sec t i on .  Why, f o r  i n s t a n c e ,  a  cont inuous cu rve  o r  a  

p iecewise  l i n e a r  o r  any o t h e r  approximat ion of  a  cu rve  is s u r e  

t o  h i t  t h i s  p a r t i c u l a r  smal l  p i e c e  of p lane  aga in .  I f  you have 

a  d i s c r e t e - t i m e  system, you a r e  moving i n  jumps, s o  you cannot  

hope f o r  any p a r t i c u l a r  c r o s s - s e c t i o n ,  b u t  j u s t  make a  k ind of 

s e c t o r  s o  t h a t  you hope t h a t  you come back a f t e r  some amount 

of i t e r a t i o n .  You should n o t  t a k e  t h e  whole v i c i n i t y  of t h e  

u n s t a b l e  f i x e d  p o i n t s ,  because f o r  a  p o i n t  w i th  a  pe r iod  of 

20 you g e t  20 f i x e d  p o i n t s ,  which would be a  t e r r i b l e  s t r a i n  on 

t h e  computer t ime.  I n  a  very  i n t u i t i v e  way, t h e r e  is  a k ind 

of cone where w e  a r e  looking f o r  f i x e d  p o i n t s .  

S c a r f :  I t h i n k  t h a t  somehow w e  shou ld  s t a y  on t h e  p lane and 

map from t h e  p lane ,  say  i n  t h r e e  d imensions,  t o  t h e  f i r s t  i ter- 

a t i o n  t h a t  has  j u s t  c rossed  t h e  p lane  and then  t a k e  t h e  l i n e a r  

segment between t h e  two l e f t  i t e r a t i o n s  and i n t e r s e c t  it wi th  

t h e  p lane.  

Gramm: The f i r s t  r e t u r n  map t o  a  p lane  has  i t s  p a r t i c u l a r  

problems when you d'on't know e x a c t l y  how l a r g e  a  r o t a t i o n  number 

is going t o  b e  on t h e  average.  

S c a r f :  W e l l ,  b u t  you want t o  avo id  t h a t  by having a  wedge. 

Hansen: W e  have a l s o  set up t h e  problem of  chemis t ry ;  Schus te r  

and h i s  c o l l a b o r a t o r s  a r e  look ing  i n t o  t h a t  r i g h t  now. 

Schuster :  W e  succeeded i n  running t h e  program of Hansen on 

o u r  CDC cyber  7 3  computer i n  Vienna and t r i e d  s u c c e s s f u l l y  a  



number of simple examples. Here I will give a short idea how 

fixed point techniques of the kind of Scarf's and Hansen's 

method can be applied to the problems we are interested in in 

the field of chemistry. There are two classes of problems. 

One kind is conventional chemical systems: we want to calculate 

chemical equilibria. In this case we are interested in only one 

fixed point and it seems to me that fixed point techniques can 

be applied successfully in case we rearrange our equations a 

little bit in order to obtain an appropriate mapping of the 

system on the unit simplex itself. Then with automatic grid 

refinement, it should be no problem to find a solution of this 

system of equations. We know from a physico-chemical basis 

that there is only one solution which makes sense. 

The second kind of problem, certainly more interesting, to 

which I was referring here last week was the complex chemical 

systems, where we have to expect many fixed points. We tried 

one example of this kind. It was a more or less trivial test 

case and we obtained the correct answer. In more complicated 

examples one has to solve additional intrinsic equations and 

the program available now might in principle be applied as 

well. This point will be investigated further in our institute. 

Finally, I think, in finding fixed points in chemical systems, 

the technique applied here is very powerful. I would like to 

refer additionally to one problem which has been scratched 

only at the surface here. Somebody mentioned it already in 

the closing remarks. Up to now we have discussed more or less 

exclusively the evolution of our systems in time. In chemistry, 



i n  c a s e  we a r e  i n t e r e s t e d  i n  u n s t a b l e  systems,  t hose  examples 

w i th  many f i x e d  p o i n t s ,  we a r e  i n t e r e s t e d  a l s o  i n  what i s  going 

on i n  space.  These systems show s p a t i a l  i n s t a b i l i t i e s  a s  we l l .  

A f t e r  pass ing  t h e  c r i t i c a l  p o i n t  t hey  undergo spontaneous o rde r ing  

i n  space.  D i f fus ion  processes  a r e  now equa l l y  impor tan t  a s  t h e  

t i m e  development. The problem a r i s i n g  now i s  t o  f i n d  a  s o l u t i o n  

t o  t h e  system of p a r t i a l  d i f f e r e n t i a l  equa t i ons .  A s  a  f i r s t  

s t e p  it would be d e s i r a b l e  t o  approach t h e  s o l u t i o n  f o r  a t  l e a s t  

one s p a t i a l  v a r i a b l e .  A t  t h e  p r e s e n t  s t a g e  of development t h e  

on l y  approach which is a p p l i c a b l e  i n  g e n e r a l  is t o  perform very  

t e d i o u s  numer ica l  i n t e g r a t i o n s .  What w e  need a r e  more sys temat i c  

i n v e s t i g a t i o n s  s i m i l a r  t o  t h e  kind of approach we have l ea rned  

about  h e r e  i n  t h e  c a s e  of o rd ina ry  d i f f e r e n t i a l  equat ions .  I t  

is j u s t  my f e e l i n g  t h a t  t h i s  k ind of a n a l y s i s  has  t o  be  extended 

t o  t h e  c a s e  of p a r t i a l  d i f f e r e n t i a l  equa t i ons  i n  o rde r  t o  make 

t h e  d i s c u s s i o n  g radua l l y  approaching r e a l i t y .  I t  seems t o  me 

t h i s  f i e l d  i s  more o r  l e s s  open t o  f u r t h e r  resea rch .  



R e t r o s p e c t  and P r o s p e c t  

I n  r e t r o s p e c t  t h e  workshop had some o f  t h e  t r a i t s  o f  a  

"happen ing . "  One c o u l d  n o t  have known i n  advance  whe the r  t h e  

e x p e r i m e n t  o f  b r i n g i n g  t o g e t h e r  s c i e n t i s t s  from a  w ide  range o f  

f i e l d s  on an  a s s u m p t i o n  o f  common prob lems and common i n t e r e s t s  

would work o u t .  I n  f a c t ,  a f t e r  a  few d a y s  o f  s e n s i n g  and p rob ing ,  

t h e  m i x t u r e  j e l l e d .  Morale,  i n t e r a c t i o n  and s e n s e  o f  vaZuabZe 

e x p e r i e n c e  remained h i g h  from t h e r e  on.  

The f a c i l i t i e s  i n  t h e  I IASA "Gar re t , "  w i t h  o f f i c e s  i n  w h i c h  

n a t i o n a l i t i e s  and p r o f e s s i o n s  were  m i n g l e d  l i k e  a  Z a t i n  s q u a r e ,  

and a  c e n t r a l  m e e t i n g  room domina ted  by one l a r g e  t a b l e  and one 

l a r g e  b l a c k b o a r d ,  f i t t e d  t h e  purpose w e l l .  But  what  made t h e  

workshop was t h e  c o m b i n a t i o n  o f  a  group o f  s c i e n t i s t s  e a g e r  f o r  

mu tua l  l e a r n i n g  and a  s c i e n t i f i c  s i t u a t i o n  i n  w h i c h  such  l e a r n i n g  

was found p o s s i b l e  and rega rded  a s  f r u i t f u l .  

The d i s t r i b u t i o n  o f  e f f o r t  o v e r  t h e  v a r i o u s  a c t i v i t i e s  came 

o u t  d i f f e r e n t l y  from what  had b e e n  p roposed .  I n  t h e  minds o f  many 

o f  t h e  p a r t i c i p a n t s ,  t h e  s e n s e  o f  p r o g r e s s  a t t a c h e d  i t s e l f  

p a r t i c u l a r l y  t o  t h e  u s e  o f  c o n c e p t s  and theo rems  from d i f f e r e n t i a l  

t o p o l o g y  i n  t h e  d e s c r i p t i o n  and a n a l y s i s  o f  dynamic  s t r u c t u r e s .  

However, P r o f e s s o r  Hansen c a r r i e d  t h e  b a l l  f o r  c o m p u t a t i o n ,  t h e  

u l t i m a t e  purpose o f  t h e  workshop a c t i v i t i e s .  To e x p r e s s  t h e  

d e t o u r  t a k e n  by many o t h e r  p a r t i c i p a n t s ,  t h e  t i t l e  f o r  t h i s  Record 

o f  t h e  Workshop i s  d i f f e r e n t  from t h a t  by wh ich  t h e  workshop 

was announced.  



Measured by s u b j e c t i v e  p e r c e p t i o n s  and e x p r e s s i o n s  o f  

i n t e l l e c t u a l  ga i n ,  t h e  workshop was a  s u c c e s s .  Moreover, 

s e v e r a l  p a r t i c i p a n t s  formed p l ans  f o r  f u r t h e r  c o l l a b o r a t i o n s .  

Beyond t h i s ,  f u r t h e r  e v a l u a t i o n  o f  t h i s  p a r t i c u l a r  e f f o r t  can 

o n l y  be made i n  t h e  f u t u r e .  
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